1
|
Zhan Y, Huang J, Tang X, Du B, Yang B. Semen Strychni Pulveratum and vomicine alleviate neuroinflammation in amyotrophic lateral sclerosis through cGAS-STING-TBK1 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118741. [PMID: 39197801 DOI: 10.1016/j.jep.2024.118741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Amyotrophic lateral sclerosis (ALS) is a fetal neuromuscular disorder characterized by the gradual deterioration of motor neurons. Semen Strychni pulveratum (SSP), a processed version of Semen Strychni (SS) powder, is widely used to treat ALS in China. Vomicine is one of the most primary components of SS. However, their pharmacological effects and mechanisms for ALS remain elusive. AIM OF THE STUDY This study aimed to evaluate the neuroprotective and anti-neuroinflammatory effects of SSP and vomicine, as well as to explore their protective roles in ALS and the underlying mechanisms. MATERIALS AND METHODS In vivo, 8-week-old hSOD1-WT mice and hSOD1-G93A mice were orally administered different concentrations of SSP (SSP-L = 5.46 mg/ml, SSP-M = 10.92 mg/ml or SSP-H = 16.38 mg/ml) once every other day for 8 weeks. A series of experiments, including body weight measurement, footprint tests, Hematoxylin & Eosin staining, and Nissl staining, were performed to evaluate the preventive effect of SSP. Immunofluorescence staining, western blotting, and RT-qPCR were subsequently performed to evaluate activation of the cGAS-STING-TBK1 pathway in the spinal cord. In vitro, hSOD1G93A NSC-34 cells were treated with vomicine to further explore the pharmacological mechanism of vomicine in the treatment of ALS via the cGAS-STING-TBK1 pathway. RESULTS SSP improved motor function, body weight loss, gastrocnemius muscle atrophy, and motor neuron loss in the spine and cortex of hSOD1-G93A mice. Furthermore, the cGAS-STING-TBK1 pathway was activated in the spinal cord of hSOD1-G93A mice, with activation predominantly observed in neurons and microglia. However, the levels of cGAS, STING, and pTBK1 proteins and cGAS, IRF3, IL-6, and IL-1β mRNA were reversed following intervention with SSP. Vomicine not only downregulated the levels of cGAS, TBK1, IL-6 and IFN-β mRNA, but also the levels of cGAS and STING protein in hSOD1G93A NSC-34 cells. CONCLUSION This study demonstrated that SSP and vomicine exert neuroprotective and anti-neuroinflammatory effects in the treatment of ALS. SSP and vomicine may reduce neuroinflammation by regulating the cGAS-STING-TBK1 pathway, and could thereby play a role in ALS treatment.
Collapse
Affiliation(s)
- Yingshi Zhan
- The Second Clinical College of Guangzhou University of Chinese Medicine, No. 232, East Outer Ring Road, University Town, Panyu District, Guangzhou, 510006, China.
| | - Jingyan Huang
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111, Dade Lu, Yuexiu District, Guangzhou, 510120, China.
| | - Xiaohui Tang
- The Second Clinical College of Guangzhou University of Chinese Medicine, No. 232, East Outer Ring Road, University Town, Panyu District, Guangzhou, 510006, China; Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Compound at No. 13, Shiliugang Road, Chigang, Haizhu District, Guangzhou, 510315, China.
| | - Baoxin Du
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111, Dade Lu, Yuexiu District, Guangzhou, 510120, China.
| | - Biying Yang
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111, Dade Lu, Yuexiu District, Guangzhou, 510120, China.
