1
|
Dias P, Salam R, Moravcová M, Saadat S, Pourová J, Vopršalová M, Jirkovský E, Tebbens JD, Mladěnka P. 3-methoxycatechol causes vasodilation likely via K V channels: ex vivo, in silico docking and in vivo study. Vascul Pharmacol 2024; 156:107418. [PMID: 39159736 DOI: 10.1016/j.vph.2024.107418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Substituted catechols include both natural and synthetic compounds found in the environment and foods. Some of them are flavonoid metabolites formed by the gut microbiota which are absorbed afterwards. Our previous findings showed that one of these metabolites, 4-methylcatechol, exerts potent vasorelaxant effects in rats. In the current study, we aimed at testing of its 22 structural congeners in order to find the most potent structure and to investigate the mechanism of action. 3-methoxycatechol (3-MOC), 4-ethylcatechol, 3,5-dichlorocatechol, 4-tert-butylcatechol, 4,5-dichlorocatechol, 3-fluorocatechol, 3-isopropylcatechol, 3-methylcatechol and the parent 4-methylcatechol exhibited high vasodilatory activities on isolated rat aortic rings with EC50s ranging from ∼10 to 24 μM. Some significant sex-differences were found. The most potent compound, 3-MOC, relaxed also resistant mesenteric artery but not porcine coronary artery, and decreased arterial blood pressure in both male and female spontaneously hypertensive rats in vivo without affecting heart rate. It potentiated the vasodilation mediated by cAMP and cGMP, but did not impact L-type Ca2+-channels. By using two inhibitors, activation of voltage-gated potassium channels (KV) was found to be involved in the mechanism of action. This was corroborated by docking analysis of 3-MOC with the KV7.4 channel. None of the most active catechols decreased the viability of the A-10 rat embryonic thoracic aorta smooth muscle cell line. Our findings showed that various catechols can relax vascular smooth muscles and hence could provide templates for developing new antihypertensive vasodilator agents without affecting coronary circulation.
Collapse
MESH Headings
- Animals
- Vasodilation/drug effects
- Male
- Catechols/pharmacology
- Catechols/chemistry
- Molecular Docking Simulation
- Vasodilator Agents/pharmacology
- Vasodilator Agents/chemistry
- Female
- Rats, Inbred SHR
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/metabolism
- Potassium Channels, Voltage-Gated/metabolism
- Potassium Channels, Voltage-Gated/antagonists & inhibitors
- Potassium Channels, Voltage-Gated/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Swine
- Dose-Response Relationship, Drug
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Hypertension/drug therapy
- Hypertension/physiopathology
- Hypertension/metabolism
- Arterial Pressure/drug effects
- Coronary Vessels/drug effects
- Coronary Vessels/metabolism
- Rats
- Sex Factors
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Disease Models, Animal
- Structure-Activity Relationship
- Cyclic GMP/metabolism
Collapse
Affiliation(s)
- Patrícia Dias
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA; Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA.
| | - Rudy Salam
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Monika Moravcová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Saina Saadat
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Jana Pourová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Marie Vopršalová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Eduard Jirkovský
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Jurjen Duintjer Tebbens
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
2
|
Kiss T, Giles CB, Tarantini S, Yabluchanskiy A, Balasubramanian P, Gautam T, Csipo T, Nyúl-Tóth Á, Lipecz A, Szabo C, Farkas E, Wren JD, Csiszar A, Ungvari Z. Nicotinamide mononucleotide (NMN) supplementation promotes anti-aging miRNA expression profile in the aorta of aged mice, predicting epigenetic rejuvenation and anti-atherogenic effects. GeroScience 2019; 41:419-439. [PMID: 31463647 PMCID: PMC6815288 DOI: 10.1007/s11357-019-00095-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Understanding molecular mechanisms involved in vascular aging is essential to develop novel interventional strategies for treatment and prevention of age-related vascular pathologies. Recent studies provide critical evidence that vascular aging is characterized by NAD+ depletion. Importantly, in aged mice, restoration of cellular NAD+ levels by treatment with the NAD+ booster nicotinamide mononucleotide (NMN) exerts significant vasoprotective effects, improving endothelium-dependent vasodilation, attenuating oxidative stress, and rescuing age-related changes in gene expression. Strong experimental evidence shows that dysregulation of microRNAs (miRNAs) has a role in vascular aging. The present study was designed to test the hypothesis that age-related NAD+ depletion is causally linked to dysregulation of vascular miRNA expression. A corollary hypothesis is that functional vascular rejuvenation in NMN-treated aged mice is also associated with restoration of a youthful vascular miRNA expression profile. To test these hypotheses, aged (24-month-old) mice were treated with NMN for 2 weeks and miRNA signatures in the aortas were compared to those in aortas obtained from untreated young and aged control mice. We found that protective effects of NMN treatment on vascular function are associated with anti-aging changes in the miRNA expression profile in the aged mouse aorta. The predicted regulatory effects of NMN-induced differentially expressed miRNAs in aged vessels include anti-atherogenic effects and epigenetic rejuvenation. Future studies will uncover the mechanistic role of miRNA gene expression regulatory networks in the anti-aging effects of NAD+ booster treatments and determine the links between miRNAs regulated by NMN and sirtuin activators and miRNAs known to act in the conserved pathways of aging and major aging-related vascular diseases.
