1
|
Kang M, Mun SY, Zhuang W, Park M, Jeong J, Park H, Jung WK, Choi IW, Na S, Park WS. Inhibition of voltage-gated potassium channel by aripiprazole in rabbit coronary arterial smooth muscle cells. Eur J Pharmacol 2024; 973:176610. [PMID: 38663541 DOI: 10.1016/j.ejphar.2024.176610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 04/22/2024] [Indexed: 05/08/2024]
Abstract
Aripiprazole, a third-generation antipsychotic, has been widely used to treat schizophrenia. In this study, we evaluated the effect of aripiprazole on voltage-gated potassium (Kv) channels in rabbit coronary arterial smooth muscle cells using the patch clamp technique. Aripiprazole reduced the Kv current in a concentration-dependent manner with a half-maximal inhibitory concentration of 0.89 ± 0.20 μM and a Hill coefficient of 1.30 ± 0.25. The inhibitory effect of aripiprazole on Kv channels was voltage-dependent, and an additional aripiprazole-induced decrease in the Kv current was observed in the voltage range of full channel activation. The decay rate of Kv channel inactivation was accelerated by aripiprazole. Aripiprazole shifted the steady-state activation curve to the right and the inactivation curve to the left. Application of a repetitive train of pulses (1 and 2 Hz) promoted inhibition of the Kv current by aripiprazole. Furthermore, the recovery time constant from inactivation increased in the presence of aripiprazole. Pretreatment of Kv1.5 subtype inhibitor reduced the inhibitory effect of aripiprazole. However, pretreatment with Kv 7 and Kv2.1 subtype inhibitors did not change the degree of aripiprazole-induced inhibition of the Kv current. We conclude that aripiprazole inhibits Kv channels in a concentration-, voltage-, time-, and use (state)-dependent manner by affecting the gating properties of the channels.
Collapse
Affiliation(s)
- Minji Kang
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Seo-Yeong Mun
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Wenwen Zhuang
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Minju Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Junsu Jeong
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Hongzoo Park
- Institute of Medical Sciences, Department of Urology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, 48513, South Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan, 48516, South Korea
| | - Sunghun Na
- Institute of Medical Sciences, Department of Obstetrics and Gynecology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Won Sun Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea.
| |
Collapse
|
2
|
Ling G, Zhang M, Chen C, Wang Y, Gao Q, Li J, Yuan H, Jin W, Lin W, Yang L. Progress of Ginsenoside Rb1 in neurological disorders. Front Pharmacol 2024; 15:1280792. [PMID: 38327982 PMCID: PMC10847293 DOI: 10.3389/fphar.2024.1280792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024] Open
Abstract
Ginseng is frequently used in traditional Chinese medicine to treat neurological disorders. The primary active component of ginseng is ginsenoside, which has been classified into more than 110 types based on their chemical structures. Ginsenoside Rb1 (GsRb1)-a protopanaxadiol saponin and a typical ginseng component-exhibits anti-inflammatory, anti-oxidant, anti-apoptotic, and anti-autophagy properties in the nervous system. Neurological disorders remain a leading cause of death and disability globally. GsRb1 effectively treats neurological disorders. To contribute novel insights to the understanding and treatment of neurological disorders, we present a comprehensive review of the pharmacokinetics, actions, mechanisms, and research development of GsRb1 in neurological disorders.
Collapse
Affiliation(s)
- Gongxia Ling
- Department of Pediatrics, The Second School of Medicine, Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Min Zhang
- Department of Pediatrics, The Second School of Medicine, Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chizhang Chen
- Department of Clinical Medicine, Pingyang County Traditional Chinese Medicine Hospital, Meizhou, Zhejiang, China
| | - Yan Wang
- Department of Pediatrics, The Second School of Medicine, Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiqi Gao
- Department of Pediatrics, The Second School of Medicine, Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianshun Li
- Department of Pediatrics, The Second School of Medicine, Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hao Yuan
- Department of Pediatrics, The Second School of Medicine, Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenwen Jin
- Department of Pediatrics, The Second School of Medicine, Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Lin
- Department of Pediatrics, The Second School of Medicine, Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lingrong Yang
- Department of Pediatrics, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Park J, Shin YK, Kim U, Seol GH. Ginsenoside Rb 1 Reduces Hyper-Vasoconstriction Induced by High Glucose and Endothelial Dysfunction in Rat Aorta. Pharmaceuticals (Basel) 2023; 16:1238. [PMID: 37765046 PMCID: PMC10536350 DOI: 10.3390/ph16091238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Acute hyperglycemia induces oxidative damage and inflammation, leading to vascular dysfunction. Ginsenoside Rb1 (Rb1) is a major component of red ginseng with anti-diabetic, anti-oxidant and anti-inflammatory properties. Here, we investigated the beneficial effects and the underlying mechanisms of Rb1 on hypercontraction induced by high glucose (HG) and endothelial dysfunction (ED). The isometric tension of aortic rings was measured by myography. The rings were treated with NG-nitro-L-arginine methyl ester (L-NAME) to induce chemical destruction of the endothelium, and Rb1 was added after HG induction. The agonist-induced vasoconstriction was significantly higher in the aortic rings treated with L-NAME + HG50 than in those treated with HG50 or L-NAME (p = 0.011) alone. Rb1 significantly reduced the hypercontraction in the aortic rings treated with L-NAME + HG50 (p = 0.004). The ATP-sensitive K+ channel (KATP) blocker glibenclamide tended to increase the Rb1-associated reduction in the agonist-induced vasoconstriction in the rings treated with L-NAME + HG50. The effect of Rb1 in the aortic rings treated with L-NAME + HG50 resulted from a decrease in extracellular Ca2+ influx through the receptor-operated Ca2+ channel (ROCC, 10-6-10-4 M CaCl2, p < 0.001; 10-3-2.5 × 10-3 M CaCl2, p = 0.001) and the voltage-gated Ca2+ channel (VGCC, 10-6 M CaCl2, p = 0.003; 10-5-10-2 M CaCl2, p < 0.001), whereas Rb1 did not interfere with Ca2+ release from the sarcoplasmic reticulum. In conclusion, we found that Rb1 reduced hyper-vasoconstriction induced by HG and ED by inhibiting the ROCC and the VGCC, and possibly by activating the KATP in rat aorta. This study provides further evidence that Rb1 could be developed as a therapeutic target for ED in diabetes.
Collapse
Affiliation(s)
- Jubin Park
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul 02841, Republic of Korea (U.K.)
- BK21 FOUR Program of Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - You Kyoung Shin
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul 02841, Republic of Korea (U.K.)
| | - Uihwan Kim
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul 02841, Republic of Korea (U.K.)
- BK21 FOUR Program of Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Geun Hee Seol
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul 02841, Republic of Korea (U.K.)
- BK21 FOUR Program of Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
4
|
Seo MS, An JR, Heo R, Kang M, Park S, Mun SY, Park H, Han ET, Han JH, Chun W, Song G, Park WS. The inhibitory effects of pimozide, an antipsychotic drug, on voltage-gated K + channels in rabbit coronary arterial smooth muscle cells. Drug Chem Toxicol 2023; 46:271-280. [PMID: 35317682 DOI: 10.1080/01480545.2021.2021932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pimozide is an antipsychotic drug used to treat chronic psychosis, such as Tourette's syndrome. Despite its widespread clinical use, pimozide can cause unexpected adverse effects, including arrhythmias. However, the adverse effects of pimozide on vascular K+ channels have not yet been determined. Therefore, we investigated the effects of pimozide on voltage-gated K+ (Kv) channels in rabbit coronary arterial smooth muscle cells. Pimozide concentration-dependently inhibited the Kv currents with an IC50 value of 1.78 ± 0.17 μM and a Hill coefficient of 0.90 ± 0.05. The inhibitory effect on the Kv current by pimozide was highly voltage-dependent in the voltage range of Kv channel activation, and additive inhibition of the Kv current by pimozide was observed in the full activation voltage range. The decay rate of inactivation was significantly accelerated by pimozide. Pimozide shifted the inactivation curve to a more negative potential. The recovery time constant from inactivation increased in the presence of pimozide. Furthermore, pimozide-induced inhibition of the Kv current was augmented by applying train pulses. Although pretreatment with the Kv2.1 subtype inhibitor guangxitoxin and the Kv7 subtype inhibitor linopirdine did not alter the degree of pimozide-induced inhibition of the Kv currents, pretreatment with the Kv1.5 channel inhibitor DPO-1 reduced the inhibitory effects of pimozide on Kv currents. Pimozide induced membrane depolarization. We conclude that pimozide inhibits Kv currents in voltage-, time-, and use (state)-dependent manners. Furthermore, the major Kv channel target of pimozide is the Kv1.5 channel.