| |
Collapse
|
2
|
Liu W, Tang X, Fan C, He G, Wang X, Liang X, Bao X. Chemical constituents, pharmacological action, antitumor application, and toxicity of Strychnine Semen from Strychnons pierriana A.W.Hill.: A review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116748. [PMID: 37348797 DOI: 10.1016/j.jep.2023.116748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dried and mature seeds of Strychnons pierriana A.W.Hill. have been called Strychnine Semen(S. Semen). It have been used in traditional Chinese medicine for nearly 400 years. In recent decades, scholars at home and abroad have widely used S. Semen in the treatment of tumor diseases, showing good anti-tumor effects. In this paper, the modern research achievements of S. Semen are reviewed, including traditional uses, phytochemistry, pharmacology, and toxicology. AIM OF THE STUDY In recent years, the research on S. Semen has increased gradually, especially the research on its anti-tumor. This paper not only reviewed the traditional uses, chemical constituents and pharmacological activities of S. Semen, but also comprehensively listed the mechanisms of Strychnos in the treatment of different tumors, providing a review for further research and development of Strychnos resources. MATERIALS AND METHODS A systematic review of the literature on Fuzi was performed using several resources, namely classic books on Chinese herbal medicine and various scientific databases, such as PubMed, the Web of Science, and the China Knowledge Resource Integrated databases. RESULTS The main constituents of S. Semen include alkaloids, terpenoids, steroids, and their glycosides. Modern studies have proved that S. Semen has a wide range of pharmacological effects, including anti-inflammatory and analgesic, anti-thrombotic, myocardial cell protection, immune regulation, nerve excitation, and anti-tumor effects. Among them, the anti-tumor effect has been the focus of research in recent years. S. Semen have a certain therapeutic effect on many kinds of tumors, such as liver cancer, colon cancer, and stomach cancer in the digestive system, breast, cervical, and ovarian cancer in the reproductive system, myeloma and leukemia in the blood system, and those in the nervous system and the immune system. CONCLUSION Strychnine has an inhibitory effect on a variety of tumors. However, modern studies of strychnine are incomplete, and more in-depth studies are needed on its stronger bioactive constituents and potential pharmacological effects. The antitumor effect of Strychnine is worth further exploration.
Collapse
Affiliation(s)
- Weiran Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xintian Tang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chengyu Fan
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guannan He
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoxin Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaodong Liang
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Xia Bao
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
3
|
Li Y, Wei S, Liu Q, Gong Q, Zhang Q, Zheng T, Yong Z, Chen F, Lawrence AJ, Liang J. Mu-opioid receptors in septum mediate the development of behavioural sensitization to a single morphine exposure in male rats. Addict Biol 2022; 27:e13066. [PMID: 34030217 DOI: 10.1111/adb.13066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/01/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022]
Abstract
Behavioural sensitization (BS) is characterized by enhanced psychomotor responses to a dose of substance of abuse after prior repeated exposure. We previously reported that BS can be induced by a single injection of morphine in rats, whereas septal nuclei are specifically involved in the development phase of BS. Here, we demonstrated that intra-LS or intra-MS microinjections also incubated BS to a systemic morphine injection in a cross-sensitization fashion, whereas inactivation of either subdivision of septal nuclei (LS: lateral septum; MS: medial septum) can negate this ability of morphine. Then, non-selective (naloxone) and selective (μ-, δ- and κ-)opioid receptor antagonists were directly delivered into LS or MS, respectively, ahead of a morphine microinjection, whereas only μ-opioid receptors in both LS and MS play indispensable roles in mediating the BS development. Finally, there was a pronounced elevation in the levels of the monoamines (i.e. dopamine, homovanillic acid, 5-hydroxytryptamine and 5-hydroxyindoleacetic acid) in the septum, 8 h after a morphine injection detected with a HPLC-ECD method, suggesting that dopaminergi and serotoninergic systems are implicated in the BS formation. Our studies demonstrated that septal nuclei critically participate in the BS development. Essentially, μ- instead of δ- or κ-opioid receptors in LS and MS mediate sensitization to opiates.
