1
|
Gui J, Zhou H, Wan H, Yang D, Liu Q, Zhu L, Mi Y. The Role of Vasodilator-stimulated Phosphoproteins in the Development of Malignant Tumors. Curr Cancer Drug Targets 2024; 24:477-489. [PMID: 37962042 PMCID: PMC11092557 DOI: 10.2174/0115680096262439231023110106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/06/2023] [Accepted: 09/06/2023] [Indexed: 11/15/2023]
Abstract
Vasodilator-stimulated phosphoprotein (VASP) is an actin-binding protein that includes three structural domains: Enabled/VASP homolog1 (EVH1), EVH2, and proline-rich (PRR). VASP plays an important role in various cellular behaviors related to cytoskeletal regulation. More importantly, VASP plays a key role in the progression of several malignant tumors and is associated with malignant cell proliferation, invasion, and metastasis. Here, we have summarized current studies on the impact of VASP on the development of several malignant tumors and their mechanisms. This study provides a new theoretical basis for clinical molecular diagnosis and molecular targeted therapy.
Collapse
Affiliation(s)
- Jiandong Gui
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu Province, China
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
| | - Hangsheng Zhou
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu Province, China
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
| | - Hongyuan Wan
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu Province, China
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
| | - Dongjie Yang
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
| | - Qing Liu
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
- Huadong Sanatorium, 67 Dajishan, Wuxi 214122, Jiangsu Province, China
| | - Lijie Zhu
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
| | - Yuanyuan Mi
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
| |
Collapse
|
2
|
Pan W, Tian Y, Zheng Q, Yang Z, Qiang Y, Zhang Z, Zhang N, Xiong J, Zhu X, Wei L, Li F. Oncogenic BRAF noncanonically promotes tumor metastasis by mediating VASP phosphorylation and filopodia formation. Oncogene 2023; 42:3194-3205. [PMID: 37689827 DOI: 10.1038/s41388-023-02829-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
BRAF is frequently mutated in various cancer types and contributes to tumorigenesis and metastasis. As an important switch in RAS signaling pathway, BRAF typically enables the activation of MEK and ERK, and its mutation significantly promotes metastasis. However, whether BRAF could stimulate metastasis via a distinct manner is still unknown. Herein, we found that a portion of the BRAF protein localized at the plasma membrane and that the BRAFV600E mutation led to abundant formation of filopodia, which is a hallmark of invasive cancer cells. Mechanistically, BRAF physically interacts with the pseudopod formation-related protein Vasodilator-stimulated phosphoprotein (VASP), and BRAF specifically catalyzes VASP phosphorylation at Ser157. VASP depletion or disruption of Ser157 phosphorylation preferentially reduced the motility, invasion and metastasis of tumor cells harboring oncogenic BRAF or KRAS. Moreover, in clinical cancer tissues, BRAFV600E was positively correlated with the extent of invasion, and tissues with BRAFV600E expression exhibited elevated levels of VASP Ser157 phosphorylation. Our study therefor reveals a noncanonical mechanism by which oncogenic BRAF or KRAS promotes metastasis, suggests that VASP Ser157 phosphorylation might serve as a valuable therapeutic target in BRAF or KRAS mutant cancers.
Collapse
Affiliation(s)
- Wenting Pan
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yihao Tian
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Qian Zheng
- Department of Medical Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zelin Yang
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yulong Qiang
- Department of Medical Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zun Zhang
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Nan Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jie Xiong
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
| | - Xin Zhu
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, China.
| | - Lei Wei
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.
| | - Feng Li
- Department of Medical Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
- Hubei Provincial Key Laboratory of Allergy and Immunology, Wuhan, China.
| |
Collapse
|
3
|
Long non-coding RNA NUT family member 2A-antisense RNA 1 sponges microRNA-613 to increase the resistance of gastric cancer cells to matrine through regulating oxidative stress and vascular endothelial growth factor A. Aging (Albany NY) 2022; 14:5153-5162. [PMID: 35771149 PMCID: PMC9271296 DOI: 10.18632/aging.204135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022]
Abstract
Matrine has been shown to play a role in the suppression of gastric cancer (GC) tumorigenesis. However, whether long non-coding RNA NUT family member 2A-antisense RNA 1 (NUTM2A-AS1) is involved in matrine-induced inhibition of GC remains unknown. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, cell colony formation, and terminal deoxynucleotidyl transferase dUTP nick-end labeling assays were employed to determine the proliferation, viability, and apoptosis of GC cells, respectively. The Cancer Genome Atlas database suggested an association between NUTM2A-AS1 and GC. The reverse transcription-quantitative polymerase chain reaction was used to quantify relative levels of NUTM2A-AS1, miR-613, and vascular endothelial growth factor A (VEGFA). Reactive oxygen species generation, glutathione content, and superoxide dismutase activity were determined by corresponding reagents or assay kits. NUTM2A-AS1 knockdown led to attenuated cell viability and proliferation, as well as to enhanced apoptosis of N87 and AGS cells treated with matrine. These changes were prevented by an inhibitor of microRNA (miR)-613. Importantly, NUTM2A-AS1 expression was positively associated with tumor progression in patients with GC. NUTM2A-AS1 and miR-613 regulated the generation of reactive oxygen species, the content of glutathione, and the activity of superoxide dismutase. VEGFA served as an important effector for the NUTM2A-AS1/miR-613-regulated resistance of GC cells to matrine. These results reveal a novel mechanism of matrine resistance in GC.
