1
|
Hu XY, Luo HJ, Wei X, Wang YZ, Ye YS, Wan SJ, Zheng D, Zhou Y, Xu HX, Li XR, Lin LG, Xu G. Anti-inflammatory bicyclic polyprenylated acylphloroglucinols with diverse architectures including an unprecedented 6/6/6 tricyclic core from Garcinia yunnanensis. Bioorg Chem 2024; 153:107864. [PMID: 39383808 DOI: 10.1016/j.bioorg.2024.107864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
Garciyunnanol A (1), an unprecedented 1,2-seco-bicyclic polyprenylated acylphloroglucinol (BPAP) possessing a unique 6/6/6 tricyclic core, was characterized from Garcinia yunnanensis together with 16 BPAPs, including eight new compounds (garciyunnanols B-I, 2-9). Biogenetically, the bicyclo[3.3.1]nonane-2,4,9-trione moiety of 12 reconstructed the bicyclic δ-lactone core of 2 through Norrish type Ⅰ cleavage and cyclization, followed by a cyclization of two side chains to form an intriguing 6/6/6 tricyclic core of 1. Their structures were elucidated through analysis of spectroscopic data, calculation and comparison of ECD spectra. Bioactivity evaluation manifested that compounds 1, 2, 5, 6 and 14 demonstrated superior inhibition of NO production compared to the positive control dexamethasone. Notably, compound 5 exhibited a dose-dependent inhibitory effect on NO production, with an IC50 value of 0.25 ± 0.87 µM. Furthermore, experiments involving ELISA, Western blotting, and immunofluorescence staining revealed that 5 effectively reduced the secretion of interleukin-1β in LPS plus nigericin-stimulated THP-1 macrophages by inhibiting the activation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Xin-Yue Hu
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui-Juan Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xin Wei
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yu-Zhuo Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yan-Song Ye
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Shi-Jie Wan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Dan Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu Zhou
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Xi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xing-Ren Li
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| | - Li-Gen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Gang Xu
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| |
Collapse
|
2
|
Sui H, Deng W, Chai Q, Han B, Zhang Y, Wei Z, Li Z, Wang T, Feng J, Yuan M, Tang Q, Xu H. YTE-17 inhibits colonic carcinogenesis by resetting antitumor immune response via Wnt5a/JNK mediated metabolic signaling. J Pharm Anal 2024; 14:100901. [PMID: 38665223 PMCID: PMC11044051 DOI: 10.1016/j.jpha.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 04/28/2024] Open
Abstract
The density and composition of lymphocytes infiltrating colon tumors serve as predictive factors for the clinical outcome of colon cancer. Our previous studies highlighted the potent anti-cancer properties of the principal compounds found in Garcinia yunnanensis (YTE-17), attributing these effects to the regulation of multiple signaling pathways. However, knowledge regarding the mechanism and effect of YTE-17 in the prevention of colorectal cancer is limited. In this study, we conducted isobaric tags for relative and absolute quantification (iTRAQ) analysis on intestinal epithelial cells (IECs) exposed YTE-17, both in vitro and invivo, revealing a significant inhibition of the Wnt family member 5a (Wnt5a)/c-Jun N-terminal kinase (JNK) signaling pathway. Subsequently, we elucidated the influence and mechanism of YTE-17 on the tumor microenvironment (TME), specifically focusing on macrophage-mediated T helper 17 (Th17) cell induction in a colitis-associated cancer (CAC) model with Wnt5a deletion. Additionally, we performed the single-cell RNA sequencing (scRNA-seq) on the colonic tissue from the Wnt5a-deleted CAC model to characterize the composition, lineage, and functional status of immune mesenchymal cells during different stages of colorectal cancer (CRC) progression. Remarkably, our findings demonstrate a significant reduction in M2 macrophage polarization and Th17 cell phenotype upon treatment with YTE-17, leading to the restoration of regulatory T (Treg)/Th17 cell balance in azoxymethane (AOM)/dextran sodium sulfate (DSS) model. Furthermore, we also confirmed that YTE-17 effectively inhibited the glycolysis of Th17 cells in both direct and indirect co-culture systems with M2 macrophages. Notably, our study shed light on potential mechanisms linking the non-canonical Wnt5a/JNK signaling pathway and well-established canonical β-catenin oncogenic pathway in vivo. Specifically, we proposed that Wnt5a/JNK signaling activity in IECs promotes the development of cancer stem cells with β-catenin activity within the TME, involving macrophages and T cells. In summary, our study undergoes the potential of YTE-17 as a preventive strategy against CRC development by addressing the imbalance with the immune microenvironment, thereby mitigating the risk of malignancies.