Collapse
Affiliation(s)
- Yu‐Ling Li
- Department of Pharmacology, School of Basic Medical Sciences Peking University Beijing China
- Department of Pharmacy, East Hospital Tongji University School of Medicine Shanghai China
| | - Shoupeng Wei
- Department of Pharmacology, School of Basic Medical Sciences Peking University Beijing China
- The Seventh Affiliated Hospital Sun Yat‐sen University Shenzhen China
| | - Qing Liu
- Department of Pharmacology, School of Basic Medical Sciences Peking University Beijing China
| | - Qi Gong
- Department of Pharmacology, School of Basic Medical Sciences Peking University Beijing China
| | - Qing‐Jie Zhang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences Peking University Beijing China
| | - Tian‐Ge Zheng
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences Peking University Beijing China
| | - Zheng Yong
- Beijing Institute of Pharmacology and Toxicology Academy of Military Medical Sciences Beijing China
| | - Feng Chen
- The Florey Institute of Neuroscience and Mental Health University of Melbourne Parkville Victoria Australia
| | - Andrew J. Lawrence
- The Florey Institute of Neuroscience and Mental Health University of Melbourne Parkville Victoria Australia
| | - Jian‐Hui Liang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences Peking University Beijing China
| |
Collapse
|
4
|
Mary YS, Mary YS, Armaković S, Armaković SJ, Yadav R, Celik I, Mane P, Chakraborty B. Stability and reactivity study of bio-molecules brucine and colchicine towards electrophile and nucleophile attacks: Insight from DFT and MD simulations. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116192] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Wei S, Li Y, Gong Q, Liang H, Liu Q, Bernardi RE, Zhang H, Chen F, Lawrence AJ, Liang J. Brucine N‐Oxide Reduces Ethanol Intake and Preference in Alcohol‐Preferring Male Fawn‐Hooded Rats. Alcohol Clin Exp Res 2020; 44:1321-1328. [PMID: 32343845 DOI: 10.1111/acer.14344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/18/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Shoupeng Wei
- From the Department of Pharmacology (SW, QG, HL, QL) School of Basic Medicine Sciences Peking University Beijing China
| | - Yu‐ling Li
- Department of Pharmacy (Y‐LL) East Hospital Tongji University School of Medicine Shanghai China
| | - Qi Gong
- From the Department of Pharmacology (SW, QG, HL, QL) School of Basic Medicine Sciences Peking University Beijing China
| | - Hui Liang
- From the Department of Pharmacology (SW, QG, HL, QL) School of Basic Medicine Sciences Peking University Beijing China
| | - Qing Liu
- From the Department of Pharmacology (SW, QG, HL, QL) School of Basic Medicine Sciences Peking University Beijing China
| | - Rick E. Bernardi
- Institute of Psychopharmacology (REB) Central Institute of Mental Health Medical Faculty Mannheim University of Heidelberg Mannheim Germany
| | - Han‐Ting Zhang
- Departments of Behavioral Medicine & Psychiatry and Physiology & Pharmacology (H‐TZ) West Virginia University Health Sciences Center Morgantown West Virginia
| | - Feng Chen
- The Florey Institute of Neuroscience and Mental Health (FC, AJL) University of Melbourne Parkville3010Victoria Australia
| | - Andrew J. Lawrence
- The Florey Institute of Neuroscience and Mental Health (FC, AJL) University of Melbourne Parkville3010Victoria Australia
| | - Jian‐hui Liang
- Department of Molecular and Cellular Pharmacology (J‐hL) School of Pharmaceutical Sciences Peking University Beijing China
| |
Collapse
|
6
|
Mitkin NA, Anokhin PK, Belopolskaya MV, Frolova OY, Kushnir EA, Lovat ML, Pavshintsev VV. Active immunization against serum alcohol dehydrogenase normalizes brain dopamine metabolism disturbed during chronic alcohol consumption. Alcohol 2020; 83:17-28. [PMID: 31260795 DOI: 10.1016/j.alcohol.2019.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 10/26/2022]
Abstract
