1
|
Chen C, Wan M, Peng X, Zhang Q, Liu Y. GPR37-centered ceRNA network contributes to metastatic potential in lung adenocarcinoma: Evidence from high-throughput sequencing. Transl Oncol 2024; 39:101819. [PMID: 37979558 PMCID: PMC10656721 DOI: 10.1016/j.tranon.2023.101819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/20/2023] Open
Abstract
The competing endogenous RNA (ceRNA)-based profiling has been extensively studied in carcinogenesis of lung adenocarcinoma (LUAD), while it has seldomly been applied to investigate the metastatic potential of LUAD. This study aims to examine the function and in-depth mechanism of GPR37-centered ceRNA network in LUAD. Cancer tissues and adjacent normal tissues from three LUAD patients were collected for high-throughput sequencing to screen for differentially expressed genes. A PPI network was constructed to screen the key gene GPR37, followed by analysis for the functions and pathways. Clinical data from LUAD patients were integrated with gene expression data in TCGA-LUAD dataset for survival analysis. Based on the miRNAs targeting_GPR37 and lncRNAs targeting_miRNAs, a lncRNA-miRNA-mRNA ceRNA network was established. GPR37 was up-regulated in LUAD tissue samples, and it may be a key gene involved in LUAD progression. GPR37 in LUAD was mainly enriched in the mitosis-related pathways. High GPR37 expression corresponded to poor prognosis in LUAD patients. Meanwhile, GPR37 could be used as an independent factor to predict the prognosis in LUAD patients. LncRNA DLEU1, up-regulated in LUAD tissue samples, may competitively bind to miR-4458 to up-regulate the expression of the miR-4458 downstream target GPR37. DLEU1 was associated with poor prognosis and tumor metastasis in LUAD patients. Altogether, our findings reveal a novel ceRNA network of DLEU1/miR-4458/GPR37 in LUAD growth and metastasis.
Collapse
Affiliation(s)
- Chuanhui Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Mengzhi Wan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Xiong Peng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Qing Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Yu Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
2
|
Liu J, Yang CQ, Chen Q, Yu TY, Zhang SL, Guo WH, Luo LH, Zhao G, Yin DC, Zhang CY. MiR-4458-loaded gelatin nanospheres target COL11A1 for DDR2/SRC signaling pathway inactivation to suppress the progression of estrogen receptor-positive breast cancer. Biomater Sci 2022; 10:4596-4611. [PMID: 35792605 DOI: 10.1039/d2bm00543c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
RNA interference is a promising way to treat cancer and the construction of a stable drug delivery system is critically important for its application. Gelatin nanospheres (GNs) comprise a biodegradable drug vehicle with excellent biocompatibility, but there are limited studies on its delivery and role in the stabilization of miRNA and siRNA. Breast cancer is the most diagnosed type of female cancer worldwide. Abnormal miRNA expression is closely related to the occurrence and progression of estrogen receptor-positive (ER+) breast cancer. In this study, miR-4458 was upregulated in ER+ breast cancer and could inhibit MCF-7 cell viability, colony formation, migration, and invasion. Collagen type XI alpha 1 (COL11A1) was identified as a directly interacting protein of miR-4458 and an important component of the extracellular matrix. High COL11A1 expression was positively correlated with poor prognosis, lower overall survival, disease-free survival, and a late tumor-node-metastasis stage. COL11A1 knockdown could inhibit MCF-7 cell migration and invasion. GNs were used to load a miR-4458 mimic or COL11A1 siRNA (si-COL11A1) to achieve sustained and controlled release in xenograft nude mice. Their tumor volume was decreased, tumor cell apoptosis was promoted, and hepatic metastasis was significantly inhibited. Moreover, the DDR2/SRC signaling pathway was inactivated after transfection with the miR-4458 mimic and si-COL11A1. In conclusion, GNs can be potentially used to deliver siRNA or miRNA, and miR-4458 and COL11A1 can be possible targets for ER+ breast cancer treatment.