Collapse
Affiliation(s)
- Hua Sui
- Medical Experiment Center, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201803, China
- Translational Medicine Research Center for Cancer Prevention and Treatment, Shanghai General Hospital Jiading Branch-School of Pharmacy of Shanghai University of Traditional Chinese Medicine Joint Laboratory, Shanghai, 201803, China
| | - Wanli Deng
- Department of Medical Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Qiong Chai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bing Han
- The Second Clinical Medical College of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Yuli Zhang
- Translational Medicine Research Center for Cancer Prevention and Treatment, Shanghai General Hospital Jiading Branch-School of Pharmacy of Shanghai University of Traditional Chinese Medicine Joint Laboratory, Shanghai, 201803, China
| | - Zhenzhen Wei
- Medical Experiment Center, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201803, China
- Translational Medicine Research Center for Cancer Prevention and Treatment, Shanghai General Hospital Jiading Branch-School of Pharmacy of Shanghai University of Traditional Chinese Medicine Joint Laboratory, Shanghai, 201803, China
| | - Zan Li
- Medical Experiment Center, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201803, China
- Translational Medicine Research Center for Cancer Prevention and Treatment, Shanghai General Hospital Jiading Branch-School of Pharmacy of Shanghai University of Traditional Chinese Medicine Joint Laboratory, Shanghai, 201803, China
| | - Ting Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiling Feng
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Man Yuan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qingfeng Tang
- Medical Experiment Center, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201803, China
| | - Hongxi Xu
- Translational Medicine Research Center for Cancer Prevention and Treatment, Shanghai General Hospital Jiading Branch-School of Pharmacy of Shanghai University of Traditional Chinese Medicine Joint Laboratory, Shanghai, 201803, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
3
|
Nguyen NH, Vu YT, Nguyen TD, Cao TT, Nguyen HT, Le TKD, Sichaem J, Mai DT, Minh An TN, Duong TH. Bio-guided isolation of alpha-glucosidase inhibitory compounds from Vietnamese Garcinia schomburgkiana fruits: in vitro and in silico studies. RSC Adv 2023; 13:35408-35421. [PMID: 38053690 PMCID: PMC10694853 DOI: 10.1039/d3ra06760b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023] Open
Abstract
Garcinia schomburgkiana is an edible tree widely distributed in the southern region of Vietnam. Little is known about the alpha-glucosidase inhibition of the Vietnamese Garcinia schomburgkiana. The aim of the current study was to explore the anti-diabetic potential of G. schomburgkiana fruits. All the fractions of G. schomburgkiana were evaluated for alpha-glucosidase inhibition, followed by bioassay-guided isolation. A new compound, epi-guttiferone Q (1), together with ten known compounds, guttiferones I-K (2-3), hypersampsone I (4), sampsonione D (5), sampsonione H (6), β-mangostin (7), α-mangostin (8), 9-hydroxycalabaxanthone (9), and fuscaxanthone (10), were isolated and structurally elucidated. The structure of the new metabolite 1 was confirmed through 1D and 2D NMR spectroscopy, and MS analysis. To the best of our knowledge, the metabolites (except 3) have not been isolated from this plant previously. All isolated compounds were evaluated for their alpha-glucosidase inhibition. Compounds 1-6 showed potent activity with IC50 values ranging from 16.2 to 130.6 μM. Compound 2 was further selected for a kinetic study. The result indicated that it was a competitive type. Additionally, in silico docking was employed to predict the binding mechanism of 1-2 and 4-6 in the active site of alpha-glucosidase, suggesting their potential as promising anti-diabetic compounds. Molecular dynamic simulation was also applied to 1 to better understand its inhibitory mechanism.