Collapse
|
4
|
Qi M, Liu X, Zhou Y, Wang H, Zhao Y, Ren J, Xiang J. Berberine Inhibits MDA-MB-231 Cells as an Agonist of G Protein-Coupled Estrogen Receptor 1. Int J Mol Sci 2021; 22:ijms222111466. [PMID: 34768896 PMCID: PMC8583996 DOI: 10.3390/ijms222111466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 01/18/2023] Open
Abstract
G protein-coupled estrogen receptor 1 (GPER1) is a potential therapeutic target for treating triple-negative breast cancers (TNBC). However, modulators for GPER1 that can be used to treat TNBC have not appeared. Berberine (BBR) is a bioactive isoquinoline alkaloid with high oral safety. In recent years, BBR has shown an inhibitory effect on TNBC tumors such as MDA-MB-231, but the molecular target remains unclear, which hinders related clinical research. Our work proved that BBR is a modulator of GPER1 that can inhibit cell viability, migration, and autophagy of MDA-MB-231 cells. The inhibitory effect of BBR on MDA-MB-231 cells has a dependence on estrogen levels. Although BBR promoted the proteasome, which is a major factor in the degradation of GPER1, it could still induce the protein level of GPER1. Correspondingly, the transcription of cellular communication network factor 2 (CCN2) was promoted. BBR could bind to GPER1 directly and change the secondary structure of GPER1, as in the case of 17β-estradiol (E2). In addition, BBR induced not only a high degree of co-localization of GPER1 and microtubule-associated protein 1 light chain 3 (MAP1LC3), but also the accumulation of sequestosome 1 (SQSTM1/p62) by the inhibition of the nuclear translocation of the nuclear factor-kappa B (NF-κB) subunit (RELA/p65), which indicates NF-κB inhibition and anti-cancer effects. This result proved that the promotional effect of BBR on the GPER1/NF-κB pathway was closely related to its inhibitory effect on autophagy, which may serve as a new mechanism by which to explain the inhibitory effect of BBR on MDA-MB-231 cells and expand our understanding of the function of both BBR and GPER1.
Collapse
Affiliation(s)
- Miaomiao Qi
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; (M.Q.); (X.L.); (H.W.); (Y.Z.); (J.R.)
| | - Xiang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; (M.Q.); (X.L.); (H.W.); (Y.Z.); (J.R.)
| | - Ying Zhou
- Research Center for Medicine and Structural Biology of Wuhan University, Wuhan University, Wuhan 430071, China;
| | - Haoyu Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; (M.Q.); (X.L.); (H.W.); (Y.Z.); (J.R.)
| | - Ying Zhao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; (M.Q.); (X.L.); (H.W.); (Y.Z.); (J.R.)
| | - Jing Ren
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; (M.Q.); (X.L.); (H.W.); (Y.Z.); (J.R.)
| | - Jin Xiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; (M.Q.); (X.L.); (H.W.); (Y.Z.); (J.R.)
- Correspondence:
| |
Collapse
|
5
|
Li X, Wang M, Du N, Liang T, Xiao GD, Li K, Wang JC, Xu CW, Peng ZY, Tang SC, Sun X. Matrine Inhibitory Effect on Self-renewal and Re-sensitization of 5-FU Resistant NSCLC Stem Cells were through Let-7b dependent Downregulation of CCND1. Cell Cycle 2020; 19:3249-3259. [PMID: 33164645 DOI: 10.1080/15384101.2020.1838791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Matrine is one of the major alkaloids extracted from Sophora flavescens Ait of the traditional Chinese medicine, was the main chemical ingredient of compounds of Kushen injection. The Matrine is considered as a promising therapeutic agent for curing nonsmall cell lung cancer (NSCLC), used either alone or combined with chemotherapeutic agents. In the present study, we focused on the possible roles of Matrine exerted on the self-renewal ability of stem-like cells of the NSCLC group, as well as the cytotoxicity of chemotherapeutic agents, in vitro and in vivo. Here we reported that Matrine inhibits cancer stem-like cell (CSC) properties through upregulation of Let-7b and suppression of the Wnt pathway. Overexpression of Let-7b suppressed the ability of tumorsphere formation, decreased Wnt pathway activation through inhibiting its transcriptional activity in lung CSCs. Further studies revealed that Let-7b directly targeted CCND1 and decreased its expression, whereas Matrine increased Let-7b levels and followed by inactivation of the CCND1/Wnt signaling pathway and inhibition of EMT, which was characterized by loss of epithelial markers and acquisition of a mesenchymal phenotype in lung CSCs. What is more, we found that Matrine increased Let-7b level in an endoribonuclease DICER1-dependent manner. And xenografts in nude mice evidenced that Matrine increased the sensitivity of lung CSCs to 5-FU and inhibited the accumulation of CCND1 in tumor tissues induced by 5-FU. Taken together, these data illustrate the role of Let-7b in regulating lung CSCs traits and DICER1/let-7/CCND1 axis in Matrine or in combination with 5-FU intervention of lung CSCs' expansion, helping to fulfill the anti-cancer action of Matrine.