Collapse
Affiliation(s)
- Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Department of Medical Physics and Informatics / Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Cory B Giles
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Oklahoma Medical Research Foundation, Genes & Human Disease Research Program, Oklahoma City, OK and Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Tripti Gautam
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Department of Medical Physics and Informatics / Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
- Department of Public Health / Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Institute of Biophysics, Biological Research Centre / Theoretical Medicine Doctoral School, Hungarian Academy of Sciences, Szeged, Hungary
| | - Agnes Lipecz
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Department of Medical Physics and Informatics / Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
- Department of Public Health / Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Csaba Szabo
- Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Eszter Farkas
- Department of Medical Physics and Informatics / Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Jonathan D Wren
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Oklahoma Medical Research Foundation, Genes & Human Disease Research Program, Oklahoma City, OK and Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Department of Medical Physics and Informatics / Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.
- Department of Medical Physics and Informatics / Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary.
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Department of Public Health / Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
3
|
Jackson WF. K V channels and the regulation of vascular smooth muscle tone. Microcirculation 2018; 25. [PMID: 28985443 DOI: 10.1111/micc.12421] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/01/2017] [Indexed: 12/31/2022]
Abstract
VSMCs in resistance arteries and arterioles express a diverse array of KV channels with members of the KV 1, KV 2 and KV 7 families being particularly important. Members of the KV channel family: (i) are highly expressed in VSMCs; (ii) are active at the resting membrane potential of VSMCs in vivo (-45 to -30 mV); (iii) contribute to the negative feedback regulation of VSMC membrane potential and myogenic tone; (iv) are activated by cAMP-related vasodilators, hydrogen sulfide and hydrogen peroxide; (v) are inhibited by increases in intracellular Ca2+ and vasoconstrictors that signal through Gq -coupled receptors; (vi) are involved in the proliferative phenotype of VSMCs; and (vii) are modulated by diseases such as hypertension, obesity, the metabolic syndrome and diabetes. Thus, KV channels participate in every aspect of the regulation of VSMC function in both health and disease.
Collapse
Affiliation(s)
- William F Jackson
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
4
|
Namgoong H, Cho C, Lee S. The Kv7 channel activator, retigabine, induces vasorelaxation via an endothelial-independent pathway in male mouse aorta. J Exerc Nutrition Biochem 2018; 22:51-55. [PMID: 30343562 PMCID: PMC6199484 DOI: 10.20463/jenb.2018.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 09/27/2018] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Previous studies have indicated that Kv7 channels have an important role in the regulation of blood vessel reactivity, including in the coronary, renal, and cerebral arteries. The present studies examined whether Kv7 channels regulated vascular reactivity in the mouse aorta and investigated the mechanisms involved in the reactivity. METHODS Wild-type (WT) male C57BL/6 mice, between 10 and 15 weeks old, were used in this study. The vascular function of the aorta in WT male mice was assessed by using a pin myography system (Model 620; DMT, Denmark). RESULTS Vasorelaxation by an endothelial-dependent vasodilator, acetylcholine (ACh, 1 nM - 10 μM) and an endothelial-independent vasodilator, sodium nitroprusside (SNP, 1 nM - 10 μM) was induced in the aorta in a dose-dependent manner. Pre-incubation with the nitric oxide synthase inhibitor, L-NAME (100 μM, 20 min), completely abolished ACh-induced vasorelaxation, but did not block retigabine-induced vasorelaxation, which suggested that retigabine caused vasorelaxation in the aorta via smooth muscle activation rather than via endothelial cells. Pre-application of the Kv7 channel blocker, linopirdine (10 μM), resulted in a greater contractile response compared with that induced by vehicle in the aorta. In addition, pre-incubation with linopirdine (10 μM, 20 min) reduced retigabine-induced vasorelaxation (1-50 μM). CONCLUSION This study has provided evidence that Kv7 channels may play a role in the regulation of aortic blood flow via smooth muscle activation.
