1
|
Tang Y, Chen F, Fang G, Zhang H, Zhang Y, Zhu H, Zhang X, Han Y, Cao Z, Guo F, Wang W, Ye D, Ju J, Tan L, Li C, Zhao Y, Zhou Z, An L, Jiao S. A cofactor-induced repressive type of transcription factor condensation can be induced by synthetic peptides to suppress tumorigenesis. EMBO J 2024; 43:5586-5612. [PMID: 39358623 PMCID: PMC11574045 DOI: 10.1038/s44318-024-00257-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 08/23/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Transcriptional factors (TFs) act as key determinants of cell death and survival by differentially modulating gene expression. Here, we identified many TFs, including TEAD4, that form condensates in stressed cells. In contrast to YAP-induced transcription-activating condensates of TEAD4, we found that co-factors such as VGLL4 and RFXANK alternatively induced repressive TEAD4 condensates to trigger cell death upon glucose starvation. Focusing on VGLL4, we demonstrated that heterotypic interactions between TEAD4 and VGLL4 favor the oligomerization and assembly of large TEAD4 condensates with a nonclassical inhibitory function, i.e., causing DNA/chromatin to be aggregated and entangled, which eventually impede gene expression. Based on these findings, we engineered a peptide derived from the TEAD4-binding motif of VGLL4 to selectively induce TEAD4 repressive condensation. This "glue" peptide displayed a strong antitumor effect in genetic and xenograft mouse models of gastric cancer via inhibition of TEAD4-related gene transcription. This new type of repressive TF phase separation exemplifies how cofactors can orchestrate opposite functions of a given TF, and offers potential new antitumor strategies via artificial induction of repressive condensation.
Collapse
Grants
- 2020YFA0803200 MOST | National Key Research and Development Program of China (NKPs)
- 2023YFC2505903 MOST | National Key Research and Development Program of China (NKPs)
- 32270747,92168116, 22077002, 82222052 MOST | National Natural Science Foundation of China (NSFC)
- 32200567, 31930026, 82150112 MOST | National Natural Science Foundation of China (NSFC)
- 32070710, 82372613 MOST | National Natural Science Foundation of China (NSFC)
- 82361168638, 32170706, 82002493 MOST | National Natural Science Foundation of China (NSFC)
- 22ZR1448100, 22QA1407200, 23ZR1448900 STCSM | Natural Science Foundation of Shanghai Municipality ()
- 22QA1407300, 23ZR1480400, 23YF1432900 STCSM | Natural Science Foundation of Shanghai Municipality ()
Collapse
Affiliation(s)
- Yang Tang
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Fan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Gemin Fang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Hui Zhang
- Department of General Surgery, Hua'shan Hospital, Fudan University Shanghai Medical College, Shanghai, 200040, China
| | - Yanni Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Hanying Zhu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Xinru Zhang
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yi Han
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhifa Cao
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Fenghua Guo
- Department of General Surgery, Hua'shan Hospital, Fudan University Shanghai Medical College, Shanghai, 200040, China
| | - Wenjia Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Dan Ye
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Junyi Ju
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Lijie Tan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Chuanchuan Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Liwei An
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
2
|
Yan L, Wen Z, Yang Y, Liu A, Li F, Zhang Y, Yang C, Li Y, Zhang Y. Dissecting the roles of prosaposin as an emerging therapeutic target for tumors and its underlying mechanisms. Biomed Pharmacother 2024; 180:117551. [PMID: 39405903 DOI: 10.1016/j.biopha.2024.117551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/22/2024] [Accepted: 10/08/2024] [Indexed: 11/14/2024] Open
Abstract
As a dual-function protein, prosaposin (PSAP) is a lysosome-associated protein that participates in a variety of cellular processes. In the lysosome, PSAP is processed to activate enzymes that degrade lipids. In addition, PSAP proteins located extracellularly are involved in cancer progression, such as proliferation and tumor death suppression signaling. Moreover, under different situations, PSAP exhibits distinct metastasis potentials in tumors. However, comprehensive insight into PSAP in cancer progression has been lacking. Here, we provide a framework of the role of PSAP in cancer and its clinical application in cancer patients, providing a novel perspective on the clinical translation of PSAP.
Collapse
Affiliation(s)
- Lirong Yan
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China
| | - Zhenpeng Wen
- Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Yi Yang
- Department of Laboratory Animal Science, China Medical University, Shenyang, China
| | - Aoran Liu
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China
| | - Fang Li
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China
| | - Yuzhe Zhang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China
| | - Chunjiao Yang
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, Guangxi, China
| | - Yanke Li
- Department of Anorectal Surgery, the First Hospital of China Medical University, Shenyang, China.
| | - Ye Zhang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China.
| |
Collapse
|
3
|
Cheraghi-Shavi T, Jalal R, Minuchehr Z. TGM2, HMGA2, FXYD3, and LGALS4 genes as biomarkers in acquired oxaliplatin resistance of human colorectal cancer: A systems biology approach. PLoS One 2023; 18:e0289535. [PMID: 37535601 PMCID: PMC10399784 DOI: 10.1371/journal.pone.0289535] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 07/20/2023] [Indexed: 08/05/2023] Open
Abstract
Acquired resistance to oxaliplatin is considered as the primary reason for failure in colorectal cancer (CRC) therapy. Identifying the underlying resistance mechanisms may improve CRC treatment. The present study aims to identify the key genes involved in acquired oxaliplatin-resistant in CRC by confirming the oxaliplatin resistance index (OX-RI). To this aim, two public microarray datasets regarding oxaliplatin-resistant CRC cells with different OX-RI, GSE42387, and GSE76092 were downloaded from GEO database to identify differentially expressed genes (DEGs). The results indicated that the OX-RI affects the gene expression pattern significantly. Then, 54 common DEGs in both datasets including 18 up- and 36 down-regulated genes were identified. Protein-protein interaction (PPI) analysis revealed 13 up- (MAGEA6, TGM2, MAGEA4, SCHIP1, ECI2, CD33, AKAP12, MAGEA12, CALD1, WFDC2, VSNL1, HMGA2, and MAGEA2B) and 12 down-regulated (PDZK1IP1, FXYD3, ALDH2, CEACAM6, QPRT, GRB10, TM4SF4, LGALS4, ALDH3A1, USH1C, KCNE3, and CA12) hub genes. In the next step, two novel up-regulated hub genes including ECI2 and SCHIP1 were identified to be related to oxaliplatin resistance. Functional enrichment and pathway analysis indicated that metabolic pathways, proliferation, and epithelial-mesenchymal transition may play dominant roles in CRC progression and oxaliplatin resistance. In the next procedure, two in vitro oxaliplatin-resistant sub-lines including HCT116/OX-R4.3 and HCT116/OX-R10 cells with OX-IR 3.93 and 10.06 were established, respectively. The results indicated the up-regulation of TGM2 and HMGA2 in HCT116/OX-R10 cells with high OX-RI and down-regulation of FXYD3, LGALS4, and ECI2 in both cell types. Based on the results, TGM2, HMGA2, FXYD3, and LGALS4 genes are related to oxaliplatin-resistant CRC and may serve as novel therapeutic targets.
Collapse
Affiliation(s)
- Tayebeh Cheraghi-Shavi
- Faculty of Science, Department of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Razieh Jalal
- Faculty of Science, Department of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran
- Institute of Biotechnology, Novel Diagnostics and Therapeutics Research Group, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zarrin Minuchehr
- Systems Biotechnology Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
4
|
Yu SL, Kim TH, Han YH, Kang Y, Jeong DU, Lee DC, Kang J, Park SR. Transcriptomic analysis and competing endogenous RNA network in the human endometrium between proliferative and mid-secretory phases. Exp Ther Med 2021; 21:660. [PMID: 33968190 PMCID: PMC8097233 DOI: 10.3892/etm.2021.10092] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/08/2021] [Indexed: 12/29/2022] Open
Abstract
Successful embryo implantation is the first step for establishing natural pregnancy and is dependent on the crosstalk between the embryo and a receptive endometrium. However, the molecular signaling events for successful embryo implantation are not entirely understood. To identify differentially expressed transcripts [long-noncoding RNAs (lncRNAs), microRNAs (miRNAs) and mRNAs] and competing endogenous RNA (ceRNA) networks associated with endometrial receptivity, the current study analyzed gene expression profiles between proliferative and mid-secretory endometria in fertile women. A total of 247 lncRNAs, 67 miRNAs and 2,154 mRNAs were identified as differentially expressed between proliferative and mid-secretory endometria. Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that these differentially expressed genes were significantly enriched for 'cell adhesion molecules.' Additionally, 98 common mRNAs were significantly involved in tryptophan metabolism, metabolic pathways and FoxO signaling. From the differentially expressed lncRNA/miRNA/mRNA ceRNA network, hub RNAs that formed three axes were identified: The DLX6-AS1/miR-141 or miR-200a/OLFM1 axis, the WDFY3-AS2/miR-135a or miR-183/STC1 axis, and the LINC00240/miR-182/NDRG1 axis. These may serve important roles in the regulation of endometrial receptivity. The hub network of the current study may be developed as a candidate marker for endometrial receptivity.
Collapse
Affiliation(s)
- Seong-Lan Yu
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Tae-Hyun Kim
- Department of Obstetrics and Gynecology, Konyang University Hospital, Daejeon 35365, Republic of Korea
| | - Young-Hyun Han
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Yujin Kang
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Da-Un Jeong
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Dong Chul Lee
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jaeku Kang
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Seok-Rae Park
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
- Department of Microbiology, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| |
Collapse
|
5
|
Li HL, Hao GM, Tang SJ, Sun HH, Fang YS, Pang X, Liu H, Ji Q, Wang XR, Tian JY, Jiang KX, Song XZ, Zhu RX, Han J, Wang W. HuoXue JieDu formula improves diabetic retinopathy in rats by regulating microRNAs. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113616. [PMID: 33271246 DOI: 10.1016/j.jep.2020.113616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE HuoXue JieDu Formula (HXJDF) originates from classical formulas and was formed based on clinical experience. It is composed of Euonymus alatus (Thunb.) Siebold, Panax notoginseng (Burkill) F.H. Chen, the roots of Anguina kirilowii (Maxim.) Kuntze, and Coptis omeiensis (C. Chen) C.Y.Cheng. HXJDF prevents the deterioration of diabetic retinopathy. AIM OF THE STUDY To evaluate the effects of HXJDF on diabetic retinopathy in rats and investigate the roles of miRNAs in the effects of HXJDF. MATERIALS AND METHODS A single intraperitoneal injection of streptozotocin (STZ) (65 mg/kg) was used to induce diabetes in rats. Rats were divided into three groups: normal, diabetic, and diabetic + HXJDF. Rats were treated with HXJDF (15.4 g/kg) or water by oral gavage for twelve weeks. At the end of the treatment, rats were anaesthetized, and retinal haemodynamic changes were measured. Then, the retinas were removed and examined by haematoxylin and eosin (HE) staining and TUNEL assays. In addition, miRNA expression profiling was performed using miRNA microarrays and further validated by quantitative real-time PCR (qRT-PCR). RESULTS Diabetes reduced peak systolic velocity (PSV), end-diastolic velocity (EDV), mean velocity (MV) and central retinal vein velocity (CRV) but increased the resistance index (RI) and pulsatility index (PI). In addition, in the diabetic group, retinal cell arrangement was disordered and loosely arranged, the retinal thickness and retinal ganglion cell (RGC) number decreased, and retinal cell apoptosis increased. In addition, 11 miRNAs were upregulated and 4 miRNAs were downregulated. After treatment, HXJDF improved retinal haemodynamics and morphologic changes, restored retinal thickness and RGC number and decreased retinal cell apoptosis. Furthermore, the changes in miRNA expression were significantly abolished by HXJDF. CONCLUSION HXJDF may prevent DR by regulating the expression of miRNAs.