Collapse
Affiliation(s)
- Xiang Li
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi, P.R.China
| | - Meng Wang
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi, P.R.China
| | - Ning Du
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi, P.R.China
| | - Ting Liang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi, P.R.China.,Department of Biomedical Engineering, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology , Xi'an, Shaanxi, P.R.China
| | - Guo-Dong Xiao
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi, P.R.China.,Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, P.R.China
| | - Kai Li
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi, P.R.China
| | - Ji-Chang Wang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi, P.R.China
| | - Chong-Wen Xu
- Department of Otorhinolaryngology, First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi, P.R.China
| | - Zi-Yang Peng
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi, P.R.China
| | - Shou-Ching Tang
- University of Mississippi Medical Center, Cancer Center and Research Institute, University of Mississippi , Jackson, Mississippi, USA
| | - Xin Sun
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi, P.R.China
| |
Collapse
|
6
|
Nakonieczna S, Grabarska A, Kukula-Koch W. The Potential Anticancer Activity of Phytoconstituents against Gastric Cancer-A Review on In Vitro, In Vivo, and Clinical Studies. Int J Mol Sci 2020; 21:E8307. [PMID: 33167519 PMCID: PMC7663924 DOI: 10.3390/ijms21218307] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer belongs to the heterogeneous malignancies and, according to the World Health Organization, it is the fifth most commonly diagnosed cancer in men. The aim of this review is to provide an overview on the role of natural products of plant origin in the therapy of gastric cancer and to present the potentially active metabolites which can be used in the natural therapeutical strategies as the support to the conventional treatment. Many of the naturally spread secondary metabolites have been proved to exhibit chemopreventive properties when tested on the cell lines or in vivo. This manuscript aims to discuss the pharmacological significance of both the total extracts and the single isolated metabolites in the stomach cancer prevention and to focus on their mechanisms of action. A wide variety of plant-derived anticancer metabolites from different groups presented in the manuscript that include polyphenols, terpenes, alkaloids, or sulphur-containing compounds, underlines the multidirectional nature of natural products.
Collapse
Affiliation(s)
- Sylwia Nakonieczna
- Chair and Department of Pharmacognosy, Medical University of Lublin, 1, Chodzki str., 20-093 Lublin, Poland;
| | - Aneta Grabarska
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1, Chodźki, 20-093 Lublin, Poland
| | - Wirginia Kukula-Koch
- Chair and Department of Pharmacognosy, Medical University of Lublin, 1, Chodzki str., 20-093 Lublin, Poland;
| |
Collapse
|
7
|
You L, Yang C, Du Y, Wang W, Sun M, Liu J, Ma B, Pang L, Zeng Y, Zhang Z, Dong X, Yin X, Ni J. A Systematic Review of the Pharmacology, Toxicology and Pharmacokinetics of Matrine. Front Pharmacol 2020; 11:01067. [PMID: 33041782 PMCID: PMC7526649 DOI: 10.3389/fphar.2020.01067] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Matrine (MT) is a naturally occurring alkaloid and an bioactive component of Chinese herbs, such as Sophora flavescens and Radix Sophorae tonkinensis. Emerging evidence suggests that MT possesses anti-cancer, anti-inflammatory, anti-oxidant, antiviral, antimicrobial, anti-fibrotic, anti-allergic, antinociceptive, hepatoprotective, cardioprotective, and neuroprotective properties. These pharmacological properties form the foundation for its application in the treatment of various diseases, such as multiple types of cancers, hepatitis, skin diseases, allergic asthma, diabetic cardiomyopathy, pain, Alzheimer's disease (AD), Parkinson's disease (PD), and central nervous system (CNS) inflammation. However, an increasing number of published studies indicate that MT has serious adverse effects, the most obvious being liver toxicity and neurotoxicity, which are major factors limiting its clinical use. Pharmacokinetic studies have shown that MT has low oral bioavailability and short half-life in vivo. This review summarizes the latest advances in research on the pharmacology, toxicology, and pharmacokinetics of MT, with a focus on its biological properties and mechanism of action. The review provides insight into the future of research on traditional Chinese medicine.