Collapse
|
5
|
Khammy MM, Kim S, Bentzen BH, Lee S, Choi I, Aalkjaer C, Jepps TA. 4-Aminopyridine: a pan voltage-gated potassium channel inhibitor that enhances K v 7.4 currents and inhibits noradrenaline-mediated contraction of rat mesenteric small arteries. Br J Pharmacol 2018; 175:501-516. [PMID: 29156097 DOI: 10.1111/bph.14097] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 11/01/2017] [Accepted: 11/08/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Kv 7.4 and Kv 7.5 channels are regulators of vascular tone. 4-Aminopyridine (4-AP) is considered a broad inhibitor of voltage-gated potassium (KV ) channels, with little inhibitory effect on Kv 7 family members at mmol concentrations. However, the effect of 4-AP on Kv 7 channels has not been systematically studied. The aim of this study was to investigate the pharmacological activity of 4-AP on Kv 7.4 and Kv 7.5 channels and characterize the effect of 4-AP on rat resistance arteries. EXPERIMENTAL APPROACH Voltage clamp experiments were performed on Xenopus laevis oocytes injected with cRNA encoding KCNQ4 or KCNQ5, HEK cells expressing Kv 7.4 channels and on rat, freshly isolated mesenteric artery smooth muscle cells. The effect of 4-AP on tension, membrane potential, intracellular calcium and pH was assessed in rat mesenteric artery segments. KEY RESULTS 4-AP increased the Kv 7.4-mediated current in oocytes and HEK cells but did not affect Kv 7.5 current. 4-AP also enhanced native mesenteric artery myocyte K+ current at sub-mmol concentrations. When applied to NA-preconstricted mesenteric artery segments, 4-AP hyperpolarized the membrane, decreased [Ca2+ ]i and caused concentration-dependent relaxations that were independent of 4-AP-mediated changes in intracellular pH. Application of the Kv 7 channel blocker XE991 and BKCa channel blocker iberiotoxin attenuated 4-AP-mediated relaxation. 4-AP also inhibited the NA-mediated signal transduction to elicit a relaxation. CONCLUSIONS AND IMPLICATIONS These data show that 4-AP is able to relax NA-preconstricted rat mesenteric arteries by enhancing the activity of Kv 7.4 and BKCa channels and attenuating NA-mediated signalling.
Collapse
Affiliation(s)
- Makhala M Khammy
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sukhan Kim
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Bo H Bentzen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Soojung Lee
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Inyeong Choi
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Christian Aalkjaer
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Thomas A Jepps
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
7
|
Ogiwara K, Ohya S, Suzuki Y, Yamamura H, Imaizumi Y. Up-Regulation of the Voltage-Gated K V2.1 K + Channel in the Renal Arterial Myocytes of Dahl Salt-Sensitive Hypertensive Rats. Biol Pharm Bull 2017; 40:1468-1474. [DOI: 10.1248/bpb.b17-00289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kazunobu Ogiwara
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Susumu Ohya
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University
- Department of Pharmacology, Kyoto Pharmaceutical University
| | - Yoshiaki Suzuki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Yuji Imaizumi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
8
|
Potassium Channels in Regulation of Vascular Smooth Muscle Contraction and Growth. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:89-144. [PMID: 28212804 DOI: 10.1016/bs.apha.2016.07.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Potassium channels importantly contribute to the regulation of vascular smooth muscle (VSM) contraction and growth. They are the dominant ion conductance of the VSM cell membrane and importantly determine and regulate membrane potential. Membrane potential, in turn, regulates the open-state probability of voltage-gated Ca2+ channels (VGCC), Ca2+ influx through VGCC, intracellular Ca2+, and VSM contraction. Membrane potential also affects release of Ca2+ from internal stores and the Ca2+ sensitivity of the contractile machinery such that K+ channels participate in all aspects of regulation of VSM contraction. Potassium channels also regulate proliferation of VSM cells through membrane potential-dependent and membrane potential-independent mechanisms. VSM cells express multiple isoforms of at least five classes of K+ channels that contribute to the regulation of contraction and cell proliferation (growth). This review will examine the structure, expression, and function of large conductance, Ca2+-activated K+ (BKCa) channels, intermediate-conductance Ca2+-activated K+ (KCa3.1) channels, multiple isoforms of voltage-gated K+ (KV) channels, ATP-sensitive K+ (KATP) channels, and inward-rectifier K+ (KIR) channels in both contractile and proliferating VSM cells.