Collapse
Affiliation(s)
- Jie Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
| | - Chang-Qing Yang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
| | - Qiang Chen
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Tong-Yao Yu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
| | - Shi-Long Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
| | - Wei-Hong Guo
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
| | - Li-Heng Luo
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
| | - Gang Zhao
- The First Hospital of Jilin University, 130021, Changchun, China.
| | - Da-Chuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
| | - Chen-Yan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
| |
Collapse
|
3
|
MicroRNA and cyclooxygenase-2 in breast cancer. Clin Chim Acta 2021; 522:36-44. [PMID: 34389281 DOI: 10.1016/j.cca.2021.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/30/2021] [Accepted: 08/07/2021] [Indexed: 12/24/2022]
Abstract
Cancer remains a major public health problem worldwide and the latest statistics show that breast cancer (BC) is among the most frequent in women. MicroRNAs (miRNAs; miRs) and cyclooxygenase-2 (COX-2) are new diagnostic and therapeutic biomarkers for monitoring BC. COX-2 is a prominent tumor-associated inflammatory factor highly expressed in human tumor cells, including BC. Expression of COX-2 contributes to tumor growth, metastasis and recurrence. MiRs are a group of short (~22 nucleotides), noncoding regulatory RNAs that downregulate gene expression post-transcriptionally and play vital roles in regulating cancer development and progression. Interestingly, there are a group of miRNAs differentially expressed in breast tumor tissue. Understanding the pathway linking miRNAs to COX-2 can provide novel insight for suppressing COX-2 expression via gene silencing thereby leading to the development of selective miRNA inhibitors. Further research can also reveal key intermediate players and their potential as therapeutic targets. Given the association between different miRNAs and COX-2 expression in BC, this review presents a comprehensive overview of the current literature concerning how miRNAs and COX-2 signaling interact in BC progression.
Collapse
|
4
|
Hsa-miR-330-5p Aggravates Thyroid Carcinoma via Targeting FOXE1. JOURNAL OF ONCOLOGY 2021; 2021:1070365. [PMID: 34306074 PMCID: PMC8272668 DOI: 10.1155/2021/1070365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/18/2021] [Indexed: 11/23/2022]
Abstract
Background Thyroid carcinoma (TC) is one of the frequent endocrine malignancies, and growing evidence suggests that aberrant microRNA (miRNA) expression contributes to TC development and progression. Nevertheless, the function of miR-330-5p in the progression of TC remains unknown. Methods The expression levels of miR-330-5 in patients with thyroid carcinoma and healthy controls were detected, and their potential diagnostic and prognostic values were analyzed. Results In this study, we firstly found that miR-330-5p expression was markedly upregulated in TC tissue and cell lines. Functionally, the downregulation of miR-330-5p suppressed TC cell proliferation, migration, and invasion. Further studies revealed that miR-330-5p negatively regulated the expression of forkhead box E1 (FOXE1). More importantly, the results of rescue experiments suggested that FOXE1 overexpression reduced the positive effects of miR-330-5p overexpression in TPC-1 and K-1 cells. Conclusions This work revealed that miR-330-5p facilitated the TC progression through targeting FOXE1, which may offer novel therapeutic options for TC.
Collapse
|
5
|
Fang Y, Long F. Circular RNA circ_0000337 contributes to osteosarcoma via the miR-4458/BACH1 pathway. Cancer Biomark 2021; 28:411-419. [PMID: 32390598 DOI: 10.3233/cbm-190647] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND As the most prevalent primary bone malignancy in children and adolescents, osteosarcoma (OS) has attracted increasing attention. The role of circRNAs in OS has been elucidated in some reports, but many circRNAs remain unexplored. Circ_0000337 has only been revealed as an oncogenic circRNA in esophageal squamous cell carcinoma. Yet whether circ_0000337 exerts any specific function in OS has not been unmasked. METHODS RT-qPCR was used for measurement of circ_0000337, miR-4458 and BACH1 mRNA levels. Western blot was conducted to detect BACH1 protein. CCK-8 assay, Casepase-3 activity assay and transwell assay were utilized to assess changes on cellular processes. Cytoplasmic/nuclear fractionation assay was conducted for circ_0000337 localization in OS cells. Luciferase reporter assay and RIP assay were performed to validate the interaction between miR-4458 and circ_0000337 or BACH1. RESULTS Circ_0000337 expression was upregulated in OS cell lines and it silence hindered OS cell proliferation and migration. MiR-4458 was downregulated in OS cells and miR-4458 upregulation suppressed OS cell growth and migration. Importantly, circ_0000337 sponged miR-4458 to elevate BACH1 expression, thus facilitating OS development. CONCLUSIONS This research for the first time documented that circ_0000337 promoted OS progression via sponging miR-4458 and thus elevating BACH1 expression, offering rational therapeutic target for OS.