Collapse
Affiliation(s)
- Longtai You
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chunjing Yang
- Department of Pharmacy, Beijing Shijitan Hospital Affiliated to Capital University of Medical Sciences, Beijing, China
| | - Yuanyuan Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wenping Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Mingyi Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Baorui Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Linnuo Pang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yawen Zeng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiqin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoxv Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xingbin Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jian Ni
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Zhang H, Chen L, Sun X, Yang Q, Wan L, Guo C. Matrine: A Promising Natural Product With Various Pharmacological Activities. Front Pharmacol 2020; 11:588. [PMID: 32477114 PMCID: PMC7232545 DOI: 10.3389/fphar.2020.00588] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 04/16/2020] [Indexed: 12/30/2022] Open
Abstract
Matrine is an alkaloid isolated from the traditional Chinese medicine Sophora flavescens Aiton. At present, a large number of studies have proved that matrine has an anticancer effect can inhibit cancer cell proliferation, arrest cell cycle, induce apoptosis, and inhibit cancer cell metastasis. It also has the effect of reversing anticancer drug resistance and reducing the toxicity of anticancer drugs. In addition, studies have reported that matrine has a therapeutic effect on Alzheimer's syndrome, encephalomyelitis, asthma, myocardial ischemia, rheumatoid arthritis, osteoporosis, and the like, and its mechanism is mainly related to the inhibition of inflammatory response and apoptosis. Its treatable disease spectrum spans multiple systems such as the nervous system, circulatory system, and immune system. The antidisease effect and mechanism of matrine are diverse, so it has high research value. This review summarizes recent studies on the pharmacological mechanism of matrine, with a view to providing reference for subsequent research.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Pharmacy, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Linlin Chen
- Department of Pharmacy, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xipeng Sun
- Department of Pharmacy, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Quanjun Yang
- Department of Pharmacy, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lili Wan
- Department of Pharmacy, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng Guo
- Department of Pharmacy, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
The Wnt/β-catenin/VASP positive feedback loop drives cell proliferation and migration in breast cancer. Oncogene 2019; 39:2258-2274. [PMID: 31831834 DOI: 10.1038/s41388-019-1145-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022]
Abstract
Previous studies have shown that the main function of VASP is to regulate the cytoskeleton and play an important role in promoting tumor cell metastasis. In this study, we first reveal that VASP is located in the nucleus of breast cancer cells and elucidate a Wnt/β-catenin/VASP positive feedback loop. We identify that VASP is a target gene of Wnt/β-catenin signaling pathway, and activation of Wnt/β-catenin signaling pathway can significantly upregulate VASP protein expression, while upregulated VASP protein can in turn promote translocation of β-catenin and DVL3 proteins into the nucleus. In the nucleus, VASP, DVL3, β-catenin, and TCF4 can form VASP/DVL3/β-catenin/TCF4 protein complex, activating Wnt/β-catenin signaling pathway, and promoting the expression of target genes VASP, c-myc, and cyclin D1. Thus, our study reveals that there is a Wnt/β-catenin/VASP malignant positive feedback loop in breast cancer, which promotes the proliferation and migration of breast cancer cells, and breaking this positive feedback loop may provide new strategy for breast cancer treatment.
Collapse
|
10
|
Yang L, Zhao L, Zeng T, Chen H, Shao J, Yang S, Tao Z, Yang J, Chen T, Lin X, Chen X, Tang M. Mechanisms Underlying Therapeutic Effects Of Traditional Chinese Medicine On Gastric Cancer. Cancer Manag Res 2019; 11:8407-8418. [PMID: 31571996 PMCID: PMC6754335 DOI: 10.2147/cmar.s218214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumors in the world. It is the fourth most common cancer and has the second highest mortality rate globally. Metastasis is an important feature of gastric cancer and is the most common cause of death. Exploring the mechanism underlying the metastasis of gastric cancer and searching for new drug targets has become the focus of several studies. Traditional Chinese medicine may show promise for treatment of gastric cancer. In this review, we report the recent progress in research on the anti-metastasis activity of Chinese medicine, to facilitate clinical development of treatments for gastric cancer.
Collapse
Affiliation(s)
- Linjun Yang
- Department of Laboratory Animal Centre, Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Liqian Zhao
- Department of Laboratory Animal Centre, Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Tianni Zeng
- Department of Laboratory Animal Centre, Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Hong Chen
- Department of Laboratory Animal Centre, Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Jingjing Shao
- Department of Laboratory Animal Centre, Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Song Yang
- Department of Laboratory Animal Centre, Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Zheying Tao
- Department of Laboratory Animal Centre, Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Jingqin Yang
- Department of Laboratory Animal Centre, Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Tongke Chen
- Department of Laboratory Animal Centre, Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Xiaokun Lin
- Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Xiwen Chen
- Department of Laboratory Animal Centre, Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Mosheng Tang
- Department of Radiotherapy and Chemotherapy, Lishui City People’s Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, People’s Republic of China
| |
Collapse
|
11
|
Sheng J, Zou X, Cheng Z, Xiang Y, Yang W, Lin Y, Cui R. Recent Advances in Herbal Medicines for Digestive System Malignancies. Front Pharmacol 2018; 9:1249. [PMID: 30524272 PMCID: PMC6256117 DOI: 10.3389/fphar.2018.01249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
Abstract
Herbal medicines, as an important part of traditional Chinese medicine (TCM), have been used to treat digestive system malignancies (DSM) for many years, and have gradually gained recognition worldwide. The role of herbal medicines in the comprehensive treatment of DSM is being improved from adjuvant treatment of the autologous immune function in cancer patients, to the treatment of both the symptoms and disease, direct inhibition of tumor cell growth and proliferation, and induction of tumor cell autophagy and apoptosis. Their specific mechanisms in these treatments are also being explored. The paper reviews the current anti-tumor mechanisms of TCM, including single herbal medicines, Chinese herbal formulations, Chinese medicine preparations and TCM extract, and their application in the comprehensive treatment of digestive system tumors, providing a reference for clinical application of TCM.