Collapse
|
9
|
Tsvetkov D, Tano JY, Kassmann M, Wang N, Schubert R, Gollasch M. The Role of DPO-1 and XE991-Sensitive Potassium Channels in Perivascular Adipose Tissue-Mediated Regulation of Vascular Tone. Front Physiol 2016; 7:335. [PMID: 27540364 PMCID: PMC4973012 DOI: 10.3389/fphys.2016.00335] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/20/2016] [Indexed: 11/13/2022] Open
Abstract
The anti-contractile effect of perivascular adipose tissue (PVAT) is an important mechanism in the modulation of vascular tone in peripheral arteries. Recent evidence has implicated the XE991-sensitive voltage-gated KV (KCNQ) channels in the regulation of arterial tone by PVAT. However, until now the in vivo pharmacology of the involved vascular KV channels with regard to XE991 remains undetermined, since XE991 effects may involve Ca(2+) activated BKCa channels and/or voltage-dependent KV1.5 channels sensitive to diphenyl phosphine oxide-1 (DPO-1). In this study, we tested whether KV1.5 channels are involved in the control of mesenteric arterial tone and its regulation by PVAT. Our study was also aimed at extending our current knowledge on the in situ vascular pharmacology of DPO-1 and XE991 regarding KV1.5 and BKCa channels, in helping to identify the nature of K(+) channels that could contribute to PVAT-mediated relaxation. XE991 at 30 μM reduced the anti-contractile response of PVAT, but had no effects on vasocontraction induced by phenylephrine (PE) in the absence of PVAT. Similar effects were observed for XE991 at 0.3 μM, which is known to almost completely inhibit mesenteric artery VSMC KV currents. 30 μM XE991 did not affect BKCa currents in VSMCs. Kcna5 (-/-) arteries and wild-type arteries incubated with 1 μM DPO-1 showed normal vasocontractions in response to PE in the presence and absence of PVAT. KV current density and inhibition by 30 μM XE991 were normal in mesenteric artery VSMCs isolated from Kcna5 (-/-) mice. We conclude that KV channels are involved in the control of arterial vascular tone by PVAT. These channels are present in VSMCs and very potently inhibited by the KCNQ channel blocker XE991. BKCa channels and/or DPO-1 sensitive KV1.5 channels in VSMCs are not the downstream mediators of the XE991 effects on PVAT-dependent arterial vasorelaxation. Further studies will need to be undertaken to examine the role of other KV channels in the phenomenon.