Collapse
Affiliation(s)
- Ngoc-Hong Nguyen
- CirTech Institute, HUTECH University 475 A Dien Bien Phu Street Binh Thanh District Ho Chi Minh City 700000 Vietnam
| | - Y Thien Vu
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City 700000 Vietnam
| | - Tuan-Dat Nguyen
- Department of Chemistry, Ho Chi Minh City University of Education Ho Chi Minh City 700000 Vietnam
| | - Truong-Tam Cao
- Department of Chemistry, Ho Chi Minh City University of Education Ho Chi Minh City 700000 Vietnam
| | - Huy Truong Nguyen
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City 700000 Vietnam
| | - Thi-Kim-Dung Le
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City 700000 Vietnam
- Laboratory of Biophysics, Institute for Advanced Study in Technology, Ton Duc Thang University Ho Chi Minh City 700000 Vietnam
| | - Jirapast Sichaem
- Research Unit in Natural Products Chemistry and Bioactivities, Faculty of Science and Technology, Thammasat University Lampang Campus Lampang 52190 Thailand
| | - Dinh-Tri Mai
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A TL29 Street, Thanh Loc ward, District 12 Ho Chi Minh City 700000 Vietnam
| | - Tran Nguyen Minh An
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City 12 Nguyen Van Bao street, Ward 4, Go Vap District Ho Chi Minh City 700000 Vietnam
| | - Thuc-Huy Duong
- Department of Chemistry, Ho Chi Minh City University of Education Ho Chi Minh City 700000 Vietnam
| |
Collapse
|
4
|
Seco-polyprenylated acylphloroglucinols from Hypericum elodeoides induced cell cycle arrest and apoptosis in MCF-7 cells via oxidative DNA damage. Bioorg Chem 2022; 128:106088. [PMID: 36007479 DOI: 10.1016/j.bioorg.2022.106088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 11/20/2022]
Abstract
Four undescribed seco-polyprenylated acylphloroglucinols (seco-PAPs), elodeoidesones A-D (1-4), were characterized from Hypericum elodeoides. Compound 1 represents the 1,6-seco-PAPs with fascinating 5/5 fused ring, while 2-4 possess a 1,2-seco-PAPs skeleton with a five-membered lactone core. Their structures including absolute configurations were established by spectroscopic analyses and quantum chemical computations. A possible biosynthetic pathway of 1-4 from normal PAPs was proposed. All the isolates were investigated for their cytotoxicity against tumor cells. Notably, 1 inhibited the proliferation of MCF-7 cells with the IC50 value of 7.34 μM. Mechanism investigation indicated that 1 induced MCF-7 cells apoptosis by blocking cell cycle at S phase via inducing oxidative DNA damage.
Collapse
|
5
|
Bailly C, Vergoten G. Anticancer Properties and Mechanism of Action of Oblongifolin C, Guttiferone K and Related Polyprenylated Acylphloroglucinols. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:629-641. [PMID: 34586597 PMCID: PMC8479269 DOI: 10.1007/s13659-021-00320-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/21/2021] [Indexed: 05/06/2023]
Abstract
Polyprenylated acylphloroglucinols represent an important class of natural products found in many plants. Among them, the two related products oblongifolin C (Ob-C) and guttiferone K (Gt-K) isolated from Garcinia species (notably from edible fruits), have attracted attention due to their marked anticancer properties. The two compounds only differ by the nature of the C-6 side chain, prenyl (Gt-K) or geranyl (Ob-C) on the phloroglucinol core. Their origin, method of extraction and biological properties are presented here, with a focus on the targets and pathways implicated in their anticancer activities. Both compounds markedly reduce cancer cell proliferation in vitro, as well as tumor growth and metastasis in vivo. They are both potent inducer of tumor cell apoptosis, and regulation of autophagy flux is a hallmark of their mode of action. The distinct mechanism leading to autophagosome accumulation in cells and the implicated molecular targets are discussed. The specific role of the chaperone protein HSPA8, known to interact with Ob-C, is addressed. Molecular models of Gt-K and Ob-C bound to HSPA8 provide a structural basis to their common HSPA8-binding recognition capacity. The review shed light on the mechanism of action of these compounds, to encourage their studies and potential development.
Collapse
Affiliation(s)
- Christian Bailly
- Scientific Consulting Office, OncoWitan, 59290, Lille, Wasquehal, France.
| | - Gérard Vergoten
- Inserm, INFINITE - U1286, Faculté de Pharmacie, University of Lille, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), 3 rue du Professeur Laguesse, BP-83, 59006, Lille, France
| |
Collapse
|
6
|
Joshi BC, Juyal V, Sah AN, Verma P, Mukhija M. Review On Documented Medicinal Plants Used For The Treatment Of Cancer. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083807666211011125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background:
Cancer is a frightful disease and it is the second leading cause of death worldwide. Naturally derived compounds are gaining interest of research workers as they have less toxic side effects as compared to currently used treatments such as chemotherapy. Plants are the pool of chemical compounds which provides a promising future for research on cancer.