Collapse
Affiliation(s)
- Yuan Fang
- Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Fang Long
- Department of Research and Teaching Department, Hanzhong Central Hospital, Hanzhong, Shaanxi, China
| |
Collapse
|
6
|
Liu P, Guo Y, He Y, Tang Y. Radix Tetrastigma Hemsleyani Flavone Inhibits the Occurrence and Development of Ovarian Cancer Cells by Regulating miRNA-4458 Expression. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ovarian cancer (OC) has been identified to have the highest mortality rate among gynecological tumors. Most patients are diagnosed at an advanced stage because of its asymptomatic nature and a lack of effective early diagnostic methods. Advanced-stage cancer cells are prone to metastasis
which reduces the efficacy of standard therapies. Thus, we evaluated the effect of different concentrations of radix tetrastigma hemsleyani flavone (RTHF) on SKOV3 OC cells. Our findings indicated a significant inhibition in cell proliferation, migration, and invasion. RTHF treatment resulted
in a significant increase in p21 protein expression, whereas the expression of cyclin D1, MMP-2, and MMP-9 has reportedly decreased. In addition, the expression of miRNA-4458 expression increased significantly in a dose-dependent manner. Co-transfection of miRNA-4458 mimics into SKOV3 cells
revealed that overexpressed miRNA-4458 can increase SKOV3 cell proliferation and p21 protein expression. Reduced cell migration and invasion were also observed along with decreased expression of cyclin D1, MMP-2, and MMP-9. Furthermore, inhibition of miRNA-4458 expression reversed the RTHF
effect on SKOV3 cell proliferation, migration, invasion, and cyclin D1, MMP-2, and MMP-9 expression. These results indicate that RTHF reduces the proliferation, migration, and invasion of OC cells, and the underlying mechanism is associated with the upregulation of miRNA-4458 expression. These
findings provide a new treatment strategy for advanced OC.
Collapse
Affiliation(s)
- Ping Liu
- Department of Obstetrics and Gynecology, The Affiliated Hospital North China University of Science and Technology, Tangshan 063000, Hebei, PR China
| | - Yanjuan Guo
- Department of Obstetrics and Gynecology, The Affiliated Hospital North China University of Science and Technology, Tangshan 063000, Hebei, PR China
| | - Yanfang He
- Department of Obstetrics and Gynecology, The Affiliated Hospital North China University of Science and Technology, Tangshan 063000, Hebei, PR China
| | - Yajuan Tang
- Department of Obstetrics and Gynecology, The Affiliated Hospital North China University of Science and Technology, Tangshan 063000, Hebei, PR China
| |
Collapse
|
7
|
Long Z, Wang Y. miR-195-5p Suppresses Lung Cancer Cell Proliferation, Migration, and Invasion Via FOXK1. Technol Cancer Res Treat 2021; 19:1533033820922587. [PMID: 32406336 PMCID: PMC7238777 DOI: 10.1177/1533033820922587] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lung cancer remains one of the leading causes of cancer deaths around the world. Previous studies have shown that microRNAs have pivotal functions in tumorigenesis including lung cancer. It is reported that microRNA-195-5p acts as a tumor suppressor role in human cancers. However, the function and molecular mechanism of microRNA-195-5p in lung cancer progression is still unclear. In the present study, the results showed that the expression of microRNA-195-5p was downregulated both in lung cancer tissues and in lung cancer cell lines. Enhanced expression of microRNA-195-5p inhibited cell proliferation, migration, and invasion in lung cancer cells. Furthermore, Forkhead box k1 was identified as the direct target of microRNA-195-5p. Forkhead box k1 overexpression could restore the repressed cell proliferation and metastasis caused by microRNA-195-5p overexpression. Our results demonstrated that a functional mechanism of microRNA-195-5p in regulating lung cancer. It indicates that microRNA-195-5p may regulate lung cancer growth and metastasis through the regulation of Forkhead box k1, highlighting the potential application for the treatment of lung cancer in the future.