Collapse
Affiliation(s)
- Hong-Li Li
- College of Traditional Chinese, Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Gai-Mei Hao
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Shi-Jie Tang
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Hui-Hui Sun
- College of Traditional Chinese, Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Yong-Sheng Fang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Xinxin Pang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Hanying Liu
- College of Traditional Chinese, Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Qingxuan Ji
- College of Traditional Chinese, Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Xi-Rui Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Jing-Yun Tian
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Kun-Xiu Jiang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Xing-Zhuo Song
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Rui-Xin Zhu
- Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Jing Han
- Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Wei Wang
- College of Traditional Chinese, Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
6
|
Moghadamnia F, Ghoraeian P, Minaeian S, Talebi A, Farsi F, Akbari A. MicroRNA Expression and Correlation with mRNA Levels of Colorectal Cancer-Related Genes. J Gastrointest Cancer 2020; 51:271-279. [PMID: 31102171 DOI: 10.1007/s12029-019-00249-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION MicroRNAs (miRNAs), as a family of non-coding RNAs, have opened a new window in cancer biology and transcriptome. It has been revealed that miRNAs post-transcriptionally regulate the gene expression and involve in colorectal cancer (CRC) development and progression. Our aim was to examine the differential expression of miRNAs in a CRC and to correlate their expression levels with mRNA levels of CRC-related genes (K-ras, APC, p53). MATERIALS AND METHODS Seventy-two colorectal tumor tissues from patients with newly diagnosed CRC and 72 matched normal adjacent tissues were analyzed. Relative expression of seven CRC-related miRNAs (miR-21, miR-31, miR-20a, miR-133b, and miR-145, miR-135b and let-7g) and three CRC-related genes (K-ras, APC, p53) was detected using the SYBR Green quantitative real-time PCR technique. The correlation between gene expression levels and clinicopathological features was evaluated. RESULTS Our results showed a significant difference between the two groups for the expression level of miR-21, miR-31, miR-145, and miR-20a (P < 0.001). Also, a significant difference between the two groups for the expression level of K-ras was found (P < 0.001). Further analysis revealed an inverse significant correlation between miR-145 and K-ras (R2 = 0.662, P < 0.001), while a positive correlation was observed between miR-21 and K-ras (R2 = 0.732, P < 0.001). CONCLUSION Dysregulation of miRNAs and correlation with molecular signaling pathways designated a biological role for miRNAs in various cellular mechanisms underlying CRC. On the other hand, the pattern of miRNAs expression and its correlation with transcriptional status are helpful to discovery biomarkers and design therapeutics for CRC.
Collapse
Affiliation(s)
- Farahnaz Moghadamnia
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Pegah Ghoraeian
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Sara Minaeian
- Institute of Immunology and Infectious Diseases, Antimicrobial Resistance Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Atefeh Talebi
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Farnaz Farsi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran. .,Colorectal Research Center, Rasoul-e- Akram Hospital, Sattarkhan Ave, Niyayesh St, Tehran, Iran.
| |
Collapse
|
7
|
Fang T, Shang W, Liu C, Liu Y, Ye A. Single-Cell Multimodal Analytical Approach by Integrating Raman Optical Tweezers and RNA Sequencing. Anal Chem 2020; 92:10433-10441. [PMID: 32643364 DOI: 10.1021/acs.analchem.0c00912] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Single-cell analysis has become a state-of-art approach to heterogeneity profiling in tumor cells. Herein, we realize a kind of single-cell multimodal analytical approach by combining single-cell RNA sequencing (scRNA-seq) with Raman optical tweezers (ROT), a label-free single-cell identification and isolation technique, and apply it to investigate drug sensitivity. The drug sensitivity of human BGC823 gastric cancer cells toward different drugs, paclitaxel and sodium dichloroacetate, was distinguished in the conjoint analytical way including morphology monitoring, Raman identification, and transcriptomic profiling. Each individual BGC823 cancer cell was measured by Raman spectroscopy, then nondestructively isolated out by ROT, and finally RNA-sequenced. Our results demonstrate each analytical mode can reflect cell response to the drugs from different perspectives and is consistent and complementary with each other. Therefore, we believe the multimodal analytical approach offers an access to comprehensive characterizations of the unicellular complexity, which especially makes sense for studying tumor heterogeneity or a desired special cell from a mixture cell sample such as whole blood.
Collapse
|
8
|
Alnuqaydan AM. Targeting micro-RNAs by natural products: a novel future therapeutic strategy to combat cancer. Am J Transl Res 2020; 12:3531-3556. [PMID: 32774718 PMCID: PMC7407688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
MicroRNAs are a class of short, non-coding RNAs that play a crucial role in normal physiology by attenuating translation or targeting messenger RNAs for degradation. Deregulation of miRNAs disturbs key molecular events in interconnected processes such as cell proliferation, tumor angiogenesis, self-renewal, apoptosis, metastasis and epithelial to mesenchymal transition. This process initiates, promotes and develops the pathophysiology of cancer. The modulation of miRNAs results in epigenetic changes in the genome, which eventually leads to cancer. Targeting deregulated miRNAs by natural products derived from plants is an ideal strategy to combat tumorigenesis. Owing to their fewer side effects, natural products have been used as chemotherapeutic agents against various cancers. These natural products modulate the dysregulated signaling pathways by downregulating the oncogenic miRNAs which play a crucial role in the development of tumorigenesis and maintain a fine balance of tumor suppressor miRNAs. This review article aims to highlight the key modifications of miRNAs which lead to tumorigenesis and the chemotherapeutic potential of natural products by targeting miRNAs and their possible mechanism of inhibition for developing an effective anti-cancer agent(s). They will have less damaging effects on normal cells for future chemotherapeutics.
Collapse
Affiliation(s)
- Abdullah M Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University Saudi Arabia
| |
Collapse
|
9
|
Ruan T, Liu W, Tao K, Wu C. A Review of Research Progress in Multidrug-Resistance Mechanisms in Gastric Cancer. Onco Targets Ther 2020; 13:1797-1807. [PMID: 32184615 PMCID: PMC7053652 DOI: 10.2147/ott.s239336] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/15/2020] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is one of the most common malignant tumors, and it is also one of the leading causes of cancer death worldwide. Because of its insidious symptoms and lack of early dictation screening, many cases of gastric cancer are at late stages which make it more complicated to cure. For these advanced-stage gastric cancers, combination therapy of surgery, chemotherapy, radiotherapy and target therapy would bring more benefit to the patients. However, the drug-resistance to the chemotherapy restricts its effect and might lead to treatment failure. In this review article, we discuss the mechanisms which have been found in recent years of drug resistance in gastric cancer. And we also want to find new approaches to counteract chemotherapy resistance and bring more benefits to the patients.
Collapse
Affiliation(s)
- Tuo Ruan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weizhen Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chuanqing Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
10
|
Fawzy MS, Toraih EA, Ageeli EA, Al-Qahtanie SA, Hussein MH, Kandil E. Noncoding RNAs orchestrate cell growth, death and drug resistance in renal cell carcinoma. Epigenomics 2020; 12:199-219. [PMID: 32011160 DOI: 10.2217/epi-2019-0120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: We aimed to explore the roles of noncoding RNAs (ncRNAs) in renal cell carcinoma. Materials & methods: The altered expressions of miR-196a2, miR-499a, H19, MALAT1 and GAS5, as well as some target transcripts were identified by quantitative real-time reverse transcription polymerase chain reaction. Results: Up-regulation of miR-196a2, E2F3, HSPA4 and MALAT1 (median fold change: 5.69, 25.6, 4.15 and 19.6, respectively) and down-regulation of miR-499a, GAS5, PDCD4, ANXA1 and DFFA (median fold change: 0.28, 0.25, 0.12, 0.09 and 0.08, respectively) were reported compared with paired non-cancer tissue. PDCD4, DFFA and GAS5 down-regulation was associated with poor prognosis in terms of high grade, larger tumor, nodal invasion, capsular and pelvic infiltration. Conclusion: The identified ncRNAs could represent potential theranostic biomarkers for renal cell carcinoma.