Collapse
Affiliation(s)
- Jiyao Sheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Xiaohan Zou
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ziqian Cheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Yien Xiang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Yang Lin
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Construction of Multiple Switchable Sensors and Logic Gates Based on Carboxylated Multi-Walled Carbon Nanotubes/Poly( N, N-Diethylacrylamide). SENSORS 2018; 18:s18103358. [PMID: 30297654 PMCID: PMC6211007 DOI: 10.3390/s18103358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 12/20/2022]
Abstract
In this work, binary hydrogel films based on carboxylated multi-walled carbon nanotubes/poly(N,N-diethylacrylamide) (c-MWCNTs/PDEA) were successfully polymerized and assembled on a glassy carbon (GC) electrode surface. The electroactive drug probes matrine and sophoridine in solution showed reversible thermal-, salt-, methanol- and pH-responsive switchable cyclic voltammetric (CV) behaviors at the film electrodes. The control experiments showed that the pH-responsive property of the system could be ascribed to the drug components of the solutions, whereas the thermal-, salt- and methanol-sensitive behaviors were attributed to the PDEA constituent of the films. The CV signals particularly, of matrine and sophoridine were significantly amplified by the electrocatalysis of c-MWCNTs in the films at 1.02 V and 0.91 V, respectively. Moreover, the addition of esterase, urease, ethyl butyrate, and urea to the solution also changed the pH of the system, and produced similar CV peaks as with dilution by HCl or NaOH. Based on these experiments, a 6-input/5-output logic gate system and 2-to-1 encoder were successfully constructed. The present system may lead to the development of novel types of molecular computing systems.
Collapse
|
13
|
Tanabe N, Kuboyama T, Tohda C. Matrine Directly Activates Extracellular Heat Shock Protein 90, Resulting in Axonal Growth and Functional Recovery in Spinal Cord Injured-Mice. Front Pharmacol 2018; 9:446. [PMID: 29867458 PMCID: PMC5949560 DOI: 10.3389/fphar.2018.00446] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/17/2018] [Indexed: 01/28/2023] Open
Abstract
After spinal cord injury (SCI), reconstruction of neuronal tracts is very difficult because an inhibitory scar is formed at the lesion site, in which several axonal growth inhibitors, such as chondroitin sulfate proteoglycans (CSPG), accumulate. We previously found that matrine, a major alkaloid in Sophora flavescens, enhanced axonal growth in neurons seeded on CSPG coating. The aims of this study were to investigate therapeutic effects of matrine in SCI mice and to clarify the underlying mechanism. Matrine was orally administered to contusion SCI mice. In the matrine-treated mice, motor dysfunction of the hindlimbs was improved, and the density of 5-HT-positive tracts was increased in the injured spinal cord. We explored putative direct binding proteins of matrine in cultured neurons using drug affinity responsive target stability (DARTS). As a result, heat shock protein 90 (HSP90) was identified, and matrine enhanced HSP90 chaperon activity. We then presumed that extracellular HSP90 is a matrine-targeting signaling molecule, and found that specific blocking of extracellular HSP90 by a neutralizing antibody completely diminished matrine-induced axonal growth and SCI amelioration. Our results suggest that matrine enhances axonal growth and functional recovery in SCI mice by direct activation of extracellular HSP90. Matrine could be a significant candidate for therapeutic drugs for SCI with a novel mechanism.