Collapse
Affiliation(s)
- Mi Seon Seo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Jin Ryeol An
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Ryeon Heo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Minji Kang
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Seojin Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Seo-Yeong Mun
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Hongzoo Park
- Department of Urology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Geehyun Song
- Department of Urology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| |
Collapse
|
5
|
Seo MS, Kang M, An JR, Heo R, Jung WK, Choi IW, Han ET, Han JH, Chun W, Park WS. Asenapine, an atypical antipsychotic, blocks voltage-gated potassium channels in rabbit coronary artery smooth muscle cells. Eur J Pharmacol 2022; 934:175318. [DOI: 10.1016/j.ejphar.2022.175318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/18/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022]
|
6
|
Integration of multiplatform metabolomics and multivariate analysis for geographical origin discrimination of Panax ginseng. Food Res Int 2022; 159:111610. [DOI: 10.1016/j.foodres.2022.111610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/13/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022]
|
7
|
Park S, Kang M, Heo R, Mun SY, Park M, Han ET, Han JH, Chun W, Park H, Park WS. Inhibition of voltage-dependent K + channels by antimuscarinic drug fesoterodine in coronary arterial smooth muscle cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY 2022; 26:397-404. [PMID: 36039740 PMCID: PMC9437370 DOI: 10.4196/kjpp.2022.26.5.397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022]
Abstract
Fesoterodine, an antimuscarinic drug, is widely used to treat overactive bladder syndrome. However, there is little information about its effects on vascular K+ channels. In this study, voltage-dependent K+ (Kv) channel inhibition by fesoterodine was investigated using the patch-clamp technique in rabbit coronary artery. In whole-cell patches, the addition of fesoterodine to the bath inhibited the Kv currents in a concentration-dependent manner, with an IC50 value of 3.19 ± 0.91 μM and a Hill coefficient of 0.56 ± 0.03. Although the drug did not alter the voltage-dependence of steady-state activation, it shifted the steady-state inactivation curve to a more negative potential, suggesting that fesoterodine affects the voltage-sensor of the Kv channel. Inhibition by fesoterodine was significantly enhanced by repetitive train pulses (1 or 2 Hz). Furthermore, it significantly increased the recovery time constant from inactivation, suggesting that the Kv channel inhibition by fesoterodine is use (state)-dependent. Its inhibitory effect disappeared by pretreatment with a Kv 1.5 inhibitor. However, pretreatment with Kv2.1 or Kv7 inhibitors did not affect the inhibitory effects on Kv channels. Based on these results, we conclude that fesoterodine inhibits vascular Kv channels (mainly the Kv1.5 subtype) in a concentration- and use (state)-dependent manner, independent of muscarinic receptor antagonism.
Collapse
Affiliation(s)
- Seojin Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Minji Kang
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Ryeon Heo
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Seo-Yeong Mun
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Minju Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Hongzoo Park
- Institute of Medical Sciences, Department of Urology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Won Sun Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| |
Collapse
|
8
|
Kang M, An JR, Li H, Zhuang W, Heo R, Park S, Mun SY, Park M, Seo MS, Han ET, Han JH, Chun W, Park WS. Blockade of voltage-dependent K+ channels by benztropine, a muscarinic acetylcholine receptor inhibitor, in coronary arterial smooth muscle cells. Toxicol Sci 2022; 189:260-267. [PMID: 35944222 DOI: 10.1093/toxsci/kfac083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We investigated the effect of the acetylcholine muscarinic receptor inhibitor benztropine on voltage-dependent K+ (Kv) channels in rabbit coronary arterial smooth muscle cells. Benztropine inhibited Kv currents in a concentration-dependent manner, with an apparent IC50 value of 6.11 ± 0.80 μM and Hill coefficient of 0.62 ± 0.03. Benztropine shifted the steady-state activation curves toward a more positive potential, and the steady-state inactivation curves toward a more negative potential, suggesting that benztropine inhibited Kv channels by affecting the channel voltage sensor. Train pulse (1 or 2 Hz)-induced Kv currents were effectively reduced by the benztropine treatment. Furthermore, recovery time constants of Kv current inactivation increased significantly in response to benztropine. These results suggest that benztropine inhibited vascular Kv channels in a use (state)-dependent manner. The inhibitory effect of benztropine was canceled by pretreatment with the Kv 1.5 inhibitor, but there was no obvious change after pretreatment with Kv 2.1 or Kv7 inhibitors. In conclusion, benztropine inhibited the Kv current in a concentration- and use (state)-dependent manner. Inhibition of the Kv channels by benztropine primarily involved the Kv1.5 subtype. Restrictions are required when using benztropine to patients with vascular disease.
Collapse
Affiliation(s)
- Minji Kang
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Jin Ryeol An
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Hongliang Li
- Institute of Translational Medicine, Medical College, Jiangsu Key laboratory of integrated traditional Chinese and Western Medicine for prevention and treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Wenwen Zhuang
- Institute of Translational Medicine, Medical College, Jiangsu Key laboratory of integrated traditional Chinese and Western Medicine for prevention and treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Ryeon Heo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Seojin Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Seo-Yeong Mun
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Minju Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Mi Seon Seo
- Department of Physiology, Konkuk University School of Medicine, Chungju, 27478, South Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| |
Collapse
|
9
|
Current Progress on Neuroprotection Induced by Artemisia, Ginseng, Astragalus, and Ginkgo Traditional Chinese Medicines for the Therapy of Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3777021. [PMID: 35746960 PMCID: PMC9213169 DOI: 10.1155/2022/3777021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
Aging is associated with the occurrence of diverse degenerative changes in various tissues and organs and with an increased incidence of neurological disorders, especially neurodegenerative diseases such as Alzheimer's disease (AD). In recent years, the search for effective components derived from medicinal plants in delaying aging and preventing and treating neurodegenerative diseases has been increasing and the number of related publications shows a rising trend. Here, we present a concise, updated review on the preclinical and clinical research progress in the assessment of the therapeutic potential of different traditional Chinese medicines and derived active ingredients and their effect on the signaling pathways involved in AD neuroprotection. Recognized by their multitargeting ability, these natural compounds hold great potential in developing novel drugs for AD.
Collapse
|
10
|
Yang G, Li J, Peng Y, Shen B, Li Y, Liu L, Wang C, Xu Y, Lin S, Zhang S, Tan Y, Zhang H, Zeng X, Li Q, Lu G. Ginsenoside Rb1 attenuates methamphetamine (METH)-induced neurotoxicity through the NR2B/ERK/CREB/BDNF signalings in vitro and in vivo models. J Ginseng Res 2022; 46:426-434. [PMID: 35600772 PMCID: PMC9120644 DOI: 10.1016/j.jgr.2021.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 01/21/2023] Open
Abstract
Aim This study investigates the effects of ginsenoside Rb1 (GsRb1) on methamphetamine (METH)-induced toxicity in SH-SY5Y neuroblastoma cells and METH-induced conditioned place preference (CPP) in adult Sprague-Dawley rats. It also examines whether GsRb1 can regulate these effects through the NR2B/ERK/CREB/BDNF signaling pathways. Methods SH-SY5Y cells were pretreated with GsRb1 (20 μM and 40 μM) for 1 h, followed by METH treatment (2 mM) for 24 h. Rats were treated with METH (2 mg/kg) or saline on alternating days for 10 days to allow CPP to be examined. GsRb1 (5, 10, and 20 mg/kg) was injected intraperitoneally 1 h before METH or saline. Western blot was used to examine the protein expression of NR2B, ERK, P-ERK, CREB, P-CREB, and BDNF in the SH-SY5Y cells and the rats' hippocampus, nucleus accumbens (NAc), and prefrontal cortex (PFC). Results METH dose-dependently reduced the viability of SH-SY5Y cells. Pretreatment of cells with 40 μM of GsRb1 increased cell viability and reduced the expression of METH-induced NR2B, p-ERK, p-CREB and BDNF. GsRb1 also attenuated the expression of METH CPP in a dose-dependent manner in rats. Further, GsRb1 dose-dependently reduced the expression of METH-induced NR2B, p-ERK, p-CREB, and BDNF in the PFC, hippocampus, and NAc of rats. Conclusion GsRb1 regulated METH-induced neurotoxicity in vitro and METH-induced CPP through the NR2B/ERK/CREB/BDNF regulatory pathway. GsRb1 could be a therapeutic target for treating METH-induced neurotoxicity or METH addiction.