Collapse
Affiliation(s)
- Manal S Fawzy
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt.,Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 1321, Saudi Arabia
| | - Eman A Toraih
- Department of Surgery, Tulane University, School of Medicine, New Orleans, Louisiana 70112, USA.,Genetics Unit, Department of Histology & Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Essam Al Ageeli
- Department of Clinical Biochemistry (Medical Genetics), Faculty of Medicine, University, Jazan 45142, Saudi Arabia
| | - Saeed Awad Al-Qahtanie
- Department of Physiology, Faculty of Medicine, Taibah University, Almadinah Almunawwarah 344, Saudi Arabia
| | - Mohamed H Hussein
- Department of Surgery, Tulane University, School of Medicine, New Orleans, Louisiana 70112, USA
| | - Emad Kandil
- Division of Endocrine & Oncologic Surgery, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
11
|
Yu C, Chen DQ, Liu HX, Li WB, Lu JW, Feng JF. Rosmarinic acid reduces the resistance of gastric carcinoma cells to 5-fluorouracil by downregulating FOXO4-targeting miR-6785-5p. Biomed Pharmacother 2019; 109:2327-2334. [PMID: 30551491 DOI: 10.1016/j.biopha.2018.10.061] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Chemoresistance has been a major problem in cancer chemotherapy. The present study aimed to investigate the effect of Rosmarinic acid (RA) on chemoresistance to 5-Fu and its molecular mechanism in gastric carcinoma. METHODS CCK8 cell proliferation and apoptosis assay were used to evaluate the effect of RA on chemoresistance to 5-Fu in GC cells. RNA microarray was used to identify miRNA involved. Expression level of miRNA in GC cells was determined by RT-PCR. Down- or up-regulating of miRNA in the GC cells was performed by transfection of RNA interference or expression vectors in the GC cells. Double luciferase reporter assay was used to verify miRNA target genes. Expression of P-glycoprotein and Bax was analyzed with Western blot. RESULTS RA treated SGC7901/5-Fu cells showed significant increased chemosensitivity to 5-Fu. The IC50 of 5-Fu was significantly reduced in RA treated SGC7901/5-Fu cells (70.43 ± 1.06 μg/mL) compared to untreated SGC7901/5-Fu cells (208.6 ± 1.09 μg/mL) (P < 0.05). Apoptosis rate was significantly increased in RA+5-Fu treated SGC7901/5-Fu cells compared to 5-FU treatment alone (P < 0.01). Two miRNAs, namely miR-642a-3p and miR-6785-5p, were identified to be involved in the chemo-sensitizing effect of RA in the SGC7901/5-Fu cells. RA treated SGC7901/5-Fu cells showed reduced expression levels of miR-642a-3p and miR-6785-5p compared to untreated SGC7901/5-Fu cells (P < 0.05). Down- or up-regulation of miR-6785-5p increased or reduced chemosensitivity of gastric carcinoma cells to 5-Fu, respectively. RA treated SGC7901/5-Fu and the SGC7901/5-Fu-Si cells showed significantly increased FOXO4 expression (P < 0.01). Double luciferase reporter assay confirmed miR-6785-5p directly targets FOXO4 to regulate its expression. RA significantly reduced P-gp expression and increased Bax expression in SGC7901/5-Fu and the SGC7901/5-Fu-Si cells (P < 0.05). CONCLUSION RA enhances chemosensitivity of resistant gastric carcinoma SGC7901 cells to 5-Fu by downregulating miR-6785-5p and miR-642a-3p and increasing FOXO4 expression. These study suggest the potential for RA as a multidrug resistance-reversing agent in GC.
Collapse
Affiliation(s)
- Chen Yu
- Department of Integrated TCM & Western Medicine, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiang Su, 210000
| | - Dong-Qing Chen
- Department of Oncology, The First Affiliated Hospital of Soochow University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nan Jing Medical University Affiliated Cancer Hospital, Suzhou, Jiang Su, 210000
| | - Hai-Xia Liu
- Department of Oncology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiang Su, 210000
| | - Wei-Bing Li
- Department of Integrated TCM & Western Medicine, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiang Su, 210000
| | - Jian-Wei Lu
- Department of Medicine, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiang Su, 210000.
| | - Ji-Feng Feng
- Department of Medicine, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiang Su, 210000.
| |
Collapse
|
12
|
Hu M, Xiong S, Chen Q, Zhu S, Zhou X. Novel role of microRNA-126 in digestive system cancers: From bench to bedside. Oncol Lett 2018; 17:31-41. [PMID: 30655735 PMCID: PMC6313097 DOI: 10.3892/ol.2018.9639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 09/28/2018] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are ubiquitously expressed, small, non-coding RNAs that regulate the expression of approximately 30% of the human genes at the post-transcriptional level. miRNAs have emerged as crucial modulators in the initiation and progression of various diseases, including numerous cancer types. The high incidence rate of cancer and the large number of cancer-associated cases of mortality are mostly due to a lack of effective treatments and biomarkers for early diagnosis. Therefore there is an urgent requirement to further understand the underlying mechanisms of tumorigenesis. MicroRNA-126 (miR-126) is significantly downregulated in a number of tumor types and is commonly identified as a tumor suppressor in digestive system cancers (DSCs). miR-126 downregulates various oncogenes, including disintegrin and metalloproteinase domain-containing protein 9, v-crk sarcoma virus CT10 oncogene homolog and phosphoinositide-3-kinase regulatory subunit 2. These genes are involved in a number of tumor-associated signaling pathways, including angiogenesis, epithelial-mensenchymal transition and metastasis pathways. The aim of the current review was to summarize the role of miR-126 in DSCs, in terms of its dysregulation, target genes and associated signaling pathways. In addition, the current review has discussed the potential clinical application of miR-126 as a biomarker and therapeutic target for DSCs.
Collapse
Affiliation(s)
- Mingli Hu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Shengwei Xiong
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Qiaofeng Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Shixuan Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Xiaodong Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| |
Collapse
|
13
|
Fan B, Shen C, Wu M, Zhao J, Guo Q, Luo Y. miR-17-92 cluster is connected with disease progression and oxaliplatin/capecitabine chemotherapy efficacy in advanced gastric cancer patients: A preliminary study. Medicine (Baltimore) 2018; 97:e12007. [PMID: 30170406 PMCID: PMC6392796 DOI: 10.1097/md.0000000000012007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/30/2018] [Indexed: 12/22/2022] Open
Abstract
This study aimed to determine the role of plasma miR-17-92 cluster level in predicting chemoresistance in patients with gastric cancer (GC) undergoing oxaliplatin/capecitabine (XELOX) chemotherapy.Patients recently diagnosed with advanced GC were chosen as participants based on the inclusion criteria. The plasma levels of miR-17-5p, miR-18a, miR-19a/b, miR-20a, and miR-92-1 (miR-17-92 cluster) were determined through quantitative RT-PCR of blood samples from GC patients and healthy volunteers. All the patients received XELOX chemotherapy, and the effectiveness of the chemotherapy was evaluated.The miR-17-92 plasma level was increased in advanced GC patients and decreased after XELOX chemotherapy. Moreover, the miR-17-92 cluster level was associated with chemotherapy response but not with chemotherapy-related toxicity. The miR-17-92 cluster plasma level was decreased in chemosensitive patients, but not in chemoresistant patients, after chemotherapy. The sensitivity and specificity of the combined detection of the miR-17-92 cluster in patients with advanced GC were 100% each.The results suggest that the miR-17-92 plasma level is associated with the progression of advanced GC and effectiveness of XELOX chemotherapy.
Collapse
|
14
|
Dai W, Li Q, Liu BY, Li YX, Li YY. Differential networking meta-analysis of gastric cancer across Asian and American racial groups. BMC SYSTEMS BIOLOGY 2018; 12:51. [PMID: 29745833 PMCID: PMC5998874 DOI: 10.1186/s12918-018-0564-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Gastric Carcinoma is one of the most lethal cancer around the world, and is also the most common cancers in Eastern Asia. A lot of differentially expressed genes have been detected as being associated with Gastric Carcinoma (GC) progression, however, little is known about the underlying dysfunctional regulation mechanisms. To address this problem, we previously developed a differential networking approach that is characterized by involving differential coexpression analysis (DCEA), stage-specific gene regulatory network (GRN) modelling and differential regulation networking (DRN) analysis. Result In order to implement differential networking meta-analysis, we developed a novel framework which integrated the following steps. Considering the complexity and diversity of gastric carcinogenesis, we first collected three datasets (GSE54129, GSE24375 and TCGA-STAD) for Chinese, Korean and American, and aimed to investigate the common dysregulation mechanisms of gastric carcinogenesis across racial groups. Then, we constructed conditional GRNs for gastric cancer corresponding to normal and carcinoma, and prioritized differentially regulated genes (DRGs) and gene links (DRLs) from three datasets separately by using our previously developed differential networking method. Based on our integrated differential regulation information from three datasets and prior knowledge (e.g., transcription factor (TF)-target regulatory relationships and known signaling pathways), we eventually generated testable hypotheses on the regulation mechanisms of two genes, XBP1 and GIF, out of 16 common cross-racial DRGs in gastric carcinogenesis. Conclusion The current cross-racial integrative study from the viewpoint of differential regulation networking provided useful clues for understanding the common dysfunctional regulation mechanisms of gastric cancer progression and discovering new universal drug targets or biomarkers for gastric cancer. Electronic supplementary material The online version of this article (10.1186/s12918-018-0564-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wentao Dai
- Shanghai Center for Bioinformation Technology, 1278 Keyuan Road, Shanghai, 201203, People's Republic of China.,Shanghai Engineering Research Center of Pharmaceutical Translation & Shanghai Industrial Technology Institute, 1278 Keyuan Road, Shanghai, 201203, People's Republic of China
| | - Quanxue Li
- Shanghai Center for Bioinformation Technology, 1278 Keyuan Road, Shanghai, 201203, People's Republic of China.,School of biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Bing-Ya Liu
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Yi-Xue Li
- Shanghai Center for Bioinformation Technology, 1278 Keyuan Road, Shanghai, 201203, People's Republic of China. .,School of biotechnology, East China University of Science and Technology, Shanghai, 200237, China. .,Shanghai Engineering Research Center of Pharmaceutical Translation & Shanghai Industrial Technology Institute, 1278 Keyuan Road, Shanghai, 201203, People's Republic of China. .,Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yuan-Yuan Li
- Shanghai Center for Bioinformation Technology, 1278 Keyuan Road, Shanghai, 201203, People's Republic of China. .,School of biotechnology, East China University of Science and Technology, Shanghai, 200237, China. .,Shanghai Engineering Research Center of Pharmaceutical Translation & Shanghai Industrial Technology Institute, 1278 Keyuan Road, Shanghai, 201203, People's Republic of China. .,Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
15
|
Yang W, Ma J, Zhou W, Cao B, Zhou X, Yang Z, Zhang H, Zhao Q, Fan D, Hong L. Molecular mechanisms and theranostic potential of miRNAs in drug resistance of gastric cancer. Expert Opin Ther Targets 2017; 21:1063-1075. [PMID: 28994330 DOI: 10.1080/14728222.2017.1389900] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Systemic chemotherapy is a curative approach to inhibit gastric cancer cells proliferation. Despite the great progress in anti-cancer treatment achieved during the last decades, drug resistance and treatment refractoriness still extensively persists. Recently, accumulating studies have highlighted the role of miRNAs in drug resistance of gastric cancers by modulating some drug resistance-related proteins and genes expression. Pre-clinical reports indicate that miRNAs might serve as ideal biomarkers and potential targets, thus holding great promise for developing targeted therapy and personalized treatment for the patients with gastric cancer. Areas covered: This review provide a comprehensive overview of the current advances of miRNAs and molecular mechanisms underlying miRNA-mediated drug resistance in gastric cancer. We particularly focus on the potential values of drug resistance-related miRNAs as biomarkers and novel targets in gastric cancer therapy and envisage the future research developments of these miRNAs and challenges in translating the new findings into clinical applications. Expert opinion: Although the concrete mechanisms of miRNAs in drug resistance of gastric cancer have not been fully clarified, miRNA may be a promising theranostic approach. Further studies are still needed to facilitate the clinical applications of miRNAs in drug resistant gastric cancer.