Collapse
Affiliation(s)
- Zhiqiang Long
- Department of Cerebral Surgery, The First Affiliated Hospital of Peking University, Beijing, China
| | | |
Collapse
|
8
|
Pang J, Ye L, Zhao D, Zhao D, Chen Q. Circular RNA PRMT5 confers cisplatin-resistance via miR-4458/REV3L axis in non-small-cell lung cancer. Cell Biol Int 2020; 44:2416-2426. [PMID: 32808744 DOI: 10.1002/cbin.11449] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 12/24/2022]
Abstract
Multifactor and multistep processes were elucidated to participate in the progression of non-small-cell lung cancer (NSCLC). Circular RNA 0031250 (circ-PRMT5) was a vital factor in NSCLC. However, the role of circ-PRMT5 in cisplatin (DDP)-resistance needed to be further highlighted. Expression profiles of circ-PRMT5, microRNA (miR)-4458, and EV3-like DNA-directed polymerase ζ catalytic subunit (REV3L) were detected using quantitative real-time polymerase chain reaction. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry, and transwell assays were performed to determine the half-maximal inhibitory concentration of DDP, cell viability, apoptosis, and invasion in vitro. Besides, the protein levels of REV3L and indicated proteins were examined by adopting western blot. Dual-luciferase reporter assay was performed to analyze the interaction between miR-4458 and circ-PRMT5 or REV3L. The functional role of circ-PRMT5 was explored using a xenograft tumor model. Levels of circ-PRMT5 and REV3L were markedly increased, while miR-4458 was downregulated in resistant tissues and cells. Knockdown of circ-PRMT5 enhanced cell apoptosis, DDP-sensitivity, and declined metastasis in NSCLC with DDP resistance. Besides, miR-4458 inhibition or REV3L upregulation could revert circ-PRMT5 absence-mediated effect on DDP-sensitivity in vitro. Mechanically, circ-PRMT5 was a sponge of miR-4458 to regulate REV3L. Importantly, circ-PRMT5 silencing could interact with DDP treatment expedite the decrease of tumor growth in vivo. Circ-PRMT5 promoted DDP resistance via REV3L by sponging miR-4458 in NSCLC, thus providing a novel therapeutic strategy for patients with NSCLC.
Collapse
Affiliation(s)
- Jun Pang
- Department of Geriatrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Anesthesiology, The Second Clinical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, China.,Institute of Anorectal Diseases, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Liwen Ye
- Department of Geriatrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Zhao
- Medical Examination Center, The Second Clinical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, China
| | - Ding Zhao
- Emergency Department, The Second Clinical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, China
| | - Qingwei Chen
- Department of Geriatrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Tang M, Zhou J, You L, Cui Z, Zhang H. LIN28B/IRS1 axis is targeted by miR-30a-5p and promotes tumor growth in colorectal cancer. J Cell Biochem 2020; 121:3720-3729. [PMID: 31713927 DOI: 10.1002/jcb.29529] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/10/2019] [Indexed: 01/24/2023]
Abstract
Insulin receptor substrate 1 (IRS1) is a potential oncogene that has been implicated in several malignant tumors. However, the regulatory mechanism of IRS1 remains to be investigated. The aim of our current study is to unveil the mechanism by which IRS1 exerts functions in tumorigenesis of colorectal cancer (CRC). The expression level of IRS1 was found to be higher in CRC cells in comparison with the normal cell. To determine the role of IRS1 in regulating CRC cellular processes, loss-of-function assays were designed and carried out in two CRC cell lines. Both in vitro and in vivo functional assays indicated that silencing of IRS1 suppressed CRC cell survival. Based on bioinformatics prediction and mechanism experiments, IRS1 was identified as a downstream target of miR-30a-5p. Furthermore, RNA-binding protein lin-28 homolog B (LIN28B) was determined to be a stabilizer of IRS1 messenger RNA. More importantly, LIN28B also acted as a target of miR-30a-5p.Through rescue assays, we proved that LIN28B-stablized IRS1 mediated miR-30a-5p-mediated CRC cell growth. In conclusion, this study revealed that LIN28B and LIN28B-stablized IRS1 promoted CRC cell growth by cooperating with miR-30a-5p.
Collapse
Affiliation(s)
- Mei Tang
- Department of General Internal Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jing Zhou
- Department of Gastrointestinal Surgery, Peking University People's Hospital, Beijing, China
| | - Lirui You
- Department of General Internal Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Zhirong Cui
- Department of Gastrointestinal Surgery, Peking University People's Hospital, Beijing, China
| | - Hui Zhang
- Department of Gastrointestinal Surgery, Peking University People's Hospital, Beijing, China
| |
Collapse
|
10
|
Zhang Y, Shi K, Liu H, Chen W, Luo Y, Wei X, Wu Z. miR-4458 inhibits the epithelial-mesenchymal transition of hepatocellular carcinoma cells by suppressing the TGF-β signaling pathway via targeting TGFBR1. Acta Biochim Biophys Sin (Shanghai) 2020; 52:554-562. [PMID: 32324847 DOI: 10.1093/abbs/gmaa029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal cancers in the world. MicroRNAs play a pivotal role in the progression of various cancers. To date, very little attention has been paid to miR-4458. Therefore, the aim of our study was to explore the function and underlying molecular mechanism of miR-4458 in HCC. We found that the expression of miR-4458 was reduced in HCC tissues and cell lines. Forced overexpression of miR-4458 inhibited the migration, invasion, and epithelial-mesenchymal transition (EMT) of HCC cells, while downregulation of miR-4458 promoted the aggressive phenotype. Furthermore, transforming growth factor beta receptor 1 (TGFBR1), the modulator of the TGF-β signaling pathway, was verified to be a novel target gene of miR-4458 by dual-luciferase reporter gene assay. Upregulated miR-4458 dramatically abolished TGFBR1 and p-Smad2/3 expression, thus blocking the TGF-β signaling pathway. Moreover, restoration of TGFBR1 partially rescued the miR-4458-mediated suppressive effect on the migration, invasion, and EMT and reactivated the TGF-β signaling pathway in HCC cells. In summary, our findings first demonstrated a mechanism of miR-4458 in HCC cell migration, invasion, and EMT by regulating the TGF-β signaling pathway via directly targeting TGFBR1.