Collapse
Affiliation(s)
- Genmeng Yang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan Province, China.,School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Juan Li
- School of Basic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yanxia Peng
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan Province, China.,School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Baoyu Shen
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan Province, China.,School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yuanyuan Li
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan Province, China.,School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Liu Liu
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan Province, China.,School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Chan Wang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan Province, China.,School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yue Xu
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan Province, China.,School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Shucheng Lin
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan Province, China.,School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Shuwei Zhang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan Province, China.,School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yi Tan
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan Province, China.,School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Huijie Zhang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan Province, China.,School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Xiaofeng Zeng
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan Province, China.,School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Qi Li
- SDIVF R&D Centre, Hong Kong, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
11
|
Wang LD, Xu ZM, Liang X, Qiu WR, Liu SJ, Dai LL, Wang YF, Guo CY, Qi XH, Wang J, Ding YB, Zhang YL, Liao X. Systematic Review and Meta-Analysis on Randomized Controlled Trials on Efficacy and Safety of Panax Notoginseng Saponins in Treatment of Acute Ischemic Stroke. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:4694076. [PMID: 34335808 PMCID: PMC8289597 DOI: 10.1155/2021/4694076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/10/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To assess the efficacy and safety of PNS on antiplatelet therapy in the treatment of AIS. METHODS We searched 7 literature databases and 2 clinical studies databases for randomized controlled studies (RCTs) evaluating PNS as an adjuvant therapy for AIS. Relevant studies were retrieved and screened, and data were extracted independently by two reviewers. The quality of the included studies was assessed using the Cochrane Risk Assessment Tool. Meta-analysis was carried out with the Rev Man 5.4 software. RESULTS Of 8267 records identified, 43 RCTs met our inclusion criteria (n = 4170 patients). Patients assigned to PNS with conventional treatments (CTs) had improved functional independence at 90 days compared with those assigned to CTs alone (RR = 1.87, 95% CI = 1.37, to 2.55, P < 0.0001). Patients who received PNS combined with CTs showed significantly high improvements in neurological function among individuals with AIS on the neurologic deficit score (NDS) (MD CSS = -5.71, 95% CI = -9.55 to -1.87, P=0.004; MD NIHSS = -3.94, 95% CI = -5.65 to -2.23, P < 0.00001). The results also showed PNS contributed to a betterment in activities of daily living (ADL) on the Barthel index (MD day 10 BI = 4.86, 95% CI = 2.18, to 7.54, P < 0.00001; MD day 14 BI = 13.92, 95% CI = 11.46 to 16.38, P < 0.00001; MD day 28 BI = 7.16, 95% CI = 0.60, to 13.72, P < 0.00001). In addition, PNS, compared with CTs alone, could significantly improve overall response rate (ORR) (RR NIHSS = 1.20, 95% CI = 1.16, to 1.24, P < 0.00001; RR CSS = 1.15, 95% CI = 1.08, to 1.24, P < 0.0001), hemorheological parameters, maximum platelet aggregation rate (MPAR) (MD = -6.82, 95% CI = -9.62 to -4.02, P < 0.00001), platelet parameters (MD PLT = 4.85, 95% CI = 1.82 to 7.84, P=0.002; MD MPV = -0.79, 95% CI = -1.09 to -0.48, P < 0.00001), and serum CD62P (MD = -0.21, 95% CI = -0.29 to -0.13, P < 0.00001). The incidence of adverse reactions in PNS was lower than that in the control group (RR = 0.62, 95% CI = 0.39 to 0.97, P=0.04). Adverse reactions in the PNS were mild adverse reactions. CONCLUSION PNS may be effective and safe in treating AIS on ameliorating neurological deficit, improving activities of daily living function, and enhancing antiplatelet effects. However, more high-quality evidence is needed before it can be recommended for routine antiplatelet therapy in patients with AIS.
Collapse
Affiliation(s)
- Liu-ding Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Center for Evidence-based Chinese Medicine, Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhen-min Xu
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiao Liang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Wen-ran Qiu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Shao-jiao Liu
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ling-ling Dai
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ye-fei Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chun-yan Guo
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiang-hua Qi
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Jian Wang
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| | - Yan-bing Ding
- Chinese Medicine Hospital of Hubei Province, Wuhan 430074, Hubei, China
| | - Yun-ling Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xing Liao
- Center for Evidence-based Chinese Medicine, Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
12
|
Li H, Zhuang W, Seo MS, An JR, Yang Y, Zha Y, Liang J, Xu ZX, Park WS. Inhibition of voltage-dependent K + channels in rabbit coronary arterial smooth muscle cells by the class Ic antiarrhythmic agent lorcainide. Eur J Pharmacol 2021; 904:174158. [PMID: 33971179 DOI: 10.1016/j.ejphar.2021.174158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/22/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
Voltage-dependent K+ (Kv) channels play the role of returning the membrane potential to the resting state, thereby maintaining the vascular tone. Here, we used native smooth-muscle cells from rabbit coronary arteries to investigate the inhibitory effect of lorcainide, a class Ic antiarrhythmic agent, on Kv channels. Lorcainide inhibited Kv channels in a concentration-dependent manner with an IC50 of 4.46 ± 0.15 μM and a Hill coefficient of 0.95 ± 0.01. Although application of lorcainide did not change the activation curve, it shifted the inactivation curve toward a more negative potential, implying that lorcainide inhibits Kv channels by changing the channels' voltage sensors. The recovery time constant from channel inactivation increased in the presence of lorcainide. Furthermore, application of train steps (of 1 or 2 Hz) in the presence of lorcainide progressively augmented the inhibition of Kv currents, implying that lorcainide-induced inhibition of Kv channels is use (state)-dependent. Pretreatment with Kv1.5 or Kv2.1/2.2 inhibitors effectively reduced the amplitude of the Kv current but did not affect the inhibitory effect of lorcainide. Based on these results, we conclude that lorcainide inhibits vascular Kv channels in a concentration and use (state)-dependent manner by changing their inactivation gating properties. Considering the clinical efficacy of lorcainide, and the pathophysiological significance of vascular Kv channels, our findings should be considered when prescribing lorcainide to patients with arrhythmia and vascular disease.
Collapse
Affiliation(s)
- Hongliang Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China; Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment for Senile Diseases, Yangzhou University, Yangzhou, 225001, China
| | - Wenwen Zhuang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Mi Seon Seo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Jin Ryeol An
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Yongqi Yang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Yiwen Zha
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Jingyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China.
| | - Zheng-Xin Xu
- Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, 225000, Jiangsu, China.
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea.
| |
Collapse
|
13
|
An JR, Jung HS, Seo MS, Kang M, Heo R, Park H, Song G, Jung WK, Choi IW, Park WS. The effects of tegaserod, a gastrokinetic agent, on voltage-gated K + channels in rabbit coronary arterial smooth muscle cells. Clin Exp Pharmacol Physiol 2021; 48:748-756. [PMID: 33620095 DOI: 10.1111/1440-1681.13477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/11/2021] [Accepted: 01/24/2021] [Indexed: 11/28/2022]
Abstract
Tegaserod, a gastroprokinetic agent, is used to treat irritable bowel syndrome. Despite its extensive clinical use, little is known about the effects of tegaserod on vascular ion channels, especially K+ channels. Therefore, we examined the effects of tegaserod on voltage-gated K+ (Kv) channels in rabbit coronary arterial smooth muscle cells using the whole-cell patch-clamp technique. Tegaserod inhibited Kv channels in a concentration-dependent manner with an IC50 value of 1.26 ± 0.31 µmol/L and Hill coefficient of 0.81 ± 0.10. Although tegaserod had no effect on the steady-state activation curves of the Kv channels, the steady-state inactivation curve was shifted toward a more negative potential. These results suggest that tegaserod inhibits Kv channels by influencing their voltage sensors. The recovery time constant of channel inactivation was extended in the presence of tegaserod. Furthermore, application of train steps (1 and 2 Hz) in the presence of tegaserod progressively increased the inhibition of Kv currents suggesting that tegaserod-induced Kv channel inhibition is use (state)-dependent. Pretreatment with a Kv1.5 subtype inhibitor suppressed the Kv current. However, additional application of tegaserod did not induce further inhibition. Pretreatment with a Kv2.1 or Kv7 inhibitor did not affect the inhibitory effect of tegaserod on Kv channels. Based on these results, we conclude that tegaserod inhibits vascular Kv channels in a concentration- and use (state)-dependent manner independent of its own functions. Furthermore, the major Kv channel target of tegaserod is the Kv1.5 subtype.