Collapse
Affiliation(s)
- Wanli Yang
- a State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Jiaojiao Ma
- a State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Wei Zhou
- a State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Bo Cao
- b The First Brigade of Student , Fourth Military Medical University , Xi'an , China
| | - Xin Zhou
- b The First Brigade of Student , Fourth Military Medical University , Xi'an , China
| | - Zhiping Yang
- a State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Hongwei Zhang
- c Department of Digestive Surgery, Xijing Hospital , Fourth Military Medical University , Xi'an , China
| | - Qingchuan Zhao
- c Department of Digestive Surgery, Xijing Hospital , Fourth Military Medical University , Xi'an , China
| | | | - Liu Hong
- a State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| |
Collapse
|
16
|
Yan L, Sun Y, Li X, Liang Y, Zhu G, Wang J, Xiao T. The Effect of Hydroxycamptothecin on Wound Healing Following Reduction of the Knee Intra-Articular Adhesion in Rabbits. Cell Biochem Biophys 2017; 73:221-7. [PMID: 25724440 DOI: 10.1007/s12013-015-0593-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Topical application of 10-hydroxycamptothecin (HCPT) can reduce intra-articular scar adhesion after knee surgery, but the effect of HCPT on wound healing has not yet been elucidated. The study investigates the effect of the topical application of HCPT on wound healing after knee surgery in rabbits. Forty New Zealand white rabbits were divided into five groups: 2.0, 1.0, 0.5, and 0.1 mg/ml HCPT groups and control group. Approximately 10 mm × 10 mm of the cortical bone was removed from both sides of the femoral condyle, and the underneath of the cancellous bone was exposed. HCPT in various concentrations or saline was applied to the decorticated sites. Two weeks after surgery, the intra-articular adhesion was evaluated by Masson's trichrome staining. The blood vessel density and the fibroblast counting were evaluated by hematoxylin-eosin staining. The Vascular endothelial growth factor (VEGF) expression was evaluated by immunohistochemical staining and mRNA measurement. The recovery of all rabbits was stable after surgery. Topical application of HCPT could reduce intra-articular adhesion after 2 weeks. The blood vessel density, the number of fibroblast, and the level of VEGF expression in 2.0 and 1.0 mg/ml HCPT groups were lower than those of 0.5 mg/ml HCPT group, 0.1 mg/ml HCPT group, and the control group. However, there was no difference in multiple parameters between 1.0 and 2.0 mg/ml HCPT groups. Topical application of HCPT could reduce intra-articular scar adhesion in rabbits, but HCPT with concentrations above 1.0 mg/ml may affect the wound healing process by inhibiting the angiogenesis and fibroblast proliferation.
Collapse
Affiliation(s)
- Lianqi Yan
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital, Yangzhou, 225001, Jiangsu, China
| | - Yu Sun
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital, Yangzhou, 225001, Jiangsu, China
| | - Xiaolei Li
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital, Yangzhou, 225001, Jiangsu, China
| | - Yuan Liang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital, Yangzhou, 225001, Jiangsu, China
| | - Gengyao Zhu
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital, Yangzhou, 225001, Jiangsu, China
| | - Jingcheng Wang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital, Yangzhou, 225001, Jiangsu, China.
| | - Tao Xiao
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
17
|
Chen ZY, Chen X, Wang ZX. The role of microRNA-196a in tumorigenesis, tumor progression, and prognosis. Tumour Biol 2016; 37:15457–15466. [PMID: 27752997 DOI: 10.1007/s13277-016-5430-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/23/2016] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs are a large group of non-coding RNAs that have emerged as regulators of various biological processes, especially carcinogenesis and cancer progression. Recent evidence has shown that microRNA-196a (miR-196a) is upregulated in most types of tumors and involved in multiple biological processes via translational inhibition and mRNA cleavage, such as cell proliferation, migration, and invasion, mostly functioning as an oncogene. Dysregulation of miR-196a promotes oncogenesis and tumor progression. In this review, we summarize the upstream regulators, target genes, signaling pathways, and single nucleotide polymorphisms of miR-196a, which collectively affect cell proliferation, migration, and invasion. In addition, we review the clinical outcomes and significance of miR-196a. miR-196a may serve as a novel biomarker or target for diagnosis, prognosis, and therapy in several human cancers.
Collapse
Affiliation(s)
- Zhen-Yao Chen
- Department of Oncology, The Second Affiliated Hospital, Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, 210011, Jiangsu, People's Republic of China
| | - Xin Chen
- Department of Oncology, The Second Affiliated Hospital, Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, 210011, Jiangsu, People's Republic of China
| | - Zhao-Xia Wang
- Department of Oncology, The Second Affiliated Hospital, Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, 210011, Jiangsu, People's Republic of China.
| |
Collapse
|
18
|
Wang P, Li Z, Liu H, Zhou D, Fu A, Zhang E. MicroRNA-126 increases chemosensitivity in drug-resistant gastric cancer cells by targeting EZH2. Biochem Biophys Res Commun 2016; 479:91-6. [PMID: 27622325 DOI: 10.1016/j.bbrc.2016.09.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 09/09/2016] [Indexed: 12/18/2022]
Abstract
Chemotherapeutic insensitivity is a significant barrier for effective treatment of gastric cancer (GC). Recently, emerging evidence has demonstrated that microRNAs (miRNAs) are critically involved in drug resistance. Here, by a large-scale screen, we noticed low expression of miR-126 in the drug-resistant GC cell lines SGC7901/VCR and SGC7901/ADR compared with their parental cell line SGC7901. Ectopic expression of miR-126 increased sensitivity of SGC7901/VCR and SGC7901/ADR cells to vincristine (VCR) and adriamycin (ADR). Mechanistically, Enhancer of Zeste Homolog 2 (EZH2) was identified as a direct target of miR-126. Genetic silencing of EZH2 mirrored the effects of miR-126 in drug resistance, and restoration of EZH2 blocked the inhibitory effect of miR-126 on GC. Taken together, our results suggest that miR-126 is a tumor suppressor by sensitizing GC cells to chemotherapy and provide a potential therapeutic approach in cancer treatment.
Collapse
Affiliation(s)
- Ping Wang
- Department of Oncology, Yantaishan Hospital, Yantai, Shandong 264000, PR China
| | - Ziqiu Li
- Department of General Surgery, The People's Hospital of Rushan City, Rushan, Shandong 264500, PR China
| | - Haide Liu
- Department of Radiation Oncology, Yantaishan Hospital, Yantai, Shandong 264000, PR China
| | - Dongmei Zhou
- Department of Oncology, Yantaishan Hospital, Yantai, Shandong 264000, PR China
| | - Aiqin Fu
- Department of Oncology, Yantaishan Hospital, Yantai, Shandong 264000, PR China
| | - Enning Zhang
- Department of Oncology, Yantaishan Hospital, Yantai, Shandong 264000, PR China.
| |
Collapse
|
19
|
Potential Diagnostic, Prognostic and Therapeutic Targets of MicroRNAs in Human Gastric Cancer. Int J Mol Sci 2016; 17:ijms17060945. [PMID: 27322246 PMCID: PMC4926478 DOI: 10.3390/ijms17060945] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/01/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022] Open
Abstract
Human gastric cancer (GC) is characterized by a high incidence and mortality rate, largely because it is normally not identified until a relatively advanced stage owing to a lack of early diagnostic biomarkers. Gastroscopy with biopsy is the routine method for screening, and gastrectomy is the major therapeutic strategy for GC. However, in more than 30% of GC surgical patients, cancer has progressed too far for effective medical resection. Thus, useful biomarkers for early screening or detection of GC are essential for improving patients’ survival rate. MicroRNAs (miRNAs) play an important role in tumorigenesis. They contribute to gastric carcinogenesis by altering the expression of oncogenes and tumor suppressors. Because of their stability in tissues, serum/plasma and other body fluids, miRNAs have been suggested as novel tumor biomarkers with suitable clinical potential. Recently, aberrantly expressed miRNAs have been identified and tested for clinical application in the management of GC. Aberrant miRNA expression profiles determined with miRNA microarrays, quantitative reverse transcription-polymerase chain reaction and next-generation sequencing approaches could be used to establish sample specificity and to identify tumor type. Here, we provide an up-to-date summary of tissue-based GC-associated miRNAs, describing their involvement and that of their downstream targets in tumorigenic and biological processes. We examine correlations among significant clinical parameters and prognostic indicators, and discuss recurrence monitoring and therapeutic options in GC. We also review plasma/serum-based, GC-associated, circulating miRNAs and their clinical applications, focusing especially on early diagnosis. By providing insights into the mechanisms of miRNA-related tumor progression, this review will hopefully aid in the identification of novel potential therapeutic targets.
Collapse
|
20
|
Emerging Role of miRNAs in the Drug Resistance of Gastric Cancer. Int J Mol Sci 2016; 17:424. [PMID: 27011182 PMCID: PMC4813275 DOI: 10.3390/ijms17030424] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/11/2016] [Accepted: 03/16/2016] [Indexed: 12/15/2022] Open
Abstract
Gastric cancer is the third leading cause of cancer mortality worldwide. Unfortunately, most gastric cancer cases are diagnosed in an advanced, non-curable stage and with a limited response to chemotherapy. Drug resistance is one of the most important causes of therapy failure in gastric cancer patients. Although the mechanisms of drug resistance have been broadly studied, the regulation of these mechanisms has not been completely understood. Accumulating evidence has recently highlighted the role of microRNAs in the development and maintenance of drug resistance due to their regulatory features in specific genes involved in the chemoresistant phenotype of malignancies, including gastric cancer. This review summarizes the current knowledge about the miRNAs’ characteristics, their regulation of the genes involved in chemoresistance and their potential as targeted therapies for personalized treatment in resistant gastric cancer.
Collapse
|
21
|
Hu H, Zhao X, Jin Z, Hou M. Hsa-let-7g miRNA regulates the anti-tumor effects of gastric cancer cells under oxidative stress through the expression of DDR genes. J Toxicol Sci 2016; 40:329-38. [PMID: 25972194 DOI: 10.2131/jts.40.329] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Oxidative stress is linked to increased risk of gastric cancer (GC). Recent reports have found that hsa-let-7 g microRNA (miRNA) has properties of anti-tumor and resistance to damages induced by oxidized low-density lipoprotein (ox-LDL). Dysregulation of hsa-let-7 g was present in GC in vivo and in vitro under exogenous stress. However, we didn't know whether there are regulatory mechanisms of hsa-let-7 g in GC under oxidative stress. This study was aimed at investigating the effects of hsa-let-7 g microRNA (miRNA) on GC under oxidative stress. The results showed that H2O2 induced the increase of DNA damage response (DDR) genes (ATM, H2AX and Chk1) and downregulation of hsa-let-7 g in GC cells. Further study confirmed Hsa-let-7 g caused the apoptosis and loss of proliferation in GC cells exposed to H2O2 associated with repression of DDR system. Yet, we found let-7 g didn't target DDR genes (ATM, H2AX and Chk1) directly. In addition, data revealed hsa-let-7 g miRNA increased the sensitivity of GC to X-rays involving in ATM regulation as well according to application of X-rays (another DDR inducer). In conclusion, Hsa-let-7 g miRNA increased the sensitivity of GC to oxidative stress by repression activation of DDR indirectly. Let-7 g improved the effects of X-rays on GC cells involving in DDR regulation as well.
