1
|
Drozd M, Kobylska E, Żmieńko M, Chudy M. Sensitive and label-free SPR biosensing platforms for high-throughput screening of plasma membrane receptors interactions with insulin-like targets of hypoglycaemic activity. Talanta 2024; 274:125914. [PMID: 38537356 DOI: 10.1016/j.talanta.2024.125914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 05/04/2024]
Abstract
Progress in medical sciences aims for tailored therapy of civilization diseases like diabetes. Preclinical screening of new medicines superior to insulin should include the verification of their affinity to the membrane receptors naturally stimulated by this hormone: insulin receptor isoforms A and B and insulin-like growth factor receptor. Considering that the affinity constants obtained using different experimental conditions are incomparable, it is essential to develop a robust and reliable method to analyze these interactions. The versatile SPR platform developed in this study enables the evaluation of the bioactivity of hypoglycaemic molecules. Thanks to the comprehensive characterization of miscellaneous aspects of the analytical platform, including the design of the SPR biosensor receptor layer, ensuring interaction specificity, as well as the quality control of the standards used (human insulin, HI; long-acting insulin analog: glargine, Gla), the feasibility of the method of equilibrium and kinetic constants determination for insulin-like targets was confirmed. SPR assays constructed in the direct format using IR-A, IR-B, and IGF1-R receptor proteins show high sensitivities and low detection limits towards insulin and glargine detection in the range of 18.3-53.3 nM with no signs of mass transport limitations. The improved analytical performance and stability of SPR biosensors favor the acquisition of good-quality kinetic data, while preservation of receptors activity after binding to long-chain carboxymethyldextran, combined with spontaneous regeneration, results in stability and long shelf life of the biosensor, which makes it useful for label-free insulin analogs biosensing and thus extensive screening in diabetic drugs discovery.
Collapse
Affiliation(s)
- Marcin Drozd
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland; Centre for Advanced Materials and Technologies CEZAMAT, Poleczki 19, 02-822, Warsaw, Poland
| | - Ewa Kobylska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland; Łukasiewicz - Industrial Chemistry Institute, Rydygiera 8, 01-793, Warsaw, Poland
| | - Małgorzata Żmieńko
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Michał Chudy
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland.
| |
Collapse
|
2
|
Usuwanthim K, Wisitpongpun P, Luetragoon T. Molecular Identification of Phytochemical for Anticancer Treatment. Anticancer Agents Med Chem 2020; 20:651-666. [DOI: 10.2174/1871520620666200213110016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/15/2020] [Accepted: 01/18/2020] [Indexed: 12/15/2022]
Abstract
Cancer commands the second highest global mortality rate and causes severe public health problems.
Recent advances have been made in cancer therapy but the incidence of the disease remains high. Research on
more efficient treatment methods with reduced side effects is necessary. Historically, edible plants have been
used as traditional medicines for various diseases. These demonstrate the potential of natural products as sources
of bioactive compounds for anticancer treatment. Anticancer properties of phytochemicals are attributed to
bioactive compounds in plant extracts that suppress cancer cell proliferation and growth by inducing both cell
cycle arrest and apoptosis. This review presents a summary of the molecular identification of phytochemicals
with anticancer properties and details their action mechanisms and molecular targets. Moreover, the effects of
the natural product on both immunomodulatory and anticancer properties are provided.
Collapse
Affiliation(s)
- Kanchana Usuwanthim
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Prapakorn Wisitpongpun
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Thitiya Luetragoon
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
3
|
Wang M, Yang L, Feng L, Hu F, Zhang F, Ren J, Qiu Y, Wang Z. Verruculosins A-B, New Oligophenalenone Dimers from the Soft Coral-Derived Fungus Talaromyces verruculosus. Mar Drugs 2019; 17:md17090516. [PMID: 31480659 PMCID: PMC6780165 DOI: 10.3390/md17090516] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 11/16/2022] Open
Abstract
In an effort to discover new bioactive anti-tumor lead compounds, a specific tyrosine phosphatase CDC25B and an Erb family receptor EGFR were selected as drug screening targets. This work led to the investigation of the soft coral-derived fungus Talaromyces verruculosus and identification of two new oligophenalenone dimers, verruculosins A–B (1–2), along with three known analogues, bacillisporin F (3), duclauxin (4), and xenoclauxin (5). Compound 1 was the first structure of the oligophenalenone dimer possessing a unique octacyclic skeleton. The detailed structures and absolute configurations of the new compounds were elucidated on the basis of spectroscopic data, X-ray crystallography, optical rotation, Electronic Circular Dichroism (ECD) analysis, and nuclear magnetic resonance (NMR) calculations. Among which, compounds 1, 3, and 5 exhibited modest inhibitory activity against CDC25B with IC50 values of 0.38 ± 0.03, 0.40 ± 0.02, and 0.26 ± 0.06 µM, respectively.