Collapse
Affiliation(s)
- Jin Ryeol An
- Department of Physiology, Institute of Medical Sciences, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Hee Seok Jung
- Department of Physiology, Institute of Medical Sciences, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Mi Seon Seo
- Department of Physiology, Institute of Medical Sciences, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Minji Kang
- Department of Physiology, Institute of Medical Sciences, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Ryeon Heo
- Department of Physiology, Institute of Medical Sciences, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Hongzoo Park
- Department of Urology, Institute of Medical Sciences, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Geehyun Song
- Department of Urology, Institute of Medical Sciences, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Centre for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, South Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan, South Korea
| | - Won Sun Park
- Department of Physiology, Institute of Medical Sciences, Kangwon National University School of Medicine, Chuncheon, South Korea
| |
Collapse
|
14
|
An JR, Seo MS, Jung HS, Heo R, Kang M, Han ET, Park H, Jung WK, Choi IW, Park WS. Inhibition by Imipramine of the Voltage-Dependent K+ Channel in Rabbit Coronary Arterial Smooth Muscle Cells. Toxicol Sci 2020; 178:302-310. [PMID: 33010168 DOI: 10.1093/toxsci/kfaa149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Imipramine, a tricyclic antidepressant, is used in the treatment of depressive disorders. However, the effect of imipramine on vascular ion channels is unclear. Therefore, using a patch-clamp technique we examined the effect of imipramine on voltage-dependent K+ (Kv) channels in freshly isolated rabbit coronary arterial smooth muscle cells. Kv channels were inhibited by imipramine in a concentration-dependent manner, with an IC50 value of 5.55 ± 1.24 µM and a Hill coefficient of 0.73 ± 0.1. Application of imipramine shifted the steady-state activation curve in the positive direction, indicating that imipramine-induced inhibition of Kv channels was mediated by influencing the voltage sensors of the channels. The recovery time constants from Kv-channel inactivation were increased in the presence of imipramine. Furthermore, the application of train pulses (of 1 or 2 Hz) progressively augmented the imipramine-induced inhibition of Kv channels, suggesting that the inhibitory effect of imipramine is use (state) dependent. The magnitude of Kv current inhibition by imipramine was similar during the first, second, and third depolarizing pulses. These results indicate that imipramine-induced inhibition of Kv channels mainly occurs in the closed state. The imipramine-mediated inhibition of Kv channels was associated with the Kv1.5 channel, not the Kv2.1 or Kv7 channel. Inhibition of Kv channels by imipramine caused vasoconstriction. From these results, we conclude that imipramine inhibits vascular Kv channels in a concentration- and use (closed-state)-dependent manner by changing their gating properties regardless of its own function.
Collapse
Affiliation(s)
| | | | | | | | | | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine
| | - Hongzoo Park
- Department of Urology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan 48513, South Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan 48516, South Korea
| | | |
Collapse
|
15
|
Seo MS, An JR, Jung HS, Kang M, Heo R, Han ET, Yang SR, Park H, Jung WK, Choi IW, Bae YM, Na SH, Park WS. Suppression of voltage-gated K + channels by darifenacin in coronary arterial smooth muscle cells. Eur J Pharmacol 2020; 891:173707. [PMID: 33137332 DOI: 10.1016/j.ejphar.2020.173707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 10/23/2022]
Abstract
Darifenacin, an anticholinergic agent, has been used to treat overactive bladder syndrome. Despite its extensive clinical use, there is little information about the effect of darifenacin on vascular ion channels, specifically K+ channels. This study aimed to investigate the effect of the anti-muscarinic drug darifenacin on voltage-gated K+ (Kv) channels, vascular contractility, and coronary blood flow in rabbit coronary arteries. We used the whole-cell patch-clamp technique to evaluate the effect of darifenacin on Kv channels. Darifenacin inhibited the Kv current in a concentration-dependent manner. Applying 1 μM darifenacin shifted the activation and inactivation curves toward a more positive and negative potential, respectively. Darifenacin slowed the time constants of recovery from inactivation. Furthermore, blockade of the Kv current with darifenacin was increased gradually by applying a train of pulses, indicating that darifenacin inhibited Kv currents in a use- (state)-dependent manner. The darifenacin-mediated inhibition of Kv currents was associated with the Kv1.5 subtype, not the Kv2.1 or Kv7 subtype. Applying another anti-muscarinic drug atropine or ipratropium did not affect the Kv current or change the inhibitory effect of darifenacin. Isometric organ bath experiments using isolated coronary arteries were applied to evaluate whether darifenacin-induced inhibition of the Kv channel causes vasocontraction. Darifenacin substantially induced vasocontraction. Furthermore, darifenacin caused membrane depolarization and decreased coronary blood flow. From these results, we concluded that darifenacin inhibits the Kv currents in concentration- and use- (state)-dependent manners. Inhibition of the Kv current with darifenacin occurred by shifting the steady-state activation and inactivation curves regardless of its anti-muscarinic effect.
Collapse
Affiliation(s)
- Mi Seon Seo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Jin Ryeol An
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Hee Seok Jung
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Minji Kang
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Ryeon Heo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Hongzoo Park
- Department of Urology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, 48513, South Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan, 48516, South Korea
| | - Young Min Bae
- Department of Physiology, Konkuk University School of Medicine, Chungju, 27478, South Korea
| | - Sung Hun Na
- Department of Obstetrics and Gynecology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea.
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea.
| |
Collapse
|
16
|
Yang F, Ma Q, Matsabisa MG, Chabalala H, Braga FC, Tang M. Panax notoginseng for Cerebral Ischemia: A Systematic Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1331-1351. [PMID: 32907361 DOI: 10.1142/s0192415x20500652] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Panax notoginseng is the most widely used Chinese medicinal herb for the prevention and treatment of ischemic diseases. Its main active ingredients are saponins, including ginsenoside Rb1, ginsenoside Rg1, and notoginsenoside R1, among others. This review provides an up-to-date overview on the pharmacological roles of P. notoginseng constituents in cerebral ischemia. The saponins of P. notoginseng induce a variety of pharmacological effects in the multiscale mechanisms of cerebral ischemic pathophysiology, including anti-inflammatory activity, reduction of oxidative stress, anti-apoptosis, inhibition of amino acid excitotoxicity, reduction of intracellular calcium overload, protection of mitochondria, repairing the blood-brain barrier, and facilitation of cell regeneration. Regarding cell regeneration, P. notoginseng not only promotes the proliferation and differentiation of neural stem cells, but also protects neurons, endothelial cells and astrocytes in cerebral ischemia. In conclusion, P. notoginseng may treat cerebrovascular diseases through multiple pharmacological effects, and the most critical ones need further investigation.
Collapse
Affiliation(s)
- Fei Yang
- Tongchuan People's Hospital, Tongchuan, Shaanxi Province, P. R. China
| | - Qing Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Motlalepula G Matsabisa
- Department of Pharmacology, School of Medicines Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Hlupheka Chabalala
- IK-Based Technology Innovations Department of Science and Technology Brummeria, Pretoria 0001, South Africa
| | - Fernão Castro Braga
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Minke Tang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| |
Collapse
|
17
|
The inhibitory effect of ziprasidone on voltage-dependent K+ channels in coronary arterial smooth muscle cells. Biochem Biophys Res Commun 2020; 529:191-197. [DOI: 10.1016/j.bbrc.2020.06.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 11/17/2022]
|
18
|
An JR, Seo MS, Jung HS, Kang M, Heo R, Bae YM, Han ET, Yang SR, Park WS. Inhibition of voltage-dependent K + channels by iloperidone in coronary arterial smooth muscle cells. J Appl Toxicol 2020; 40:1297-1305. [PMID: 32285496 DOI: 10.1002/jat.3986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 11/12/2022]
Abstract
Iloperidone, a second-generation atypical antipsychotic drug, is widely used in the treatment of schizophrenia. However, the side-effects of iloperidone on vascular K+ channels remain to be determined. Therefore, we explored the effect of iloperidone on voltage-dependent K+ (Kv) channels in rabbit coronary arterial smooth muscle cells using the whole-cell patch-clamp technique. Iloperidone inhibited vascular Kv channels in a concentration-dependent manner with a half-maximal inhibitory concentration (IC50 ) of 2.11 ± 0.5 μM and a Hill coefficient of 0.68 ± 0.03. Iloperidone had no effect on the steady-state inactivation kinetics. However, it shifted the steady-state activation curve to the right, indicating that iloperidone inhibited Kv channels by influencing the voltage sensors. Application of 20 repetitive depolarizing pulses (1 and 2 Hz) progressively increased the inhibition of the Kv current in the presence of iloperidone. Furthermore, iloperidone increased the recovery time constant from Kv channel inactivation, suggesting that iloperidone-induced inhibition of Kv channels is use (state)-dependent. Pretreatment with a Kv1.5 inhibitor (diphenyl phosphine oxide 1 [DPO-1]) inhibited the Kv current to a level similar to that with iloperidone alone. However, pretreatment with a Kv2.1 or Kv7.X inhibitor (guangxitoxin or linopirdine) did not affect the inhibitory effect of iloperidone on Kv channels. Therefore, iloperidone directly inhibits Kv channels in a concentration- and use (state)-dependent manner independently of its antagonism of serotonin and dopamine receptors. Furthermore, the primary target of iloperidone is the Kv1.5 subtype.