Objective:
This review paper provides updated information gathered on medicinal plants and isolated phytoconstituents used as anticancer agents and summarises the plant extracts and their isolated chemical constituents exhibiting anticancer potential on clinical trials.
Methods:
An extensive bibliographic investigation was carried out by analysing worldwide established scientific databases like SCOPUS, PUBMED, SCIELO, ScienceDirect, Springerlink, Web of Science, Wiley, SciFinder and Google Scholar etc. In next few decades, herbal medicine may become a new epoch of medical system.
Results:
Many researches are going on medicinal plants for the treatment of cancer but it is a time to increase further experimental studies on plant extracts and their chemical constituents to find out their mechanism of action at molecular level.
Conclusion:
The article may help many researchers to start off further experimentation that might lead to the drugs for the cancer treatment.
Collapse
Affiliation(s)
- Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Vijay Juyal
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Piyush Verma
- Department of Pharmacology, School of Pharmaceutical science and Technology, Sardar Bhagwan Singh University, Dehradun-248001, India
| | - Minky Mukhija
- Department of Pharmaceutical Sciences, Ch. Devi Lal College of Pharmacy, Buria Road, Bhagwangarh, Jagadhri-135003, India
| |
Collapse
|
7
|
Al-Bari MAA, Ito Y, Ahmed S, Radwan N, Ahmed HS, Eid N. Targeting Autophagy with Natural Products as a Potential Therapeutic Approach for Cancer. Int J Mol Sci 2021; 22:9807. [PMID: 34575981 PMCID: PMC8467030 DOI: 10.3390/ijms22189807] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
Macro-autophagy (autophagy) is a highly conserved eukaryotic intracellular process of self-digestion caused by lysosomes on demand, which is upregulated as a survival strategy upon exposure to various stressors, such as metabolic insults, cytotoxic drugs, and alcohol abuse. Paradoxically, autophagy dysfunction also contributes to cancer and aging. It is well known that regulating autophagy by targeting specific regulatory molecules in its machinery can modulate multiple disease processes. Therefore, autophagy represents a significant pharmacological target for drug development and therapeutic interventions in various diseases, including cancers. According to the framework of autophagy, the suppression or induction of autophagy can exert therapeutic properties through the promotion of cell death or cell survival, which are the two main events targeted by cancer therapies. Remarkably, natural products have attracted attention in the anticancer drug discovery field, because they are biologically friendly and have potential therapeutic effects. In this review, we summarize the up-to-date knowledge regarding natural products that can modulate autophagy in various cancers. These findings will provide a new position to exploit more natural compounds as potential novel anticancer drugs and will lead to a better understanding of molecular pathways by targeting the various autophagy stages of upcoming cancer therapeutics.
Collapse
Affiliation(s)
| | - Yuko Ito
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, 2–7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan;
| | - Samrein Ahmed
- Department of Biosciences and Chemistry, College of Health and Wellbeing and Life Sciences, Sheffield Hallam University, City Campus, Howard Street, Sheffield S1 1WB, UK;
| | - Nada Radwan
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| | - Hend S. Ahmed
- Department of Hematology and Blood Transfusion, Faculty of Medical Laboratory Science, Omdurman Ahlia University, Khartoum 786, Sudan;
| | - Nabil Eid
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| |
Collapse
|
8
|
Mvubu NE, Chiliza TE. Exploring the Use of Medicinal Plants and Their Bioactive Derivatives as Alveolar NLRP3 Inflammasome Regulators during Mycobacterium tuberculosis Infection. Int J Mol Sci 2021; 22:ijms22179497. [PMID: 34502407 PMCID: PMC8431520 DOI: 10.3390/ijms22179497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/01/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is a successful intracellular pathogen that is responsible for the highest mortality rate among diseases caused by bacterial infections. During early interaction with the host innate cells, M. tuberculosis cell surface antigens interact with Toll like receptor 4 (TLR4) to activate the nucleotide-binding domain, leucine-rich-repeat containing family, pyrin domain-containing 3 (NLRP3) canonical, and non-canonical inflammasome pathways. NLRP3 inflammasome activation in the alveoli has been reported to contribute to the early inflammatory response that is needed for an effective anti-TB response through production of pro-inflammatory cytokines, including those of the Interleukin 1 (IL1) family. However, overstimulation of the alveolar NLRP3 inflammasomes can induce excessive inflammation that is pathological to the host. Several studies have explored the use of medicinal plants and/or their active derivatives to inhibit excessive stimulation of the inflammasomes and its associated factors, thus reducing immunopathological response in the host. This review describes the molecular mechanism of the NLRP3 inflammasome activation in the alveoli during M. tuberculosis infection. Furthermore, the mechanisms of inflammasome inhibition using medicinal plant and their derivatives will also be explored, thus offering a novel perspective on the alternative control strategies of M. tuberculosis-induced immunopathology.