Collapse
Affiliation(s)
- Norio Tanabe
- Division of Neuromedical Science, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Tomoharu Kuboyama
- Division of Neuromedical Science, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Chihiro Tohda
- Division of Neuromedical Science, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
14
|
Zhang B, Wang X, Li Y, Wu M, Wang SY, Li S. Matrine Is Identified as a Novel Macropinocytosis Inducer by a Network Target Approach. Front Pharmacol 2018; 9:10. [PMID: 29434546 PMCID: PMC5790780 DOI: 10.3389/fphar.2018.00010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/05/2018] [Indexed: 01/11/2023] Open
Abstract
Comprehensively understanding pharmacological functions of natural products is a key issue to be addressed for the discovery of new drugs. Unlike some single-target drugs, natural products always exert diverse therapeutic effects through acting on a "network" that consists of multiple targets, making it necessary to develop a systematic approach, e.g., network pharmacology, to reveal pharmacological functions of natural products and infer their mechanisms of action. In this work, to identify the "network target" of a natural product, we perform a functional analysis of matrine, a marketed drug in China extracted from a medical herb Ku-Shen (Radix Sophorae Flavescentis). Here, the network target of matrine was firstly predicted by drugCIPHER, a genome-wide target prediction method. Based on the network target of matrine, we performed a functional gene set enrichment analysis to computationally identify the potential pharmacological functions of matrine, most of which are supported by the literature evidence, including neurotoxicity and neuropharmacological activities of matrine. Furthermore, computational results demonstrated that matrine has the potential for the induction of macropinocytosis and the regulation of ATP metabolism. Our experimental data revealed that the large vesicles induced by matrine are consistent with the typical characteristics of macropinosome. Our verification results also suggested that matrine could decrease cellular ATP level. These findings demonstrated the availability and effectiveness of the network target strategy for identifying the comprehensive pharmacological functions of natural products.
Collapse
Affiliation(s)
- Bo Zhang
- MOE Key Laboratory of Bioinformatics, TCM-X Center, Bioinformatics Division, TNLIST, Department of Automation, Tsinghua University, Beijing, China.,Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Xin Wang
- MOE Key Laboratory of Bioinformatics, TCM-X Center, Bioinformatics Division, TNLIST, Department of Automation, Tsinghua University, Beijing, China
| | - Yan Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Min Wu
- MOE Key Laboratory of Bioinformatics, TCM-X Center, Bioinformatics Division, TNLIST, Department of Automation, Tsinghua University, Beijing, China
| | - Shu-Yan Wang
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Shao Li
- MOE Key Laboratory of Bioinformatics, TCM-X Center, Bioinformatics Division, TNLIST, Department of Automation, Tsinghua University, Beijing, China
| |
Collapse
|
15
|
Tumor suppressor berberine binds VASP to inhibit cell migration in basal-like breast cancer. Oncotarget 2018; 7:45849-45862. [PMID: 27322681 PMCID: PMC5216765 DOI: 10.18632/oncotarget.9968] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 05/29/2016] [Indexed: 12/18/2022] Open
Abstract
Berberine is a plant-derived compound used in traditional Chinese medicine, which has been shown to inhibit cell proliferation and migration in breast cancer. On the other hand, vasodilator-stimulated phosphoprotein (VASP) promotes actin filament elongation and cell migration. We previously showed that VASP is overexpressed in high-motility breast cancer cells. Here we investigated whether the anti-tumorigenic effects of berberine are mediated by binding VASP in basal-like breast cancer. Our results show that berberine suppresses proliferation and migration of MDA-MB-231 cells as well as tumor growth in MDA-MB-231 nude mouse xenografts. We also show that berberine binds to VASP, inducing changes in its secondary structure and inhibits actin polymerization. Our study reveals the mechanism underlying berberine's inhibition of cell proliferation and migration in basal-like breast cancer, highlighting the use of berberine as a potential adjuvant therapeutic agent.
Collapse
|
16
|
Xiao X, Ao M, Xu F, Li X, Hu J, Wang Y, Li D, Zhu X, Xin C, Shi W. Effect of matrine against breast cancer by downregulating the vascular endothelial growth factor via the Wnt/β-catenin pathway. Oncol Lett 2017; 15:1691-1697. [PMID: 29434864 PMCID: PMC5776934 DOI: 10.3892/ol.2017.7519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 10/26/2017] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was to investigate the effect of matrine on breast cancer and its underlying mechanism. Matrine is a major component of Sophora flavescens, exhibited antitumor activity in a number of neoplasms, including breast cancer. The present study revealed that matrine inhibited cell viability and induced apoptosis in 4T1 and MCF-7 cells in a dose- and time-dependent manner in vitro. In addition, matrine suppressed the 4T1-tumor growth, induced apoptosis, inhibited the expression of vascular endothelial growth factor and downregulated the Wnt/β-catenin signaling pathway in vivo. All these findings indicated that matrine may be a novel effective candidate for the treatment of breast cancer.