Collapse
Affiliation(s)
- Jin Ryeol An
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Mi Seon Seo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Hee Seok Jung
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Minji Kang
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Ryeon Heo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Young Min Bae
- Department of Physiology, Konkuk University School of Medicine, Chungju, South Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| |
Collapse
|
19
|
An JR, Kang H, Li H, Seo MS, Jung HS, Jung WK, Choi IW, Ryu SW, Park H, Bae YM, Ryu SM, Park WS. Protriptyline, a tricyclic antidepressant, inhibits voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells. Acta Biochim Biophys Sin (Shanghai) 2020; 52:320-327. [PMID: 32060505 DOI: 10.1093/abbs/gmz159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/19/2019] [Accepted: 11/07/2019] [Indexed: 11/13/2022] Open
Abstract
In this study, we explore the inhibitory effects of protriptyline, a tricyclic antidepressant drug, on voltage-dependent K+ (Kv) channels of rabbit coronary arterial smooth muscle cells using a whole-cell patch clamp technique. Protriptyline inhibited the vascular Kv current in a concentration-dependent manner, with an IC50 value of 5.05 ± 0.97 μM and a Hill coefficient of 0.73 ± 0.04. Protriptyline did not affect the steady-state activation kinetics. However, the drug shifted the steady-state inactivation curve to the left, suggesting that protriptyline inhibited the Kv channels by changing their voltage sensitivity. Application of 20 repetitive train pulses (1 or 2 Hz) progressively increased the protriptyline-induced inhibition of the Kv current, suggesting that protriptyline inhibited Kv channels in a use (state)-dependent manner. The extent of Kv current inhibition by protriptyline was similar during the first, second, and third step pulses. These results suggest that protriptyline-induced inhibition of the Kv current mainly occurs principally in the closed state. The increase in the inactivation recovery time constant in the presence of protriptyline also supported use (state)-dependent inhibition of Kv channels by the drug. In the presence of the Kv1.5 inhibitor, protriptyline did not induce further inhibition of the Kv channels. However, pretreatment with a Kv2.1 or Kv7 inhibitor induced further inhibition of Kv current to a similar extent to that observed with protriptyline alone. Thus, we conclude that protriptyline inhibits the vascular Kv channels in a concentration- and use-dependent manner by changing their gating properties. Furthermore, protriptyline-induced inhibition of Kv channels mainly involves the Kv1.5.
Collapse
Affiliation(s)
- Jin Ryeol An
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Hojung Kang
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Hongliang Li
- Institute of Translational Medicine, Medical College, Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment for Senile Diseases, Yangzhou University, Yangzhou 225001, China
| | - Mi Seon Seo
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Hee Seok Jung
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan 48513, South Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan 48516, South Korea
| | - Sook Won Ryu
- Institute of Medical Sciences, Department of Laboratory Medicine, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Hongzoo Park
- Department of Urology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Young Min Bae
- Department of Physiology, Konkuk University School of Medicine, Chungju 27478, South Korea
| | - Se Min Ryu
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Won Sun Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| |
Collapse
|
20
|
Seo MS, An JR, Jung HS, Jung WK, Choi IW, Na SH, Park H, Bae YM, Park WS. The muscarinic receptor antagonist tolterodine inhibits voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells. Eur J Pharmacol 2020; 870:172921. [DOI: 10.1016/j.ejphar.2020.172921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/03/2019] [Accepted: 01/10/2020] [Indexed: 11/17/2022]
|
21
|
Ginsenoside Rb1 exerts antiarrhythmic effects by inhibiting I Na and I CaL in rabbit ventricular myocytes. Sci Rep 2019; 9:20425. [PMID: 31892729 PMCID: PMC6938504 DOI: 10.1038/s41598-019-57010-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022] Open
Abstract
Ginsenoside Rb1 exerts its pharmacological action by regulating sodium, potassium and calcium ion channels in the membranes of nerve cells. These ion channels are also present in cardiomyocytes, but no studies have been reported to date regarding the effects of Rb1 on cardiac sodium currents (INa), L-type calcium currents (ICaL) and action potentials (APs). Additionally, the antiarrhythmic potential of Rb1 has not been assessed. In this study, we used a whole-cell patch clamp technique to assess the effect of Rb1 on these ion channels. The results showed that Rb1 inhibited INa and ICaL, reduced the action potential amplitude (APA) and maximum upstroke velocity (Vmax), and shortened the action potential duration (APD) in a concentration-dependent manner but had no effect on the inward rectifier potassium current (IK1), delayed rectifier potassium current (IK) or resting membrane potential (RMP). We also designed a pathological model at the cellular and organ level to verify the role of Rb1. The results showed that Rb1 abolished high calcium-induced delayed afterdepolarizations (DADs), depressed the increase in intracellular calcium ([Ca2+]i), relieved calcium overload and protected cardiomyocytes. Rb1 can also reduce the occurrence of ventricular premature beats (VPBs) and ventricular tachycardia (VT) in ischemia-reperfusion (I-R) injury.
Collapse
|
22
|
Han X, Li M, Zhao Z, Zhang Y, Zhang J, Zhang X, Zhang Y, Guan S, Chu L. Mechanisms underlying the cardio-protection of total ginsenosides against myocardial ischemia in rats in vivo and in vitro: Possible involvement of L-type Ca 2+ channels, contractility and Ca 2+ homeostasis. J Pharmacol Sci 2019; 139:240-248. [PMID: 30826245 DOI: 10.1016/j.jphs.2019.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 11/17/2022] Open
Abstract
Here we aimed to observe the effects of total ginsenosides (TG) against isoproterenol (ISO) induced myocardial ischemia (MI) and to explore its underlying mechanisms based on L-type Ca2+ current (ICa-L), intracellular Ca2+ ([Ca2+]i) and contraction in isolated rat myocytes. Rat model of MI was induced by subcutaneously injection of ISO (85 mg/kg) for 2 consecutive days. J-point elevation, heart rate, serum levels of creatine kinase (CK) and lactated dehydrogenase (LDH), and heart morphology changes were observed. Influences of TG on ICa-L, [Ca2+]i and contraction in isolated rat myocytes were observed by the patch-clamp technique and IonOptix detection system. TG significantly reduced J-point elevation, heart rate, serum levels of CK and LDH, and improved heart pathologic morphology. TG decreased ICa-L in concentration-dependent manner with a half-maximal inhibitory concentration (IC50) of 31.65 μg/mL. TG (300 μg/mL) decreased ICa-L of normal and ischemic ventricular myocytes by 64.33 ± 1.28% and 61.29 ± 1.38% respectively. At 30 μg/mL, TG reduced Ca2+ transient by 21.67 ± 0.94% and cell shortening by 38.43 ± 6.49%. This study showed that TG displayed cardioprotective effects on ISO-induced MI rats and the underlying mechanisms may be related to inhibition of ICa-L, damping of [Ca2+]i and decrease of contractility.