Collapse
|
9
|
Li WX, Xu WJ, Luo J, Yang L, Kong LY. Type B polycyclic polyprenylated acylphloroglucinols from the roots of Hypericum beanii. Chin J Nat Med 2021; 19:385-390. [PMID: 33941343 DOI: 10.1016/s1875-5364(21)60037-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Indexed: 11/18/2022]
Abstract
Two new type B polycyclic polyprenylated acylphloroglucinols (PPAPs) (1 and 2) and a known biogenetic precursor hyperbeanol Q (3) were isolated from the root extract of Hypericum beanii, a medicinal plant widespread in southwest China. Their chemical structures were elucidated by 1D/2D NMR and HRESIMS data analysis, and absolute configurations were determined through detailed electric circular dichroism (ECD) analysis including ECD exciton chirality, Mo2(OAc)4-induced ECD, and ECD comparison. Of these compounds, hyperbeone A (1) is a typical [3.3.1]-type B PPAP with an unusual C-1 geranyl side chain, and hyperberin C (2) possesses a rare bicyclo[5.3.1]hendecane core. Taking compound 3 as a starting point, a plausible biosynthetic pathway to the bicyclic type B frameworks of 1 and 2 was proposed.
Collapse
Affiliation(s)
- Wei-Xian Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wen-Jun Xu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jun Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
10
|
Han L, Xu D, Xi Z, Wu M, Nik Nabil WN, Zhang J, Sui H, Fu W, Zhou H, Lao Y, Xu G, Guo C, Xu H. The Natural Compound Oblongifolin C Exhibits Anticancer Activity by Inhibiting HSPA8 and Cathepsin B In Vitro. Front Pharmacol 2021; 11:564833. [PMID: 33390942 PMCID: PMC7773843 DOI: 10.3389/fphar.2020.564833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
PPAPs (Polycyclic polyprenylated acylphloroglucinols) are a class of compounds with diverse bioactivities, including anticancer effects. Oblongifolin C (OC) is a PPAP isolated from the plant of Garcinia yunnanensis Hu. We previously discovered that OC induces apoptosis, inhibits autophagic flux, and attenuates metastasis in cancer cells. However, the protein targets and the detailed mechanism of action of OC remain unclear. To identify protein targets of OC, a non-labeled protein fishing assay was performed, and it was found that OC may interact with several proteins, including the heat shock 70 kDa protein 8 (HSPA8). Expanding on our previous studies on protein cathepsin B, this current study applied Surface Plasmon Resonance (SPR) and Isothermal Titration Calorimetry (ITC) to confirm the potential binding affinity between OC and two protein targets. This study highlights the inhibitory effect of OC on HSPA8 in cancer cells under heat shock stress, by specifically inhibiting the translocation of HSPA8. OC also enhanced the interaction between HSPA8, HSP90, and p53, upregulated the expression of p53 and significantly promoted apoptosis in cisplatin-treated cells. Additionally, a flow cytometry assay detected that OC sped up the apoptosis rate in HSPA8 knockdown A549 cells, while overexpression of HSPA8 delayed the OC-induced apoptosis rate. In summary, our results reveal that OC potentially interacts with HSPA8 and cathepsin B and inhibits HSPA8 nuclear translocation and cathepsin B activities, altogether suggesting the potential of OC to be developed as an anticancer drug.
