1
|
Alotaibi SR, Renno WM, Al-Maghrebi M. c-Jun N-terminal Kinase Supports Autophagy in Testicular Ischemia but Triggers Apoptosis in Ischemia-Reperfusion Injury. Int J Mol Sci 2024; 25:10446. [PMID: 39408774 PMCID: PMC11476662 DOI: 10.3390/ijms251910446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Oxidative stress triggered by testicular torsion and detorsion in young males could negatively impact future fertility. Using a rat animal model for testicular IRI (tIRI), we aim to study the induction of autophagy (ATG) during testicular ischemia and tIRI and the role of oxidative-stress-induced c-Jun N-terminal Kinase (JNK) as a cytoprotective mechanism. Sixty male Sprague-Dawley rats were divided into five groups: sham, ischemia only, ischemia+SP600125 (a JNK inhibitor), tIRI only, and tIRI+SP600125. The tIRI rats underwent an ischemic injury for 1 h followed by 4 h of reperfusion, while ischemic rats were subjected to 1 h of ischemia only without reperfusion. Testicular-ischemia-induced Beclin 1 and LC3B expression was associated with decreased p62/SQSTM1 expression, increased ATP and alkaline phosphatase (AP) activity, and slightly impaired spermatogenesis. SP600125 treatment improved p62 expression and reduced the levels of Beclin 1 and LC3B but did not affect ATP or AP levels. The tIRI-induced apoptosis lowered the expression of the three ATG proteins and AP activity, activated caspase 3, and caused spermatogenic arrest. SP600125-inhibited JNK during tIRI restored sham levels to all investigated parameters. This study emphasizes the regulatory role of JNK in balancing autophagy and apoptosis during testicular oxidative injuries.
Collapse
Affiliation(s)
- Sarah R. Alotaibi
- Department of Biochemistry, College of Medicine, Kuwait University, Safat 13110, Kuwait;
| | - Waleed M. Renno
- Department of Anatomy, College of Medicine, Kuwait University, Safat 13110, Kuwait;
| | - May Al-Maghrebi
- Department of Biochemistry, College of Medicine, Kuwait University, Safat 13110, Kuwait;
| |
Collapse
|
2
|
Wu N, Chi J, Cai H, Hu J, Lai Y, Lin C, Kang L, Sun J, Huang J, Li M, Xu L. Traditional Chinese medication qili qiangxin capsule protects against myocardial ischemia-reperfusion injury through suppressing autophagy via the phosphoinositide 3-kinase/protein kinase B/forkhead box O3 axis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118821. [PMID: 39265794 DOI: 10.1016/j.jep.2024.118821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Positive evidence from clinical trials highlights the promising potential of traditional Chinese medication, Qili qiangxin capsule (QLQX), on chronic heart failure; however, limited data are available regarding its effects and mechanism in myocardial ischemia-reperfusion injury (MIRI). Herein, we aimed to explore cardioprotective effects and the underlying mechanism of QLQX in MIRI in vivo and in vitro. MATERIALS AND METHODS Mice were subjected to left anterior descending coronary artery ligation for 30 min followed by 24 h of reperfusion with or without 7-day pretreatment with QLQX (0.234, 0.468, or 0.936 g/kg). Cardiac function, myocardial infarction, and morphological changes were evaluated. The mechanism underlying the cardio-protection of QLQX on MIRI was determined by network pharmacology based on the common genes of potential targets of QLQX and MIRI-related genes, further validated by H9c2 cardiomyocytes exposing hypoxia/reoxygenation (H/R). The viability, apoptosis, as well as autophagy and relevant signaling proteins in H9c2 were analyzed. RESULTS QLQX pretreatment markedly improved cardiac function and decreased myocardium infarct size, apoptotic cardiomyocyte number, and LHD, CK-MB, and TnT levels in MIRI mice. QLQX could mitigate H/R-induced H9c2 cardiomyocyte injury, as evidenced by decreased cell apoptosis and LDH release and increased ATP production. QLQX effectively attenuates excessive autophagy in cardiomyocytes both in vivo and in vitro. Mechanically, network pharmacology analysis demonstrated the cardio-protection of QLQX on MIRI involving in PI3K/Akt signaling; the effects of QLQX on H/R-induced H9c2 cardiomyocytes were abolished by a specific PI3K inhibitor. CONCLUSION QLQX protects against cardiomyocyte apoptosis and excessive autophagy via PI3K/Akt signaling during MIRI.
Collapse
Affiliation(s)
- Ningxia Wu
- Cardiovascular Department, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, 510130, China; Department of Geriatric Cardiology, General Hospital of Southern Theatre Command, Guangzhou, 510040, China; Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Jianing Chi
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Hua Cai
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Jiaman Hu
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510315, China.
| | - Yingying Lai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510315, China.
| | - Cailong Lin
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510315, China.
| | - Liang Kang
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Jingping Sun
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Jianyu Huang
- Department of Geriatric Cardiology, General Hospital of Southern Theatre Command, Guangzhou, 510040, China.
| | - Min Li
- Department of Geriatric Cardiology, General Hospital of Southern Theatre Command, Guangzhou, 510040, China.
| | - Lin Xu
- Department of Geriatric Cardiology, General Hospital of Southern Theatre Command, Guangzhou, 510040, China.
| |
Collapse
|
3
|
Chi W, Huang Y, Li P, Wang X, Li J, Meng F. Morphine Induced Neuroprotection in Ischemic Stroke by Activating Autophagy Via mTOR-Independent Activation of the JNK1/2 Pathway. Neurochem Res 2024; 49:2249-2270. [PMID: 38837092 DOI: 10.1007/s11064-024-04181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/11/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
Morphine (Mor) has exhibited efficacy in safeguarding neurons against ischemic injuries by simulating ischemic/hypoxic preconditioning (I/HPC). Concurrently, autophagy plays a pivotal role in neuronal survival during IPC against ischemic stroke. However, the involvement of autophagy in Mor-induced neuroprotection and the potential mechanisms remain elusive. Our experiments further confirmed the effect of Mor in cellular and animal models of ischemic stroke and explored its potential mechanism. The findings revealed that Mor enhanced cell viability in a dose-dependent manner by augmenting autophagy levels and autophagic flux in neurons subjected to oxygen-glucose deprivation/reoxygenation (OGD/R). Pretreatment of Mor improved neurological outcome and reduced infarct size in mice with middle cerebral artery occlusion/reperfusion (MCAO/R) at 1, 7 and 14 days. Moreover, the use of autophagy inhibitors nullified the protective effects of Mor, leading to reactive oxygen species (ROS) accumulation, increased loss of mitochondrial membrane potential (MMP) and neuronal apoptosis in OGD/R neurons. Results further demonstrated that Mor-induced autophagy activation was regulated by mTOR-independent activation of the c-Jun NH2- terminal kinase (JNK)1/2 Pathway, both in vitro and in vivo. Overall, these findings suggested Mor-induced neuroprotection by activating autophagy, which were regulated by JNK1/2 pathway in ischemic stroke.
Collapse
Affiliation(s)
- Wenying Chi
- Department of Anesthesiology, Central Hospital Affiliated to Shandong First Medical University, Shandong, 250013, PR China
| | - Yaru Huang
- Department of Anesthesiology, Central Hospital Affiliated to Shandong First Medical University, Shandong, 250013, PR China
| | - Peilong Li
- Department of Burns and Plastic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, PR China
| | - Xia Wang
- Department of Anesthesiology, Central Hospital Affiliated to Shandong First Medical University, Shandong, 250013, PR China
- Department of Anesthesiology, Shandong First Medical University, Jinan, Shandong, 250000, PR China
| | - Junfa Li
- Department of Anesthesiology, Central Hospital Affiliated to Shandong First Medical University, Shandong, 250013, PR China.
- Department of Neurobiology, Capital Medical University, Beijing, 100069, PR China.
| | - Fanjun Meng
- Department of Anesthesiology, Central Hospital Affiliated to Shandong First Medical University, Shandong, 250013, PR China.
| |
Collapse
|
4
|
Chai Y, Gu X, Zhang H, Xu X, Chen L. Phoenixin 20 ameliorates pulmonary arterial hypertension via inhibiting inflammation and oxidative stress. Aging (Albany NY) 2024; 16:5027-5037. [PMID: 38517365 PMCID: PMC11006497 DOI: 10.18632/aging.205468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/15/2023] [Indexed: 03/23/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a severe pathophysiological syndrome resulting in heart failure, which is found to be induced by pulmonary vascular remodeling mediated by oxidative stress (OS) and inflammation. Phoenixin-20 (PNX-20) is a reproductive peptide first discovered in mice with potential suppressive properties against OS and inflammatory response. Our study will explore the possible therapeutic functions of PHN-20 against PAH for future clinical application. Rats were treated with normal saline, PHN-20 (100 ng/g body weight daily), hypoxia, hypoxia+PHN-20 (100 ng/g body weight daily), respectively. A signally elevated RVSP, mPAP, RV/LV + S, and W%, increased secretion of cytokines, enhanced malondialdehyde (MDA) level, repressed superoxide dismutase (SOD) activity, and activated NLRP3 signaling were observed in hypoxia-stimulated rats, which were notably reversed by PHN-20 administration. Pulmonary microvascular endothelial cells (PMECs) were treated with hypoxia with or without PHN-20 (10 and 20 nM). Marked elevation of inflammatory cytokine secretion, increased MDA level, repressed SOD activity, and activated NLRP3 signaling were observed in hypoxia-stimulated PMECs, accompanied by a downregulation of SIRT1. Furthermore, the repressive effect of PHN-20 on the domains-containing protein 3 (NLRP3) pathway in hypoxia-stimulated PMECs was abrogated by sirtuin1 (SIRT1) knockdown. Collectively, PHN-20 alleviated PAH via inhibiting OS and inflammation by mediating the transcriptional function of SIRT1.
Collapse
Affiliation(s)
- Yaqin Chai
- Department of Pulmonary and Critical Care Medicine, Xi’an Chest Hospital, Xi’an 710100, China
| | - Xing Gu
- Department of Pulmonary and Critical Care Medicine, Xi’an Chest Hospital, Xi’an 710100, China
| | - HongJun Zhang
- Department of Pulmonary and Critical Care Medicine, Xi’an Chest Hospital, Xi’an 710100, China
| | - Xinting Xu
- Department of Pulmonary and Critical Care Medicine, Xi’an International Medical Center Hospital, Xi’an 710100, China
| | - Lizhan Chen
- Department of Pulmonary and Critical Care Medicine, Xi’an International Medical Center Hospital, Xi’an 710100, China
| |
Collapse
|
5
|
Li YY, Qin ZH, Sheng R. The Multiple Roles of Autophagy in Neural Function and Diseases. Neurosci Bull 2024; 40:363-382. [PMID: 37856037 PMCID: PMC10912456 DOI: 10.1007/s12264-023-01120-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/11/2023] [Indexed: 10/20/2023] Open
Abstract
Autophagy involves the sequestration and delivery of cytoplasmic materials to lysosomes, where proteins, lipids, and organelles are degraded and recycled. According to the way the cytoplasmic components are engulfed, autophagy can be divided into macroautophagy, microautophagy, and chaperone-mediated autophagy. Recently, many studies have found that autophagy plays an important role in neurological diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, neuronal excitotoxicity, and cerebral ischemia. Autophagy maintains cell homeostasis in the nervous system via degradation of misfolded proteins, elimination of damaged organelles, and regulation of apoptosis and inflammation. AMPK-mTOR, Beclin 1, TP53, endoplasmic reticulum stress, and other signal pathways are involved in the regulation of autophagy and can be used as potential therapeutic targets for neurological diseases. Here, we discuss the role, functions, and signal pathways of autophagy in neurological diseases, which will shed light on the pathogenic mechanisms of neurological diseases and suggest novel targets for therapies.