Collapse
Affiliation(s)
- Yuke Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Kun Shi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Hang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Wei Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Yunhai Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Xufu Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Zhongjun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| |
Collapse
|
11
|
Wu M, Tang Y, Hu G, Yang C, Ye K, Liu X. miR-4458 directly targets IGF1R to inhibit cell proliferation and promote apoptosis in hemangioma. Exp Ther Med 2020; 19:3017-3023. [PMID: 32256788 PMCID: PMC7086214 DOI: 10.3892/etm.2020.8546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
Hemangiomas (HAs) are benign neoplasms of the vasculature. MicroRNA-4458 (miR-4458) has been reported to function as a tumor suppressor in multiple malignancies, but its biological function in HAs remains unknown. In the present study, the potential role of miR-4458 in HA-derived endothelial cells (HDECs) was investigated. Firstly, reverse-transcription-quantitative PCR analysis was used to confirm the expression of miR-4458 in HDECs following transfection with miR-4458 mimics or inhibitor. Subsequently, MTT and EdU assays were performed and subsequently determined that miR-4458 overexpression significantly inhibited proliferation, and knockdown promoted cell proliferation in HDECs. Flow cytometry analysis revealed that miR-4458 overexpression induced cell cycle arrest, whereas knockdown reversed G0/G1 phase arrest and apoptosis. Furthermore, insulin-like growth factor 1 receptor (IGF1R) was identified as a target of miR-4458. IGF1R knockdown enhanced the effects of miR-4458 on cell proliferation, cell cycle G0/G1 phase arrest and apoptosis in HDECs. Taken together, the results revealed that miR-4458 targeting of IGF1R may serve as a novel therapeutic strategy for treating patients with HAs.
Collapse
Affiliation(s)
- Maosong Wu
- Department of General Surgery, The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| | - Yongsheng Tang
- Department of General Surgery, The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| | - Gang Hu
- Department of General Surgery, The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| | - Chunjian Yang
- Department of General Surgery, The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| | - Kaichuang Ye
- Department of Vascular Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 230011, P.R. China
| | - Xianluo Liu
- Department of General Surgery, The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| |
Collapse
|
12
|
Dong S, Liang J, Zhai W, Yu Z. Common and distinct features of potentially predictive biomarkers in small cell lung carcinoma and large cell neuroendocrine carcinoma of the lung by systematic and integrated analysis. Mol Genet Genomic Med 2020; 8:e1126. [PMID: 31981472 PMCID: PMC7057089 DOI: 10.1002/mgg3.1126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/10/2019] [Accepted: 01/02/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Large-cell neuroendocrine carcinoma of the lung (LCNEC) and small-cell lung carcinoma (SCLC) are neuroendocrine neoplasms. However, the underlying mechanisms of common and distinct genetic characteristics between LCNEC and SCLC are currently unclear. Herein, protein expression profiles and possible interactions with miRNAs were provided by integrated bioinformatics analysis, in order to explore core genes associated with tumorigenesis and prognosis in SCLC and LCNEC. METHODS GSE1037 gene expression profiles were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) in LCNEC and SCLC, as compared with normal lung tissues, were selected using the GEO2R online analyzer and Venn diagram software. Gene ontology (GO) analysis was performed using Database for Annotation, Visualization and Integrated Discovery. The biological pathway analysis was performed using the FunRich database. Subsequently, a protein-protein interaction (PPI) network of DEGs was generated using Search Tool for the Retrieval of Interacting Genes and displayed via Cytoscape software. The PPI network was analyzed by the Molecular Complex Detection app from Cytoscape, and 16 upregulated hub genes were selected. The Oncomine database was used to detect expression patterns of hub genes for validation. Furthermore, the biological pathways of these 16 hub genes were re-analyzed, and potential interactions between these genes and miRNAs were explored via FunRich. RESULTS A total of 384 DEGs were identified. A Venn diagram determined 88 common DEGs. The PPI network was constructed with 48 nodes and 221 protein pairs. Among them, 16 hub genes were extracted, 14 of which were upregulated in SCLC samples, as compared with normal lung specimens, and 10 were correlated with the cell cycle pathway. Furthermore, 57 target miRNAs for 8 hub genes were identified, among which 31 miRNAs were correlated with the progression of carcinoma, drug-resistance, radio-sensitivity, or autophagy in lung cancer. CONCLUSION This study provided effective biomarkers and novel therapeutic targets for diagnosis and prognosis of SCLC and LCNEC.