Collapse
Affiliation(s)
- Xu Xiao
- Department of Pharmacy, Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Man Ao
- Department of Oncology, Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Fan Xu
- Department of Oncology, Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Xiao Li
- Department of Radiology, Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Jiuli Hu
- Department of Pharmacy, Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Ying Wang
- Department of Pharmacy, Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Daixiao Li
- Department of Pharmacy, Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Xiaoqin Zhu
- Department of Pharmacy, Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Chunlan Xin
- Department of Pharmacy, Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Wenda Shi
- Department of Radiology, Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
17
|
FTY720 Attenuates Angiotensin II-Induced Podocyte Damage via Inhibiting Inflammatory Cytokines. Mediators Inflamm 2017; 2017:3701385. [PMID: 28270699 PMCID: PMC5320072 DOI: 10.1155/2017/3701385] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/08/2016] [Accepted: 12/26/2016] [Indexed: 12/29/2022] Open
Abstract
FTY720, a new chemical substance derived from the ascomycete Isaria sinclairii, is used for treating multiple sclerosis, renal cancer, and asthma. Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid metabolite and exists in red blood cells. FTY720 is a synthetic S1P analog which can block S1P evoking physiological effects. Recently studies show that S1P was participating in activated inflammation cells induced renal injury. The objective of this study was to assess the protective effect of FTY720 on kidney damage and the potential mechanism of FTY720 which alleviate podocyte injury in chronic kidney disease. In this study, we selected 40 patients with IgA nephropathy and examined their clinical characteristics. Ang II-infusion rat renal injury model was established to evaluate the glomeruli and tubulointerstitial lesion. The result showed that the concentration of S1P in serum and urine was positively correlated with IgA nephropathy patients' renal injury. FTY720 could reduce renal histological lesions induced by Ang II-infusion in rats. Moreover, FTY720 decreased S1P synthesis in Ang II-infusion rats via downregulation of inflammatory cytokines including TNF-α and IL-6. In addition, FTY720 alleviated exogenous S1P-induced podocyte damage. In conclusion, FTY720 is able to attenuate S1P-induced podocyte damage via reducing inflammatory cytokines.
Collapse
|
18
|
Montraveta A, Xargay-Torrent S, Rosich L, López-Guerra M, Roldán J, Rodríguez V, Lee-Vergés E, de Frías M, Campàs C, Campo E, Roué G, Colomer D. Bcl-2high mantle cell lymphoma cells are sensitized to acadesine with ABT-199. Oncotarget 2016; 6:21159-72. [PMID: 26110568 PMCID: PMC4673257 DOI: 10.18632/oncotarget.4230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/13/2015] [Indexed: 11/25/2022] Open
Abstract
Acadesine is a nucleoside analogue with known activity against B-cell malignancies. Herein, we showed that in mantle cell lymphoma (MCL) cells acadesine induced caspase-dependent apoptosis through turning on the mitochondrial apoptotic machinery. At the molecular level, the compound triggered the activation of the AMPK pathway, consequently modulating known downstream targets, such as mTOR and the cell motility-related vasodilator-stimulated phosphoprotein (VASP). VASP phosphorylation by acadesine was concomitant with a blockade of CXCL12-induced migration. The inhibition of the mTOR cascade by acadesine, committed MCL cells to enter in apoptosis by a translational downregulation of the antiapoptotic Mcl-1 protein. In contrast, Bcl-2 protein levels were unaffected by acadesine and MCL samples expressing high levels of Bcl-2 tended to have a reduced response to the drug. Targeting Bcl-2 with the selective BH3-mimetic agent ABT-199 sensitized Bcl-2 high MCL cells to acadesine. This effect was validated in vivo, where the combination of both agents displayed a more marked inhibition of tumor outgrowth than each drug alone. These findings support the notions that antiapoptotic proteins of the Bcl-2 family regulate MCL cell sensitivity to acadesine and that the combination of this agent with Bcl-2 inhibitors might be an interesting therapeutic option to treat MCL patients.
Collapse
Affiliation(s)
- Arnau Montraveta
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sílvia Xargay-Torrent
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Laia Rosich
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mònica López-Guerra
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Unitat d'Hematopatologia, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Jocabed Roldán
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Vanina Rodríguez
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Eriong Lee-Vergés
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mercè de Frías
- Advancell-Advanced In Vitro Cell Technologies S.A., Barcelona, Spain
| | - Clara Campàs
- Advancell-Advanced In Vitro Cell Technologies S.A., Barcelona, Spain
| | - Elias Campo
- Unitat d'Hematopatologia, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Gaël Roué
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Dolors Colomer
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Unitat d'Hematopatologia, Hospital Clinic, IDIBAPS, Barcelona, Spain
| |
Collapse
|
19
|