Chronic ethanol consumption in high doses is associated with constitutively elevated activity of the serum alcohol dehydrogenase I (ADH I) isoform, which demonstrates a high affinity not only for ethanol but also for a number of bioamine metabolites. Such excessive ADH activity is probably associated with disruptions in the metabolism of neurotransmitters (dopamine, serotonin, and norepinephrine) and subsequent long-term changes in the activity of their receptors. Ultimately, a stable depressive-like condition contributes to the development of patients' craving for ethanol intake, frequent disruptions during therapy, and low efficacy of treatment. We applied active immunization against ADH to investigate its efficacy in the reduction of excessive serum ADH activity and regulation of ethanol consumption by chronically ethanol-fed Wistar rats (15% ethanol, 4 months, free-choice method), and we analyzed its ability to influence the levels of bioamines in the brain. Immunization (2 injections, 2-week intervals) was performed using a combination of recombinant horse ADH isozyme as an antigen and 2% aluminum hydroxide-based adjuvant. The efficacy of immunization was demonstrated by the production of high titers of ADH-specific antibodies, which was consistent with the significantly reduced ADH activity in the serum of chronically ethanol-fed rats. On the 26th day after the first vaccine injection, we registered significantly lower levels of alcohol consumption compared to ethanol-fed control animals, and the difference reached 16% on the 49th day of the experiment. These observations were accompanied by data that showed reduced levels of ethanol preference in immunized rats. Chronic alcohol drinking led to a decrease in dopamine and DOPAL (a direct dopamine metabolite and a high-affinity ADH substrate) levels in the striatum,while immunization neutralized this effect. Additionally, we observed that inhibition of serum ADH activity caused a decrease in peak dopamine levels during acute alcohol intake in chronically ethanol-fed rats during ethanol withdrawal that was associated with reduced tyrosine hydroxylase activity in the striatum. The obtained data suggest a significant contribution of ADH to the changes in neurotransmitter systems during chronic alcohol consumption and make available new prospects for developing innovative strategies for treatment of excessive alcohol intake.
Collapse
|
7
|
Ethanol-induced changes in synaptic amino acid neurotransmitter levels in the nucleus accumbens of differentially sensitized mice. Psychopharmacology (Berl) 2019; 236:3541-3556. [PMID: 31302721 DOI: 10.1007/s00213-019-05324-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 07/02/2019] [Indexed: 01/21/2023]
Abstract
RATIONALE Ethanol-induced behavioural sensitization (EBS) does not occur uniformly in mice exposed to the sensitization paradigm. This suggests innate differential responses to ethanol (EtOH) in the reward circuitry of individual animals. OBJECTIVES To better characterize the adaptive differences between low-sensitized (LS) and high-sensitized (HS) mice, we examined excitatory amino acid (EAA) and inhibitory amino acid (IAA) neurotransmitter levels in the nucleus accumbens (NAc) during EBS expression. METHODS Male DBA/2J mice received five ethanol (EtOH) (2.2 g/kg) or saline injections, and locomotor activity (LMA) was assessed during EBS induction. EtOH mice were classified as LS or HS on the basis of final LMA scores. Following an EtOH challenge (1.8 g/kg) 2 weeks later, LMA was re-evaluated and in vivo microdialysis samples were collected from the NAc. RESULTS Most differences in amino acid levels were observed within the first 20 min after EtOH challenge. LS mice exhibited similar glutamate levels compared with acutely treated (previously EtOH naïve) mice, and generally increased levels of the IAAs GABA, glycine, and taurine. By contrast, HS mice exhibited increased glutamate and attenuated levels of GABA, glycine, and taurine. CONCLUSION These data suggest that the profile of amino acid neurotransmitters in the NAc of LS and HS mice significantly differs. Elucidating these adaptive differences contributes to our understanding of factors that confer susceptibility/resilience to alcohol use disorder.