Collapse
Affiliation(s)
- Xue Han
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Mengying Li
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Zhifeng Zhao
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Yuanyuan Zhang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Jianping Zhang
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Xuan Zhang
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Ying Zhang
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Shengjiang Guan
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang 050200, Hebei, China.
| |
Collapse
|
23
|
Inhibition of the Voltage-Dependent K + Current by the Tricyclic Antidepressant Desipramine in Rabbit Coronary Arterial Smooth Muscle Cells. Cardiovasc Toxicol 2019; 18:252-260. [PMID: 29134326 DOI: 10.1007/s12012-017-9435-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We describe the effect of a tricyclic antidepressant drug desipramine on voltage-dependent K+ (Kv) currents in freshly isolated rabbit coronary arterial smooth muscle cells using a conventional whole-cell patch clamp technique. Application of desipramine rapidly decreased the Kv current amplitude in a concentration-dependent manner, with an IC50 value of 5.91 ± 0.18 μM and a Hill coefficient of 0.61 ± 0.09. The steady-state inactivation curves of the Kv channels were not affected by desipramine. However, desipramine shifted the steady-state inactivation curves toward a more negative potential. Application of train pulses (1 or 2 Hz) slightly reduced the Kv current amplitude. Such reduction in the Kv current amplitude by train pulses increased in the presence of desipramine. Furthermore, the inactivation recovery time constant was also increased in the presence of desipramine, suggesting that desipramine-induced inhibition of the Kv current was use-dependent. Application of a Kv1.5 inhibitor (DPO-1) and/or a Kv2.1 inhibitor (guangxitoxin) did not change the inhibitory effect of desipramine on Kv currents. Based on these results, we concluded that desipramine directly inhibited the Kv channels in a dose- and state-dependent manner, but the effect was independent of norepinephrine/serotonin reuptake inhibition.
Collapse
|
24
|
Li J, Zeng B, Hu X, Li Z, Zhang D, Yang G, Dai J, Zeng X. Protective Effects of Ginsenoside Rb1 against Blood-Brain Barrier Damage Induced by Human Immunodeficiency Virus-1 Tat Protein and Methamphetamine in Sprague-Dawley Rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:551-566. [PMID: 29690789 DOI: 10.1142/s0192415x18500283] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although antiretroviral therapy has helped to improve the lives of individuals infected with human immunodeficiency virus 1 (HIV-1), these patients are often still afflicted with HIV-1-associated neurocognitive disorders, which can lead to neurocognitive impairment and even dementia, and continue to hamper their quality of life. Methamphetamine abuse in HIV-1 patients poses a potential risk for HIV-associated neurocognitive disorders, because methamphetamine and HIV-1 proteins such as transactivator of transcription can synergistically damage the blood-brain barrier (BBB). In this study, we aimed to examine the effects of methamphetamine and HIV-1 Tat protein on the blood-brain barrier function and to determine whether ginsenoside Rb1 (GsRb1) plays a role in protecting the BBB. Sprague-Dawley rats were divided into four groups. The experimental groups received methamphetamine and HIV-1 Tat protein or both and the control group received saline or GsRb1 pretreatment. Oxidative stress-related factors, tight junction (TJ) proteins, blood-brain barrier permeability, and morphological changes were recorded in each group. The results showed that the group treated with Methamphetamine[Formula: see text]Tat showed a significant change at the ultrastructural level and in the levels of oxidative stress-related factors, TJ proteins, and BBB permeability, suggesting that the BBB function was severely damaged by HIV-1 Tat and methamphetamine synergistically. However, malondialdehyde levels and BBB permeability were lower and the oxidative stress-related factors superoxide dismutase and glutathione were higher in the GsRb1-treated group than in the Methamphetamine[Formula: see text]Tat-treated group, indicating that GsRb1 can protect the BBB against the toxic effects of HIV-1 Tat and methamphetamine. These results show that GsRb1 may offer a potential therapeutic option for patients with HIV-associated neurocognitive disorders or other neurodegenerative diseases.
Collapse
Affiliation(s)
- Juan Li
- * Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, The Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, Yunnan, P. R. China
| | - Bairui Zeng
- † School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan, P. R. China.,‡ Wuhua Branch of Kunming Public Security Bureau, Kunming, Yunnan, P. R. China
| | - Xiao Hu
- † School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Zhen Li
- † School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Dongxian Zhang
- † School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Genmeng Yang
- † School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Jiejie Dai
- * Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, The Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, Yunnan, P. R. China
| | - Xiaofeng Zeng
- † School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan, P. R. China
| |
Collapse
|
25
|
Monoaminergic and aminoacidergic receptors are involved in the antidepressant-like effect of ginsenoside Rb1 in mouse hippocampus (CA3) and prefrontal cortex. Brain Res 2018; 1699:44-53. [PMID: 29802841 DOI: 10.1016/j.brainres.2018.05.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/02/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022]
Abstract
Ginsenoside Rb1 (Rb1), as the major bioactive ingredient of Panax ginseng C.A. Meyer, elicited a novel antidepressant-like effect in the forced swim test (FST) in chronic unpredictable mild stress (CUMS) rats in our previous study. To further explore the molecular mechanism of Rb1 on the neurotransmitters such as 5-hydroxytryptamine (5-HT), 5-hydroxyindole-3-acetic acid (5-HIAA), norepinephrine (NE), dopamine (DA), homovanillic acid (HVA), dihydroxyphenylacetic acid (DOPAC), glutamate (Glu) and gamma-aminobutyric acid (GABA) in this antidepressant-like effect, the neurochemical changes in the monoaminergic and aminoacidergic receptors were investigated in the present pharmacological study by using reuptake inhibitors, receptors agonists and antagonists. The results showed that a sub-effective dose of Rb1 (5 mg/kg, p.o.) co-administered with fluoxetine (1 mg/kg, i.p., a selective serotonin reuptake inhibitor), reboxetine (2.5 mg/kg, i.p., a noradrenalin reuptake inhibitor), bupropion (10 mg/kg, i.p., a dopaminergic reuptake inhibitor), Mk-801 (0.05 mg/kg, i.p., an N-methyl-d-aspartic acid (NMDA) receptor antagonist) or baclofen (0.1 mg/kg, i.p., a selective GABA agonist) significantly decreased the immobility time in the FST. In addition, pretreating mice with NAN190 (0.5 mg/kg, i.p., a 5-HT1A receptor antagonist), ketanserin (5 mg/kg, i.p., a 5-HT2A/2C receptor antagonist), ondansetron (1 mg/kg, i.p., a 5-HT3A receptor antagonist), prazosin (1 mg/kg, i.p., an α1-adrenoceptor antagonist), yohimbine (1 mg/kg, i.p., an α2-adrenoceptor antagonist), SCH23390 (0.05 mg/kg, i.p., a selective D1 receptor antagonist), haloperidol (0.2 mg/kg, i.p., a non-selective D2 receptor antagonist), NMDA (75 mg/kg, i.p., an agonist at the glutamate site) or bicuculline (4 mg/kg, i.p., a competitive GABA antagonist) reversed the antidepressant-like effect of Rb1 (10 mg/kg, p.o.) in the FST. The results obtained for the neurotransmitters in the mouse hippocampus (CA3) and prefrontal cortex showed that Rb1 up-regulated the levels of 5-HT, 5-HIAA, NE, DA, and GABA and decreased the level of Glu. However, there were no significant differences in HVA or DOPAC. Furthermore, there were no significant alterations in the total path of spontaneous locomotor activity in all treatments. These results suggest that both monoaminergic (serotonergic, noradrenergic and dopaminergic) and aminoacidergic (glutamatergic and GABAergic) receptors may be involved in the antidepressant-like effect of Rb1.
Collapse
|
26
|
Liu W, Ge T, Pan Z, Leng Y, Lv J, Li B. The effects of herbal medicine on epilepsy. Oncotarget 2018; 8:48385-48397. [PMID: 28423368 PMCID: PMC5564656 DOI: 10.18632/oncotarget.16801] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/22/2017] [Indexed: 12/21/2022] Open
Abstract
Traditional herbal medicine plays a significant role in the treatment of epilepsy. Though herbal medicine is widely used in antiepileptic treatment, there is a lack of robust evidence for efficacy and toxicity of most herbs. Besides, the herbal medicine should be subject to evidence-based scrutiny. In this context, we present a review to introduce the effects of herbal medicine on epilepsy. However, hundreds of herbal medicines have been investigated in the available studies. Some commonly used herbal medicines for epilepsy have been listed in our study. The overwhelming majority of these data are based on animal experiments. The lack of clinical data places constraints on the clinical recommendation of herbal medicine. Our study may conduct further studies and provide some insight on the development of anti-epileptic drugs.