Collapse
Affiliation(s)
- Shenghua Dong
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jun Liang
- Department of Oncology, Peking University International Hospital, Beijing, China
| | - Wenxin Zhai
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zhuang Yu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
13
|
Yang M, Zhang J, Jin X, Li C, Zhou G, Feng J. NRF1-enhanced miR-4458 alleviates cardiac hypertrophy through releasing TTP-inhibited TFAM. In Vitro Cell Dev Biol Anim 2020; 56:120-128. [PMID: 31942725 DOI: 10.1007/s11626-019-00419-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/04/2019] [Indexed: 01/18/2023]
Abstract
Growing evidence suggests the crucial role of microRNAs (miRNAs) in regulating basic cell functions, and therefore participating in the pathologic development of diverse human diseases, including cardiac hypertrophy. Herein, we explained that miR-4458 was distinctly stimulated in Ang II-stimulated hypertrophic H9c2 cells. Intriguingly, miR-4458 inhibition led to exacerbated hypertrophic phenotypes in Ang II-treated H9c2 cells. In addition, the compensatory upregulation of miR-4458 in Ang II-treated H9c2 cells was ascribed to its transcriptional enhancement by NRF1, a transcription factor previously identified to be activated in early cardiac hypertrophy. Moreover, we discovered that miR-4458 served as a negative modulator in cardiac hypertrophy by prompting TFAM, a well-recognized myocardial protective protein. TTP, a RBP that always leads to degradation of recognized mRNAs, was predicted to interact with both miR-4458 and TFAM mRNA. Importantly, we verified that miR-4458 facilitated TFAM expression in cardiomyocytes by directly targeting TTP and releasing TTP-destabilized TFAM mRNA. On the whole, these findings demonstrated that NRF1-induced miR-4458 boosted TFAM via targeting TTP to dampen the exacerbation of cardiac hypertrophy, which indicates miR-4458 as a promising biomarker for the cardiac hypertrophy treatment.
Collapse
Affiliation(s)
- Mengsi Yang
- Department of Cardiology, The Second People's Hospital in Hefei City, Hefei, 241000, China
| | - Jing Zhang
- Department of Cardiology, The Second People's Hospital in Hefei City, Hefei, 241000, China
| | - Xiaoqin Jin
- Department of Cardiology, The Second People's Hospital in Hefei City, Hefei, 241000, China
| | - Chao Li
- Department of Cardiology, The Second People's Hospital in Hefei City, Hefei, 241000, China
| | - Gaoliang Zhou
- Department of Cardiology, The Second People's Hospital in Hefei City, Hefei, 241000, China
| | - Jun Feng
- Department of Cardiology, The Second People's Hospital in Hefei City, Hefei, 241000, China.
| |
Collapse
|
14
|
Long non-coding RNA CDKN2B-AS1 promotes osteosarcoma by increasing the expression of MAP3K3 via sponging miR-4458. In Vitro Cell Dev Biol Anim 2020; 56:24-33. [PMID: 31950433 DOI: 10.1007/s11626-019-00415-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/18/2019] [Indexed: 12/20/2022]
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor worldwide. Recently, several studies have shown that the long non-coding RNA (lncRNA) CDKN2B-AS1 plays a critical role in several cancers. However, the function and underlying mechanism of CDKN2B-AS1 in OS development remains elusive. In this study, we firstly assessed the expression of CDKN2B-AS1 in OS tissues and cells, showing that CDKN2B-AS1 expression were remarkably upregulated in OS tissues and cells. Moreover, CDKN2B-AS1 knockdown suppressed cell proliferation, migration, and EMT progress in OS. Interestingly, we found and proved that CDKN2B-AS1 could sponge miR-4458 in OS cells. Moreover, MAP3K3 was certified as a downstream target of miR-4458 in OS. Besides, MAP3K3 was negatively regulated by miR-4458 and positively regulated by CDKN2B-AS1. More importantly, overexpression of MAP3K3 could partly counteract the effect of CDKN2B-AS1 suppression on the biological behavior of OS cells. Also, the in vivo experiments further testified that CDKN2B-AS1 accelerated tumor growth in OS. Our results suggested that CDKN2B-AS1 facilitated OS progression by sponging miR-4458 to enhance MAP3K3 expression, which provides a novel insight into improving diagnostic and therapeutic strategies for patients with OS.
