1
|
Matsumoto S, Shimizu T, Uda A, Watanabe K, Watarai M. Role of the JAK2/STAT3 pathway on infection of Francisella novicida. PLoS One 2024; 19:e0310120. [PMID: 39255287 PMCID: PMC11386456 DOI: 10.1371/journal.pone.0310120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024] Open
Abstract
Francisella tularensis is a causative agent of the zoonotic disease tularemia, and is highly pathogenic to humans. The pathogenicity of this bacterium is largely attributed to intracellular growth in host cells. Although several bacterial factors important for the intracellular growth have been elucidated, including the type VI secretion system, the host factors involved in the intracellular growth of F. tularensis are largely unknown. To identify the host factors important for F. tularensis infection, 368 compounds were screened for the negative regulation of F. tularensis subsp. novicida (F. novicida) infection. Consequently, 56 inhibitors were isolated that decreased F. novicida infection. Among those inhibitors, we focused on cucurbitacin I, an inhibitor of the JAK2/ STAT3 pathway. Cucurbitacin I and another JAK2/STAT3 inhibitor, Stattic, decreased the intracellular bacterial number of F. novicida. However, these inhibitors failed to affect the cell attachment or the intrasaccular proliferation of F. novicida. In addition, treatment with these inhibitors destabilized actin filaments. These results suggest that the JAK2/STAT3 pathway plays an important role in internalization of F. novicida into host cells through mechanisms involving actin dynamics, such as phagocytosis.
Collapse
Affiliation(s)
- Sonoko Matsumoto
- Laboratory of Veterinary Public Health, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Takashi Shimizu
- One Welfare Education and Research Center, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Akihiko Uda
- Department of Veterinary Science, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Kenta Watanabe
- Laboratory of Veterinary Public Health, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Masahisa Watarai
- Laboratory of Veterinary Public Health, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
2
|
Gong X, Liu Y, Liang K, Chen Z, Ding K, Qiu L, Wei J, Du H. Cucurbitacin I exerts its anticancer effects by inducing cell cycle arrest via the KAT2a-ube2C/E2F1 pathway and inhibiting HepG2-induced macrophage M2 polarization. Biochem Biophys Res Commun 2024; 738:150508. [PMID: 39151295 DOI: 10.1016/j.bbrc.2024.150508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies globally, particularly prevalent in China, where it accounts for nearly half of the world's new cases and deaths each year, but has limited therapeutic options. This study systematically investigated the impact of cucurbitacin I on HCC cell lines including SK-Hep-1, Huh-7, and HepG2. The results revealed that cucurbitacin I not only inhibited cell proliferation, cell migration and colony formation, but also induced apoptosis in HCC cells. The apoptotic induction was accompanied by a decrease in the expression of the anti-apoptotic factor B-cell lymphoma 2 (Bcl2), and an elevation in the expression levels of pro-apoptotic factors, including tumor protein p53 (P53), bcl2 associated X-apoptosis regulator (Bax), and caspase3 (Cas3). Additionally, cucurbitacin I caused cell cycle arrest by modulating the lysine acetyltransferase 2A (KAT2A)-E2F transcription factor 1 (E2F1)/Ubiquitin-conjugating enzyme E2 C (UBE2C) signaling axis. In terms of regulation on tumor microenvironment, cucurbitacin I was demonstrated the ability to inhibit HCC cell-induced M2 polarization of macrophages. This comprehensive study unveils the multifaceted anti-cancer mechanisms of cucurbitacin I, providing robust support for its potential application in the treatment of HCC, offering new avenues for the future development of HCC treatment strategies.