Collapse
Affiliation(s)
- Dmitry Tsvetkov
- Experimental and Clinical Research Center, A Joint Cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association of German Research Centres Berlin, Germany
| | - Jean-Yves Tano
- Experimental and Clinical Research Center, A Joint Cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association of German Research Centres Berlin, Germany
| | - Mario Kassmann
- Experimental and Clinical Research Center, A Joint Cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association of German Research Centres Berlin, Germany
| | - Ning Wang
- Experimental and Clinical Research Center, A Joint Cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association of German Research Centres Berlin, Germany
| | - Rudolf Schubert
- Research Division Cardiovascular Physiology, Centre for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim of the University Heidelberg Mannheim, Germany
| | - Maik Gollasch
- Experimental and Clinical Research Center, A Joint Cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association of German Research CentresBerlin, Germany; Medical Clinic for Nephrology and Internal Intensive Care, Charité University MedicineBerlin, Germany
| |
Collapse
|
10
|
Cox RH, Fromme S. Functional Expression Profile of Voltage-Gated K(+) Channel Subunits in Rat Small Mesenteric Arteries. Cell Biochem Biophys 2016; 74:263-76. [PMID: 27286858 PMCID: PMC4905591 DOI: 10.1007/s12013-015-0715-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Multiple K v channel complexes contribute to total K v current in numerous cell types and usually subserve different physiological functions. Identifying the complete compliment of functional K v channel subunits in cells is a prerequisite to understanding regulatory function. It was the goal of this work to determine the complete K v subunit compliment that contribute to functional K v currents in rat small mesenteric artery (SMA) myocytes as a prelude to studying channel regulation. Using RNA prepared from freshly dispersed myocytes, high levels of K v 1.2, 1.5, and 2.1 and lower levels of K v 7.4 α-subunit expressions were demonstrated by quantitative PCR and confirmed by Western blotting. Selective inhibitors correolide (K v 1; COR), stromatoxin (K v 2.1; ScTx), and linopirdine (K v 7.4; LINO) decreased K v current at +40 mV in SMA by 46 ± 4, 48 ± 4, and 6.5 ± 2 %, respectively, and K v current in SMA was insensitive to α-dendrotoxin. Contractions of SMA segments pretreated with 100 nmol/L phenylephrine were enhanced by 27 ± 3, 30 ± 8, and 7 ± 3 % of the response to 120 mmol/L KCl by COR, ScTX, and LINO, respectively. The presence of K v 6.1, 9.3, β1.1, and β1.2 was demonstrated by RT-PCR using myocyte RNA with expressions of K vβ1.2 and K v 9.3 about tenfold higher than K vβ1.1 and K v 6.1, respectively. Selective inhibitors of K v 1.3, 3.4, 4.1, and 4.3 channels also found at the RNA and/or protein level had no significant effect on K v current or contraction. These results suggest that K v current in rat SMA myocytes are dominated equally by two major components consisting of K v 1.2-1.5-β1.2 and K v 2.1-9.3 channels along with a smaller contribution from K v 7.4 channels but differences in voltage dependence of activation allows all three to provide significant contributions to SMA function at physiological voltages.
Collapse
Affiliation(s)
- Robert H Cox
- Program in Cardiovascular Disease, Lankenau Institute for Medical Research, Main Line Health System, 100 Lancaster Avenue, Wynnewood, PA, 19096, USA.
| | - Samantha Fromme
- Program in Cardiovascular Disease, Lankenau Institute for Medical Research, Main Line Health System, 100 Lancaster Avenue, Wynnewood, PA, 19096, USA
| |
Collapse
|
11
|
Cox RH, Fromme S. Expression of Calcium Channel Subunit Variants in Small Mesenteric Arteries of WKY and SHR. Am J Hypertens 2015; 28:1229-39. [PMID: 25820242 DOI: 10.1093/ajh/hpv024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 02/03/2015] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Enhanced function of dihydropyridine-sensitive Ca2+ channels (CaV) in hypertensive arterial myocytes (HAM) is well accepted. Increased protein expression of pore forming α1-subunits contributes to this effect, but cannot explain all of the differences in CaV properties in HAM. We hypothesized that differences in expression of CaV subunits and/or their splice variants also contribute. METHODS RNA, protein, and myocytes were isolated from small mesenteric arteries (SMA) of 20-week-old male WKY and SHR and analyzed by polymerase chain reaction (PCR), sequencing, immunoblotting, and patch clamp methods. RESULTS Cav1.2 α1, β2c, and α2δ1d were the dominant subunits expressed in both WKY and SHR with a smaller amount of β3a. Real-time PCR indicated that the mRNA abundance of β3a and α2δ1 but not total Cav1.2 α1 or β2c were significantly larger in SHR. Analysis of alternative splicing of Cav1.2 α1 showed no differences in abundance of mutually exclusive exons1b, 8, 21 and 32 or alternative exons33 and 45. However, inclusion of exon9* was higher and a 73 nucleotide (nt) deletion in exon15 (exon15Δ73) was lower in SHR. Immunoblot analysis showed higher protein levels of Cav1.2 α1 (1.61±0.05), β3 (1.80±0.32), and α2δ1 (1.80±0.24) but not β2 in SHR. CONCLUSIONS The lower abundance of exon15Δ73 transcripts in SHR results in a larger fraction of total Cav1.2 mRNA coding for full-length CaV protein, and the higher abundance of exon9* transcripts and CaVβ3a protein likely contribute to differences in gating and kinetics of CaV currents in SHR. Functional studies of Ca2+ currents in native SMA myocytes and HEK cells transiently transfected with CaV subunits support these conclusions.