Collapse
Affiliation(s)
- Haiqing Hu
- Department of Gastroenterology and Hepatology, the Affiliated Hospital of Inner Mongolia Medical University
| | | | | | | |
Collapse
|
22
|
Estevez-Garcia P, Rivera F, Molina-Pinelo S, Benavent M, Gómez J, Limón ML, Pastor MD, Martinez-Perez J, Paz-Ares L, Carnero A, Garcia-Carbonero R. Gene expression profile predictive of response to chemotherapy in metastatic colorectal cancer. Oncotarget 2016; 6:6151-9. [PMID: 25730906 PMCID: PMC4467428 DOI: 10.18632/oncotarget.3152] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/15/2015] [Indexed: 01/24/2023] Open
Abstract
Fluoropyrimidine-based chemotherapy (CT) has been the mainstay of care of metastatic colorectal cancer (mCRC) for years. Response rates are only observed, however, in about half of treated patients, and there are no reliable tools to prospectively identify patients more likely to benefit from therapy. The purpose of our study was to identify a gene expression profile predictive of CT response in mCRC. Whole genome expression analyses (Affymetrix GeneChip® HG-U133 Plus 2.0) were performed in fresh frozen tumor samples of 37 mCRC patients (training cohort). Differential gene expression profiles among the two study conditions (responders versus non-responders) were assessed using supervised class prediction algorithms. A set of 161 differentially expressed genes in responders (23 patients; 62%) versus non-responders (14 patients; 38%) was selected for further assessment and validation by RT-qPCR (TaqMan®Low Density Arrays (TLDA) 7900 HT Micro Fluidic Cards) in an independent multi-institutional cohort (53 mCRC patients). Seven of these genes were confirmed as significant predictors of response. Patients with a favorable predictive signature had significantly greater response rate (58% vs 13%, p = 0.024), progression-free survival (61% vs 13% at 1 year, HR = 0.32, p = 0.009) and overall survival (32 vs 16 months, HR = 0.21, p = 0.003) than patients with an unfavorable gene signature. This is the first study to validate a gene-expression profile predictive of response to CT in mCRC patients. Larger and prospective confirmatory studies are required, however, in order to successfully provide oncologists with adequate tools to optimize treatment selection in routine clinical practice.
Collapse
Affiliation(s)
- Purificacion Estevez-Garcia
- Laboratorio de Oncología Molecular y Nuevas Terapias, Instituto de Biomedicina de Sevilla (IBIS) (HUVR, CSIC, Universidad de Sevilla), Sevilla, Spain.,Medical Oncology Department, Hospital Universitario Virgen del Rocio, Sevilla, Spain
| | - Fernando Rivera
- Medical Oncology Department, Hospital Universitario Marques de Valdecilla, Santander, Spain
| | - Sonia Molina-Pinelo
- Laboratorio de Oncología Molecular y Nuevas Terapias, Instituto de Biomedicina de Sevilla (IBIS) (HUVR, CSIC, Universidad de Sevilla), Sevilla, Spain
| | - Marta Benavent
- Laboratorio de Oncología Molecular y Nuevas Terapias, Instituto de Biomedicina de Sevilla (IBIS) (HUVR, CSIC, Universidad de Sevilla), Sevilla, Spain.,Medical Oncology Department, Hospital Universitario Virgen del Rocio, Sevilla, Spain
| | - Javier Gómez
- Pathology Department, Hospital Universitario Marques de Valdecilla, Santander, Spain
| | - Maria Luisa Limón
- Medical Oncology Department, Hospital Universitario Virgen del Rocio, Sevilla, Spain
| | - Maria Dolores Pastor
- Laboratorio de Oncología Molecular y Nuevas Terapias, Instituto de Biomedicina de Sevilla (IBIS) (HUVR, CSIC, Universidad de Sevilla), Sevilla, Spain
| | - Julia Martinez-Perez
- Laboratorio de Oncología Molecular y Nuevas Terapias, Instituto de Biomedicina de Sevilla (IBIS) (HUVR, CSIC, Universidad de Sevilla), Sevilla, Spain.,Medical Oncology Department, Hospital Universitario Virgen del Rocio, Sevilla, Spain
| | - Luis Paz-Ares
- Laboratorio de Oncología Molecular y Nuevas Terapias, Instituto de Biomedicina de Sevilla (IBIS) (HUVR, CSIC, Universidad de Sevilla), Sevilla, Spain.,Medical Oncology Department, Hospital Universitario Virgen del Rocio, Sevilla, Spain
| | - Amancio Carnero
- Laboratorio de Biología Molecular del Cáncer, Instituto de Biomedicina de Sevilla (IBIS) (HUVR, CSIC, Universidad de Sevilla), Sevilla, Spain
| | - Rocio Garcia-Carbonero
- Laboratorio de Oncología Molecular y Nuevas Terapias, Instituto de Biomedicina de Sevilla (IBIS) (HUVR, CSIC, Universidad de Sevilla), Sevilla, Spain.,Medical Oncology Department, Hospital Universitario Virgen del Rocio, Sevilla, Spain
| |
Collapse
|
23
|
Chen WQ, Hu L, Chen GX, Deng HX. Role of microRNA-7 in digestive system malignancy. World J Gastrointest Oncol 2016; 8:121-127. [PMID: 26798443 PMCID: PMC4714141 DOI: 10.4251/wjgo.v8.i1.121] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 11/19/2015] [Indexed: 02/05/2023] Open
Abstract
There are several malignancies of the digestive system (including gastric, pancreatic and colorectal cancers, and hepatocellular carcinoma), which are the most common types of cancer and a major cause of death worldwide. MicroRNA (miR)-7 is abundant in the pancreas, playing an important role in pancreatic development and endocrine function. Expression of miR-7 is downregulated in digestive system malignancies compared with normal tissue. Although there are contrasting results for miR-7 expression, almost all research reveals that miR-7 is a tumor suppressor, by targeting various genes in specific pathways. Moreover, miR-7 can target different genes simultaneously in different malignancies of the digestive system. By acting on many cytokines, miR-7 is also involved in many gastrointestinal inflammatory diseases as a significant carcinogenic factor. Consequently, miR-7 might be a biomarker or therapeutic target gene in digestive system malignancies.
Collapse
|
24
|
Li C, Liang G, Yao W, Sui J, Shen X, Zhang Y, Ma S, Ye Y, Zhang Z, Zhang W, Yin L, Pu Y. Differential expression profiles of long non-coding RNAs reveal potential biomarkers for identification of human gastric cancer. Oncol Rep 2015; 35:1529-40. [PMID: 26718650 DOI: 10.3892/or.2015.4531] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 12/03/2015] [Indexed: 11/05/2022] Open
Abstract
Gastric cancer (GC) is one of the most lethal malignancies worldwide. To reduce its high mortality, sensitive and specific biomarkers for early detection are urgently needed. Recent studies have reported that tumor-specific long non-coding RNAs (lncRNAs) seem to be potential biomarkers for the early diagnosis and treatment of cancer. In the present study, lncRNA and mRNA expression profiling of GC specimens and their paired adjacent non-cancerous tissues was performed. Differentially expressed lncRNAs and mRNAs were identified through microarray analysis. The function of differential mRNA was determined by gene ontology and pathway analysis and the functions of lncRNAs were studied by constructing a co-expression network to find the relationships with corresponding mRNAs. We connected the co-expression network, mRNA functions, and the results of the microarray profile differential expression and selected 14 significantly differentially expressed key lncRNAs and 21 key mRNAs. Quantitative RT-PCR (qRT-PCR) was conducted to verify these key RNAs in 50 newly diagnosed GC patients. The data showed that RP5-919F19, CTD-2541M15 and UCA1 was significantly higher expressed. AP000459, LOC101928316, RP11-167N4 and LINC01071 expression was significantly lower in 30 advanced GC tumor tissues than adjacent non-tumor tissues P<0.05. Then, we further validated the above significant differential expression candidate lncRNAs in 20 early stage GC patients. Results showed that CTD-2541M15 and UCA1 were significantly higher expressed, AP000459, LINC01071 and MEG3 expression was significantly lower in 20 early stage GC patient tumor tissues than adjacent non-tumor tissues (P<0.05). In addition, expression of these lncRNAs shows gradual upward trend from early stage GC to advanced GC. Furthermore, conditional logistic regression analysis revealed the aberrant expression of CTD-2541M15, UCA1 and MEG3 closely linked with GC. There is a set of differentially expressed lncRNAs in GC which may be associated with the progression and development of GC. The differential expression profiles of lncRNAs in GC may be promising biomarkers for the early detection and early screening of high‑risk populations.
Collapse
Affiliation(s)
- Chengyun Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Wenzhuo Yao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Jing Sui
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xian Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yanqiu Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Shumei Ma
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yancheng Ye
- Gansu Wuwei Tumor Hospital, Wuwei, Gansu 733000, P.R. China
| | - Zhiyi Zhang
- Gansu Wuwei Tumor Hospital, Wuwei, Gansu 733000, P.R. China
| | - Wenhua Zhang
- Gansu Wuwei Tumor Hospital, Wuwei, Gansu 733000, P.R. China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
25
|
Chang H, Kim N, Park JH, Nam RH, Choi YJ, Lee HS, Yoon H, Shin CM, Park YS, Kim JM, Lee DH. Different microRNA expression levels in gastric cancer depending on Helicobacter pylori infection. Gut Liver 2015; 9:188-96. [PMID: 25167801 PMCID: PMC4351025 DOI: 10.5009/gnl13371] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND/AIMS This study was conducted to identify microRNAs (miRNAs) that are differentially expressed in Helicobacter pylori-infected patients with an intestinal type of gastric cancer using miRNA microarray and to confirm the candidate miRNA expression levels. METHODS Total RNA was extracted from the cancerous and noncancerous regions of formalin-fixed, paraffin-embedded tissues of H. pylori-positive (n=8) or H. pylori-negative (n=8) patients with an intestinal type of gastric cancer. RNA expression was analyzed using a 3,523 miRNA profiling microarray based on the Sanger miRBase. Validation analysis was performed using TaqMan miRNA assays. RESULTS A total of 219 miRNAs in the aber-rant miRNA profiles across the miRNA microarray showed at least a 2-fold change differential expression in H. pylori-positive and H. pylori-negative cancer tissues. After candi-date miRNAs were selected using online miRNA databases, TaqMan miRNA assays confirmed that three miRNAs (miR-99b-3p, miR-564, and miR-638) were significantly increased in three H. pylori-positive cancer tissues compared to the H. pylori-negative cancer tissues. Additionally, four miRNAs (miR-204-5p, miR-338-5p, miR-375, and miR-548c-3p) were significantly increased in H. pylori-negative cancer tissues compared to H. pylori-positive cancer tissues. CONCLUSIONS miRNA expression in the intestinal type of H. pylori infection-dependent gastric cancer suggests that different gastric can-cer pathogenesis mechanisms could exist between H. pylori-positive and H. pylori-negative gastric cancer. Additional functional studies are required. (Gut Liver, 2015;9188-196).