Collapse
Affiliation(s)
- Yan-Yan Li
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
6
|
Zhang C, Liu R, Chen M, Xu Y, Jin X, Shen B, Wang J. Autophagy inhibitors 3-MA and BAF may attenuate hippocampal neuronal necroptosis after global cerebral ischemia-reperfusion injury in male rats by inhibiting the interaction of the RIP3/AIF/CypA complex. J Neurosci Res 2024; 102:e25301. [PMID: 38361405 DOI: 10.1002/jnr.25301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 10/12/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024]
Abstract
Our previous study found that receptor interacting protein 3 (RIP3) and apoptosis-inducing factor (AIF) were involved in neuronal programmed necrosis during global cerebral ischemia-reperfusion (I/R) injury. Here, we further studied its downstream mechanisms and the role of the autophagy inhibitors 3-methyladenine (3-MA) and bafilomycin A1 (BAF). A 20-min global cerebral I/R injury model was constructed using the 4-vessel occlusion (4-VO) method in male rats. 3-MA and BAF were injected into the lateral ventricle 1 h before ischemia. Spatial and activation changes of proteins were detected by immunofluorescence (IF), and protein interaction was determined by immunoprecipitation (IP). The phosphorylation of H2AX (γ-H2AX) and activation of mixed lineage kinase domain-like protein (p-MLKL) occurred as early as 6 h after reperfusion. RIP3, AIF, and cyclophilin A (CypA) in the neurons after I/R injury were spatially overlapped around and within the nucleus and combined with each other after reperfusion. The survival rate of CA1 neurons in the 3-MA and BAF groups was significantly higher than that in the I/R group. Autophagy was activated significantly after I/R injury, which was partially inhibited by 3-MA and BAF. Pretreatment with both 3-MA and BAF almost completely inhibited nuclear translocation, spatial overlap, and combination of RIP3, AIF, and CypA proteins. These findings suggest that after global cerebral I/R injury, RIP3, AIF, and CypA translocated into the nuclei and formed the DNA degradation complex RIP3/AIF/CypA in hippocampal CA1 neurons. Pretreatment with autophagy inhibitors could reduce neuronal necroptosis by preventing the formation of the RIP3/AIF/CypA complex and its nuclear translocation.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Renhui Liu
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mengmeng Chen
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yang Xu
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes, First Affiliated Hospital of Wannan Medical College, Wuhu, China
- Department of Neurology, First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Xiaoqin Jin
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bing Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jingye Wang
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Zhang Y, Ma L, Yan Y, Zhao L, Han S, Wu D, Borlongan CV, Li J, Ji X. cPKCγ-Modulated Autophagy Contributes to Ischemic Preconditioning-Induced Neuroprotection in Mice with Ischemic Stroke via mTOR-ULK1 Pathway. Transl Stroke Res 2023; 14:790-801. [PMID: 36214939 DOI: 10.1007/s12975-022-01094-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022]
Abstract
Neuron-specific conventional protein kinase C (cPKC)γ mediates cerebral hypoxic preconditioning (HPC). In parallel, autophagy plays a prosurvival role in ischemic preconditioning (IPC) against ischemic stroke. However, the effect of cPKCγ on autophagy in IPC still remains to be addressed. In this study, adult and postnatal 1-day-old C57BL/6 J wild-type (cPKCγ+/+) and knockout (cPKCγ-/-) mice were used to establish in vivo and in vitro IPC models. The results showed that IPC pretreatment alleviated neuronal damage caused by lethal ischemia, which could be suppressed by autophagy inhibitor 3-MA or bafilomycin A1. Meanwhile, cPKCγ knockout blocked IPC-induced neuroprotection, accompanied by significant increase of LC3-I to LC3-II conversion and Beclin 1 protein level, and a significant decrease in p62 protein level. Immunofluorescent staining results showed a decrease of LC3 puncta numbers in IPC-treated cPKCγ+/+ neurons with fatal ischemia, which was reversed in cPKCγ-/- neurons. In addition, cPKCγ-modulated phosphorylation of mTOR at Ser 2448 and ULK1 at Ser 555, rather than p-Thr-172 AMPK, was detected in IPC-pretreated neurons upon lethal ischemic exposure. The present data demonstrated that cPKCγ-modulated autophagy via the mTOR-ULK1 pathway likely modulated IPC-induced neuroprotection.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Neurobiology, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, 100053, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Longhui Ma
- Department of Neurobiology, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, People's Republic of China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Yi Yan
- Department of Neurobiology, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, People's Republic of China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Li Zhao
- Department of Neurobiology, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, People's Republic of China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Song Han
- Department of Neurobiology, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, People's Republic of China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Di Wu
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, 100053, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, 33612, USA
| | - Junfa Li
- Department of Neurobiology, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, People's Republic of China.
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, 100053, China.
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
8
|
Ortega-Trejo JA, Bobadilla NA. Is Renal Ischemic Preconditioning an Alternative to Ameliorate the Short- and Long-Term Consequences of Acute Kidney Injury? Int J Mol Sci 2023; 24:ijms24098345. [PMID: 37176051 PMCID: PMC10178892 DOI: 10.3390/ijms24098345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Acute kidney injury (AKI) is a global health problem and has recently been recognized as a risk factor for developing chronic kidney disease (CKD). Unfortunately, there are no effective treatments to reduce or prevent AKI, which results in high morbidity and mortality rates. Ischemic preconditioning (IPC) has emerged as a promising strategy to prevent, to the extent possible, renal tissue from AKI. Several studies have used this strategy, which involves short or long cycles of ischemia/reperfusion (IR) prior to a potential fatal ischemic injury. In most of these studies, IPC was effective at reducing renal damage. Since the first study that showed renoprotection due to IPC, several studies have focused on finding the best strategy to activate correctly and efficiently reparative mechanisms, generating different modalities with promising results. In addition, the studies performing remote IPC, by inducing an ischemic process in distant tissues before a renal IR, are also addressed. Here, we review in detail existing studies on IPC strategies for AKI pathophysiology and the proposed triggering mechanisms that have a positive impact on renal function and structure in animal models of AKI and in humans, as well as the prospects and challenges for its clinical application.
Collapse
Affiliation(s)
- Juan Antonio Ortega-Trejo
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Norma A Bobadilla
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| |
Collapse
|
9
|
Zhou HQ, Zhang LM, Li X, Huang ZH. Crosstalk Between Autophagy and Inflammation in Chronic Cerebral Ischaemia. Cell Mol Neurobiol 2023:10.1007/s10571-023-01336-6. [PMID: 36952071 DOI: 10.1007/s10571-023-01336-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/04/2023] [Indexed: 03/24/2023]
Abstract
Chronic cerebral ischaemia (CCI) is a high-incidence cardiovascular and cerebrovascular disease that is very common in clinical practice. Although many pathogenic mechanisms have been explored, there is still great controversy among neuroscientists regarding the pathogenesis of CCI. Therefore, it is important to elucidate the mechanisms of CCI occurrence and progression for the prevention and treatment of ischaemic cerebrovascular disorders. Autophagy and inflammation play vital roles in CCI, but the relationship between these two processes in this disease remains unknown. Here, we review the progression and discuss the functions, actions and pathways of autophagy and inflammation in CCI, including a comprehensive view of the transition from acute disease to CCI through ischaemic repair mechanisms. This review may provide a reference for future research and treatment of CCI. Schematic diagram of the interplay between autophagy and inflammation in CCI. CCI lead to serious, life-threatening complications. This review summarizes two factors in CCI, including autophagy and inflammation, which have been focused for the mechanisms of CCI. In short, the possible points of intersection are shown in the illustration. CCI, Chronic cerebral ischaemia; ER stress, Endoplasmic reticulum stress; ROS, Reactive oxygen species.
Collapse
Affiliation(s)
- Hai-Qian Zhou
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, 1st Hexie Road, Ganzhou, 341000, China
- Ganzhou Key Laboratory of Neuroinflammation Research, Gannan Medical University, 1st Hexie Road, Ganzhou, 341000, China
| | - Li-Mei Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, 1st Hexie Road, Ganzhou, 341000, China
- Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, 1st Hexie Road, Ganzhou, 341000, China
- Ganzhou Key Laboratory of Neuroinflammation Research, Gannan Medical University, 1st Hexie Road, Ganzhou, 341000, China
| | - Xiao Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, 1st Hexie Road, Ganzhou, 341000, China.
- Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, 1st Hexie Road, Ganzhou, 341000, China.
- Ganzhou Key Laboratory of Neuroinflammation Research, Gannan Medical University, 1st Hexie Road, Ganzhou, 341000, China.
| | - Zhi-Hua Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, 1st Hexie Road, Ganzhou, 341000, China.
- Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, 1st Hexie Road, Ganzhou, 341000, China.
- Ganzhou Key Laboratory of Neuroinflammation Research, Gannan Medical University, 1st Hexie Road, Ganzhou, 341000, China.
| |
Collapse
|
10
|
Machado IF, Palmeira CM, Rolo AP. Preservation of Mitochondrial Health in Liver Ischemia/Reperfusion Injury. Biomedicines 2023; 11:948. [PMID: 36979927 PMCID: PMC10046671 DOI: 10.3390/biomedicines11030948] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Liver ischemia-reperfusion injury (LIRI) is a major cause of the development of complications in different clinical settings such as liver resection and liver transplantation. Damage arising from LIRI is a major risk factor for early graft rejection and is associated with higher morbidity and mortality after surgery. Although the mechanisms leading to the injury of parenchymal and non-parenchymal liver cells are not yet fully understood, mitochondrial dysfunction is recognized as a hallmark of LIRI that exacerbates cellular injury. Mitochondria play a major role in glucose metabolism, energy production, reactive oxygen species (ROS) signaling, calcium homeostasis and cell death. The diverse roles of mitochondria make it essential to preserve mitochondrial health in order to maintain cellular activity and liver integrity during liver ischemia/reperfusion (I/R). A growing body of studies suggest that protecting mitochondria by regulating mitochondrial biogenesis, fission/fusion and mitophagy during liver I/R ameliorates LIRI. Targeting mitochondria in conditions that exacerbate mitochondrial dysfunction, such as steatosis and aging, has been successful in decreasing their susceptibility to LIRI. Studying mitochondrial dysfunction will help understand the underlying mechanisms of cellular damage during LIRI which is important for the development of new therapeutic strategies aimed at improving patient outcomes. In this review, we highlight the progress made in recent years regarding the role of mitochondria in liver I/R and discuss the impact of liver conditions on LIRI.
Collapse
Affiliation(s)
- Ivo F. Machado
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3000 Coimbra, Portugal
- IIIUC—Institute of Interdisciplinary Research, University of Coimbra, 3000 Coimbra, Portugal
| | - Carlos M. Palmeira
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3000 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000 Coimbra, Portugal
| | - Anabela P. Rolo
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3000 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000 Coimbra, Portugal
| |
Collapse
|
11
|
Luchetti F, Nasoni MG, Burattini S, Mohammadi A, Pagliarini M, Canonico B, Ambrogini P, Balduini W, Reiter RJ, Carloni S. Melatonin Attenuates Ischemic-like Cell Injury by Promoting Autophagosome Maturation via the Sirt1/FoxO1/Rab7 Axis in Hippocampal HT22 Cells and in Organotypic Cultures. Cells 2022; 11:3701. [PMID: 36429130 PMCID: PMC9688641 DOI: 10.3390/cells11223701] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Dysfunctional autophagy is linked to neuronal damage in ischemia/reperfusion injury. The Ras-related protein 7 (Rab7), a member of the Rab family of small GTPases, appears crucial for the progression of the autophagic flux, and its activity is strictly interconnected with the histone deacetylase Silent information regulator 1 (Sirt1) and transcription factor Forkhead box class O1 (FoxO1). The present study assessed the neuroprotective role of melatonin in the modulation of the Sirt1/FoxO1/Rab7 axis in HT22 cells and organotypic hippocampal cultures exposed to oxygen-glucose deprivation followed by reoxygenation (OGD/R). The results showed that melatonin re-established physiological levels of autophagy and reduced propidium iodide-positive cells, speeding up autophagosome (AP) maturation and increasing lysosomal activity. Our study revealed that melatonin modulates autophagic pathways, increasing the expression of both Rab7 and FoxO1 and restoring the Sirt1 expression affected by OGD/R. In addition, the Sirt1 inhibitor EX-527 significantly reduced Rab7, Sirt1, and FoxO1 expression, as well as autolysosomes formation, and blocked the neuroprotective effect of melatonin. Overall, our findings provide, for the first time, new insights into the neuroprotective role of melatonin against ischemic injury through the activation of the Sirt1/FoxO1/Rab7 axis.
Collapse
Affiliation(s)
- Francesca Luchetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Maria G. Nasoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Sabrina Burattini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Atefeh Mohammadi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Marica Pagliarini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Patrizia Ambrogini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Walter Balduini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health, San Antonio, TX 78229, USA
| | - Silvia Carloni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| |
Collapse
|
12
|
Wang L, Dai M, Ge Y, Chen J, Wang C, Yao C, Lin Y. EGCG protects the mouse brain against cerebral ischemia/reperfusion injury by suppressing autophagy via the AKT/AMPK/mTOR phosphorylation pathway. Front Pharmacol 2022; 13:921394. [PMID: 36147330 PMCID: PMC9489224 DOI: 10.3389/fphar.2022.921394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke remains one of the leading reasons of mortality and physical disability worldwide. The treatment of cerebral ischemic stroke faces challenges, partly due to a lack of effective treatments. In this study, we demonstrated that autophagy was stimulated by transient middle cerebral artery occlusion/reperfusion (MCAO/R) and oxygen-glucose deprivation/reoxygenation (OGD/R). Treatment with (−)-epigallocatechin-3-gallate (EGCG), a bioactive ingredient in green tea, was able to mitigate cerebral ischemia/reperfusion injury (CIRI), given the evidence that EGCG administration could reduce the infarct volume and protect poststroke neuronal loss in MCAO/R mice in vivo and attenuate cell loss in OGD/R-challenged HT22 cells in vitro through suppressing autophagy activity. Mechanistically, EGCG inhibited autophagy via modulating the AKT/AMPK/mTOR phosphorylation pathway both in vivo and in vitro models of stroke, which was further confirmed by the results that the administration of GSK690693, an AKT/AMPK inhibitor, and rapamycin, an inhibitor of mTOR, reversed aforementioned changes in autophagy and AKT/AMPK/mTOR signaling pathway. Overall, the application of EGCG relieved CIRI by suppressing autophagy via the AKT/AMPK/mTOR phosphorylation pathway.