Collapse
|
15
|
Wu J, Miao J, Ding Y, Zhang Y, Huang X, Zhou X, Tang R. MiR-4458 inhibits breast cancer cell growth, migration, and invasiveness by targeting CPSF4. Biochem Cell Biol 2019; 97:722-730. [PMID: 30970220 DOI: 10.1139/bcb-2019-0008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Numerous studies have reported that CPSF4 is over-expressed in a large percentage of human lung cancers, and CPSF4 has been identified as a potential oncogene of human lung tumor. Downregulation of CPSF4 inhibits the proliferation and promotes the apoptosis of lung adenocarcinoma cells. A previous study by our group also found overexpression of CPSF4 in breast cancer (BC), and was closely associated with a poor prognosis for the patient. This study investigates microRNAs (miRNAs) that target CPSF4 to modulate BC cell proliferation. We found that miR-4458 was noticeably reduced in BC tissues and cells. Using a miR-4458 mimic, we found that cell proliferation, migration, and invasiveness were suppressed by miR-4458 overexpression, and were enhanced by reducing the expression of miR-4458. Moreover, the results from bioinformatics analyses suggest a putative target site in the CPSF4 3'-UTR. Furthermore, using luciferase reporter assays and Western blotting, we verified that miR-4458 directly targets the 3'-UTR of CPSF4 and downregulates COX-2 and h-TERT, which are downstream target genes of CPSF4. Additionally, PI3K/AKT and ERK were shown to be inhibited by miR-4458 overexpression in BC cells. Moreover, miR-4458 suppresses BC cell growth in vivo. Consequently, these results suggest that the miR-4458-CPSF4-COX-2-hTERT axis might serve as a potential target for the treatment of BC patients.
Collapse
Affiliation(s)
- Jianrong Wu
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P.R. China
| | - Juan Miao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ye Ding
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yayun Zhang
- Institute of Cancer Stem Cell & First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xiaohao Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xue Zhou
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Ranran Tang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| |
Collapse
|
16
|
LncRNA KCNQ1OT1 acting as a ceRNA for miR-4458 enhances osteosarcoma progression by regulating CCND2 expression. In Vitro Cell Dev Biol Anim 2019; 55:694-702. [PMID: 31392505 DOI: 10.1007/s11626-019-00386-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/02/2019] [Indexed: 12/19/2022]
Abstract
Osteosarcoma is prevalent worldwide and characterized as a challenging health burden. It has been increasingly indicated that long non-coding RNAs (lncRNAs) are significant in pathological processes of numerous cancers, exerting oncogenic or tumor-suppressive function. However, the participation of KCNQ1OT1 in osteosarcoma has not been elaborated. In this study, we focus on interrogating the function of KCNQ1OT1 and its underlying mechanism in osteosarcoma. Our work demonstrated the upregulation of KCNQ1OT1 in osteosarcoma through qRT-PCR. Besides, loss of function assay (CCK-8, transwell migration) indicated KCNQ1OT1 promoted cell proliferation, migration in osteosarcoma. Mechanically, KCNQ1OT1 acting as sponge for miR-4458 antagonized its tumor-suppressive impact on CCND2 expression. The anti-apoptotic nature of KCNQ1OT1 was also unveiled via caspase-3 activity assay. Overexpressed KCNQ1OT1 acted as competing endogenous RNA (ceRNA) for miR-4458 and subsequently reinforced target gene CCND2. Collectively, the results of rescue experiments suggested that the oncogenic role of KCNQ1OT1 was performed through sponging miR-4458 and upregulating CCND2 during osteosarcoma development, providing a novel perspective of intervention in osteosarcoma management.