Collapse
Affiliation(s)
- Robert H Cox
- Program in Cardiovascular Disease, Lankenau Institute for Medical Research, Wynnewood, Pennsylvania.
| | - Samantha Fromme
- Program in Cardiovascular Disease, Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| |
Collapse
|
12
|
Li Z, Lu N, Shi L. Exercise training reverses alterations in Kv and BKCa channel molecular expression in thoracic aorta smooth muscle cells from spontaneously hypertensive rats. J Vasc Res 2015; 51:447-57. [PMID: 25661478 DOI: 10.1159/000369928] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 11/12/2014] [Indexed: 11/19/2022] Open
Abstract
Previous studies have shown that exercise training influences potassium channel protein expression in arteries. The purpose of this study was to investigate the effect of exercise training on alterations in voltage-gated potassium channels (Kv) and large-conductance, calcium-activated potassium channels (BKCa) in thoracic aorta smooth muscle cells from spontaneously hypertensive rats (SHRs). Male SHRs were randomly assigned to a sedentary group (SHR-SED) and exercise training group (SHR-EX). Age-matched Wistar-Kyoto rats (WKYs) were used as controls. After 8 weeks of aerobic exercise training, blood pressure was significantly lower in the SHR-EX group than in the SHR-SED group. Exercise training increased the contribution of the Kv1.2 and Kv1.5 channels and decreased the contribution of BKCa channel to resting tone in the SHR-EX group compared to the SHR-SED group as indicated by vessel contractility experiments. Immunohistochemistry and Western blotting showed that Kv1.2 and Kv1.5 channel expression was significantly lower in the SHR-SED group than in the WKY group and exercise training attenuated this reduction. BKCa α-subunit expression was statistically unchanged between the groups; however, β1-subunit expression was reduced significantly by exercise training in the SHR-EX group compared to the SHR-SED group. These data suggest that exercise training reverses the pathological expression of the Kv1.2, Kv1.5, and BKCa channels in aortic myocytes from SHRs. This is one of the favorable effects of exercise training on large conduit arteries.
Collapse
Affiliation(s)
- Zhencheng Li
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | | | | |
Collapse
|
13
|
Stott JB, Jepps TA, Greenwood IA. KV7 potassium channels: a new therapeutic target in smooth muscle disorders. Drug Discov Today 2014; 19:413-24. [DOI: 10.1016/j.drudis.2013.12.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/21/2013] [Accepted: 12/04/2013] [Indexed: 12/23/2022]
|
14
|
Cox RH, Fromme SJ. A naturally occurring truncated Cav1.2 α1-subunit inhibits Ca2+ current in A7r5 cells. Am J Physiol Cell Physiol 2013; 305:C896-905. [PMID: 23926129 DOI: 10.1152/ajpcell.00217.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Alternative splicing of the voltage-gated Ca(2+) (CaV) α1-subunit adds to the functional diversity of Ca(2+) channels. A variant with a 73-nt deletion in exon 15 of the Cav1.2 α1-subunit (Cav1.2Δ73) produced by alternative splicing that predicts a truncated protein has been described, but its function, if any, is unknown. We sought to determine if, by analogy to other truncated CaV α1-subunits, Cav1.2Δ73 acts as an inhibitor of wild-type Cav1.2 currents. HEK-293 cells were transfected with Cav1.2Δ73 in a pIRES vector with CD8 or in pcDNA3.1 with a V5/his COOH-terminal tag plus β2 and α2δ1 accessory subunits and pEGFP. Production of Cav1.2Δ73 protein was confirmed by Western blotting and immunofluorescence. Voltage-clamp studies revealed the absence of functional channels in transfected cells. In contrast, cells transfected with full-length Cav1.2 plus accessory subunits and pEGFP exhibited robust Ca(2+) currents. A7r5 cells exhibited endogenous Cav1.2-based currents that were greatly reduced (>80%) without a change in voltage-dependent activation when transfected with Cav1.2Δ73-IRES-CD8 compared with empty vector or pIRES-CD8 controls. Transfection of A7r5 cells with an analogous Cav2.3Δ73-IRES-CD8 had no effect on Ca(2+) currents. Immunofluorescence showed intracellular, but not plasma membrane, localization of Cav1.2Δ73-V5/his, as well as colocalization with an endoplasmic reticulum marker, ER Organelle Lights. Expression of Cav1.2Δ73 α1-subunits in A7r5 cells inhibits endogenous Cav1.2 currents. The fact that this variant arises naturally by alternative splicing raises the possibility that it may represent a physiological mechanism to modulate Cav1.2 functional activity.