Collapse
Affiliation(s)
- Li Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Maosha Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangyang Ge
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiayi Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenchen Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengye Yao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Chengye Yao, ; Yun Lin,
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Chengye Yao, ; Yun Lin,
| |
Collapse
|
13
|
Ding L, Ye H, Gu LD, Du AQ, Yuan XL. Echinacoside Alleviates Cognitive Impairment in Cerebral Ischemia Rats through α 7nAChR-Induced Autophagy. Chin J Integr Med 2022; 28:809-816. [PMID: 35799084 DOI: 10.1007/s11655-022-2893-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To evaluate the effect of echinacoside (ECH) on cognitive dysfunction in post cerebral stroke model rats. METHODS The post stroke cognitive impairment rat model was created by occlusion of the transient middle cerebral artery (MCAO). The rats were randomly divided into 3 groups by a random number table: the sham group (sham operation), the MCAO group (received operation for focal cerebral ischemia), and the ECH group (received operation for focal cerebral ischemia and ECH 50 mg/kg per day), with 6 rats in each group. The infarct volume and spatial learning were evaluated by triphenyl tetrazolium chloride staining and Morris water maze. The expression of α7nAChR in the hippocampus was detected by immunohistochemistry. The contents of acetylcholine (ACh), malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), activities of choline acetyltransferase (ChAT), acetylcholinesterase (AChE), and catalase (CAT) were evaluated by enzyme linked immunosorbent assay. The neural apoptosis and autophagy were determined by TUNEL staining and LC3 staining, respectively. RESULTS ECH significantly lessened the brain infarct volume and ameliorated neurological deficit in infarct volume and water content (both P<0.01). Compared with MCAO rats, administration of ECH revealed shorter escape latency and long retention time at 7, 14 and 28 days (all P<0.01), increased the α7nAChR protein expression, ACh content, and ChAT activity, and decreased AChE activity in MCAO rats (all P<0.01). ECH significantly decreased MDA content and increased the GSH content, SOD, and CAT activities compared with MCAO rats (all P<0.05). ECH suppressed neuronal apoptosis by reducing TUNEL-positive cells and also enhanced autophagy in MCAO rats (all P<0.01). CONCLUSION ECH treatment helped improve cognitive impairment by attenuating neurological damage and enhancing autophagy in MCAO rats.
Collapse
Affiliation(s)
- Ling Ding
- Department of Endocrinology and Metabolic Diseases, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Hong Ye
- Department of Endocrinology and Metabolic Diseases, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Long-Dian Gu
- Department of Endocrinology and Metabolic Diseases, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - An-Qing Du
- Department of Endocrinology and Metabolic Diseases, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Xin-Lu Yuan
- Department of Endocrinology and Metabolic Diseases, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.
| |
Collapse
|
14
|
Hypoxia Acclimation Protects against Heart Failure Postacute Myocardial Infarction via Fundc1-Mediated Mitophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8192552. [PMID: 35422895 PMCID: PMC9005280 DOI: 10.1155/2022/8192552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/16/2022] [Indexed: 12/19/2022]
Abstract
Mitochondrial dysfunction is the main cause of heart failure (HF) postacute myocardial infarction (AMI). Hypoxia acclimation (HA) reduces efficiently the area of AMI caused by ischemia and/or reperfusion and delays HF. Here, we examined whether HA improves mitochondrial structure and function through the hypoxic autophagy receptor FUNDC1 to prevent HF post-AMI. Male adult mice were acclimated in a low-pressure hypoxic animal chamber (11% oxygen (O2)) for 8 h/day for 28 days, and then, an induced HF post-AMI model via left anterior descending (LAD) artery ligation was structured to explore the efficacy and mechanism of HA. Our results showed that HA exposure can improve cardiac structure and function in mice with HF post-AMI and protected myocardial mitochondrial morphology and function. Further studies showed that HA increased the expression of Fundc1 protein and its associated mitophagy protein LC3 in myocardial tissue after infarction. We then established a cellular model of oxygen glucose deprivation (OGD) in vitro, and knockdown of FUNDC1 attenuated the protective effect of HA exposed on cardiomyocyte mitochondria and increased cardiomyocyte apoptosis. In conclusion, the protective effect of HA on HF post-AMI is achieved by regulating Fundc1-mediated mitophagy in myocardial tissue. FUNDC1-mediated mitophagy could be a promising strategy to treat cardiovascular diseases, including HF.
Collapse
|
15
|
Xing Z, Zhao C, Wu S, Yang D, Zhang C, Wei X, Wei X, Su H, Liu H, Fan Y. Hydrogel Loaded with VEGF/TFEB-Engineered Extracellular Vesicles for Rescuing Critical Limb Ischemia by a Dual-Pathway Activation Strategy. Adv Healthc Mater 2022; 11:e2100334. [PMID: 34297471 DOI: 10.1002/adhm.202100334] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/03/2021] [Indexed: 02/05/2023]
Abstract
Critical limb ischemia (CLI) is the most severe clinical manifestation of peripheral arterial disease, which causes many amputations and deaths. Conventional treatment strategies for CLI (e.g., stent implantation and vascular surgery) bring surgical risk, which are not suitable for each patient. Extracellular vesicles (EVs) can be a potential solution for CLI. Herein, vascular endothelial growth factor (VEGF; i.e., a crucial molecule related to angiogenesis) and transcription factor EB (TFEB; i.e., a pivotal regulator of autophagy) are chosen as the target gene to improve the bioactivity of EVs derived from endothelial cells. The VEGF/TFEB-engineered EVs (Engineered-EVs) are fabricated by genetically engineering the parent cells, and their versatile functions are confirmed using three cell models (human umbilical vein endothelial cells, myoblast, and monocytes). Injectable thermal-responsive hydrogel are then combined with Engineered-EVs to combat CLI. These results reveal that the hydrogel can enhance the stability of Engineered-EVs in vivo and release EVs at different temperatures. Moreover, the results of animal studies indicate that Engineered-EV/Hydrogel can significantly improve neovascularization, attenuate muscle injury, and recover limb function after CLI. Finally, mechanistic studies shed light on the therapeutic effect of Engineered-EV/Hydrogel due to the activated VEGF/VEGFR pathway and autophagy-lysosomal pathway.
Collapse
Affiliation(s)
- Zheng Xing
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Centre for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100191 P. R. China
| | - Chen Zhao
- School of Pharmaceutical Sciences Tsinghua University Beijing 100084 P. R. China
| | - Siwen Wu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Depeng Yang
- School of Life Sciences and Technology Harbin Institute of Technology Harbin Heilongjiang 150001 P. R. China
| | - Chunchen Zhang
- Key Laboratory of Biomedical Engineering of Ministry of Education Zhejiang University Hangzhou 310027 China
| | - Xinbo Wei
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Centre for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100191 P. R. China
| | - Xinran Wei
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Centre for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100191 P. R. China
| | - Haoran Su
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Centre for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100191 P. R. China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Centre for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100191 P. R. China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Centre for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100191 P. R. China
| |
Collapse
|
16
|
Overexpression of BNIP3 in rat intervertebral disk cells triggers autophagy and apoptosis. ARCH BIOL SCI 2022. [DOI: 10.2298/abs220310013w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Excessive apoptosis of intervertebral disk cells and intervertebral disk
degeneration (IDD) is the prime cause of low back pain. B-cell lymphoma 2
(Bcl-2) and adenovirus E1B 19 kDa interacting protein 3 (BNIP3), a member of
the Bcl-2 family, are involved in cell autophagy and apoptosis. The roles
and mechanisms of BNIP3 in intervertebral disk cell autophagy and apoptosis
are unclear. In this study, primary rat intervertebral disk cells were
prepared to study the effect of BNIP3 overexpression on their autophagy and
apoptosis. The cell counting kit (CCK)-8 assay showed that BNIP3
overexpression decreased cell viability. Real-time PCR and Western blotting
showed that BNIP3 overexpression significantly upregulated the expression of
autophagy-related proteins and pro-apoptotic proteins, including
hypoxia-inducible factor-1?, apoptotic protease activating factor 1, caspase
3 and cleaved caspase 3, microtubule-associated proteins 1A/1B light chain 3
(LC3) and Beclin-1 while downregulating the expression of anti-apoptotic
protein Bcl-2. Cell staining detection of autophagy and apoptosis showed
that BNIP3 overexpression significantly increased the autophagy and
apoptosis of rat intervertebral disk cells. BNIP3 RNA interference revealed
that the effects of BNIP3 overexpression can be reversed. These findings
suggested that BNIP3 enhanced the autophagy and apoptosis in the rat
intervertebral disk cells in vitro, which might promote IDD development.
Collapse
|
17
|
Lu N, Bai R, Liu B, Cheng W, Wu Z. Attenuation of the cytoprotection induced by hypoxic preconditioning upon transfection with BNIP3-siRNA in human neuroblastoma SH-SY5Y cells. Int J Neurosci 2021:1-10. [PMID: 34871150 DOI: 10.1080/00207454.2021.2015349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE The aim of this study was to investigate the functional role of hypoxic preconditioning (HPC) in human neuroblastoma cells. METHODS BNIP3 small-interfering RNA (BNIP3-siRNA) sequence was synthesized and used to transfect human neuroblastoma SH-SY5Y cell lines. Thereafter, BNIP3 expression at mRNA and protein levels and its effects on the cell proliferation were analyzed. The most effective pair of siRNA was selected to knockdown the expression level of BNIP3. Moreover, the effects of HPC on oxygen-glucose deprivation/reperfusion (OGD/R)-induced apoptosis and autophagy in SH-SY5Y cells were explored to further reveal the possible mechanisms underlying HPC. RESULTS BNIP3-siRNA attenuated the protective effects of HPC by decreasing the cell viability, increasing the enzymatic activity of caspase-3 and 9, increasing the rate of apoptosis, and increasing the protein expression level of activated caspase-3. Additionally, BNIP3-siRNA had no significant influence on the expression level of HIF-1α induced by HPC, while it substantially inhibited HPC-induced BNIP3/Beclin1 and autophagy. CONCLUSIONS HPC promoted autophagy through regulating BNIP3 to reduce OGD/R.
Collapse
Affiliation(s)
- Na Lu
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Ruiying Bai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Bo Liu
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Weijia Cheng
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Zekun Wu
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
18
|
Role of Na +/K +-ATPase in ischemic stroke: in-depth perspectives from physiology to pharmacology. J Mol Med (Berl) 2021; 100:395-410. [PMID: 34839371 DOI: 10.1007/s00109-021-02143-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 08/27/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022]
Abstract
Na+/K+-ATPase (NKA) is a large transmembrane protein expressed in all cells. It is well studied for its ion exchanging function, which is indispensable for the maintenance of electrochemical gradients across the plasma membrane and herein neuronal excitability. The widely recognized pump function of NKA closely depends on its unique structure features and conformational changes upon binding of specific ions. Various Na+-dependent secondary transport systems are rigorously controlled by the ionic gradients generated by NKA and are essential for multiple physiological processes. In addition, roles of NKA as a signal transducer have also been unveiled nowadays. Plethora of signaling cascades are defined including Src-Ras-MAPK signaling, IP3R-mediated calcium oscillation, inflammation, and autophagy though most underlying mechanisms remain elusive. Ischemic stroke occurs when the blood flow carrying nutrients and oxygen into the brain is disrupted by blood clots, which is manifested by excitotoxicity, oxidative stress, inflammation, etc. The protective effect of NKA against ischemic stress is emerging gradually with the application of specific NKA inhibitor. However, NKA-related research is limited due to the opposite effects caused by NKA inhibitor at lower doses. The present review focuses on the recent progression involving different aspects about NKA in cellular homeostasis to present an in-depth understanding of this unique protein. Moreover, essential roles of NKA in ischemic pathology are discussed to provide a platform and bright future for the improvement in clinical research on ischemic stroke.
Collapse
|
19
|
Zhao Y, Shi X, Wang J, Mang J, Xu Z. Betulinic Acid Ameliorates Cerebral Injury in Middle Cerebral Artery Occlusion Rats through Regulating Autophagy. ACS Chem Neurosci 2021; 12:2829-2837. [PMID: 34296845 DOI: 10.1021/acschemneuro.1c00198] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cerebral ischemic stroke (CIS) is an acute cerebrovascular disease that is caused by the sudden rupture of blood vessels inside the brain and the intervention of reperfusion to the brain, resulting in severe cerebral injury. Autophagy has been reported to be involved in the occurrence and progression of CIS. Betulinic acid (BA) is a pentacyclic triterpene acid mainly extracted from birch bark. Studies have shown the neuroprotective effects of BA. Here, the effect and mechanism of BA on ischemia-reperfusion induced cerebral injury was explored using a CIS model in vivo via 1 h middle cerebral artery occlusion (MCAO) and 24 h reperfusion in rats and in vitro via oxygen-glucose deprivation/reperfusion (OGD/R) of PC12 cells, respectively. We found that BA not only reduced cerebral injury by reducing oxidative stress but also activated the SIRT1/FoxO1 pathway to suppress autophagy and improve cerebral injury in MCAO rats. These results provide a basis for the potential clinical application of BA.