Collapse
Affiliation(s)
- Hyun Chang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam and Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Hyun Park
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ryoung Hee Nam
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yoon Jeong Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hyuk Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Young Soo Park
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam and Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Min Kim
- NAR Center, Inc., Daejeon Oriental Hospital of Daejeon University, Daejeon, Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam and Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
26
|
Genome-wide analysis of microRNA and mRNA expression signatures in cancer. Acta Pharmacol Sin 2015; 36:1200-11. [PMID: 26299954 DOI: 10.1038/aps.2015.67] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/22/2015] [Indexed: 12/29/2022] Open
Abstract
Cancer is an extremely diverse and complex disease that results from various genetic and epigenetic changes such as DNA copy-number variations, mutations, and aberrant mRNA and/or protein expression caused by abnormal transcriptional regulation. The expression profiles of certain microRNAs (miRNAs) and messenger RNAs (mRNAs) are closely related to cancer progression stages. In the past few decades, DNA microarray and next-generation sequencing techniques have been widely applied to identify miRNA and mRNA signatures for cancers on a genome-wide scale and have provided meaningful insights into cancer diagnosis, prognosis and personalized medicine. In this review, we summarize the progress in genome-wide analysis of miRNAs and mRNAs as cancer biomarkers, highlighting their diagnostic and prognostic roles.
Collapse
|
27
|
Cao MS, Liu BY, Dai WT, Zhou WX, Li YX, Li YY. Differential network analysis reveals dysfunctional regulatory networks in gastric carcinogenesis. Am J Cancer Res 2015; 5:2605-2625. [PMID: 26609471 PMCID: PMC4633893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 08/04/2015] [Indexed: 06/05/2023] Open
Abstract
Gastric Carcinoma is one of the most common cancers in the world. A large number of differentially expressed genes have been identified as being associated with gastric cancer progression, however, little is known about the underlying regulatory mechanisms. To address this problem, we developed a differential networking approach that is characterized by including a nascent methodology, differential coexpression analysis (DCEA), and two novel quantitative methods for differential regulation analysis. We first applied DCEA to a gene expression dataset of gastric normal mucosa, adenoma and carcinoma samples to identify gene interconnection changes during cancer progression, based on which we inferred normal, adenoma, and carcinoma-specific gene regulation networks by using linear regression model. It was observed that cancer genes and drug targets were enriched in each network. To investigate the dynamic changes of gene regulation during carcinogenesis, we then designed two quantitative methods to prioritize differentially regulated genes (DRGs) and gene pairs or links (DRLs) between adjacent stages. It was found that known cancer genes and drug targets are significantly higher ranked. The top 4% normal vs. adenoma DRGs (36 genes) and top 6% adenoma vs. carcinoma DRGs (56 genes) proved to be worthy of further investigation to explore their association with gastric cancer. Out of the 16 DRGs involved in two top-10 DRG lists of normal vs. adenoma and adenoma vs. carcinoma comparisons, 15 have been reported to be gastric cancer or cancer related. Based on our inferred differential networking information and known signaling pathways, we generated testable hypotheses on the roles of GATA6, ESRRG and their signaling pathways in gastric carcinogenesis. Compared with established approaches which build genome-scale GRNs, or sub-networks around differentially expressed genes, the present one proved to be better at enriching cancer genes and drug targets, and prioritizing disease-related genes on the dataset we considered. We propose this extendable differential networking framework as a promising way to gain insights into gene regulatory mechanisms underlying cancer progression and other phenotypic changes.
Collapse
Affiliation(s)
- Mu-Shui Cao
- School of Life Science and Technology, Tongji UniversityShanghai 200092, P. R. China
- Shanghai Center for Bioinformation TechnologyShanghai 200235, P. R. China
- Shanghai Industrial Technology Institute1278 Keyuan Road, Shanghai 201203, P. R. China
| | - Bing-Ya Liu
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200025, P. R. China
| | - Wen-Tao Dai
- Shanghai Center for Bioinformation TechnologyShanghai 200235, P. R. China
- Shanghai Industrial Technology Institute1278 Keyuan Road, Shanghai 201203, P. R. China
| | - Wei-Xin Zhou
- Shanghai Center for Bioinformation TechnologyShanghai 200235, P. R. China
- Shanghai Industrial Technology Institute1278 Keyuan Road, Shanghai 201203, P. R. China
- Shanghai Engineering Research Center of Pharmaceutical Translation1278 Keyuan Road, Shanghai 201203, P. R. China
| | - Yi-Xue Li
- School of Life Science and Technology, Tongji UniversityShanghai 200092, P. R. China
- Shanghai Center for Bioinformation TechnologyShanghai 200235, P. R. China
- Shanghai Industrial Technology Institute1278 Keyuan Road, Shanghai 201203, P. R. China
- Shanghai Engineering Research Center of Pharmaceutical Translation1278 Keyuan Road, Shanghai 201203, P. R. China
| | - Yuan-Yuan Li
- Shanghai Center for Bioinformation TechnologyShanghai 200235, P. R. China
- Shanghai Industrial Technology Institute1278 Keyuan Road, Shanghai 201203, P. R. China
- Shanghai Engineering Research Center of Pharmaceutical Translation1278 Keyuan Road, Shanghai 201203, P. R. China
| |
Collapse
|
28
|
Yu Y, Lü X, Ding F. microRNA regulatory mechanism by which PLLA aligned nanofibers influence PC12 cell differentiation. J Neural Eng 2015; 12:046010. [PMID: 26035737 DOI: 10.1088/1741-2560/12/4/046010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Aligned nanofibers (AFs) are regarded as promising biomaterials in nerve tissue engineering. However, a full understanding of the biocompatibility of AFs at the molecular level is still challenging. Therefore, the present study focused on identifying the microRNA (miRNA)-mediated regulatory mechanism by which poly-L-lactic acid (PLLA) AFs influence PC12 cell differentiation. APPROACH Firstly, the effects of PLLA random nanofibers (RFs)/AFs and PLLA films (control) on the biological responses of PC12 cells that are associated with neuronal differentiation were examined. Then, SOLiD sequencing and cDNA microarray were employed to profile the expressions of miRNAs and mRNAs. The target genes of the misregulated miRNAs were predicted and compared with the mRNA profile data. Functions of the matched target genes (the intersection between the predicted target genes and the experimentally-determined, misregulated genes) were analyzed. MAIN RESULTS The results revealed that neurites spread in various directions in control and RF groups. In the AF group, most neurites extended in parallel with each other. The glucose consumption and lactic acid production in the RF and AF groups were higher than those in the control group. Compared with the control group, 42 and 94 miRNAs were significantly dysregulated in the RF and AF groups, respectively. By comparing the predicted target genes with the mRNA profile data, five and 87 matched target genes were found in the RF and AF groups, respectively. Three of the matched target genes in the AF group were found to be associated with neuronal differentiation, whereas none had this association in the RF group. The PLLA AFs induced the dysregulation of miRNAs that regulate many biological functions, including axonal guidance, lipid metabolism and long-term potentiation. In particular, two miRNA-matched target gene-biological function modules associated with neuronal differentiation were identified as follows: (1) miR-23b, miR-18a, miR-107 and miR-103 regulate the Rras2 and Nf1 gene and thereby, affect cytoskeleton regulation and MAPK pathway; (2) miR-92a, miR-339-5p, miR-25, miR-125a-5p, miR-351 and miR-19b co-regulate the Pafah1b1 gene, affecting PC12 cell migration and differentiation. SIGNIFICANCE This work demonstrates a bioinformatic approach to accomplish miRNA-mRNA profile integrative analysis and provides more insights for understanding the regulatory mechanism of miRNA in AFs affecting neuronal differentiation. These findings will be greatly beneficial for the application and design of AFs in nerve tissue engineering.
Collapse
Affiliation(s)
- Yadong Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | | | | |
Collapse
|
29
|
Grating-based phase-contrast imaging of tumor angiogenesis in lung metastases. PLoS One 2015; 10:e0121438. [PMID: 25811626 PMCID: PMC4374967 DOI: 10.1371/journal.pone.0121438] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 02/17/2015] [Indexed: 11/19/2022] Open
Abstract
Purpose To assess the feasibility of the grating-based phase-contrast imaging (GPI) technique for studying tumor angiogenesis in nude BALB/c mice, without contrast agents. Methods We established lung metastatic models of human gastric cancer by injecting the moderately differentiated SGC-7901 gastric cancer cell line into the tail vein of nude mice. Samples were embedded in a 10% formalin suspension and dried before imaging. Grating-based X-ray phase-contrast images were obtained at the BL13W beamline of the Shanghai Synchrotron Radiation Facility (SSRF) and compared with histological sections. Results Without contrast agents, grating-based X-ray phase-contrast imaging still differentiated angiogenesis within metastatic tumors with high spatial resolution. Vessels, down to tens of microns, showed gray values that were distinctive from those of the surrounding tumors, which made them easily identifiable. The vessels depicted in the imaging study were similar to those identified on histopathology, both in size and shape. Conclusions Our preliminary study demonstrates that grating-based X-ray phase-contrast imaging has the potential to depict angiogenesis in lung metastases.
Collapse
|
30
|
Bleazard T, Lamb JA, Griffiths-Jones S. Bias in microRNA functional enrichment analysis. ACTA ACUST UNITED AC 2015; 31:1592-8. [PMID: 25609791 PMCID: PMC4426843 DOI: 10.1093/bioinformatics/btv023] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 01/11/2015] [Indexed: 12/16/2022]
Abstract
MOTIVATION Many studies have investigated the differential expression of microRNAs (miRNAs) in disease states and between different treatments, tissues and developmental stages. Given a list of perturbed miRNAs, it is common to predict the shared pathways on which they act. The standard test for functional enrichment typically yields dozens of significantly enriched functional categories, many of which appear frequently in the analysis of apparently unrelated diseases and conditions. RESULTS We show that the most commonly used functional enrichment test is inappropriate for the analysis of sets of genes targeted by miRNAs. The hypergeometric distribution used by the standard method consistently results in significant P-values for functional enrichment for targets of randomly selected miRNAs, reflecting an underlying bias in the predicted gene targets of miRNAs as a whole. We developed an algorithm to measure enrichment using an empirical sampling approach, and applied this in a reanalysis of the gene ontology classes of targets of miRNA lists from 44 published studies. The vast majority of the miRNA target sets were not significantly enriched in any functional category after correction for bias. We therefore argue against continued use of the standard functional enrichment method for miRNA targets.