Collapse
Affiliation(s)
- Robert H Cox
- Program in Cardiovascular Studies, Lankenau Institute for Medical Research, Main Line Health System, Wynnewood, Pennsylvania
| | | |
Collapse
|
15
|
Joseph BK, Thakali KM, Moore CL, Rhee SW. Ion channel remodeling in vascular smooth muscle during hypertension: Implications for novel therapeutic approaches. Pharmacol Res 2013; 70:126-38. [PMID: 23376354 PMCID: PMC3607210 DOI: 10.1016/j.phrs.2013.01.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/10/2013] [Accepted: 01/17/2013] [Indexed: 02/07/2023]
Abstract
Ion channels are multimeric, transmembrane proteins that selectively mediate ion flux across the plasma membrane in a variety of cells including vascular smooth muscle cells (VSMCs). The dynamic interplay of Ca(2+) and K(+) channels on the plasma membrane of VSMCs plays a pivotal role in modulating the vascular tone of small arteries and arterioles. The abnormally-elevated arterial tone observed in hypertension thus points to an aberrant expression and function of Ca(2+) and K(+) channels in the VSMCs. In this short review, we focus on the three well-studied ion channels in VSMCs, namely the L-type Ca(2+) (CaV1.2) channels, the voltage-gated K(+) (KV) channels, and the large-conductance Ca(2+)-activated K(+) (BK) channels. First, we provide a brief overview on the physiological role of vascular CaV1.2, KV and BK channels in regulating arterial tone. Second, we discuss the current understanding of the expression changes and regulation of CaV1.2, KV and BK channels in the vasculature during hypertension. Third, based on available proof-of-concept studies, we describe the potential therapeutic approaches targeting these vascular ion channels in order to restore blood pressure to normotensive levels.
Collapse
Affiliation(s)
- Biny K Joseph
- Venenum Biodesign, 8 Black Forest Road, Hamilton, NJ 08691, USA
| | | | | | | |
Collapse
|
16
|
Jepps TA, Chadha PS, Davis AJ, Harhun MI, Cockerill GW, Olesen SP, Hansen RS, Greenwood IA. Downregulation of Kv7.4 channel activity in primary and secondary hypertension. Circulation 2011; 124:602-11. [PMID: 21747056 DOI: 10.1161/circulationaha.111.032136] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Voltage-gated potassium (K(+)) channels encoded by KCNQ genes (Kv7 channels) have been identified in various rodent and human blood vessels as key regulators of vascular tone; however, nothing is known about the functional impact of these channels in vascular disease. We ascertained the effect of 3 structurally different activators of Kv7.2 through Kv7.5 channels (BMS-204352, S-1, and retigabine) on blood vessels from normotensive and hypertensive animals. METHODS AND RESULTS Precontracted thoracic aorta and mesenteric artery segments from normotensive rats were relaxed by all 3 Kv7 activators, with potencies of BMS-204352=S-1>retigabine. We also tested these agents in the coronary circulation using the Langendorff heart preparation. BMS-204352 and S-1 dose dependently increased coronary perfusion at concentrations between 0.1 and 10 μmol/L, whereas retigabine was effective at 1 to 10 μmol/L. In addition, S-1 increased K(+) currents in isolated mesenteric artery myocytes. The ability of these agents to relax precontracted vessels, increase coronary flow, or augment K(+) currents was impaired considerably in tissues isolated from spontaneously hypertensive rats (SHRs). Of the 5 KCNQ genes, only the expression of KCNQ4 was reduced (≈3.7 fold) in SHRs aorta. Kv7.4 protein levels were ≈50% lower in aortas and mesenteric arteries from spontaneously hypertensive rats compared with normotensive vessels. A similar attenuated response to S-1 and decreased Kv7.4 were observed in mesenteric arteries from mice made hypertensive by angiotensin II infusion compared with normotensive controls. CONCLUSIONS In 2 different rat and mouse models of hypertension, the functional impact of Kv7 channels was dramatically downregulated.