Collapse
Affiliation(s)
- Yuelin Zhao
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - Xiaohua Shi
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - Jiaoqi Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - Jing Mang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - Zhongxin Xu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| |
Collapse
|
20
|
Valencia M, Kim SR, Jang Y, Lee SH. Neuronal Autophagy: Characteristic Features and Roles in Neuronal Pathophysiology. Biomol Ther (Seoul) 2021; 29:605-614. [PMID: 33875624 PMCID: PMC8551733 DOI: 10.4062/biomolther.2021.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/02/2021] [Accepted: 03/23/2021] [Indexed: 11/12/2022] Open
Abstract
Autophagy is an important degradative pathway that eliminates misfolded proteins and damaged organelles from cells. Autophagy is crucial for neuronal homeostasis and function. A lack of or deficiency in autophagy leads to the accumulation of protein aggregates, which are associated with several neurodegenerative diseases. Compared with non-neuronal cells, neurons exhibit rapid autophagic flux because damaged organelles or protein aggregates cannot be diluted in post-mitotic cells; because of this, these cells exhibit characteristic features of autophagy, such as compartment-specific autophagy, which depends on polarized structures and rapid autophagy flux. In addition, neurons exhibit compartment-specific autophagy, which depends on polarized structures. Neuronal autophagy may have additional physiological roles other than amino acid recycling. In this review, we focus on the characteristics and regulatory factors of neuronal autophagy. We also describe intracellular selective autophagy in neurons and its association with neurodegenerative diseases.
Collapse
Affiliation(s)
- McNeil Valencia
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sung Rae Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yeseul Jang
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
21
|
Shu CW, Bee YS, Chen JL, Tsen CL, Tsai WL, Sheu SJ. Detection of Autophagy-Related Gene Expression by Conjunctival Impression Cytology in Age-Related Macular Degeneration. Diagnostics (Basel) 2021; 11:diagnostics11020296. [PMID: 33673354 PMCID: PMC7918710 DOI: 10.3390/diagnostics11020296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 11/26/2022] Open
Abstract
Purpose: To investigate the association of autophagy-related gene expression with age-related macular degeneration (AMD). Methods: Patients with AMD were recruited for analysis by conjunctival impression cytology. mRNA was assessed by real-time polymerase chain reaction (RT-PCR) to evaluate whether the expression of 26 autophagy-related genes (ATGs) was correlated with AMD. Further studies on cell viability and autophagic flux in response to oxidative stress by H2O2 were performed in human retinal pigment epithelial (RPE) cell lines based on the results of impression cytology. Results: Both the neovascular AMD (nAMD) and polypoidal choroidal vasculopathy (PCV) groups had significantly higher mRNA levels of gamma-aminobutyric acid receptor-associated protein-like 1 (GABARAPL1) and microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B) than the control group, but there was no significant difference between these two groups. Age difference existed only in the AMD group. GABARAPL1 and MAP1LC3B mRNA expression increased significantly after acute oxidative stress in adult retinal pigment epithelial (ARPE-19) cells. Cell viability significantly increased and decreased in the cells harboring GABARAPL1 expression vector and silenced with siRNA against GABARAPL1, respectively, during short-term oxidative stress, whereas viability increased in the GABARAPL1-silenced cells after long-term oxidative stress. Silencing GABARAPL1 itself caused a reduction in autophagic flux under both short and long-term oxidative stress. Conclusion: Our study showed the possibility of assessing autophagy-related gene expression by conjunctival impression cytology. GABARAPL1 was significantly higher in AMD. Although an in vitro study showed an initial protective effect of autophagy, a cell viability study revealed the possibility of a harmful effect after long-term oxidative injury. The underlying mechanism or critical factors require further investigation.
Collapse
Affiliation(s)
- Chih-Wen Shu
- Institute of Biopharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (C.-W.S.); (S.-J.S.); Tel.: +886-7525-2000 (ext. 5828) (C.-W.S.); +886-7312-1101 (S.-J.S.)
| | - Youn-Shen Bee
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan; (Y.-S.B.); (J.-L.C.); (C.-L.T.)
| | - Jiunn-Liang Chen
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan; (Y.-S.B.); (J.-L.C.); (C.-L.T.)
| | - Chui-Lien Tsen
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan; (Y.-S.B.); (J.-L.C.); (C.-L.T.)
| | - Wei-Lun Tsai
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Shwu-Jiuan Sheu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (C.-W.S.); (S.-J.S.); Tel.: +886-7525-2000 (ext. 5828) (C.-W.S.); +886-7312-1101 (S.-J.S.)
| |
Collapse
|
22
|
Wang L, Hu H, Morse AN, Han X, Bao J, Yang J, Chen Y, Liu H. Activation of Autophagy in Human Uterine Myometrium During Labor. Reprod Sci 2020; 27:1665-1672. [PMID: 32430716 DOI: 10.1007/s43032-020-00198-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The purpose of this study was to analyze the autophagy of the human uterine myometrium during the labor. METHODS We collected uterine myometrium strips from term, singleton, nulliparous healthy women undergoing cesarean delivery before labor (nonlabor group, n = 10) or during normal labor (in-labor group, n = 10) without rupturing of membrane. The indications for cesarean delivery were breech presentation or maternal request. Transmission electron microscopy was used to observe autophagosomes. Reverse transcriptase polymerase chain reaction, immunofluorescence, and Western blot were used to quantify the messenger RNA (mRNA) and protein level of the autophagy markers LC3B, P62, and Beclin-1 in the uterine muscle strips. RESULTS There were no differences between both groups in maternal age, body mass index, gestational week, neonatal weight, operative bleeding, and postpartum bleeding. Transmission electron micrographs showed that autophagosomes existed in myometrial tissue in both groups. There were more autophagosomes in the in-labor group than in the nonlabor group, and the difference had significance. The in-labor group had significantly greater LC3B mRNA expression but significantly lower P62 mRNA expression compared with the nonlabor group. Semiquantitative immunofluorescence in uterine myometrial cells in the in-labor group showed increased LC3B puncta formation and greater Beclin-1 expression but reduced P62 puncta formation compared with the nonlabor group. The ratio of LC3BII/I proteins was significantly higher, but P62 protein was significantly lower in the in-labor group compared with the nonlabor group. The Beclin-1 mRNA and protein expressions were not significantly different between the 2 groups. CONCLUSION Autophagy was activated in human uterine myometrium during labor and might play an important role in maintaining uterine contraction function.
Collapse
Affiliation(s)
- Lele Wang
- Department of Obstetrics, First Affiliated Hospital of Jinan University, Guangzhou, China.,Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, China
| | - Huiping Hu
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, China
| | - Abraham Nick Morse
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, China
| | - Xinjia Han
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, China
| | - Junjie Bao
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, China
| | - Jingying Yang
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, China
| | - Yunshan Chen
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, China
| | - Huishu Liu
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, China.
| |
Collapse
|
23
|
Chen L, Xia YF, Shen SF, Tang J, Chen JL, Qian K, Chen Z, Qin ZH, Sheng R. Syntaxin 17 inhibits ischemic neuronal injury by resuming autophagy flux and ameliorating endoplasmic reticulum stress. Free Radic Biol Med 2020; 160:319-333. [PMID: 32828953 DOI: 10.1016/j.freeradbiomed.2020.08.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023]
Abstract
Previous studies have shown that syntaxin 17 (STX17) is involved in mediating the fusion of autophagosomes and lysosomes. This study aimed to investigate the role and mechanism of STX17 in neuronal injury following cerebral ischemia/reperfusion. The ischemia/reperfusion (I/R) models were established by transient middle cerebral artery occlusion (tMCAO) in mice and oxygen glucose deprivation/reperfusion (O/R) in primary cultured cortical neurons and HT22 cells. Cerebral ischemia/reperfusion significantly up-regulated the expression of STX17 in neurons. Lentivirus mediated knockdown of STX17 in neurons reduced neuronal viability and increased LDH leakage. Injection of AAV9-shSTX17 into the brain of mice then subjected to tMCAO also significantly augmented the infarct area and exacerbated neurobehavioral deficits and mortality. Depletion of STX17 caused accumulation of autophagic marker/substrate LC3 II and p62, blockade of the autophagic flux, and the accumulation of dysfunctional lysosomes. Knockdown of STX17 also aggravated endoplasmic reticulum (ER) stress-dependent neuronal apoptosis induced by ischemia/reperfusion. Importantly, induction of autophagy-lysosomal pathway and alleviation of ER stress partially rescued STX17 knockdown-induced neuronal damage. These results suggest that STX17 may ameliorate ischemia/reperfusion-induced neuronal damage by enhancing autophagy flux and reducing ER stress-dependent neuronal apoptosis.
Collapse
Affiliation(s)
- Lei Chen
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Yun-Fei Xia
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Shu-Fang Shen
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Jie Tang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Jia-Li Chen
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Ke Qian
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Zhong Chen
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China.
| |
Collapse
|
24
|
Lian Q, Gao Y, Li Q, He X, Jiang X, Pu Z, Xu G. Cereblon Promotes the Ubiquitination and Proteasomal Degradation of Interleukin Enhancer-Binding Factor 2. Protein J 2020; 39:411-421. [PMID: 33009960 DOI: 10.1007/s10930-020-09918-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2020] [Indexed: 11/25/2022]
Abstract
Interleukin enhancer-binding factor 2 (ILF2) forms a heterodimer with interleukin enhancer-binding factor 3 (ILF3) via double-stranded RNA-binding motif and zinc finger associated domain and thus regulates gene expression and cancer cell growth. However, how ILF2 is degraded in cells remains elusive. In this work, using stable isotope labeling by amino acids in cell culture (SILAC) quantitative proteomics, we find that ILF2 is downregulated in cells expressing cereblon (CRBN). Using affinity purification and immunoblotting analysis, we demonstrate that CRBN interacts with ILF2 and functions as a substrate receptor of the cullin-4 RING E3 ligase complex. Biochemical experiments disclose that CRBN expression reduces ILF2 protein level and this reduction is diminished when the proteasome is inhibited. Upon protein synthesis inhibition, the degradation of ILF2 is enhanced by CRBN. Moreover, CRBN promotes the ubiquitination of ILF2 and thus results in the ubiquitin-mediated proteasomal degradation. Analyses of previously identified post-translational modification sites and the crystal structure of ILF2 discover the potential ubiquitination sites on ILF2. Through mutagenesis and biochemical experiments, we further reveal that the K45R mutation completely abolishes the effect of CRBN on ILF2, suggesting that this is the key residue responsible for its ubiquitination. Taken together, we identify an E3 ligase that regulates ILF2 and uncover a molecular pathway for its degradation. This work might be helpful to elucidate the molecular mechanism by which CRBN regulates diverse cellular functions.
Collapse
Affiliation(s)
- Qihui Lian
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Yuan Gao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Qian Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Xian He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Xiaogang Jiang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Zhongjian Pu
- Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, 226600, Jiangsu, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
25
|
Modeling Neurodevelopmental Deficits in Tuberous Sclerosis Complex with Stem Cell Derived Neural Precursors and Neurons. ADVANCES IN NEUROBIOLOGY 2020. [PMID: 32578142 DOI: 10.1007/978-3-030-45493-7_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Tuberous sclerosis complex (TSC) is a rare genetic disorder that is caused by mutations in TSC1 or TSC2. TSC is a multi-organ disorder characterized by development of non-malignant cellular overgrowths, called hamartomas, in different organs of the body. TSC is also characterized as a neurodevelopmental disorder presenting with epilepsy and autism, and formation of cortical malformations ("tubers"), subependymal giant cell astrocytomas (SEGAs), and subependymal nodules (SENs) in the patient's brain. In this chapter, we are going to give an overview of neural stem cell and neuronal development in TSC. In addition, we will also describe previously developed animal models of TSC that display seizures, autistic-like behaviors, and neuronal cell abnormalities in vivo, and we will compare them to disease phenotypes detected with human stem cell derived neuronal cells in vitro. We will describe the effects of TSC-mutations in different neural cell subtypes, and discuss the mitochondrial function, autophagy, and synaptic development and functional deficits in the neurons. Finally, we will review utilization of these human TSC-patient derived neuronal models for drug screening to develop new treatment options for the neurological phenotypes seen in TSC patients.
Collapse
|
26
|
Electroacupuncture Pretreatment as a Novel Avenue to Protect Heart against Ischemia and Reperfusion Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9786482. [PMID: 32508960 PMCID: PMC7254080 DOI: 10.1155/2020/9786482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/31/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022]
Abstract
In recent years, the efficacy of electroacupuncture (EA) pretreatment generating ischemic tolerance mimicking ischemic pretreatment (IP) has been continuously confirmed, which was first found in the brain and then in the heart. Furthermore, researchers have observed the intensive cardioprotection impact of EA pretreatment on patients undergoing percutaneous coronary intervention (PCI) and heart valve replacement, indicating that EA pretreatment tends to be a valuable and advantageous avenue for preventing acute myocardial ischemia/reperfusion (I/R) injury or treatment of ischemic heart disease (IHD). In reality, the heart protection mechanism of EA pretreatment is robust and pleiotropic, of which the regulatory molecular pathways are involved in multichannel, multilevel, and multitarget, including energy metabolism, inflammatory response, calcium overload, oxidative stress, autophagy, and apoptosis. Through a growing number of clinical tests and basic experiments with animal models, researchers progressively explored the optimal acupoints and parameters, where EA pretreatment induced acute and delayed ischemic tolerance for myocardial protection. Thereby, this article aims to collect the relevant evidence on EA pretreatment against myocardial ischemia/reperfusion injury (MIRI) and summarize the mechanism of cardioprotection of EA pretreatment to provide ideas and methods for further clinical applications.