Collapse
|
8
|
Guo R, Wang T, Zhou G, Xu M, Yu X, Zhang X, Sui F, Li C, Tang L, Wang Z. Botany, Phytochemistry, Pharmacology and Toxicity of Strychnos nux-vomica L.: A Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:1-23. [PMID: 29298518 DOI: 10.1142/s0192415x18500015] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Strychnos nux-vomica L. belongs to the genus Strychnos of the family Loganiaceae and grows in Sri Lanka, India and Australia. The traditional medicinal component is its seed, called Nux vomica. This study provides a relevant and comprehensive review of S. nux-vomica L., including its botany, ethnopharmacology, phytochemistry, pharmacology and toxicology, thus providing a foundation for future studies. Up to the present day, over 84 compounds, including alkaloids, iridoid glycosides, flavonoid glycosides, triterpenoids, steroids and organic acids, among others, have been isolated and identified from S. nux-vomica. These compounds possess an array of biological activities, including effects on the nervous system, analgesic and anti-inflammatory actions, antitumor effects, inhibition of the growth of pathogenic microorganisms and regulation of immune function. Furthermore, toxicity and detoxification methods are preliminarily discussed toward the end of this review. In further research on S. nux-vomica, bioactivity-guided isolation strategies should be emphasized. Its antitumor effects should be investigated further and in vivo animal experiments should be performed alongside in vitro testing. The pharmacological activity and toxicology of strychnine [Formula: see text]-oxide and brucine [Formula: see text]-oxide should be studied to explore the detoxification mechanism associated with processing more deeply.
Collapse
Affiliation(s)
- Rixin Guo
- * Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, No. 16 Nanxiaojie, Dongzhimennei Ave., Beijing 100700, P. R. China
| | - Ting Wang
- * Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, No. 16 Nanxiaojie, Dongzhimennei Ave., Beijing 100700, P. R. China
| | - Guohong Zhou
- † School of Chinese Material Medica, Guangdong Food and Drug Vocational College, No. 321 Longdongbei Ave., Guangzhou 510520, P. R. China
| | - Mengying Xu
- * Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, No. 16 Nanxiaojie, Dongzhimennei Ave., Beijing 100700, P. R. China.,‡ School of Medicine, Henan University of Chinese Medicine, No. 156 Jinshuidong Ave., Zhengzhou 450046, P. R. China
| | - Xiankuo Yu
- * Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, No. 16 Nanxiaojie, Dongzhimennei Ave., Beijing 100700, P. R. China
| | - Xiao Zhang
- * Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, No. 16 Nanxiaojie, Dongzhimennei Ave., Beijing 100700, P. R. China.,‡ School of Medicine, Henan University of Chinese Medicine, No. 156 Jinshuidong Ave., Zhengzhou 450046, P. R. China
| | - Feng Sui
- * Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, No. 16 Nanxiaojie, Dongzhimennei Ave., Beijing 100700, P. R. China
| | - Chun Li
- * Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, No. 16 Nanxiaojie, Dongzhimennei Ave., Beijing 100700, P. R. China
| | - Liying Tang
- * Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, No. 16 Nanxiaojie, Dongzhimennei Ave., Beijing 100700, P. R. China
| | - Zhuju Wang
- * Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, No. 16 Nanxiaojie, Dongzhimennei Ave., Beijing 100700, P. R. China
| |
Collapse
|
9
|
Li S, Wang XP. In vitro and in vivo evaluation of novel NGR-modified liposomes containing brucine. Int J Nanomedicine 2017; 12:5797-5804. [PMID: 28860749 PMCID: PMC5565249 DOI: 10.2147/ijn.s136378] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In this study, a novel NGR (Asn-Gly-Arg) peptide-modified liposomal brucine was prepared by using spray-drying method. The surface morphology of the liposomes, encapsulation efficiency and particle size were investigated. The data showed that the addition of NGR did not produce any significant influence on brucine liposomes in terms of particle size or zeta potential. In addition, after 3 months of storage, no dramatic change such as visible aggregation, drug content changes or precipitation in the appearance of NGR-brucine liposomes occurred. The in vitro release results indicated that the release of brucine from NGR liposomes was similar to that of liposomes, demonstrating that the NGR modification did not affect brucine release. The in vitro drug-release kinetic model of NGR-brucine liposomes fitted well with the Weibull's equation. In vivo, NGR-brucine liposomes could significantly extend the bioavailability of brucine; however, there was no significant difference observed in the pharmacokinetic parameters between liposomes and NGR liposomes after intravenous administration. Antitumor activity results showed that NGR-modified liposomes exhibited less toxicity and much higher efficacy in HepG2-bearing mice compared with non-modified liposomes. The enhanced antitumor activity might have occurred because brucine was specifically recognized by NGR receptor on the surface of tumor cells, which enhanced the intracellular uptake of drugs.