Collapse
Affiliation(s)
- Thomas Bleazard
- Faculty of Medical and Human Sciences, and Faculty of Life Sciences, University of Manchester, UK
| | - Janine A Lamb
- Faculty of Medical and Human Sciences, and Faculty of Life Sciences, University of Manchester, UK
| | - Sam Griffiths-Jones
- Faculty of Medical and Human Sciences, and Faculty of Life Sciences, University of Manchester, UK
| |
Collapse
|
31
|
Huang Y, Lü X, Qu Y, Yang Y, Wu S. MicroRNA sequencing and molecular mechanisms analysis of the effects of gold nanoparticles on human dermal fibroblasts. Biomaterials 2014; 37:13-24. [PMID: 25453934 DOI: 10.1016/j.biomaterials.2014.10.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
Abstract
The aim of this study is to investigate the mechanism of the effects of gold nanoparticles (GNPs) on human dermal fibroblasts (HDFs) at the microRNA level. First, 20-nm GNPs were synthesized and their effect on HDF proliferation was assayed. SOLiD sequencing technology was then utilized to obtain the microRNA expression profile after GNP treatment. The microRNA expression data were compared with previously obtained mRNA and protein expression data to identify the microRNA target mRNAs/proteins. Moreover, bioinformatics analyses and validation experiments were conducted. Lastly, the roles of GNPs and silver nanoparticle (SNPs) on HDFs were compared at the microRNA level. The results showed that GNPs were not cytotoxic as 202 microRNAs were differentially expressed after treatment with 200 μm GNPs for 1, 4 and 8 h. Bioinformatics analyses revealed that these dysregulated miRNAs mainly functioned in metabolic processes and participated in 71 biological pathways, including two key pathways in which the differentially expressed miRNA, target mRNAs and proteins were simultaneously joined, the mRNA processing pathway and MAPK signaling pathway. Biological experiments in cells confirmed that GNPs affected energy metabolism but did not induce apoptosis, destroy the cytoskeleton or induce reactive oxygen species (ROS) production. Comparing the mechanism of the effects of GNPs and SNPs on HDFs at the microRNA level, it was found that, unlike SNPs, GNPs impacted the cell cycle, weakened the ATP synthesis inhibition and cytoskeleton damage, suppressed apoptosis, and did not lead to cytotoxicity. The difference in ROS production by these two nanoparticles might partially explain the fact that GNPs showed no cytotoxic effects on HDFs, unlike SNPs.
Collapse
Affiliation(s)
- Yan Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2# Si Pailou, Nanjing 210096, PR China
| | - Xiaoying Lü
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2# Si Pailou, Nanjing 210096, PR China.
| | - Yinghua Qu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2# Si Pailou, Nanjing 210096, PR China
| | - Yamin Yang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2# Si Pailou, Nanjing 210096, PR China
| | - Si Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2# Si Pailou, Nanjing 210096, PR China
| |
Collapse
|
32
|
Matuszcak C, Haier J, Hummel R, Lindner K. MicroRNAs: Promising chemoresistance biomarkers in gastric cancer with diagnostic and therapeutic potential. World J Gastroenterol 2014; 20:13658-13666. [PMID: 25320504 PMCID: PMC4194550 DOI: 10.3748/wjg.v20.i38.13658] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/29/2014] [Accepted: 05/26/2014] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is the fourth most common cancer worldwide and ranks second in global cancer mortality statistics. Perioperative chemotherapy plays an important role in the management and treatment of advanced stage disease. However, response to chemotherapy varies widely, with some patients presenting no or only minor response to treatment. Hence, chemotherapy resistance is a major clinical problem that impacts on outcome. Unfortunately, to date there are no reliable biomarkers available that predict response to chemotherapy before the start of the treatment, or that allow modification of chemotherapy resistance. MicroRNAs (miRNAs) could provide an answer to this problem. miRNAs are involved in the initiation and progression of a variety of cancer types, and there is evidence that miRNAs impact on resistance towards chemotherapeutic drugs as well. This current review aims to provide an overview about the potential clinical applicability of miRNAs as biomarkers for chemoresistance in GC. The authors focus in this context on the potential of miRNAs to predict sensitivity towards different chemotherapeutics, and on the potential of miRNAs to modulate sensitivity and resistance towards chemotherapy in GC.
Collapse
|
33
|
Malek E, Jagannathan S, Driscoll JJ. Correlation of long non-coding RNA expression with metastasis, drug resistance and clinical outcome in cancer. Oncotarget 2014; 5:8027-38. [PMID: 25275300 PMCID: PMC4226665 DOI: 10.18632/oncotarget.2469] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/06/2014] [Indexed: 12/31/2022] Open
Abstract
The therapeutic response and clinical outcome of patients diagnosed with the same cancer type and that receive identical treatment is highly variable to reflect the genetic heterogeneity within tumor cells. Non-coding RNAs (ncRNAs) are recently discovered molecules that regulate eukaryotic gene expression and represent a significant advance towards a better understanding of the mechanisms that govern cellular growth. NcRNAs are essential for the proper regulation of cell proliferation and survival under physiologic conditions and are deregulated in many pathologies, e.g., human cancers. NcRNAs have been associated with cancer diagnosis, staging, treatment response, metastasis and survival and include distinct subtypes, e.g., long ncRNAs (lncRNAs) and microRNAs (miRNAs). LncRNAs have been linked to essential growth-promoting activities and their deregulation contributes to tumor cell survival. A prominent example is the Hox transcript antisense intergenic lncRNA, HOTAIR, that cooperates with the polycomb repressive complex to reprogram chromatin organization. HOTAIR expression is deregulated in a spectrum of cancers and HOTAIR expression correlates with patient survival. Here, we highlight emerging evidence that supports a role for lncRNAs in cancer with implications for the development of novel diagnostics and therapeutics.
Collapse
Affiliation(s)
- Ehsan Malek
- The Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Hematology and Oncology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Sajjeev Jagannathan
- The Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Hematology and Oncology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - James J. Driscoll
- The Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Hematology and Oncology, University of Cincinnati College of Medicine, Cincinnati, OH
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
34
|
YIN FUQIANG, LIU LING, LIU XIA, LI GANG, ZHENG LI, LI DANRONG, WANG QI, ZHANG WEI, LI LI. Downregulation of tumor suppressor gene ribonuclease T2 and gametogenetin binding protein 2 is associated with drug resistance in ovarian cancer. Oncol Rep 2014; 32:362-72. [DOI: 10.3892/or.2014.3175] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 04/30/2014] [Indexed: 11/06/2022] Open
|
35
|
Hong L, Han Y, Yang J, Zhang H, Zhao Q, Wu K, Fan D. MicroRNAs in gastrointestinal cancer: prognostic significance and potential role in chemoresistance. Expert Opin Biol Ther 2014; 14:1103-11. [PMID: 24707835 DOI: 10.1517/14712598.2014.907787] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Although chemotherapy is an important therapeutic strategy for gastrointestinal cancer, its clinical effect remains unsatisfied due to drug resistance. Drug resistance is a complex multistep process resulting from deregulated expression of many molecules, including tumor suppressor genes, oncogenes and microRNAs (miRNAs). A better understanding of drug resistance-related miRNAs may eventually lead to optimized therapeutic strategies for cancer patients. AREAS COVERED This review summarizes the recent advances of drug resistance-related miRNAs in esophageal, gastric and colorectal cancer. Furthermore, this study envisages future developments toward the clinical applications of these miRNAs to cancer therapy. EXPERT OPINION Drug resistance-related miRNAs may be potentially predicting biomarkers that help guide individualized chemotherapy. Specific miRNAs and their target genes can be used as therapeutic targets by reversing drug resistance. More investigations should be performed to promote the translational bridging of the latest research into clinical application.
Collapse
Affiliation(s)
- Liu Hong
- Fourth Military Medical University, Xijing Hospital, Xijing Hospital of Digestive Diseases, State Key Laboratory of Cancer Biology , Xi'an, 710032, Shaanxi Province , China +86 29 84773974 ; +86 29 82539041 ;
| | | | | | | | | | | | | |
Collapse
|
36
|
Zha R, Guo W, Zhang Z, Qiu Z, Wang Q, Ding J, Huang S, Chen T, Gu J, Yao M, He X. Genome-wide screening identified that miR-134 acts as a metastasis suppressor by targeting integrin β1 in hepatocellular carcinoma. PLoS One 2014; 9:e87665. [PMID: 24498348 PMCID: PMC3912066 DOI: 10.1371/journal.pone.0087665] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 12/28/2013] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are small, single-stranded, non-coding RNAs that play pivotal roles in human cancer development and progression, such as tumor metastasis. Here, we identified the miRNAs that regulate hepatocellular carcinoma (HCC) cell migration by a high-throughput screening method using the classical wound-healing assay with time-lapse video microscopy and validation with a transwell migration assay. Eleven miRNAs (miR-134, -146b-3p, -188-3p, -525-3p, -661, -767-5p, -891a, -891b, -1244, -1247 and miR-1471) were found to promote or inhibit HCC cell migration. Further investigation revealed that miR-134 suppressed the invasion and metastasis of HCC cells in vitro and in vivo, and integrin beta 1 (ITGB1) was a direct and functional target gene of miR-134. Moreover, miR-134 inhibited the phosphorylation of focal adhesion kinase (FAK) and the activation of RhoA downstream of the ITGB1 pathway, thereby decreasing stress fiber formation and cell adhesion in HCC cells. In conclusion, we demonstrated that miR-134 is a novel metastasis suppressor in HCC and could be a potential therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Ruopeng Zha
- Shanghai Medical College, Fudan University, Shanghai, China ; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weijie Guo
- Shanghai Medical College, Fudan University, Shanghai, China ; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenfeng Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaoping Qiu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qifeng Wang
- Shanghai Cancer Hospital, Fudan University, Shanghai, China
| | - Jie Ding
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shenglin Huang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Taoyang Chen
- Qi Dong Liver Cancer Institute, Qi Dong, Jiangsu, China
| | - Jianren Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xianghuo He
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
Liu H, Fan YF, Wei MX. Progress in understanding association between microRNAs and gastric cancer. Shijie Huaren Xiaohua Zazhi 2013; 21:2289-2293. [DOI: 10.11569/wcjd.v21.i23.2289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of highly conservative small non-coding RNA molecules, about 16-29 nt in length. Being expressed in a temporal- and tissue-specific manner, miRNAs can be involved in gene expression and regulation and are important in regulating cell proliferation, differentiation and apoptosis. Since miRNAs are significantly differentially expressed between normal tissues and tumor tissues, they play an important role in the process of tumor development. This paper reviews the progress in understanding the association between miRNAs and gastric cancer.