Collapse
|
27
|
Duan C, Kuang L, Xiang X, Zhang J, Zhu Y, Wu Y, Yan Q, Liu L, Li T. Drp1 regulates mitochondrial dysfunction and dysregulated metabolism in ischemic injury via Clec16a-, BAX-, and GSH- pathways. Cell Death Dis 2020; 11:251. [PMID: 32312970 PMCID: PMC7170874 DOI: 10.1038/s41419-020-2461-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/31/2022]
Abstract
The adaptation of mitochondrial homeostasis to ischemic injury is not fully understood. Here, we studied the role of dynamin-related protein 1 (Drp1) in this process. We found that mitochondrial morphology was altered in the early stage of ischemic injury while mitochondrial dysfunction occurred in the late stage of ischemia. Drp1 appeared to inhibit mitophagy by upregulating mito-Clec16a, which suppressed mito-Parkin recruitment and subsequently impaired the formation of autophagosomes in vascular tissues after ischemic injury. Moreover, ischemia-induced Drp1 activation enhanced apoptosis through inducing mitochondrial translocation of BAX and thereby increasing release of Cytochrome C to activate caspase-3/-9 signalling. Furthermore, Drp1 mediated metabolic disorders and inhibited the levels of mitochondrial glutathione to impair free radical scavenging, leading to further increases in ROS and the exacerbation of mitochondrial dysfunction after ischemic injury. Together, our data suggest a critical role for Drp1 in ischemic injury.
Collapse
Affiliation(s)
- Chenyang Duan
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, P. R. China
| | - Lei Kuang
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, P. R. China
| | - Xinming Xiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, P. R. China
| | - Jie Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, P. R. China
| | - Yu Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, P. R. China
| | - Yue Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, P. R. China
| | - Qingguang Yan
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, P. R. China
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, P. R. China.
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, P. R. China.
| |
Collapse
|
28
|
Fernández ÁF, Liu Y, Ginet V, Shi M, Nah J, Zou Z, Zhou A, Posner BA, Xiao G, Tanguy M, Paradis V, Sadoshima J, Rautou PE, Puyal J, Hu MC, Levine B. Interaction between the autophagy protein Beclin 1 and Na+,K+-ATPase during starvation, exercise, and ischemia. JCI Insight 2020; 5:133282. [PMID: 31941841 DOI: 10.1172/jci.insight.133282] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/04/2019] [Indexed: 01/26/2023] Open
Abstract
Autosis is a distinct form of cell death that requires both autophagy genes and the Na+,K+-ATPase pump. However, the relationship between the autophagy machinery and Na+,K+-ATPase is unknown. We explored the hypothesis that Na+,K+-ATPase interacts with the autophagy protein Beclin 1 during stress and autosis-inducing conditions. Starvation increased the Beclin 1/Na+,K+-ATPase interaction in cultured cells, and this was blocked by cardiac glycosides, inhibitors of Na+,K+-ATPase. Increases in Beclin 1/Na+,K+-ATPase interaction were also observed in tissues from starved mice, livers of patients with anorexia nervosa, brains of neonatal rats subjected to cerebral hypoxia-ischemia (HI), and kidneys of mice subjected to renal ischemia/reperfusion injury (IRI). Cardiac glycosides blocked the increased Beclin 1/Na+,K+-ATPase interaction during cerebral HI injury and renal IRI. In the mouse renal IRI model, cardiac glycosides reduced numbers of autotic cells in the kidney and improved clinical outcome. Moreover, blockade of endogenous cardiac glycosides increased Beclin 1/Na+,K+-ATPase interaction and autotic cell death in mouse hearts during exercise. Thus, Beclin 1/Na+,K+-ATPase interaction is increased in stress conditions, and cardiac glycosides decrease this interaction and autosis in both pathophysiological and physiological settings. This crosstalk between cellular machinery that generates and consumes energy during stress may represent a fundamental homeostatic mechanism.
Collapse
Affiliation(s)
- Álvaro F Fernández
- Center for Autophagy Research.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yang Liu
- Center for Autophagy Research.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Vanessa Ginet
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Mingjun Shi
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jihoon Nah
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Zhongju Zou
- Center for Autophagy Research.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Howard Hughes Medical Institute
| | | | | | - Guanghua Xiao
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Marion Tanguy
- Centre de Recherche sur l'Inflammation, Université de Paris, Paris, France.,Service d'Hépatologie, Pôle des Maladies de l'Appareil Digestif, Département Hospitalo-Universitaire Unity, and
| | - Valérie Paradis
- Centre de Recherche sur l'Inflammation, Université de Paris, Paris, France.,Service d'Anatomie Pathologique, Hôpital Beaujon, Assistance Hôpitaux Publique de Paris, Clichy, France
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Pierre-Emmanuel Rautou
- Centre de Recherche sur l'Inflammation, Université de Paris, Paris, France.,Service d'Hépatologie, Pôle des Maladies de l'Appareil Digestif, Département Hospitalo-Universitaire Unity, and
| | - Julien Puyal
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Ming Chang Hu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Beth Levine
- Center for Autophagy Research.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Howard Hughes Medical Institute
| |
Collapse
|
29
|
Nazarinia D, Aboutaleb N, Gholamzadeh R, Nasseri Maleki S, Mokhtari B, Nikougoftar M. Conditioned medium obtained from human amniotic mesenchymal stem cells attenuates focal cerebral ischemia/reperfusion injury in rats by targeting mTOR pathway. J Chem Neuroanat 2019; 102:101707. [PMID: 31672459 DOI: 10.1016/j.jchemneu.2019.101707] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/17/2022]
Abstract
Conditioned medium obtained from human amniotic mesenchymal stem cells (hAMSC-CM) was recently shown to have many antioxidant, antiapoptotic and proangiogenic growth factors. The present study was performed to investigate whether protective effects of hAMSC-CM against focal cerebral ischemia/ reperfusion (I/R) injury is associated with modulation of the mammalian target of rapamycin (mTOR) pathway. A rat model of middle cerebral artery occlusion (MCAO) was created and the animals were divided into three groups including sham, MCAO and MCAO + hAMSC-CM. Drug was administrated immediately after cerebral reperfusion (i.v). The expressions of mTOR, p-mTOR and LC3 were measured using Western blotting and real time-PCR, respectively. Apoptosis and neuronal loss were determined using TUNEL and Nissl staining, respectively. Infarct volume and the blood-brain barrier (BBB) damage were evaluated using 2,3,5-triphenyltetrazolium chloride (TTC) staining and Evans Blue (EB) uptake, respectively. Compared with sham, significant infarct volume, apoptotic cell death, and neuronal loss were found in MCAO rats that reversed by hAMSC-CM (P < 0.05). Likewise, MCAO rats exhibited increased mRNA level of light-chain 3 (LC3) and the LC3II/LC3I ratio as well as decreased expression level of p-mTOR that reversed by hAMSC-CM (P < 0.05). There were no significant differences in the expression of total mTOR among the experimental groups. In summary, our results demonstrate that hAMSC-CM gives rise to neuroprotection following ischemic stroke by restoring mTOR activity and inhibiting autophagy.
Collapse
Affiliation(s)
- Donya Nazarinia
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Aboutaleb
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Raheleh Gholamzadeh
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Solmaz Nasseri Maleki
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Mokhtari
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahin Nikougoftar
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
30
|
Ding Z, Wang X, Liu S, Shahanawaz J, Theus S, Fan Y, Deng X, Zhou S, Mehta JL. PCSK9 expression in the ischaemic heart and its relationship to infarct size, cardiac function, and development of autophagy. Cardiovasc Res 2019; 114:1738-1751. [PMID: 29800228 DOI: 10.1093/cvr/cvy128] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/17/2018] [Indexed: 11/12/2022] Open
Abstract
Aims Inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a novel therapy to treat hypercholesterolaemia and related cardiovascular diseases. This study determined if PCSK9 can regulate infarct size, cardiac function, and autophagy during ischaemia. Methods and results Mice hearts were subjected to left coronary artery (LCA) occlusion. There was intense expression of PCSK9 in the zone bordering the infarct area in association with marked cardiac contractile dysfunction in the wild-type mice. This region also revealed intense autophagy. To assess the role of PCSK9 in the evolution of infarct size and function and development of autophagy, we used wild-type mice pre-treated with two different PCSK9 inhibitors (Pep2-8 and EGF-A) or mice lacking PCSK9 gene. Both strategies resulted in smaller infarcts and improved cardiac function following LCA ligation. PCSK9 inhibition also markedly reduced autophagy. Relationship between myocardial ischaemia and PCSK9 expression and autophagy was examined in cultured mouse cardiomyocytes. Exposure of cardiomyocytes to hypoxia resulted in prompt PCSK9 expression and autophagy signals; both were blocked by HIF-1α siRNA. Further, treatment of cardiomyocytes with recombinant PCSK9 during hypoxia induced, and treatment with PCSK9 siRNA reduced, autophagy suggesting a possible role of PCSK9 in the determination of autophagy. Other studies revealed activation of ROS-ATM-LKB1-AMPK axis as a possible mechanism of PCSK-induced autophagy. Hearts of humans with recent infarcts also showed expression of PCSK9 and autophagy in the border zone-similar to that in the infarcted mouse heart. Conclusion PCSK9 is up-regulated in the ischaemic hearts and determines development of infarct size, cardiac function, and autophagy.
Collapse
Affiliation(s)
- Zufeng Ding
- Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang Medical University, Xinxiang, China.,Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xianwei Wang
- Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang Medical University, Xinxiang, China
| | - Shijie Liu
- Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jiwani Shahanawaz
- Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sue Theus
- Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Xiaoyan Deng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Sichang Zhou
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Jawahar L Mehta
- Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
31
|
Mputhia Z, Hone E, Tripathi T, Sargeant T, Martins R, Bharadwaj P. Autophagy Modulation as a Treatment of Amyloid Diseases. Molecules 2019; 24:E3372. [PMID: 31527516 PMCID: PMC6766836 DOI: 10.3390/molecules24183372] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/25/2022] Open
Abstract
Amyloids are fibrous proteins aggregated into toxic forms that are implicated in several chronic disorders. More than 30 diseases show deposition of fibrous amyloid proteins associated with cell loss and degeneration in the affected tissues. Evidence demonstrates that amyloid diseases result from protein aggregation or impaired amyloid clearance, but the connection between amyloid accumulation and tissue degeneration is not clear. Common examples of amyloid diseases are Alzheimer's disease (AD), Parkinson's disease (PD) and tauopathies, which are the most common forms of neurodegenerative diseases, as well as polyglutamine disorders and certain peripheral metabolic diseases. In these diseases, increased accumulation of toxic amyloid proteins is suspected to be one of the main causative factors in the disease pathogenesis. It is therefore important to more clearly understand how these toxic amyloid proteins accumulate as this will aide in the development of more effective preventive and therapeutic strategies. Protein homeostasis, or proteostasis, is maintained by multiple cellular pathways-including protein synthesis, quality control, and clearance-which are collectively responsible for preventing protein misfolding or aggregation. Modulating protein degradation is a very complex but attractive treatment strategy used to remove amyloid and improve cell survival. This review will focus on autophagy, an important clearance pathway of amyloid proteins, and strategies for using it as a potential therapeutic target for amyloid diseases. The physiological role of autophagy in cells, pathways for its modulation, its connection with apoptosis, cell models and caveats in developing autophagy as a treatment and as a biomarker is discussed.
Collapse
Affiliation(s)
- Zoe Mputhia
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Nedlands, WA 6009, Australia.
| | - Eugene Hone
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Nedlands, WA 6009, Australia.
| | - Timir Tripathi
- Department of Biochemistry, North-Eastern Hill University, Meghalaya 793022, India.
| | - Tim Sargeant
- Hopwood Centre for Neurobiology, SAHMRI, Adelaide, SA 5000, Australia.
| | - Ralph Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Nedlands, WA 6009, Australia.
- School of Biomedical Science, Macquarie University, Sydney, NSW 2109, Australia.
| | - Prashant Bharadwaj
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Nedlands, WA 6009, Australia.