Collapse
Affiliation(s)
- Thomas A Jepps
- Division of Biomedical Sciences, St. George's, University of London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhong XZ, Abd-Elrahman KS, Liao CH, El-Yazbi AF, Walsh EJ, Walsh MP, Cole WC. Stromatoxin-sensitive, heteromultimeric Kv2.1/Kv9.3 channels contribute to myogenic control of cerebral arterial diameter. J Physiol 2010; 588:4519-37. [PMID: 20876197 DOI: 10.1113/jphysiol.2010.196618] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cerebral vascular smooth muscle contractility plays a crucial role in controlling arterial diameter and, thereby, blood flow regulation in the brain. A number of K(+) channels have been suggested to contribute to the regulation of diameter by controlling smooth muscle membrane potential (E(m)) and Ca(2+) influx. Previous studies indicate that stromatoxin (ScTx1)-sensitive, Kv2-containing channels contribute to the control of cerebral arterial diameter at 80 mmHg, but their precise role and molecular composition were not determined. Here, we tested if Kv2 subunits associate with 'silent' subunits from the Kv5, Kv6, Kv8 or Kv9 subfamilies to form heterotetrameric channels that contribute to control of diameter of rat middle cerebral arteries (RMCAs) over a range of intraluminal pressure from 10 to 100 mmHg. The predominant mRNAs expressed by RMCAs encode Kv2.1 and Kv9.3 subunits. Co-localization of Kv2.1 and Kv9.3 proteins at the plasma membrane of dissociated single RMCA myocytes was detected by proximity ligation assay. ScTx1-sensitive native current of RMCA myocytes and Kv2.1/Kv9.3 currents exhibited functional identity based on the similarity of their deactivation kinetics and voltage dependence of activation that were distinct from those of homomultimeric Kv2.1 channels. ScTx1 treatment enhanced the myogenic response of pressurized RMCAs between 40 and 100 mmHg, but this toxin also caused constriction between 10 and 40 mmHg that was not previously observed following inhibition of large conductance Ca(2+)-activated K(+) (BK(Ca)) and Kv1 channels. Taken together, this study defines the molecular basis of Kv2-containing channels and contributes to our understanding of the functional significance of their expression in cerebral vasculature. Specifically, our findings provide the first evidence of heteromultimeric Kv2.1/Kv9.3 channel expression in RMCA myocytes and their distinct contribution to control of cerebral arterial diameter over a wider range of E(m) and transmural pressure than Kv1 or BK(Ca) channels owing to their negative range of voltage-dependent activation.
Collapse
Affiliation(s)
- Xi Zoë Zhong
- The Smooth Muscle Research Group, Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | | | | | |
Collapse
|
18
|
Ko EA, Park WS, Firth AL, Kim N, Yuan JXJ, Han J. Pathophysiology of voltage-gated K+ channels in vascular smooth muscle cells: Modulation by protein kinases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 103:95-101. [DOI: 10.1016/j.pbiomolbio.2009.10.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 10/07/2009] [Indexed: 10/20/2022]
|
19
|
Quantitative rt-PCR methods for investigation of low copy potassium channel gene expression in native murine arteries. Methods Mol Biol 2009. [PMID: 18998081 DOI: 10.1007/978-1-59745-526-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Voltage-gated K+ channels (K(V) channels) are encoded by the KCNx gene family and have such a wide range of properties that it is necessary to identify the precise expression profile that is instrumental in governing the electrical phenotype of a cell and its response to extrinsic factors. Real-time quantitative RT-PCR methodology has been developed and validated for specific RNA species in vascular smooth muscle cells. We have shown that most of the KCNA gene family, encoding the major K(V)alpha1 subunits, was markedly up-regulated in the resistance artery compared to the thoracic aorta, in line with reported patch-clamp recordings. Thus quantitative real-time RT-PCR data can be translated into physiological response.
Collapse
|