Collapse
Affiliation(s)
- Minghui Wang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Daxue Road 184, Xiamen 361000, China
- School of Nursing and Health, Qingdao Huanghai University, Linghai Road 1145, Qingdao 266427, China
| | - Longhe Yang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Daxue Road 184, Xiamen 361000, China
| | - Liubin Feng
- High-field NMR Center College of Chemistry and Chemical Engineering, Xiamen University, Siming South Road 422, Xiamen 361005, China
| | - Fan Hu
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Daxue Road 184, Xiamen 361000, China
| | - Fang Zhang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Daxue Road 184, Xiamen 361000, China
| | - Jie Ren
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yan Qiu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen 361102, China.
| | - Zhaokai Wang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Daxue Road 184, Xiamen 361000, China.
| |
Collapse
|
4
|
Yin B, Fang DM, Zhou XL, Gao F. Natural products as important tyrosine kinase inhibitors. Eur J Med Chem 2019; 182:111664. [PMID: 31494475 DOI: 10.1016/j.ejmech.2019.111664] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/13/2019] [Accepted: 08/29/2019] [Indexed: 12/27/2022]
Abstract
As an important source of drugs, natural products play an important role in the discovery and development of new drugs. More than 60% of anti-tumor drugs are closely related to natural products. At the same time, as the main cause of tumors, the abnormal activity of tyrosine kinase has become an important target for clinical treatment. Although, small molecule targeted drugs dominate the cancer treatment. Natural active products are driving the development of new tyrosine kinase inhibitors with their unique mode of action and molecular structure diversity. Obtaining new chemical entities with tyrosine kinase inhibitory activity from natural active products will bring new breakthroughs in the research of anticancer drugs. In this paper, different tyrosine kinases are mainly classified as targets, and natural products and derivatives which have been found to inhibit tyrosine kinase activity have been described. It is hoped that by analyzing the different aspects of the source, structural characteristics, mechanism of action and biological activity of these natural products, we will find new members that can be developed into drugs and promote the development of anti-tumor drugs.
Collapse
Affiliation(s)
- Bo Yin
- Laboratory of Chemistry and Biodiversity, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Dong-Mei Fang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Xian-Li Zhou
- Laboratory of Chemistry and Biodiversity, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Feng Gao
- Laboratory of Chemistry and Biodiversity, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China.
| |
Collapse
|
5
|
Khalid S, Hanif R, Jabeen I, Mansoor Q, Ismail M. Pharmacophore modeling for identification of anti-IGF-1R drugs and in-vitro validation of fulvestrant as a potential inhibitor. PLoS One 2018; 13:e0196312. [PMID: 29787591 PMCID: PMC5963753 DOI: 10.1371/journal.pone.0196312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/10/2018] [Indexed: 01/10/2023] Open
Abstract
Insulin-like growth factor 1 receptor (IGF-1R) is an important therapeutic target for breast cancer treatment. The alteration in the IGF-1R associated signaling network due to various genetic and environmental factors leads the system towards metastasis. The pharmacophore modeling and logical approaches have been applied to analyze the behaviour of complex regulatory network involved in breast cancer. A total of 23 inhibitors were selected to generate ligand based pharmacophore using the tool, Molecular Operating Environment (MOE). The best model consisted of three pharmacophore features: aromatic hydrophobic (HyD/Aro), hydrophobic (HyD) and hydrogen bond acceptor (HBA). This model was validated against World drug bank (WDB) database screening to identify 189 hits with the required pharmacophore features and was further screened by using Lipinski positive compounds. Finally, the most effective drug, fulvestrant, was selected. Fulvestrant is a selective estrogen receptor down regulator (SERD). This inhibitor was further studied by using both in-silico and in-vitro approaches that showed the targeted effect of fulvestrant in ER+ MCF-7 cells. Results suggested that fulvestrant has selective cytotoxic effect and a dose dependent response on IRS-1, IGF-1R, PDZK1 and ER-α in MCF-7 cells. PDZK1 can be an important inhibitory target using fulvestrant because it directly regulates IGF-1R.
Collapse
Affiliation(s)
- Samra Khalid
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
- Northern Institute for Cancer Research, Newcastle upon Tyne Hospitals NHS Foundation Trust, The Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom
| | - Rumeza Hanif
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
- * E-mail:
| | - Ishrat Jabeen
- Research Center for Modeling & Simulation (RCMS), National University of Sciences and Technology, Islamabad, Pakistan
| | - Qaisar Mansoor
- Institute of Biomedical and Genetic Engineering (IBGE), KRL Hospital, Islamabad, Pakistan
| | - Muhammad Ismail
- Institute of Biomedical and Genetic Engineering (IBGE), KRL Hospital, Islamabad, Pakistan
| |
Collapse
|
6
|
Lu Y, Mao F, Li X, Zheng X, Wang M, Xu Q, Zhu J, Li J. Discovery of Potent, Selective Stem Cell Factor Receptor/Platelet Derived Growth Factor Receptor Alpha (c-KIT/PDGFRα) Dual Inhibitor for the Treatment of Imatinib-Resistant Gastrointestinal Stromal Tumors (GISTs). J Med Chem 2017; 60:5099-5119. [DOI: 10.1021/acs.jmedchem.7b00468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yanli Lu
- Shanghai Key Laboratory
of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Fei Mao
- Shanghai Key Laboratory
of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaokang Li
- Shanghai Key Laboratory
of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xinyu Zheng
- Shanghai Key Laboratory
of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Manjiong Wang
- Shanghai Key Laboratory
of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Qing Xu
- Shanghai Key Laboratory
of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jin Zhu
- Shanghai Key Laboratory
of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Li
- Shanghai Key Laboratory
of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
7
|
Novel metal complexes of naphthalimide–cyclam conjugates as potential multi-target receptor tyrosine kinase (RTK) inhibitors: Synthesis and biological evaluation. Eur J Med Chem 2014; 85:207-14. [DOI: 10.1016/j.ejmech.2014.07.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 07/02/2014] [Accepted: 07/20/2014] [Indexed: 11/18/2022]
|
8
|
Naphthalimides exhibit in vitro antiproliferative and antiangiogenic activities by inhibiting both topoisomerase II (topo II) and receptor tyrosine kinases (RTKs). Eur J Med Chem 2013; 65:477-86. [DOI: 10.1016/j.ejmech.2013.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 04/30/2013] [Accepted: 05/03/2013] [Indexed: 11/22/2022]
|