- School of Pharmacy and Biomedical Sciences, Curtin Health and Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia.
| |
Collapse
|
32
|
Zhang DM, Zhang T, Wang MM, Wang XX, Qin YY, Wu J, Han R, Sheng R, Wang Y, Chen Z, Han F, Ding Y, Li M, Qin ZH. TIGAR alleviates ischemia/reperfusion-induced autophagy and ischemic brain injury. Free Radic Biol Med 2019; 137:13-23. [PMID: 30978385 DOI: 10.1016/j.freeradbiomed.2019.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/12/2019] [Accepted: 04/01/2019] [Indexed: 12/29/2022]
Abstract
Autophagy has been reported to play protective and pathogenetic roles in cerebral ischemia/reperfusion (I/R)-induced neuronal injury. Our previous studies have shown that TP53-induced glycolysis and apoptosis regulator (TIGAR) ameliorates I/R-induced brain injury and reduces anti-cancer drug-induced autophagy activation. However, if TIGAR plays a regulatory role on autophagy in cerebral I/R injury is still unclear. The purpose of the present study is to investigate the role of TIGAR on I/R-induced autophagy activation and ischemic neuronal injury in vivo and in vitro stroke models using TIGAR-transgenic (tg-TIGAR) mice and TIGAR-knockout (ko-TIGAR) mice. The present study confirmed that autophagy was activated after I/R. Overexpression of TIGAR in tg-TIGAR mice significantly reduced I/R-induced autophagy activation and alleviated brain damage, while knockout of TIGAR in ko-TIGAR mice enhanced I/R-induced autophagy activation and exacerbated brain injury in vivo and in vitro. The different activity of autophagy in tg-TIGAR and ko-TIGAR primary neurons after OGD/R were largely reversed by knockdown or re-expression of TIGAR in these neurons. The autophagy inhibitor 3-methyladenine (3-MA) partly prevented exacerbation of brain damage induced by ko-TIGAR, whereas the autophagy inducer rapamycin partially abolished the neuroprotective effect of tg-TIGAR. Knockout of TIGAR reduced the levels of phosphorylated mTOR and S6KP70, which were blocked by 3-MA and NADPH after I/R and OGD/R in vivo and in vitro, respectively. Overexpression of TIGAR increased the levels of phosphorylated mTOR and S6KP70 under OGD/R condition, this enhancement effect was suppressed by rapamycin. In conclusion, our current data suggest that TIGAR protected against neuronal injury partly through inhibiting autophagy by regulating the mTOR-S6KP70 signaling pathway.
Collapse
Affiliation(s)
- Ding-Mei Zhang
- Department of Pharmacology, Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Tian Zhang
- Department of Pharmacology, Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Ming-Ming Wang
- Department of Pharmacology, Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Xin-Xin Wang
- Department of Pharmacology, Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Yuan-Yuan Qin
- Department of Pharmacology, Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Junchao Wu
- Department of Pharmacology, Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Rong Han
- Department of Pharmacology, Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Rui Sheng
- Department of Pharmacology, Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Yan Wang
- Department of Pharmacology, Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Zhong Chen
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Feng Han
- College of Pharmaceutical Science, Nanjing Medical University, Nanjing, 210029, China
| | - Yuqiang Ding
- Institutes of Brain Sciences, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China
| | - Mei Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China.
| | - Zheng-Hong Qin
- Department of Pharmacology, Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
33
|
Wang F, Pulinilkunnil T, Flibotte S, Nislow C, Vlodavsky I, Hussein B, Rodrigues B. Heparanase protects the heart against chemical or ischemia/reperfusion injury. J Mol Cell Cardiol 2019; 131:29-40. [PMID: 31004678 DOI: 10.1016/j.yjmcc.2019.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/14/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022]
Abstract
Although cancer cells use heparanase for tumor metastasis, favourable effects of heparanase have been reported in the management of Alzheimer's disease and diabetes. Indeed, we previously established a protective function for heparanase in the acutely diabetic heart, where it conferred cardiomyocyte resistance to oxidative stress and apoptosis by provoking changes in gene expression. In this study, we tested if overexpression of heparanase can protect the heart against chemically induced or ischemia/reperfusion (I/R) injury. Transcriptomic analysis of Hep-tg hearts reveal that 240 genes related to the stress response, immune response, cell death, and development were altered in a pro-survival direction encompassing genes promoting the unfolded protein response (UPR) and autophagy, as well as those protecting against oxidative stress. The observed UPR activation was adaptive and not apoptotic, was mediated by activation of ATF6α, and when combined with mTOR inhibition, induced autophagy. Subjecting wild type (WT) mice to increasing concentrations of the ER stress inducer thapsigargin evoked a transition from adaptive to apoptotic UPR, an effect that was attenuated in Hep-tg mouse hearts. Consistent with these observations, when exposed to I/R, the infarct size and markers of apoptosis were significantly lower in the Hep-tg heart compared to WT. Finally, UPR and autophagy inhibitors reduced the protective effects of heparanase overexpression during I/R. Our data suggest that the mechanisms that underlie the role of heparanase in promoting cell survival could be uniquely beneficial to the heart by providing protection against cellular stresses, and could be useful for exploitation as a therapeutic target for the treatment of heart disease.
Collapse
Affiliation(s)
- Fulong Wang
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Thomas Pulinilkunnil
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, 100 Tucker Park Road, Saint John, NB E2L 4L5, Canada
| | | | - Corey Nislow
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Bahira Hussein
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
34
|
Sheu SJ, Chen JL, Bee YS, Lin SH, Shu CW. ERBB2-modulated ATG4B and autophagic cell death in human ARPE19 during oxidative stress. PLoS One 2019; 14:e0213932. [PMID: 30870514 PMCID: PMC6417729 DOI: 10.1371/journal.pone.0213932] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/04/2019] [Indexed: 01/12/2023] Open
Abstract
Age-related macular degeneration (AMD) is an ocular disease with retinal degeneration. Retinal pigment epithelium (RPE) degeneration is mainly caused by long-term oxidative stress. Kinase activity could be either protective or detrimental to cells during oxidative stress; however, few reports have described the role of kinases in oxidative stress. In this study, high-throughput screening of kinome siRNA library revealed that erb-b2 receptor tyrosine-protein kinase 2 (ERBB2) knockdown reduced reactive oxygen species (ROS) production in ARPE-19 cells during oxidative stress. Silencing ERBB2 caused an elevation in microtubule associated protein light chain C3-II (MAP1LC3B-II/I) conversion and sequesterone (SQSTM)1 protein level. ERBB2 deprivation largely caused an increase in autophagy-regulating protease (ATG4B) expression, a protease that negatively recycles MAP1LC3-II at the fusion step between the autophagosome and lysosome, suggesting ERBB2 might modulate ATG4B for autophagy induction in oxidative stress-stimulated ARPE-19 cells. ERBB2 knockdown also caused an accumulation of nuclear factor erythroid 2-related factor 2 (NRF2) and enhanced its transcriptional activity. In addition, ERBB2 ablation or treatment with autophagy inhibitors reduced oxidative-induced cytotoxic effects in ARPE-19 cells. Furthermore, ERBB2 silencing had little or no additive effects in ATG5/7-deficient cells. Taken together, our results suggest that ERBB2 may play an important role in modulating autophagic RPE cell death during oxidative stress, and ERBB2 may be a potential target in AMD prevention.
Collapse
Affiliation(s)
- Shwu-Jiuan Sheu
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jiunn-Liang Chen
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Optometry, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Youn-Shen Bee
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Yuh-Ing Junior College of Health Care and Management, Kaohsiung, Taiwan
- National Defense Medical Center, Taipei, Taiwan
| | - Shi-Han Lin
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chih-Wen Shu
- School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|
35
|
Wang L, Hu H, Morse AN, Han X, Bao J, Yang J, Chen Y, Liu H. Activation of Autophagy in Human Uterine Myometrium During Labor. Reprod Sci 2019:1933719119834351. [PMID: 30845895 DOI: 10.1177/1933719119834351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE: The purpose of this study was to analyze the autophagy of the human uterine myometrium during the labor. METHODS: We collected uterine myometrium strips from term, singleton, nulliparous healthy women undergoing cesarean delivery before labor (nonlabor group, n = 10) or during normal labor (in-labor group, n = 10) without rupturing of membrane. The indications for cesarean delivery were breech presentation or maternal request. Transmission electron microscopy was used to observe autophagosomes. Reverse transcriptase polymerase chain reaction, immunofluorescence, and Western blot were used to quantify the messenger RNA (mRNA) and protein level of the autophagy markers LC3B, P62, and Beclin-1 in the uterine muscle strips. RESULTS: There were no differences between both groups in maternal age, body mass index, gestational week, neonatal weight, operative bleeding, and postpartum bleeding. Transmission electron micrographs showed that autophagosomes existed in myometrial tissue in both groups. There were more autophagosomes in the in-labor group than in the nonlabor group, and the difference had significance. The in-labor group had significantly greater LC3B mRNA expression but significantly lower P62 mRNA expression compared with the nonlabor group. Semiquantitative immunofluorescence in uterine myometrial cells in the in-labor group showed increased LC3B puncta formation and greater Beclin-1 expression but reduced P62 puncta formation compared with the nonlabor group. The ratio of LC3BII/I proteins was significantly higher, but P62 protein was significantly lower in the in-labor group compared with the nonlabor group. The Beclin-1 mRNA and protein expressions were not significantly different between the 2 groups. CONCLUSION: Autophagy was activated in human uterine myometrium during labor and might play an important role in maintaining uterine contraction function.
Collapse
Affiliation(s)
- Lele Wang
- 1 Department of Obstetrics, First Affiliated Hospital of Jinan University, Guangzhou, China
- 2 Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huiping Hu
- 2 Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Abraham Nick Morse
- 2 Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xinjia Han
- 2 Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Junjie Bao
- 2 Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jingying Yang
- 2 Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yunshan Chen
- 2 Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huishu Liu
- 2 Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
36
|
Epicatechin Gallate Protects HBMVECs from Ischemia/Reperfusion Injury through Ameliorating Apoptosis and Autophagy and Promoting Neovascularization. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7824684. [PMID: 30962864 PMCID: PMC6431361 DOI: 10.1155/2019/7824684] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/03/2018] [Accepted: 11/26/2018] [Indexed: 12/16/2022]
Abstract
Green tea is one of the most beverages with antioxidants and nutrients. As one of the major components of green tea, (-)-epicatechin gallate (ECG) was evaluated for its antioxidative properties in the present study. Cell proliferation assay, tube formation, cell migration, apoptosis, and autophagy were performed in human brain microvascular endothelial cells (HBMVECs) after oxygen-glucose deprivation/reoxygenation (OGD/R) to investigate potential anti-ischemia/reperfusion injury properties of ECG in vitro. Markers of oxidative stress as ROS, LDH, MDA, and SOD were further assayed in our study. Data indicated that ECG could affect neovascularization and promote cell proliferation, tube formation, and cell migration while inhibiting apoptosis and autophagy through affecting VEGF, Bcl-2, BAX, LC3B, caspase 3, mTOR, and Beclin-1 expression. All the data suggested that ECG may be protective for the brain against ischemia/reperfusion injury by promoting neovascularization, alleviating apoptosis and autophagy, and promoting cell proliferation in HBMVECs of OGD/R.
Collapse
|
37
|
Liu Z, Ren L, Cui X, Guo L, Jiang B, Zhou J, Liang P, Zeng J, He Z, Zhang P. Muscular proteomic profiling of deep pressure ulcers reveals myoprotective role of JAK2 in ischemia and reperfusion injury. Am J Transl Res 2018; 10:3413-3429. [PMID: 30662596 PMCID: PMC6291713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/18/2018] [Indexed: 06/09/2023]
Abstract
Pressure ulcers (PUs) are a complex and serious clinical problem. Deep tissue injury (DTI) is either the outcome or the trigger of deep PUs. However, the cellular and molecular mechanisms that contribute to the pathogenesis of deep PUs remain unclear. In this study, the degeneration characteristics and increased autophagy and apoptosis were observed in deep PU muscle tissues. Muscular proteome of deep PU revealed that a total of 520 proteins were differentially expressed, particularly, JAK2 was down-regulated. Intriguingly, expression of JAK2 in C2C12 myoblasts exposed to oxygen-glucose deprivation and reoxygenation (OGD/R) insult was also distinctly reduced. Ex vivo, we transfected C2C12 myoblasts with lentivirus carrying the JAK2 plasmid and found that JAK2-overexpressed myoblasts exhibited a decrease in autophagy and apoptosis after OGD/R treatment, as well as less cell death. Finally, Western blot analysis determined that p-JAK2, p-AKT, p-mTOR and p-ERK1/2 levels were significantly elevated, accompanied by JAK2 overexpression but without p-STAT3, and inhibition of the AKT and ERK1/2 pathway resulted in elevated apoptosis and/or autophagy. These results demonstrated that JAK2 may play an important protective role in muscular ischemia and reperfusion injury during DTI development by inhibition of autophagy and apoptosis through the AKT and ERK1/2 pathways.