Collapse
Affiliation(s)
- Shu Li
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xi-Peng Wang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
10
|
Wang F, Li Y, Zhang YJ, Zhou Y, Li S, Li HB. Natural Products for the Prevention and Treatment of Hangover and Alcohol Use Disorder. Molecules 2016; 21:64. [PMID: 26751438 PMCID: PMC6274469 DOI: 10.3390/molecules21010064] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 12/30/2015] [Accepted: 12/31/2015] [Indexed: 12/18/2022] Open
Abstract
Alcoholic beverages such as beer, wine and spirits are widely consumed around the world. However, alcohol and its metabolite acetaldehyde are toxic and harmful to human beings. Chronic alcohol use disorder or occasional binge drinking can cause a wide range of health problems, such as hangover, liver damage and cancer. Some natural products such as traditional herbs, fruits, and vegetables might be potential dietary supplements or medicinal products for the prevention and treatment of the problems caused by excessive alcohol consumption. The aim of this review is to provide an overview of effective natural products for the prevention and treatment of hangover and alcohol use disorder, and special emphasis is paid to the possible functional component(s) and related mechanism(s) of action.
Collapse
Affiliation(s)
- Fang Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Yu-Jie Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Yue Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Sha Li
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
11
|
Ding TT, Xu XX, Cao Y, Liu CR, Gan YH, Xie QF. Inflammatory pain memory facilitates occlusal interference-induced masticatory muscle hyperalgesia in rats. Eur J Pain 2015; 20:353-64. [PMID: 26014463 DOI: 10.1002/ejp.730] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND Patients with an orofacial pain history appear to be more susceptible to occlusal interference pain in dental practice for unknown reasons. Pain memory has a critical function in subsequent pain perception. This study aims to explore whether orofacial pain memory could affect the masticatory muscle pain perception for occlusal interference. METHODS Cross-injection of 2% carrageenan into bilateral masseters in male rats was carried out to establish the inflammatory pain memory model. The effects of pain memory on masseter muscle nociception were tested by applying crowns with heights beyond the occlusal plane by 0.2 or 0.4 mm onto a maxillary molar 2 weeks after inflammation in the right masseter. The 0.4-mm crowns were removed on day 2 or day 4 after application to further confirm the effects of pain memory. Moreover, memory impairment was established using ibotenic acid (IBO) infusion into the bilateral hippocampus, followed by behaviour tests, including the Morris water maze test and the locomotor activity test. The relationship between pain memory and occlusal interference-induced masseter muscle pain perception was subsequently re-examined. The head withdrawal thresholds of masseters on both sides were measured to reflect the perception. RESULTS Inflammatory pain memory aggravated the 0.2-mm crown-induced mechanical hyperalgesia of the masseters, but not in the 0.4-mm crown group. However, the recovery of the 0.4-mm crown-induced mechanical hyperalgesia was postponed. The effects of pain memory were reversed in rats with impaired mnemonic function of the hippocampus. CONCLUSIONS Inflammatory pain memory facilitated occlusal interference-induced masseter muscle pain.
Collapse
Affiliation(s)
- T-T Ding
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - X-X Xu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Ye Cao
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - C-R Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Y-H Gan
- Central Laboratory and Center for TMD & Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing, China
| | - Q-F Xie
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- Center for Oral Functional Diagnosis, Treatment and Research, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|