Collapse
|
38
|
Fei B, Chi AL, Weng Y. Hydroxycamptothecin induces apoptosis and inhibits tumor growth in colon cancer by the downregulation of survivin and XIAP expression. World J Surg Oncol 2013; 11:120. [PMID: 23721525 PMCID: PMC3679846 DOI: 10.1186/1477-7819-11-120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 05/12/2013] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND 10-Hydroxycamptothecin (10-HCPT), isolated from a Chinese tree Camptotheca acuminate, inhibits the activity of topoisomerase I and has a broad spectrum of anticancer activity in vitro and in vivo. It has been shown that HCPT is more active and less toxic than conventional camptothecins and can induce cancer cell apoptosis. However, the mechanisms of HCPT-induced apoptosis in colon cancer cells remain unclear. In this study, we investigated the effects of HCPT on apoptosis of colon cancer and underlying mechanism. METHODS Cell proliferation was measured by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay, and apoptosis was measured using terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay. Expression of genes was detected using real-time reverse transcription-polymerase chain reaction (real time-PCR) and Western blot. Tumor growth in vivo was evaluated using a nude mouse xenograft model. RESULTS HCPT could significantly inhibit cell proliferation and induce apoptosis in colon cancer SW1116 and Colo 205 cells in dose- and time-dependent manners. HCPT treatment activated the activities of caspase 3, 7, 8 and 9, downregulated the expression of survivin, survivinΔEx3, survivin-3B and XIAP, and upregulated expression of surviving 2B. Moreover, the combination of HCPT and 5-fluorouracial (5-FU) synergistically induced apoptosis and downregulated the expression of survivin and XIAP. Knockdown of survivin and XIAP by siRNA sensitized colon cancer to HCTP-induced apoptosis. Furthermore, HCPT treatment significantly inhibited SW1116 xenograft tumor growth. CONCLUSIONS Our results elucidate new mechanisms of HCPT antitumor by the downregulation of survivin and XIAP expression. The combination of HCPT with 5-FU or IAP inhibitors may be a potential strategy for colon cancer treatment.
Collapse
Affiliation(s)
- Bojian Fei
- Department of Surgical Oncology, No.4 people’s hospital, Wuxi City 214062, PR China
| | | | | |
Collapse
|
39
|
Gao M, Yin H, Fei ZW. Clinical application of microRNA in gastric cancer in Eastern Asian area. World J Gastroenterol 2013; 19:2019-2027. [PMID: 23599620 PMCID: PMC3623978 DOI: 10.3748/wjg.v19.i13.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/28/2012] [Accepted: 12/25/2012] [Indexed: 02/06/2023] Open
Abstract
Recent research has shown that microRNA (miRNA), which is involved in almost every step of gastric carcinogenesis, has broad prospective application in diagnosis and therapy of gastric carcinoma. Eastern Asia (South Korea, Japan and China) has the highest incidence of gastric cancer in the world. There were 988 000 new cases of gastric cancer worldwide and 736 000 deaths in 2008. Approximately 60% of the cases of gastric cancer are found in East Asia (mainly China). We herein provide a brief review of the clinical applications of miRNA, which include the following aspects: (1) miRNA may serve as a potential new generation of tumor markers; (2) a complete miRNA expression profile is highly specific, can reflect the evolutionary lineage and differentiation of tumors, and be used to carry out diversity analysis; (3) detecting specific miRNA expression in peripheral blood will become a new method for diagnosis of gastric cancer; (4) miRNA can predict prognosis of gastric cancer; (5) miRNA has predictive value in determining chemotherapy and radiotherapy resistance; and (6) miRNA could be a type of innovative drug. Finally, we focus on assessing the value of miRNA from laboratory to clinical application and the challenges it faces in East Asia.
Collapse
|
40
|
Wang J, Cui Q. Specific Roles of MicroRNAs in Their Interactions with Environmental Factors. J Nucleic Acids 2012; 2012:978384. [PMID: 23209884 PMCID: PMC3502025 DOI: 10.1155/2012/978384] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/26/2012] [Indexed: 01/12/2023] Open
Abstract
MicroRNAs (miRNAs) have emerged as critical regulators of gene expression by modulating numerous target mRNAs expression at posttranscriptional level. Extensive studies have shown that miRNAs are critical in various important biological processes, including cell growth, proliferation, differentiation, development, and apoptosis. In terms of their importance, miRNA dysfunction has been associated with a broad range of diseases. Increased number of studies have shown that miRNAs can functionally interact with a wide spectrum of environmental factors (EFs) including drugs, industrial materials, virus and bacterial pathogens, cigarette smoking, alcohol, nutrition, sleep, exercise, stress, and radiation. More importantly, the interactions between miRNAs and EFs have been shown to play critical roles in determining abnormal phenotypes and diseases. In this paper, we propose an outline of the current knowledge about specific roles of miRNAs in their interactions with various EFs and analyze the literatures detailing miRNAs-EFs interactions in the context of various of diseases.
Collapse
Affiliation(s)
- Juan Wang
- Department of Biomedical Informatics, Peking University Health Science Center, Beijing 100191, China ; MOE Key Lab of Cardiovascular Sciences, Peking University, Beijing 100191, China ; Institute of Systems Biomedicine, Peking University, Beijing 100191, China
| | | |
Collapse
|
41
|
Zhao X, Dou W, He L, Liang S, Tie J, Liu C, Li T, Lu Y, Mo P, Shi Y, Wu K, Nie Y, Fan D. MicroRNA-7 functions as an anti-metastatic microRNA in gastric cancer by targeting insulin-like growth factor-1 receptor. Oncogene 2012; 32:1363-72. [PMID: 22614005 DOI: 10.1038/onc.2012.156] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metastasis is a major clinical obstacle in the treatment of gastric cancer (GC) and it accounts for the majority of cancer-related mortality. MicroRNAs have recently emerged as regulators of metastasis by acting on multiple signaling pathways. In this study, we found that miR-7 is significantly downregulated in highly metastatic GC cell lines and metastatic tissues. Both gain-of-function and loss-of-function experiments showed that increased miR-7 expression significantly reduced GC cell migration and invasion, whereas decreased miR-7 expression dramatically enhanced cell migration and invasion. In vivo metastasis assays also demonstrated that overexpression of miR-7 markedly inhibited GC metastasis. Moreover, the insulin-like growth factor-1 receptor (IGF1R) oncogene, which is often mutated or amplified in human cancers and functions as an important regulator of cell growth and tumor invasion, was identified as a direct target of miR-7. Silencing of IGF1R using small interefering RNA (siRNA) recapitulated the anti-metastatic function of miR-7, whereas restoring the IGF1R expression attenuated the function of miR-7 in GC cells. Furthermore, we found that suppression of Snail by miR-7, through targeting IGF1R, increased E-cadherin expression and partially reversed the epithelial-mesenchymal transition (EMT). Finally, analyses of miR-7 and IGF1R levels in human primary GC with matched lymph node metastasis tissue arrays revealed that miR-7 is inversely correlated with IGF1R expression. The present study provides insight into the specific biological behavior of miR-7 in EMT and tumor metastasis. Targeting this novel miR-7/IGF1R/Snail axis would be helpful as a therapeutic approach to block GC metastasis.
Collapse
Affiliation(s)
- X Zhao
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Frampton AE, Krell J, Pellegrino L, Roca-Alonso L, Jiao LR, Stebbing J, Castellano L, Jacob J. Integrated analysis of miRNA and mRNA profiles enables target acquisition in human cancers. Expert Rev Anticancer Ther 2012; 12:323-30. [PMID: 22369323 DOI: 10.1586/era.12.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2024]
Abstract
miRNAs play a role in post-transcriptional gene regulation by translational repression and/or mRNA degradation in a very tissue-specific manner. In order to understand the function of a miRNA, it is best to identify the genes that it regulates. Putative mRNA targets of miRNAs identified from seed sequence matches are available using computational algorithms in various web-based databases. However, these tend to have high false-positive rates and, owing to a whole-genome approach, cannot identify tissue/tumor specificity of regulation. The evaluated article presents a large amount of data analyzing global RNA expression in breast cancer and examines whether miRNAs are prognostic due to their effects on mRNA targets. This valuable and important resource of combined miRNA and mRNA expression in breast cancer and its subtypes has been summarized. Many studies have now investigated the integrated analysis of miRNA:mRNA profiles in human malignancies, the goal as always being to identify novel biomarkers and therapeutic targets for each tumor.
Collapse
Affiliation(s)
- Adam E Frampton
- HPB Surgical Unit, Department of Surgery and Cancer, Imperial College, Hammersmith Hospital, Du Cane Road, London, W12 0HS, UK.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Noto JM, Peek RM. The role of microRNAs in Helicobacter pylori pathogenesis and gastric carcinogenesis. Front Cell Infect Microbiol 2012; 1:21. [PMID: 22919587 PMCID: PMC3417373 DOI: 10.3389/fcimb.2011.00021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/12/2011] [Indexed: 12/13/2022] Open
Abstract
Gastric carcinogenesis is a multistep process orchestrated by aberrancies in the genetic and epigenetic regulation of oncogenes and tumor suppressor genes. Chronic infection with Helicobacter pylori is the strongest known risk factor for the development of gastric cancer. H. pylori expresses a spectrum of virulence factors that dysregulate host intracellular signaling pathways that lower the threshold for neoplastic transformation. In addition to bacterial determinants, numerous host and environmental factors increase the risk of gastric carcinogenesis. Recent discoveries have shed new light on the involvement of microRNAs (miRNAs) in gastric carcinogenesis. miRNAs represent an abundant class of small, non-coding RNAs involved in global post-transcriptional regulation and, consequently, play an integral role at multiple steps in carcinogenesis, including cell cycle progression, proliferation, apoptosis, invasion, and metastasis. Expression levels of miRNAs are frequently altered in malignancies, where they function as either oncogenic miRNAs or tumor suppressor miRNAs. This review focuses on miRNAs dysregulated by H. pylori and potential etiologic roles they play in H. pylori-mediated gastric carcinogenesis.
Collapse
Affiliation(s)
- Jennifer M Noto
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | | |
Collapse
|