Collapse
Affiliation(s)
- Zan Liu
- Department of Burns and Reconstructive Surgery, Xiangya Hospital, Central South UniversityChangsha, Hunan, P. R. China
| | - Licheng Ren
- Department of Burns and Reconstructive Surgery, Xiangya Hospital, Central South UniversityChangsha, Hunan, P. R. China
| | - Xu Cui
- Department of Burns and Reconstructive Surgery, Xiangya Hospital, Central South UniversityChangsha, Hunan, P. R. China
| | - Le Guo
- Department of Burns and Reconstructive Surgery, Xiangya Hospital, Central South UniversityChangsha, Hunan, P. R. China
| | - Bimei Jiang
- Department of Pathophysiology, Xiangya School of Medicine, Central South UniversityChangsha, Hunan, P. R. China
| | - Jie Zhou
- Department of Burns and Reconstructive Surgery, Xiangya Hospital, Central South UniversityChangsha, Hunan, P. R. China
| | - Pengfei Liang
- Department of Burns and Reconstructive Surgery, Xiangya Hospital, Central South UniversityChangsha, Hunan, P. R. China
| | - Jizhang Zeng
- Department of Burns and Reconstructive Surgery, Xiangya Hospital, Central South UniversityChangsha, Hunan, P. R. China
| | - Zhiyou He
- Department of Burns and Reconstructive Surgery, Xiangya Hospital, Central South UniversityChangsha, Hunan, P. R. China
| | - Pihong Zhang
- Department of Burns and Reconstructive Surgery, Xiangya Hospital, Central South UniversityChangsha, Hunan, P. R. China
| |
Collapse
|
38
|
Szobi A, Farkašová‐Ledvényiová V, Lichý M, Muráriková M, Čarnická S, Ravingerová T, Adameová A. Cardioprotection of ischaemic preconditioning is associated with inhibition of translocation of MLKL within the plasma membrane. J Cell Mol Med 2018; 22:4183-4196. [PMID: 29921042 PMCID: PMC6111849 DOI: 10.1111/jcmm.13697] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/26/2018] [Indexed: 12/17/2022] Open
Abstract
Necroptosis, a form of cell loss involving the RIP1-RIP3-MLKL axis, has been identified in cardiac pathologies while its inhibition is cardioprotective. We investigated whether the improvement of heart function because of ischaemic preconditioning is associated with mitigation of necroptotic signaling, and these effects were compared with a pharmacological antinecroptotic approach targeting RIP1. Langendorff-perfused rat hearts were subjected to ischaemic preconditioning with or without a RIP1 inhibitor (Nec-1s). Necroptotic signaling and the assessment of oxidative damage and a putative involvement of CaMKII in this process were analysed in whole tissue and subcellular fractions. Ischaemic preconditioning, Nec-1s and their combination improved postischaemic heart function recovery and reduced infarct size to a similar degree what was in line with the prevention of MLKL oligomerization and translocation to the membrane. On the other hand, membrane peroxidation and apoptosis were unchanged by either approach. Ischaemic preconditioning failed to ameliorate ischaemia-reperfusion-induced increase in RIP1 and RIP3 while pSer229-RIP3 levels were reduced only by Nec-1s. In spite of the additive phosphorylation of CaMKII and PLN because of ditherapy, the postischaemic contractile force and relaxation was comparably improved in all the intervention groups while antiarrhythmic effects were observed in the ischaemic preconditioning group only. Necroptosis inhibition seems to be involved in cardioprotection of ischaemic preconditioning and is comparable but not intensified by an anti-RIP1 agent. Changes in oxidative stress nor CaMKII signaling are unlikely to explain the beneficial effects.
Collapse
Affiliation(s)
- Adrián Szobi
- Faculty of PharmacyComenius University in BratislavaBratislavaSlovakia
| | | | - Martin Lichý
- Faculty of PharmacyComenius University in BratislavaBratislavaSlovakia
| | - Martina Muráriková
- Centre of Experimental MedicineInstitute for Heart ResearchSlovak Academy of SciencesBratislavaSlovakia
| | - Slávka Čarnická
- Centre of Experimental MedicineInstitute for Heart ResearchSlovak Academy of SciencesBratislavaSlovakia
| | - Tatiana Ravingerová
- Centre of Experimental MedicineInstitute for Heart ResearchSlovak Academy of SciencesBratislavaSlovakia
| | - Adriana Adameová
- Faculty of PharmacyComenius University in BratislavaBratislavaSlovakia
| |
Collapse
|
39
|
Yang G, Wang N, Seto SW, Chang D, Liang H. Hydroxysafflor yellow a protects brain microvascular endothelial cells against oxygen glucose deprivation/reoxygenation injury: Involvement of inhibiting autophagy via class I PI3K/Akt/mTOR signaling pathway. Brain Res Bull 2018; 140:243-257. [PMID: 29775658 DOI: 10.1016/j.brainresbull.2018.05.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/27/2018] [Accepted: 05/11/2018] [Indexed: 12/31/2022]
Abstract
The present study aimed to test whether Hydroxysafflor yellow A (HSYA) protects the brain microvascular endothelial cells (BMECs) injury induced by oxygen glucose deprivation/reoxygenation (OGD/R) via the PI3K/Akt/mTOR autophagy signaling pathway. Primary rat BMECs were cultured and identified by the expression of factor VIII-related antigen before being exposed to OGD/R to imitate ischemia/reperfusion (I/R) damage in vitro. The protective effect of HSYA was evaluated by assessing (1) cellular morphologic and ultrastructural changes; (2) cell viability and cytotoxicity; (3) transendothelial electrical resistance (TEER) of monolayer BMECs; (4) cell apoptosis; (5) fluorescence intensity of LC3B; (6) LC3 mRNA expression; (7) protein expressions of LC3, Beclin-1, Zonula occludens-1 (ZO-1), phospho-Akt (p-Akt), Akt, phospho-mTOR (p-mTOR) and mTOR. It was found that HSYA (20, 40, and 80 μM) and 3-MA effectively reversed the cellular morphological and ultrastructural changes, increased cell survival, normalized the permeability of BMECs, and suppressed apoptosis induced by OGD/R (2 h OGD followed by 24 h reoxygenation). Concurrently, HSYA and 3-MA also inhibited OGD/R-induced autophagy evidenced by the decreased number of autophagosomes and down-regulated levels of LC3 and Beclin-1 proteins and mRNAs. HSYA (80 μM), in combination with 3-MA showed a synergistic effect. Mechanistic studies revealed that HSYA (80 μM) markedly increased the levels of p-Akt and p-mTOR proteins. Blockade of PI3K activity by ZSTK474 abolished its anti-autophagic and pro-survival effect and lowered both Akt and mTOR phosphorylation levels. Taken together, these results suggest that HSYA protects BMECs against OGD/R-induced injury by inhibiting autophagy via the Class I PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Guang Yang
- Anhui University of Chinese Medicine, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China.
| | - Ning Wang
- Anhui University of Chinese Medicine, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China; National Institute of Complementary Medicine, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Sai Wang Seto
- National Institute of Complementary Medicine, Western Sydney University, Penrith, NSW 2751, Australia
| | - Dennis Chang
- National Institute of Complementary Medicine, Western Sydney University, Penrith, NSW 2751, Australia
| | - Huangzheng Liang
- School of Medical, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|
40
|
Wang P, Shao BZ, Deng Z, Chen S, Yue Z, Miao CY. Autophagy in ischemic stroke. Prog Neurobiol 2018; 163-164:98-117. [DOI: 10.1016/j.pneurobio.2018.01.001] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 12/04/2017] [Accepted: 01/10/2018] [Indexed: 02/07/2023]
|
41
|
Li B, Zhou C, Yi L, Xu L, Xu M. Effect and molecular mechanism of mTOR inhibitor rapamycin on temozolomide-induced autophagic death of U251 glioma cells. Oncol Lett 2017; 15:2477-2484. [PMID: 29434961 DOI: 10.3892/ol.2017.7537] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 11/08/2016] [Indexed: 01/10/2023] Open
Abstract
Glioma is a malignant tumor of the glial tissue that is difficult to excise through surgery, with poor patient prognosis. The use of chemotherapeutic drugs alone to treat glioma following surgery results in a high probability of sequelae, such as tumor recurrence. The present study investigated the effects of a novel treatment combination on glioma cells and determined the molecular mechanisms underlying its action. The effect of temozolomide (TMZ) combined with rapamycin (RAPA) on the TMZ-induced autophagic death of U251 glioma cells was examined. The U251 cell line was treated with TMZ combined with RAPA, and the cell survival rate and half maximal inhibitory concentration (IC50) of TMZ/RAPA was detected using the Cell Counting Kit-8 (CCK-8) assay. Flow cytometry was used to detect changes in cell cycle distribution. The formation of acidic vesicular organelles (AVOs) in the cytoplasm was identified using fluorescence microscopy and quantitatively analyzed. Western blotting was performed to detect the expression levels of autophagy-associated proteins Beclin-1 and microtubule associated protein 1 light chain 3 alpha (MAP1LC3A)-I and II. RAPA (1.25 nM) combined with 5 µM TMZ markedly inhibited U251 cell growth. RAPA reinforced TMZ-induced autophagic death, reducing the IC50 value of treatment when combined (TMZ alone, 22.5±3.23 µM vs. TMZ and RAPA, 10.35±2.81 µM). Compared with the control group, the proportion of cells in G2/M were markedly increased following treatment with TMZ combined with RAPA. Acridine orange staining demonstrated that TMZ combined with RAPA could markedly enhance the generation of intracellular AVOs compared with TMZ or RAPA alone. In addition, Beclin-1 and LC3-II protein expression was markedly increased compared with the control and single treatment groups (P<0.05). The results of the present study indicate that RAPA reinforces TMZ-induced autophagic death of U251 glioma cells, providing a novel therapeutic combination for the treatment of malignant glioma.
Collapse
Affiliation(s)
- Bing Li
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Yuzhong, Chongqing 400042, P.R. China
| | - Chun Zhou
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Yuzhong, Chongqing 400042, P.R. China
| | - Liang Yi
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Yuzhong, Chongqing 400042, P.R. China
| | - Lunshan Xu
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Yuzhong, Chongqing 400042, P.R. China
| | - Minhui Xu
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Yuzhong, Chongqing 400042, P.R. China
| |
Collapse
|
42
|
Rao Z, Pan X, Zhang H, Sun J, Li J, Lu T, Gao M, Liu S, Yu D, Ding Z. Isoflurane Preconditioning Alleviated Murine Liver Ischemia and Reperfusion Injury by Restoring AMPK/mTOR-Mediated Autophagy. Anesth Analg 2017; 125:1355-1363. [PMID: 28857857 DOI: 10.1213/ane.0000000000002385] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Isoflurane has a pharmacological preconditioning effect against ischemia injury in the heart, kidney, and brain, but whether and how isoflurane preconditioning protects livers against ischemia and reperfusion (IR) injury is unclear. METHODS Mice were randomly divided into an isoflurane preconditioning (ISO) group and control group, receiving 1.5% isoflurane or carrier gas for 40 minutes, respectively (n = 8/group). A partial warm liver IR model was used, and liver injury was evaluated. Primary hepatocytes were pretreated with 1.5% isoflurane for 2 hours before the induction of cell death by hydrogen peroxide. Cell death and survival were evaluated with the lactate dehydrogenase and cell counting kit-8 assay. Autophagy and regulatory molecules in stressed livers and hepatocytes were analyzed by Western blot (n = 6/group). An autophagy inhibitor (3-methyladenine [3-MA]) and 5' adenosine monophosphate-activated protein kinase (AMPK) inhibitor (dorsomorphin) were administered in vivo (n = 8/group) and in vitro (n = 6/group). RESULTS Compared to that observed in the control group, mice in the ISO group showed reduced liver injury (alanine aminotransferase [ALT] levels, control versus ISO group, 8285 ± 769 vs 4896 ± 917 U/L, P < .001) and enhanced hepatocellular antiapoptosis in livers after IR. Furthermore, liver autophagy was restored by ISO as indicated by elevated LC3B II protein levels accompanied with increased p62 degradation. The in vitro study of primary hepatocytes also found that ISO effectively attenuated hepatocyte cell death induced by hydrogen peroxide. In addition, 3-MA pretreatment showed no significant influence in the control group, but abrogated the protective role of ISO both in stressed livers (ALT levels, phosphate-buffered saline + ISO versus 3-MA + ISO group, 5081 ± 294 vs 8663 ± 607 U/L, P < .001) and in hepatocytes. Finally, signaling pathway analysis demonstrated that AMPK was activated by ISO. Pretreatment with an AMPK inhibitor also abrogated liver protection by ISO (ALT levels, phosphate-buffered saline + ISO versus dorsomorphin [DOR] + ISO group, 5081 ± 294 vs 8710 ± 500 U/L, P < .001), with no significant effect in control mice. CONCLUSIONS Our results indicate that isoflurane preconditioning attenuates liver IR injury via AMPK/mTOR-mediated hepatocellular autophagy restoration. Our findings provide a novel potential therapeutic strategy for managing liver IR injury.