Collapse
|
17
|
Huang J, Cao D, Sha J, Zhu X, Han S. DLL3 is regulated by LIN28B and miR-518d-5p and regulates cell proliferation, migration and chemotherapy response in advanced small cell lung cancer. Biochem Biophys Res Commun 2019; 514:853-860. [DOI: 10.1016/j.bbrc.2019.04.130] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 11/27/2022]
|
18
|
Liu X, Wang J, Zhang G. miR‐4458 regulates cell proliferation and apoptosis through targeting SOCS1 in triple‐negative breast cancer. J Cell Biochem 2019; 120:12943-12948. [PMID: 30873664 DOI: 10.1002/jcb.28565] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/17/2018] [Accepted: 01/02/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Xiaomeng Liu
- Department of Thyroid and Breast Surgery Jining No.1 People's Hospital Jining Shandong China
| | - Jianling Wang
- Department of Thyroid and Breast Surgery Jining No.1 People's Hospital Jining Shandong China
| | - Guochao Zhang
- Department of Thyroid and Breast Surgery Jining No.1 People's Hospital Jining Shandong China
| |
Collapse
|
19
|
Ma Y, Li X, Chen S, Du B, Li Y. MicroRNA-4458 suppresses migration and epithelial-mesenchymal transition via targeting HMGA1 in non-small-cell lung cancer cells. Cancer Manag Res 2019; 11:637-649. [PMID: 30666160 PMCID: PMC6331073 DOI: 10.2147/cmar.s185117] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Purpose Increasing studies have shown that microRNA-4458 (miR-4458) is associated with human cancer progression. However, the molecular mechanism of miR-4458 in non-small-cell lung cancer (NSCLC) remains largely unknown. This study aims to reveal the biological function of miR-4458 in NSCLC. Materials and methods The expression of miR-4458 in NSCLC cells was evaluated by qRT-PCR. Cell proliferation and migration assay were carried out in vitro after transfection. A luciferase reporter and Western blot assay were performed to identify the functional target of miR-4458. Results The study indicated that miR-4458 was markedly downregulated in NSCLC cells. Overexpression of miR-4458 strongly reduced the proliferation and migration in NSCLC cell lines. In addition, miR-4458 inhibited the progression of migration and epithelial–mesenchymal transition (EMT) through the PI3K/AKT pathway. Luciferase report assay demonstrated that HMGA1 was a target gene for miR-4458. Conclusion The results indicate that miR-4458 participated in the process of migration and EMT via directly targeting HMGA1 and miR-4458 might be a potential novel therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Yu Ma
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China,
| | - Xuena Li
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China,
| | - Song Chen
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China,
| | - Bulin Du
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China,
| | - Yaming Li
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China,
| |
Collapse
|
20
|
Liu X, He B, Xu T, Pan Y, Hu X, Chen X, Wang S. MiR-490-3p Functions As a Tumor Suppressor by Inhibiting Oncogene VDAC1 Expression in Colorectal Cancer. J Cancer 2018; 9:1218-1230. [PMID: 29675103 PMCID: PMC5907670 DOI: 10.7150/jca.23662] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 02/28/2018] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide, usually with poor prognosis because many CRC patients are diagnosed at an advanced stage. Therefore, novel potential diagnostic and prognostic biomarkers are urgently needed. MicroRNAs have been reported to regulate a variety of biological processes, such as cell proliferation, differentiation and apoptosis. Accumulating studies have demonstrated that miR-490-3p could regulate the development and progression of multiple cancers, but its clinical significance and molecular mechanism in CRC are still elusive. Here, we try to further elucidate the regulatory mechanism of miR-490-3p in CRC. In the present study, miR-490-3p expression level observably down-regulated in CRC tissues and cell lines, and miR-490-3p expression in CRC tissues was significantly associated with TNM stage, histological grade, tumor size and overall survival (OS). In addition, we observed miR-490-3p expression was also decreased in CRC plasmas and could act as a promising diagnostic biomarker for screening CRC. Further studies in vitro demonstrated Voltage Dependent Anion Channel 1 (VDAC1) which highly expressed in CRC tissues and cell lines is a direct target of miR-490-3p, and miR-490-3p could markedly inhibit CRC cells proliferation, metastasis, invasion and anti-apoptosis through suppressing VDAC1/AMPK/mTOR pathway. These results indicated that miR-490-3p functions as a tumor suppressor in CRC, and may be a novel potential diagnostic and prognostic biomarker for CRC.
Collapse
Affiliation(s)
- Xiangxiang Liu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Bangshun He
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Tao Xu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Yuqin Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Xiuxiu Hu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Xiaoxiang Chen
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Shukui Wang
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210000, China
| |
Collapse
|