Collapse
Affiliation(s)
- Wei Liu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Tongtong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Zhenxiang Pan
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yashu Leng
- Third Hospital of Jilin University, Changchun 130033, PR China
| | - Jiayin Lv
- Third Hospital of Jilin University, Changchun 130033, PR China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun 130041, PR China
| |
Collapse
|
27
|
Jakaria M, Kim J, Karthivashan G, Park SY, Ganesan P, Choi DK. Emerging signals modulating potential of ginseng and its active compounds focusing on neurodegenerative diseases. J Ginseng Res 2018; 43:163-171. [PMID: 30976157 PMCID: PMC6437449 DOI: 10.1016/j.jgr.2018.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 01/08/2018] [Accepted: 01/12/2018] [Indexed: 02/08/2023] Open
Abstract
Common features of neurodegenerative diseases (NDDs) include progressive dysfunctions and neuronal injuries leading to deterioration in normal brain functions. At present, ginseng is one of the most frequently used natural products. Its use has a long history as a cure for various diseases because its extracts and active compounds exhibit several pharmacological properties against several disorders. However, the pathophysiology of NDDs is not fully clear, but researchers have found that various ion channels and specific signaling pathways might have contributed to the disease pathogenesis. Apart from the different pharmacological potentials, ginseng and its active compounds modulate various ion channels and specific molecular signaling pathways related to the nervous system. Here, we discuss the signal modulating potential of ginseng and its active compounds mainly focusing on those relevant to NDDs.
Collapse
Affiliation(s)
- Md Jakaria
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju, Republic of Korea
| | - Joonsoo Kim
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju, Republic of Korea
| | - Govindarajan Karthivashan
- Research Institute of Inflammatory Disease, and Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea
| | - Shin-Young Park
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju, Republic of Korea
| | - Palanivel Ganesan
- Research Institute of Inflammatory Disease, and Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea.,Nanotechnology Research Center, Konkuk University, Chungju, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju, Republic of Korea.,Research Institute of Inflammatory Disease, and Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea.,Nanotechnology Research Center, Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
28
|
Fuzheng Quxie Decoction Ameliorates Learning and Memory Impairment in SAMP8 Mice by Decreasing Tau Hyperphosphorylation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:5934254. [PMID: 29422936 PMCID: PMC5750500 DOI: 10.1155/2017/5934254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 10/11/2017] [Indexed: 02/07/2023]
Abstract
Hyperphosphorylation of the microtubule-associated protein, tau, is critical to the progression of Alzheimer's disease (AD). Fuzheng Quxie Decoction (FQD), a Chinese herbal complex, is an effective clinical formula used to treat AD. In the current study, we employed high-performance liquid chromatography and liquid chromatography tandem mass spectrometry to identify the components of FQD. Three major components (ginsenoside Rg1, ginsenoside Re, and coptisine) were detected in the brain of FQD-fed mice, indicating their ability to cross the blood-brain barrier. We further evaluated the efficacy of FQD on Senescence-Accelerated Mice Prone-8 (SAMP8) mice. FQD significantly ameliorated learning and memory deficits in SAMP8 mice on the Morris Water Maze, decreasing escape latency (p < 0.01) and increasing swim time within the original platform-containing quadrant (p < 0.05). Further, FQD increased the number of neurons and intraneuronal Nissl bodies in the hippocampal CA1 region. FQD also decreased the expression of phosphorylated tau protein and increased the expression of protein phosphatase 2A (PP2A) and the N-methyl-D-aspartate receptor subunit, NR2A (p < 0.01). Our results indicate that FQD improves the learning and memory ability of SAMP8 mice. Moreover, our findings suggest that the protective effect of FQD is likely mediated through an inhibition of hippocampal tau hyperphosphorylation via NMDAR/PP2A-associated proteins.
Collapse
|
29
|
Zhao H, Han Z, Li G, Zhang S, Luo Y. Therapeutic Potential and Cellular Mechanisms of Panax Notoginseng on Prevention of Aging and Cell Senescence-Associated Diseases. Aging Dis 2017; 8:721-739. [PMID: 29344413 PMCID: PMC5758348 DOI: 10.14336/ad.2017.0724] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 07/24/2017] [Indexed: 12/21/2022] Open
Abstract
Owing to a dramatic increase in average life expectancy, most countries in the world are rapidly entering an aging society. Therefore, extending health span with pharmacological agents targeting aging-related pathological changes, are now in the spotlight of gerosciences. Panax notoginseng (Burk.) F. H. Chen, a species of the genus Panax, has been called the "Miracle Root for the Preservation of Life," and has long been used as a Chinese herb with magical medicinal value. Panax notoginseng has been extensively employed in China to treat microcirculatory disturbances, inflammation, trauma, internal and external bleeding due to injury, and as a tonic. In recent years, with the deepening of the research pharmacologically, many new functions have been discovered. This review will introduce its pharmacological function on lifespan extension, anti-vascular aging, anti-brain aging, and anti-cancer properties, aiming to lay the ground for fully elucidating the potential mechanisms of Panax notoginseng's anti-aging effect to promote its clinical application.
Collapse
Affiliation(s)
- Haiping Zhao
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ziping Han
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Guangwen Li
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Sijia Zhang
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yumin Luo
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| |
Collapse
|
30
|
Ahmed T, Raza SH, Maryam A, Setzer WN, Braidy N, Nabavi SF, de Oliveira MR, Nabavi SM. Ginsenoside Rb1 as a neuroprotective agent: A review. Brain Res Bull 2016; 125:30-43. [DOI: 10.1016/j.brainresbull.2016.04.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 03/21/2016] [Accepted: 04/05/2016] [Indexed: 12/30/2022]
|
31
|
Ong WY, Farooqui T, Koh HL, Farooqui AA, Ling EA. Protective effects of ginseng on neurological disorders. Front Aging Neurosci 2015; 7:129. [PMID: 26236231 PMCID: PMC4503934 DOI: 10.3389/fnagi.2015.00129] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/23/2015] [Indexed: 12/20/2022] Open
Abstract
Ginseng (Order: Apiales, Family: Araliaceae, Genus: Panax) has been used as a traditional herbal medicine for over 2000 years, and is recorded to have antianxiety, antidepressant and cognition enhancing properties. The protective effects of ginseng on neurological disorders are discussed in this review. Ginseng species and ginsenosides, and their intestinal metabolism and bioavailability are briefly introduced. This is followed by molecular mechanisms of effects of ginseng on the brain, including glutamatergic transmission, monoamine transmission, estrogen signaling, nitric oxide (NO) production, the Keap1/Nrf2 adaptive cellular stress pathway, neuronal survival, apoptosis, neural stem cells and neuroregeneration, microglia, astrocytes, oligodendrocytes and cerebral microvessels. The molecular mechanisms of the neuroprotective effects of ginseng in Alzheimer’s disease (AD) including β-amyloid (Aβ) formation, tau hyperphosphorylation and oxidative stress, major depression, stroke, Parkinson’s disease and multiple sclerosis are presented. It is hoped that this discussion will stimulate more studies on the use of ginseng in neurological disorders.
Collapse
Affiliation(s)
- Wei-Yi Ong
- Department of Anatomy, National University of Singapore Singapore, Singapore ; Neurobiology and Ageing Research Programme, National University of Singapore Singapore, Singapore
| | - Tahira Farooqui
- Department of Molecular and Cellular Biochemistry, The Ohio State University Columbus, OH, USA
| | - Hwee-Ling Koh
- Department of Pharmacy, National University of Singapore Singapore, Singapore
| | - Akhlaq A Farooqui
- Department of Molecular and Cellular Biochemistry, The Ohio State University Columbus, OH, USA
| | - Eng-Ang Ling
- Department of Anatomy, National University of Singapore Singapore, Singapore
| |
Collapse
|
32
|
Qu H, Wang Y, Shan W, Zhang Y, Feng H, Sai J, Wang Q, Zhao Y. Development of ELISA for detection of Rh1 and Rg2 and potential method of immunoaffinity chromatography for separation of epimers. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 985:197-205. [PMID: 25706410 DOI: 10.1016/j.jchromb.2015.01.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 01/19/2015] [Accepted: 01/27/2015] [Indexed: 11/29/2022]
Abstract
In this work, hybridomas producing anti-ginsenoside-Rh1 monoclonal antibodies (MAbs) were generated. These MAbs were subsequently used to create indirect competitive enzyme-linked immunosorbent assays (icELISAs). A linear correlation was obtained for G-Rh1 concentrations in the range from 26 to 512ng/mL. The regression equation was y=1.979-0.201Log2(X) with a regression coefficient of 0.9898. Precision and accuracy of the icELISA method were evaluated by the variations between replicates from well to well (intra-assay) and plate to plate (inter-assay). The recovery rates ranged from 93.16% to 108.43%. Testing with the icELISA demonstrated that the MAbs were specific for 20(S)-Rh1 and 20(S)-Rg2 with no cross-reactivity against 20(R)-Rh1 and 20(R)-Rg2. The immunoaffinity chromatography column (IAC) was constructed by covalently coupling monoclonal antibody (MAb) against G-Rh1 to CNBr-activated Sepharose 4B. When 20(R)-type-Rg2 passed through the IAC column, it was adsorbed, but the amount adsorbed was lower than that when 20(S)-type-Rg2 ran through the column. The differences in adsorption between the 20(S) and 20(R) type ginsenosides bring a new approach or method to separate 20(S)-Rg2 and 20(R)-Rg2 by IAC. Our results indicate that the icELISA is a sensitive and efficient approach for the identification of epimers, and the application of IAC using MAbs against small molecules provides a totally new thought and potential method for resolving epimers.