Collapse
Affiliation(s)
- Li Han
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Danqing Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Man Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wan Najbah Nik Nabil
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Juan Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hua Sui
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenwei Fu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanzhi Lao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gang Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of National Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Cheng Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hongxi Xu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Zhang Q, Sun J, Fu Y, He W, Li Y, Tan H, Xu H, Jiang X. Guttiferone K Exerts the Anti-inflammatory Effect on Mycobacterium Tuberculosis- (H37Ra-) Infected Macrophages by Targeting the TLR/IRAK-1 Mediated Akt and NF- κB Pathway. Mediators Inflamm 2020; 2020:8528901. [PMID: 33100904 PMCID: PMC7569438 DOI: 10.1155/2020/8528901] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/26/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) remains a great threat to global health, killing more people than any other single infectious agent and causing uncontrollable inflammation in the host. Poorly controlled inflammatory processes can be deleterious and result in immune exhaustion. The current tuberculosis (TB) control is facing the challenge of drugs deficiency, especially in the context of increasingly multidrug resistant (MDR) TB. Under this circumstance, alternative host-directed therapy (HDT) emerges timely which can be exploited to improve the efficacy of TB treatment and disease prognosis by targeting the host. Here, we established the in vitro infection model of Mtb macrophages with H37Ra strain to seek effective anti-TB active agent. The present study showed that Guttiferone K, isolated from Garcinia yunnanensis , could significantly inhibit Mtb-induced inflammation in RAW264.7 and primary peritoneal macrophages. It was evidenced by the decreased production of inflammatory mediators, including interleukin-1β (IL-1β ), tumor necrosis factor-α (TNF-α ), interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). Further studies with immunoblotting and immunofluorescence revealed that Guttiferone K obviously inhibits the nuclear factor-kappa B (NF-κ B) both in RAW264.7 and primary peritoneal macrophages relying on the TLR/IRAK-1 pathway. Guttiferone K could also suppress the NLRP3 inflammasome activity and induce autophagy by inhibiting the protein kinase B (p-Akt) and mammalian target of rapamycin (mTOR) phosphorylation at Ser473 and Ser2448 in both cell lines. Thus, Guttiferone K possesses significant anti-inflammatory effect, alleviating Mtb-induced inflammation with an underlying mechanism that targeting on the TLR/IRAK-1 pathway and inhibiting the downstream NF-κ B and Akt/mTOR signaling pathways. Together, Guttiferone K can be an anti-inflammatory agent candidate for the design of new adjunct HDT drugs fighting against tuberculosis.
Collapse
Affiliation(s)
- Qingwen Zhang
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, 201318 Shanghai, China
| | - Jinxia Sun
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Yan Fu
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Weigang He
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Yinhong Li
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Hongsheng Tan
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, 200240 Shanghai, China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Xin Jiang
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| |
Collapse
|
12
|
Bicyclic polyprenylated acylphloroglucinols and their derivatives: structural modification, structure-activity relationship, biological activity and mechanism of action. Eur J Med Chem 2020; 205:112646. [PMID: 32791400 DOI: 10.1016/j.ejmech.2020.112646] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 12/22/2022]
Abstract
Bicyclic polyprenylated acylphloroglucinols (BPAPs), the principal bioactive benzophenone products isolated from plants of genera Garcinia and Hypericum, have attracted noticeable attention from the synthetic and biological communities due to their fascinating chemical structures and promising biological activities. However, the potential drug interaction, undesired physiochemical properties and toxicity have limited their potential use and development. In the last decade, pharmaceutical research on the structural modifications, structure-activity relationships (SARs) and mechanisms of action of BPAPs has been greatly developed to overcome the challenges. A comprehensive review of these scientific literature is extremely needed to give an overview of the rapidly emerging area and facilitate research related to BPAPs. This review, containing over 226 references, covers the progress made in the chemical synthesis-based structure modifications, SARs and the mechanism of action of BPAPs in vivo and vitro. The most relevant articles will focus on the discovery of lead compounds via synthetic modifications and the important BPAPs for which the direct targets have been deciphered. From this review, several key points of the SARs and mode of actions of this novel class of compounds have been summarized. The perspective and future direction of the research on BPAPs are concluded. This review would be helpful to get a better grasp of medicinal research of BPAPs and become a compelling guide for chemists dedicated to the synthesis of these compounds.