Chen J, Ge L, Liu A, Yuan Y, Ye J, Zhong J, Liu L, Chen X. Identification of pathways related to FAF1/H. pylori-associated gastric carcinogenesis through an integrated approach based on iTRAQ quantification and literature review. J Proteomics 2016; 131:163-176. [DOI: 10.1016/j.jprot.2015.10.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/18/2015] [Accepted: 10/22/2015] [Indexed: 02/06/2023]
|
20
|
Ma Y, Zou F, Xiong J, Wan W, Yin L, Li X, Bei Z, Yuan L, Meng S, Wang J, Song G. Effect of Matrine on HPAC cell migration by down-regulating the expression of MT1-MMP via Wnt signaling. Cancer Cell Int 2015; 15:59. [PMID: 26113801 PMCID: PMC4480578 DOI: 10.1186/s12935-015-0210-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 06/01/2015] [Indexed: 12/31/2022] Open
Abstract
Aim This study sought to explore the exact mechanism of Matrine inhibited migration and invasion of human pancreatic cancer cells. Methods HPAC or Capan-1 cells were cultured in completed RPMI-1640 medium, contained with 50 μg/ml Matrine or 0.05 μg/ml docetaxel, respectively. Cell viability was evaluated by spectrophotometric analysis using MTT assay. Wound healing assay and transwell approach were used to detect the effects of Matrine on HPAC cell migration and invasion. Western Blot and RT-PCR were performed to detect the expressions of MT1-MMP, Wnt and β-Catenin. CHIP assay was used to detect whether the MT1-MMP transcription activity correlated with Wnt signaling pathway. Results MTT results indicated that cell proliferration was inhibited by Matrine at a range of concentrations, especially at high dose. We further found that Matrine treatment significantly induced cell migration and invasion decreased. Interestingly, the expression of MT1-MMP decreased evidently upon Matrine treatment, paralleled with the expressions of Wnt and β-Catenin detected by Western Blot and RT-PCR assay. Further analysis of MT1-MMP transcription activity revealed that Matrine reduced the expression of MT1-MMP mediated by Wnt signaling pathway. Conclusion Matrine play a vital role in inhibiting HPAC cellular migration and invasion through down-regulating the expression of MT1-MMP via Wnt signaling pathway. Electronic supplementary material The online version of this article (doi:10.1186/s12935-015-0210-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yongchao Ma
- Luohe Medical College, Daxue Road, #148, Luohe City, Henan Province 462000 People's Republic of China.,Key lab, of BioMedicine of Luohe City, Luohe, China
| | - Fazhang Zou
- Luohe Medical College, Daxue Road, #148, Luohe City, Henan Province 462000 People's Republic of China.,Key lab, of BioMedicine of Luohe City, Luohe, China
| | - Junping Xiong
- Luohe Medical College, Daxue Road, #148, Luohe City, Henan Province 462000 People's Republic of China
| | - Wei Wan
- Luohe Medical College, Daxue Road, #148, Luohe City, Henan Province 462000 People's Republic of China
| | - Li Yin
- Luohe Medical College, Daxue Road, #148, Luohe City, Henan Province 462000 People's Republic of China
| | - Xianjia Li
- Luohe Medical College, Daxue Road, #148, Luohe City, Henan Province 462000 People's Republic of China
| | - Zhanyu Bei
- Chengde Nursing Vocational College, Chengde, China
| | - Lei Yuan
- Luohe Medical College, Daxue Road, #148, Luohe City, Henan Province 462000 People's Republic of China
| | - Song Meng
- Luohe Medical College, Daxue Road, #148, Luohe City, Henan Province 462000 People's Republic of China
| | - Jianguo Wang
- Luohe Medical College, Daxue Road, #148, Luohe City, Henan Province 462000 People's Republic of China
| | - Guohua Song
- Luohe Medical College, Daxue Road, #148, Luohe City, Henan Province 462000 People's Republic of China
| |
Collapse
|
21
|
LI HAILONG, XIE SHOUPIN, LIU XIAOJUN, WU HONGYAN, LIN XINGYAO, GU JING, WANG HUPING, DUAN YONGQIANG. Matrine alters microRNA expression profiles in SGC-7901 human gastric cancer cells. Oncol Rep 2014. [DOI: 10.3892/or_xxxxxxxx] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
22
|
Peng X, Li B, Hu M, Ling Y, Tian Y, Zhou Y, Zhou Y. Quantitative analysis of matrine in liquid crystalline nanoparticles by HPLC. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2014; 2014:368682. [PMID: 24834359 PMCID: PMC4009329 DOI: 10.1155/2014/368682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 05/26/2023]
Abstract
A reversed-phase high-performance liquid chromatographic method has been developed to quantitatively determine matrine in liquid crystal nanoparticles. The chromatographic method is carried out using an isocratic system. The mobile phase was composed of methanol-PBS(pH6.8)-triethylamine (50 : 50 : 0.1%) with a flow rate of 1 mL/min with SPD-20A UV/vis detector and the detection wavelength was at 220 nm. The linearity of matrine is in the range of 1.6 to 200.0 μ g/mL. The regression equation is y = 10706x - 2959 (R (2) = 1.0). The average recovery is 101.7%; RSD = 2.22% (n = 9). This method provides a simple and accurate strategy to determine matrine in liquid crystalline nanoparticle.
Collapse
Affiliation(s)
- Xinsheng Peng
- Guangdong Medical College, Xincheng Avenue, Guangdong 523808, China
| | - Baohong Li
- Guangdong Medical College, Xincheng Avenue, Guangdong 523808, China
| | - Min Hu
- Guangdong Medical College, Xincheng Avenue, Guangdong 523808, China
| | - Yahao Ling
- Guangdong Medical College, Xincheng Avenue, Guangdong 523808, China
| | - Yuan Tian
- Guangdong Medical College, Xincheng Avenue, Guangdong 523808, China
| | - Yanxing Zhou
- Guangdong Medical College, Xincheng Avenue, Guangdong 523808, China
| | - Yanfang Zhou
- Guangdong Medical College, Xincheng Avenue, Guangdong 523808, China
| |
Collapse
|