Collapse
Affiliation(s)
- Huihua Qu
- Center of Scientific Experiment, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing 100029, China
| | - Yan Wang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing 100029, China
| | - Wenchao Shan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing 100029, China
| | - Yue Zhang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing 100029, China
| | - Huibin Feng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing 100029, China
| | - Jiayang Sai
- The third affiliated hospital, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing 100029, China
| | - Qingguo Wang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing 100029, China
| | - Yan Zhao
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing 100029, China.
| |
Collapse
|
33
|
HUANG FEI, LI YANAN, YIN FEI, WU YUNTAO, ZHAO DONGXU, LI YE, ZHANG YUNFENG, ZHU QINGSAN. Ginsenoside Rb1 inhibits neuronal apoptosis and damage, enhances spinal aquaporin 4 expression and improves neurological deficits in rats with spinal cord ischemia-reperfusion injury. Mol Med Rep 2015; 11:3565-72. [DOI: 10.3892/mmr.2015.3162] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 12/02/2014] [Indexed: 11/06/2022] Open
|
34
|
Kim JM, Park SW, Lin HY, Shin KC, Sung DJ, Kim JG, Cho H, Kim B, Bae YM. Blockade of voltage-gated K+ currents in rat mesenteric arterial smooth muscle cells by MK801. J Pharmacol Sci 2015; 127:92-102. [DOI: 10.1016/j.jphs.2014.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/28/2014] [Accepted: 11/04/2014] [Indexed: 02/08/2023] Open
|
35
|
Sun A, Xu X, Lin J, Cui X, Xu R. Neuroprotection by saponins. Phytother Res 2014; 29:187-200. [PMID: 25408503 DOI: 10.1002/ptr.5246] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 08/09/2014] [Accepted: 09/23/2014] [Indexed: 12/17/2022]
Abstract
Saponins, an important group of bioactive plant natural products, are glycosides of triterpenoid or steroidal aglycones. Their diverse biological activities are ascribed to their different structures. Saponins have long been recognized as key ingredients in traditional Chinese medicine. Accumulated evidence suggests that saponins have significant neuroprotective effects on attenuation of central nervous system disorders, such as stroke, Alzheimer's disease, Parkinson's disease, and Huntington's disease. However, our understanding of the mechanisms underlying the observed effects remains incomplete. Based on recently reported data from basic and clinical studies, this review highlights the proposed mechanisms of their neuroprotective function including antioxidant, modulation of neurotransmitters, anti-apoptosis, anti-inflammation, attenuating Ca(2+) influx, modulating neurotrophic factors, inhibiting tau phosphorylation, and regeneration of neural networks.
Collapse
Affiliation(s)
- Aijing Sun
- Institute of Molecular Medicine, Huaqiao University and Engineering Research Center of Molecular Medicine, Ministry of Education, Quanzhou, China
| | | | | | | | | |
Collapse
|
36
|
Park JI, Bae HR, Kim CG, Stonik VA, Kwak JY. Relationships between chemical structures and functions of triterpene glycosides isolated from sea cucumbers. Front Chem 2014; 2:77. [PMID: 25250309 PMCID: PMC4159031 DOI: 10.3389/fchem.2014.00077] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 08/21/2014] [Indexed: 11/15/2022] Open
Abstract
Many marine triterpene glycosides have in vitro and in vivo activities with very low toxicity, suggesting that they are suitable agents for the prevention and treatment of different diseases, particularly cancer. However, the molecular mechanisms of action of natural marine compounds in cancer, immune, and other various cells are not fully known. This review focuses on the structural characteristics of marine triterpene glycosides and how these affect their biological activities and molecular mechanisms. In particular, the membranotropic and membranolytic activities of frondoside A and cucumariosides from sea cucumbers and their ability to induce cytotoxicity and apoptosis have been discussed, with a focus on structure-activity relationships. In addition, the structural characteristics and antitumor effects of stichoposide C and stichoposide D have been reviewed along with underlying their molecular mechanisms.
Collapse
Affiliation(s)
- Joo-In Park
- Department of Biochemistry, Dong-A UniversityBusan, South Korea
| | - Hae-Rahn Bae
- Department of Physiology, School of Medicine, Dong-A UniversityBusan, South Korea
| | - Chang Gun Kim
- Department of Biochemistry, Dong-A UniversityBusan, South Korea
- Immune-Network Pioneer Research Center, Dong-A UniversityBusan, South Korea
| | - Valentin A. Stonik
- The Laboratory of Chemistry of Marine Natural Products, G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of ScienceVladivostok, Russia
| | - Jong-Young Kwak
- Department of Biochemistry, Dong-A UniversityBusan, South Korea
- Immune-Network Pioneer Research Center, Dong-A UniversityBusan, South Korea
| |
Collapse
|
37
|
Smith I, Williamson EM, Putnam S, Farrimond J, Whalley BJ. Effects and mechanisms of ginseng and ginsenosides on cognition. Nutr Rev 2014; 72:319-33. [DOI: 10.1111/nure.12099] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Imogen Smith
- School of Chemistry; Food and Nutritional Sciences and Pharmacy; University of Reading; Reading Berkshire UK
| | - Elizabeth M Williamson
- School of Chemistry; Food and Nutritional Sciences and Pharmacy; University of Reading; Reading Berkshire UK
| | | | | | - Benjamin J Whalley
- School of Chemistry; Food and Nutritional Sciences and Pharmacy; University of Reading; Reading Berkshire UK
| |
Collapse
|
38
|
Nah SY. Ginseng ginsenoside pharmacology in the nervous system: involvement in the regulation of ion channels and receptors. Front Physiol 2014; 5:98. [PMID: 24678300 PMCID: PMC3958645 DOI: 10.3389/fphys.2014.00098] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 02/27/2014] [Indexed: 01/05/2023] Open
Abstract
Ginseng, the root of Panax ginseng C.A. Meyer, is one of the oldest traditional medicines and is thought to be a tonic. It has been claimed that ginseng may improve vitality and health. Recent studies have advanced ginseng pharmacology and shown that ginseng has various pharmacological effects in the nervous system. Ginsenosides, steroid glycosides extracted from ginseng, were one of the first class of biologically active plant glycosides identified. The diverse pharmacological effects of ginsenosides have been investigated through the regulation of various types of ion channels and receptors in neuronal cells and heterologous expression systems. Ginsenoside Rg3 regulates voltage-gated ion channels such as Ca(2+), K(+), and Na(+) channels, and ligand-gated ion channels such as GABAA, 5-HT3, nicotinic acetylcholine, and N-methyl-D-aspartate (NMDA) receptors through interactions with various sites including channel blocker binding sites, toxin-binding sites, channel gating regions, and allosteric channel regulator binding sites when the respective ion channels or receptors are stimulated with depolarization or ligand treatment. Treatment with ginsenoside Rg3 has been found to stabilize excitable cells by blocking influxes of cations such as Ca(2+) and Na(+), or by enhancing Cl(-) influx. The aim of this review is to present recent findings on the pharmacological functions of the ginsenosides through the interactions with ion channels and receptors. This review will detail the pharmacological applications of ginsenosides as neuroprotective drugs that target ion channels and ligand-gated ion channels.
Collapse
Affiliation(s)
- Seung-Yeol Nah
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University Seoul, South Korea
| |
Collapse
|
39
|
Ginseng extract attenuates early MRI changes after status epilepticus and decreases subsequent reduction of hippocampal volume in the rat brain. Epilepsy Res 2014; 108:223-31. [DOI: 10.1016/j.eplepsyres.2013.11.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/15/2013] [Accepted: 11/21/2013] [Indexed: 11/21/2022]
|
40
|
Wang X, Wang S, Hu L. Neuroprotective effect of panax notoginseng saponins and its main components. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/wjns.2014.41002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|