Collapse
|
13
|
Sui H, Tan H, Fu J, Song Q, Jia R, Han L, Lv Y, Zhang H, Zheng D, Dong L, Wang S, Li Q, Xu H. The active fraction of Garcinia yunnanensis suppresses the progression of colorectal carcinoma by interfering with tumorassociated macrophage-associated M2 macrophage polarization in vivo and in vitro. FASEB J 2020; 34:7387-7403. [PMID: 32283574 DOI: 10.1096/fj.201903011r] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/27/2020] [Accepted: 03/15/2020] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) is the third most common solid tumor worldwide and has shown resistance to several immunotherapies, particularly immune checkpoint blockade therapy, which is effective in many other types of cancer. Our previous studies indicated that the active fraction of Garcinia yunnanensis (YTE-17), had potent anticancer activities by regulating multiple signaling pathways. However, knowledge regarding the mechanism and effect of YTE-17 in the prevention of CRC is limited. This study tested the effects of YTE-17 on colon cancer development in vivo by using two murine models: the carcigenic azoxymethane/dextran sulfate sodium (AOM/DSS)-induced CRC model and a genetically induced model using ApcMin/+ mice. Here, the tumor load, tumor number, histology, and even some oncogenes were used to evaluate the effect of YTE-17. The intragastric administration of YTE-17 for 12 weeks significantly decreased CRC incidence, tumor number and size, immunity, and some tumor-associated macrophage (TAM) markers, including CD206, Arg-1, IL-10, and TGF-β. Importantly, the macrophages depletion by clodronate (CEL) also played a role in reducing the tumor burden and inhibiting tumor development, which were not affected by YTE-17 in the ApcMin/+ mice. Moreover, the YTE-17 treatment attenuated CRC cell growth in a co-culture system in the presence of macrophages. Consistently, YTE-17 effectively reduced the tumor burden and macrophage infiltration and enhanced immunity in the AOM/DSS and ApcMin/+ colon tumor models. Altogether, we demonstrate that macrophages in the microenvironment may contribute to the development and progression of CRC cells and propose YTE-17 as a new potential drug option for the treatment of CRC.
Collapse
Affiliation(s)
- Hua Sui
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongsheng Tan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Fu
- Department of Traditional Chinese Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Song
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ru Jia
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Han
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Lv
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liping Dong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Songpo Wang
- Department of Traditional Chinese Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Lu WJ, Xu WJ, Zhang YQ, Li YR, Zhou X, Li QJ, Zhang H, Luo J, Kong LY. Hyperforones A–C, benzoyl-migrated [5.3.1]-type polycyclic polyprenylated acylphloroglucinols from Hypericum forrestii. Org Chem Front 2020. [DOI: 10.1039/d0qo00152j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Unprecedented benzoyl-migrated polycyclic polyprenylated acylphloroglucinols with a unique C-1 H-substituted bicyclo[5.3.1]hendecane framework, hyperforones A–C (1–3), were isolated from Hypericum forrestii.
Collapse
Affiliation(s)
- Wei-Jia Lu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Wen-Jun Xu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Yan-Qiu Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Yi-Ran Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Xin Zhou
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Qi-Ji Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Hao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Jun Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| |
Collapse
|
15
|
Xu WJ, Tang PF, Lu WJ, Zhang YQ, Wang XB, Zhang H, Luo J, Kong LY. Hyperberins A and B, Type B Polycyclic Polyprenylated Acylphloroglucinols with Bicyclo[5.3.1]hendecane Core from Hypericum beanii. Org Lett 2019; 21:8558-8562. [DOI: 10.1021/acs.orglett.9b03098] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Wen-Jun Xu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Peng-Fei Tang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Wei-Jia Lu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Yan-Qiu Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Xiao-Bing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Hao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Jun Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| |
Collapse
|
16
|
Huang XM, Yang ZJ, Xie Q, Zhang ZK, Zhang H, Ma JY. Natural products for treating colorectal cancer: A mechanistic review. Biomed Pharmacother 2019; 117:109142. [DOI: 10.1016/j.biopha.2019.109142] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 12/17/2022] Open
|
17
|
Wang YL, Ye YS, Fu WW, Wu R, Xiang Q, Lao YZ, Yang JL, Tan HS, Yang XW, Yang BC, Xu HX, Xu G. Garsubelone A, the First Dimeric Polycyclic Polyprenylated Acylphloroglucinols with Complicated Heptacyclic Architecture from Garcinia subelliptica. Org Lett 2019; 21:1534-1537. [PMID: 30775925 DOI: 10.1021/acs.orglett.9b00388] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Garsubelone A (1), the first dimeric polycyclic polyprenylated acylphloroglucinols type metabolite featuring a complicated 6/6/6/6/6/6/6 heptacyclic architecture containing 10 stereogenic centers, was isolated from Garcinia subelliptica. Biogenetically, this compound was constructed by the plausible monomeric precursor, garsubelone B (2) and secohyperforin, via a key Diels-Alder cycloaddition to form an unique 2-oxabicyclo[3.3.1]nonane core. Their structures and absolute configurations were determined by comprehensive spectroscopic and X-ray diffraction techniques. The cytotoxic activities of these isolates were also evaluated.