Collapse
Affiliation(s)
- Zhuqing Rao
- From the Departments of *Anesthesiology and †Liver Surgery, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Propofol Affects Neurodegeneration and Neurogenesis by Regulation of Autophagy via Effects on Intracellular Calcium Homeostasis. Anesthesiology 2017; 127:490-501. [PMID: 28614084 DOI: 10.1097/aln.0000000000001730] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND In human cortical neural progenitor cells, we investigated the effects of propofol on calcium homeostasis in both the ryanodine and inositol 1,4,5-trisphosphate calcium release channels. We also studied propofol-mediated effects on autophagy, cell survival, and neuro- and gliogenesis. METHODS The dose-response relationship between propofol concentration and duration was studied in neural progenitor cells. Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase release assays. The effects of propofol on cytosolic calcium concentration were evaluated using Fura-2, and autophagy activity was determined by LC3II expression levels with Western blot. Proliferation and differentiation were evaluated by bromodeoxyuridine incorporation and immunostaining with neuronal and glial markers. RESULTS Propofol dose- and time-dependently induced cell damage and elevated LC3II expression, most robustly at 200 µM for 24 h (67 ± 11% of control, n = 12 to 19) and 6 h (2.4 ± 0.5 compared with 0.6 ± 0.1 of control, n = 7), respectively. Treatment with 200 μM propofol also increased cytosolic calcium concentration (346 ± 71% of control, n = 22 to 34). Propofol at 10 µM stimulated neural progenitor cell proliferation and promoted neuronal cell fate, whereas propofol at 200 µM impaired neuronal proliferation and promoted glial cell fate (n = 12 to 20). Cotreatment with ryanodine and inositol 1,4,5-trisphosphate receptor antagonists and inhibitors, cytosolic Ca chelators, or autophagy inhibitors mostly mitigated the propofol-mediated effects on survival, proliferation, and differentiation. CONCLUSIONS These results suggest that propofol-mediated cell survival or neurogenesis is closely associated with propofol's effects on autophagy by activation of ryanodine and inositol 1,4,5-trisphosphate receptors.
Collapse
|
44
|
Qi HY, Li L, Ma H. Cellular stress response mechanisms as therapeutic targets of ginsenosides. Med Res Rev 2017; 38:625-654. [DOI: 10.1002/med.21450] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 03/28/2017] [Accepted: 04/14/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Hong-yi Qi
- College of Chinese Medicine; Southwest University; Chongqing P.R. China
| | - Li Li
- College of Chinese Medicine; Southwest University; Chongqing P.R. China
| | - Hui Ma
- College of Chinese Medicine; Southwest University; Chongqing P.R. China
| |
Collapse
|
45
|
Shao BZ, Ke P, Xu ZQ, Wei W, Cheng MH, Han BZ, Chen XW, Su DF, Liu C. Autophagy Plays an Important Role in Anti-inflammatory Mechanisms Stimulated by Alpha7 Nicotinic Acetylcholine Receptor. Front Immunol 2017; 8:553. [PMID: 28559895 PMCID: PMC5432615 DOI: 10.3389/fimmu.2017.00553] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/25/2017] [Indexed: 12/14/2022] Open
Abstract
Alpha7 nicotinic acetylcholine receptor (α7nAChR) has been reported to alleviate neuroinflammation. Here, we aimed to determine the role of autophagy in α7nAChR-mediated inhibition of neuroinflammation and its underlying mechanism. Experimental autoimmune encephalomyelitis (EAE) mice and lipopolysaccharide-stimulated BV2 microglia were used as in vivo and in vitro models of neuroinflammation, respectively. The severity of EAE was evaluated with neurological scoring. Autophagy-related proteins (Beclin 1, LC3-II/I, p62/SQSTM1) were detected by immunoblot. Autophagosomes were observed using transmission electron microscopy and tandem fluorescent mRFP-GFP-LC3 plasmid was applied to test autophagy flux. The mRNA levels of interleukin-6 (IL-6), IL-1β, IL-18, and tumor necrosis factor-α (TNF-α) were detected by real-time PCR. We used 3-methyladenine (3-MA) and autophagy-related gene 5 small interfering RNA (Atg5 siRNA) to block autophagy in vivo and in vitro, respectively. Activating α7nAChR with PNU282987 ameliorates EAE severity and spinal inflammatory infiltration in EAE mice. PNU282987 treatment also enhanced monocyte/microglia autophagy (Beclin 1, LC3-II/I ratio, p62/SQSTM1, colocalization of CD45- or CD68-positive cells with LC3) both in spinal cord and spleen from EAE mice. The beneficial effects of PNU282987 on EAE mice were partly abolished by 3-MA, an autophagy inhibitor. In vitro, PNU282987 treatment increased autophagy and promoted autophagy flux. Blockade of autophagy by Atg5 siRNA or bafilomycin A1 attenuated the inhibitory effect of PNU282987 on IL-6, IL-1β, IL-18, and TNF-α mRNA. Our results demonstrate for the first time that activating α7nAChR enhances monocyte/microglia autophagy, which suppresses neuroinflammation and thus plays an alleviative role in EAE.
Collapse
Affiliation(s)
- Bo-Zong Shao
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Ping Ke
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Zhe-Qi Xu
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Wei Wei
- Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ming-He Cheng
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Bin-Ze Han
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Xiong-Wen Chen
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Ding-Feng Su
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Chong Liu
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| |
Collapse
|
46
|
Zhang C, Syed TW, Liu R, Yu J. Role of Endoplasmic Reticulum Stress, Autophagy, and Inflammation in Cardiovascular Disease. Front Cardiovasc Med 2017; 4:29. [PMID: 28553639 PMCID: PMC5427082 DOI: 10.3389/fcvm.2017.00029] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/25/2017] [Indexed: 01/07/2023] Open
Abstract
Cardiovascular diseases are a class of heart or blood vessels diseases, which are now considered to be the leading cause of death globally. A number of recent studies have reported key roles for inflammation in the progression of diseased vessels and systematic heart failure. In particular, endoplasmic reticulum (ER) stress, which is mechanistically implicated in inflammation and autophagy, has now been associated with pathophysiological states in the cardiovascular system. Autophagy has also been identified as an important process in the progression of multiple cardiovascular diseases such as in atherosclerosis plaque progression and ischemia and/or reperfusion. In light of the above, it has been proposed that a link between inflammation, autophagy, and ER stress may exist that contribute to diseases of the heart and its supporting vessels. This review highlights current knowledge on the cross talk between these three biological processes, and the potential of targeting this pathway as a therapeutic approach for cardiovascular disorders and its related diseases.
Collapse
Affiliation(s)
- Cheng Zhang
- Center for Metabolic Disease Research, Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Taha Wasim Syed
- Center for Metabolic Disease Research, Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Renjing Liu
- Agnes Ginges Laboratory for Diseases of the Aorta, Centenary Institute, University of Sydney, Camperdown, NSW, Australia,Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Jun Yu
- Center for Metabolic Disease Research, Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA,*Correspondence: Jun Yu,
| |
Collapse
|
47
|
Inhibiting reactive oxygen species-dependent autophagy enhanced baicalein-induced apoptosis in oral squamous cell carcinoma. J Nat Med 2017; 71:433-441. [PMID: 28176233 DOI: 10.1007/s11418-017-1076-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/24/2017] [Indexed: 02/07/2023]
Abstract
Autophagy modulation has been considered a potential therapeutic strategy for oral squamous cell carcinoma (OSCC). A previous study confirmed that baicalein might possess significant anti-carcinogenic activity. However, whether baicalein induces autophagy and its role in cell death in OSCC are still unclear. The aim of this study was to investigate the anticancer activity and molecular targets of baicalein in OSCC in vitro. In this study, we found that baicalein induced significant apoptosis in OSCC cells Cal27. In addition to showing apoptosis induction, we also demonstrated baicalein-induced autophagic response in Cal27 cells. Moreover, pharmacologically or genetically blocking autophagy enhanced baicalein-induced apoptosis, indicating the cytoprotective role of autophagy in baicalein-treated Cal27 cells. Importantly, we found that baicalein triggered reactive oxygen species (ROS) generation in Cal27 cells. Furthermore, N-acetyl-cysteine, a ROS scavenger, abrogated the effects of baicalein on ROS-dependent autophagy. Therefore, we found that baicalein increased autophagy through the promotion of ROS signaling pathways in OSCC. These data also suggest that a strategy of blocking ROS-dependent autophagy to enhance the activity of baicalein warrants further attention for the treatment of OSCC.
Collapse
|
48
|
Zhou H, Yuan M, Yu Q, Zhou X, Min W, Gao D. Autophagy regulation and its role in gastric cancer and colorectal cancer. Cancer Biomark 2017; 17:1-10. [PMID: 27314289 DOI: 10.3233/cbm-160613] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Autophagy is associated with the occurrence, development, cellular adaptation, progression, treatment and prognosis of gastric cancer (GC) and colorectal cancer (CRC). The effect of autophagy in these two cancers has attracted our attention. OBJECTIVE The aim of this study was to describe the functional and regulatory mechanisms associated with autophagy in GC and CRC. METHODS We reviewed recent publications describing the role of autophagy in GC and CRC, including the functional characteristics, clinical significance and regulatory mechanisms. RESULTS Autophagy plays context-dependent dual roles in the development and progression of GC and CRC. It can either promote tumor growth and cell survival or can contribute to tumor suppression and promote cell death. Both of these effects employ complex regulatory networks, such as those mediated by p53, PI3K/Akt/mTOR, Ras and microRNA. Among the cellular process associated with these pathways, autophagy is a potential target for anti-tumor therapy. CONCLUSION Autophagy is associated with both tumorigenic and protective effects in cancer. However, the role of autophagy in GC and CRC remains unclear. Although the translation of the basic science of autophagy into clinical practice is a long process, the modulation of autophagy as a potential therapeutic approach in GC and CRC merits further investigation.
Collapse
Affiliation(s)
- Huangyan Zhou
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Academy of Medical Sciences, Nanchang, Jiangxi, China.,Institute of Immunotherapy, Nanchang University, Nanchang, Jiangxi, China
| | - Min Yuan
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qiongfang Yu
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoyan Zhou
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Weiping Min
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Academy of Medical Sciences, Nanchang, Jiangxi, China.,Institute of Immunotherapy, Nanchang University, Nanchang, Jiangxi, China
| | - Dian Gao
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Academy of Medical Sciences, Nanchang, Jiangxi, China.,Institute of Immunotherapy, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
49
|
Functional and Molecular Insights of Hydrogen Sulfide Signaling and Protein Sulfhydration. J Mol Biol 2016; 429:543-561. [PMID: 28013031 DOI: 10.1016/j.jmb.2016.12.015] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/08/2016] [Accepted: 12/12/2016] [Indexed: 12/23/2022]
Abstract
Hydrogen sulfide (H2S), a novel gasotransmitter, is endogenously synthesized by multiple enzymes that are differentially expressed in the peripheral tissues and central nervous systems. H2S regulates a wide range of physiological processes, namely cardiovascular, neuronal, immune, respiratory, gastrointestinal, liver, and endocrine systems, by influencing cellular signaling pathways and sulfhydration of target proteins. This review focuses on the recent progress made in H2S signaling that affects mechanistic and functional aspects of several biological processes such as autophagy, inflammation, proliferation and differentiation of stem cell, cell survival/death, and cellular metabolism under both physiological and pathological conditions. Moreover, we highlighted the cross-talk between nitric oxide and H2S in several bilogical contexts.
Collapse
|
50
|
Zeng M, Wei X, Wu Z, Li W, Zheng Y, Li B, Meng X, Fu X, Fei Y. Simulated ischemia/reperfusion-induced p65-Beclin 1-dependent autophagic cell death in human umbilical vein endothelial cells. Sci Rep 2016; 6:37448. [PMID: 27857190 PMCID: PMC5114588 DOI: 10.1038/srep37448] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 10/31/2016] [Indexed: 12/15/2022] Open
Abstract
Myocardial ischemia/reperfusion (I/R) injury detrimentally alters the prognosis of patients undergoing revascularization after acute myocardial infarction. Our previous study demonstrated that NF-κB-induced autophagy plays a detrimental role in cardiac I/R injury using a rabbit myocardial I/R model. In this study, we sought to explore the specific mechanism of this autophagy-mediated cell damage in an in vitro simulated ischemia/reperfusion (sI/R) model using human umbilical vein endothelial cells. Our current study demonstrates that simulated I/R induces autophagy in a p65-Beclin 1-dependent manner, which can be suppressed with the inhibition of NF-κB. Furthermore, rapamycin which promotes autophagy, exacerbates sI/R-induced cell death. While 3-methyladenine rescues cell damage. Our data thus suggest that I/R promotes NF-κB p65 activity mediated Beclin 1-mediated autophagic flux, thereby exacerbating myocardial injury.
Collapse
Affiliation(s)
- Min Zeng
- Medical Center, Hainan General Hospital, Haikou, 570311, China
| | - Xin Wei
- Medical Center, Hainan General Hospital, Haikou, 570311, China
| | - Zhiyong Wu
- Medical Center, Hainan General Hospital, Haikou, 570311, China
| | - Wei Li
- Medical Center, Hainan General Hospital, Haikou, 570311, China
| | - Yin Zheng
- Medical Center, Hainan General Hospital, Haikou, 570311, China
| | - Bing Li
- Medical Center, Hainan General Hospital, Haikou, 570311, China
| | - Xuqing Meng
- Medical Center, Hainan General Hospital, Haikou, 570311, China
| | - Xiuhong Fu
- Medical Center, Hainan General Hospital, Haikou, 570311, China
| | - Yi Fei
- Medical Center, Hainan General Hospital, Haikou, 570311, China
| |
Collapse
|