Collapse
Affiliation(s)
- Yong-Ling Wang
- School of Pharmacy , Shanghai University of Traditional Chinese Medicine , and Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai , 201203 , People's Republic of China
| | - Yan-Song Ye
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany , Chinese Academy of Sciences , and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201 , People's Republic of China.,University of Chinese Academy of Sciences , Beijing , 100049 , People's Republic of China
| | - Wen-Wei Fu
- School of Pharmacy , Shanghai University of Traditional Chinese Medicine , and Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai , 201203 , People's Republic of China
| | - Rong Wu
- School of Pharmacy , Shanghai University of Traditional Chinese Medicine , and Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai , 201203 , People's Republic of China
| | - Qian Xiang
- School of Pharmacy , Shanghai University of Traditional Chinese Medicine , and Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai , 201203 , People's Republic of China
| | - Yuan-Zhi Lao
- School of Pharmacy , Shanghai University of Traditional Chinese Medicine , and Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai , 201203 , People's Republic of China
| | - Jin-Ling Yang
- School of Pharmacy , Shanghai University of Traditional Chinese Medicine , and Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai , 201203 , People's Republic of China
| | - Hong-Sheng Tan
- School of Pharmacy , Shanghai University of Traditional Chinese Medicine , and Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai , 201203 , People's Republic of China
| | - Xing-Wei Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany , Chinese Academy of Sciences , and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201 , People's Republic of China
| | - Bai-Can Yang
- School of Pharmacy , Shanghai University of Traditional Chinese Medicine , and Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai , 201203 , People's Republic of China
| | - Hong-Xi Xu
- School of Pharmacy , Shanghai University of Traditional Chinese Medicine , and Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai , 201203 , People's Republic of China
| | - Gang Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany , Chinese Academy of Sciences , and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201 , People's Republic of China
| |
Collapse
|
18
|
Yang XW, Grossman RB, Xu G. Research Progress of Polycyclic Polyprenylated Acylphloroglucinols. Chem Rev 2018; 118:3508-3558. [PMID: 29461053 DOI: 10.1021/acs.chemrev.7b00551] [Citation(s) in RCA: 269] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Polycyclic polyprenylated acylphloroglucinols (PPAPs) are a class of hybrid natural products sharing the mevalonate/methylerythritol phosphate and polyketide biosynthetic pathways and showing considerable structure and bioactivity diversity. This review discusses the progress of research into the chemistry and biological activity of 421 natural PPAPs in the past 11 years as well as in-depth studies of biological activities and total synthesis of some PPAPs isolated before 2006. We created an online database of all PPAPs known to date at http://www.chem.uky.edu/research/grossman/PPAPs . Two subclasses of biosynthetically related metabolites, spirocyclic PPAPs with octahydrospiro[cyclohexan-1,5'-indene]-2,4,6-trione core and complicated PPAPs produced by intramolecular [4 + 2] cycloadditions of MPAPs, are brought into the PPAP family. Some PPAPs' relative or absolute configurations are reassigned or critically discussed, and the confusing trivial names in PPAPs investigations are clarified. Pharmacologic studies have revealed a new molecular mechanism whereby hyperforin and its derivatives regulate neurotransmitter levels by activating TRPC6 as well as the antitumor mechanism of garcinol and its analogues. The antineoplastic potential of some type B PPAPs such as oblongifolin C and guttiferone K has increased significantly. As a result of the recent appearances of innovative synthetic methods and strategies, the total syntheses of 22 natural PPAPs including hyperforin, garcinol, and plukenetione A have been accomplished.
Collapse
Affiliation(s)
- Xing-Wei Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry , Kunming 650201 , People's Republic of China
| | - Robert B Grossman
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506-0055 , United States
| | - Gang Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry , Kunming 650201 , People's Republic of China
| |
Collapse
|
19
|
Chen X, Zhang L, Ding S, Lei Q, Fang W. Cisplatin combination drugs induce autophagy in HeLa cells and interact with HSA via electrostatic binding affinity. RSC Adv 2017. [DOI: 10.1039/c7ra00056a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cisplatin combination drugs induce autophagy in HeLa cells and interact with HSAviaelectrostatic binding affinity.
Collapse
Affiliation(s)
- Xuerui Chen
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - Li Zhang
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - Shiping Ding
- School of Medicine
- Zhejiang University
- Hangzhou 310058
- China
| | - Qunfang Lei
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - Wenjun Fang
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|