Collapse
Affiliation(s)
- Xiaocheng Gong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
| | - Yunfei Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
| | - Keying Liang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
| | - Zixi Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
| | - Ke Ding
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
| | - Li Qiu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
| | - Jinfen Wei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China.
| |
Collapse
|
3
|
Yuan R, Qian L, Xu H, Yun W. Cucurbitacins mitigate vascular neointimal hyperplasia by suppressing cyclin A2 expression and inhibiting VSMC proliferation. Animal Model Exp Med 2024; 7:397-407. [PMID: 38970173 PMCID: PMC11369011 DOI: 10.1002/ame2.12457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/30/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Restenosis frequently occurs after percutaneous angioplasty in patients with vascular occlusion and seriously threatens their health. Substantial evidence has revealed that preventing vascular smooth muscle cell proliferation using a drug-eluting stent is an effective approach to improve restenosis. Cucurbitacins have been demonstrated to exert an anti-proliferation effect in various tumors and a hypotensive effect. This study aims to investigate the role of cucurbitacins extracted from Cucumis melo L. (CuECs) and cucurbitacin B (CuB) on restenosis. METHODS C57BL/6 mice were subjected to left carotid artery ligation and subcutaneously injected with CuECs or CuB for 4 weeks. Hematoxylin-Eosin, immunofluorescence and immunohistochemistry staining were used to evaluate the effect of CuECs and CuB on neointimal hyperplasia. Western blot, real-time PCR, flow cytometry analysis, EdU staining and cellular immunofluorescence assay were employed to measure the effects of CuECs and CuB on cell proliferation and the cell cycle in vitro. The potential interactions of CuECs with cyclin A2 were performed by molecular docking. RESULTS The results demonstrated that both CuECs and CuB exhibited significant inhibitory effects on neointimal hyperplasia and proliferation of vascular smooth muscle cells. Furthermore, CuECs and CuB mediated cell cycle arrest at the S phase. Autodocking analysis demonstrated that CuB, CuD, CuE and CuI had high binding energy for cyclin A2. Our study also showed that CuECs and CuB dramatically inhibited FBS-induced cyclin A2 expression. Moreover, the expression of cyclin A2 in CuEC- and CuB-treated neointima was downregulated. CONCLUSIONS CuECs, especially CuB, exert an anti-proliferation effect in VSMCs and may be potential drugs to prevent restenosis.
Collapse
Affiliation(s)
- Ruqiang Yuan
- Advanced Institute for Medical SciencesDalian Medical UniversityDalianChina
| | - Lei Qian
- Advanced Institute for Medical SciencesDalian Medical UniversityDalianChina
| | - Hu Xu
- Health Science CenterEast China Normal UniversityShanghaiChina
| | - Weijing Yun
- Advanced Institute for Medical SciencesDalian Medical UniversityDalianChina
| |
Collapse
|
4
|
He W, Loganathan N, Tran A, Belsham DD. Npy transcription is regulated by noncanonical STAT3 signaling in hypothalamic neurons: Implication with lipotoxicity and obesity. Mol Cell Endocrinol 2024; 586:112179. [PMID: 38387703 DOI: 10.1016/j.mce.2024.112179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
Neuropeptide Y (Npy) is an abundant neuropeptide expressed in the central and peripheral nervous systems. NPY-secreting neurons in the hypothalamic arcuate nucleus regulate energy homeostasis, and Npy mRNA expression is regulated by peripheral nutrient and hormonal signals like leptin, interleukin-6 (IL-6), and fatty acids. This study demonstrates that IL-6, which phosphorylates tyrosine 705 (Y705) of STAT3, decreased Npy mRNA in arcuate immortalized hypothalamic neurons. In parallel, inhibitors of STAT3-Y705 phosphorylation, stattic and cucurbitacin I, robustly upregulated Npy mRNA. Chromatin-immunoprecipitation showed high baseline total STAT3 binding to multiple regulatory regions of the Npy gene, which are decreased by IL-6 exposure. The STAT3-Npy interaction was further examined in obesity-related pathologies. Notably, in four different hypothalamic neuronal models where palmitate potently stimulated Npy mRNA, Socs3, a specific STAT3 activity marker, was downregulated and was negatively correlated with Npy mRNA levels (R2 = 0.40, p < 0.001), suggesting that disrupted STAT3 signaling is involved in lipotoxicity-mediated dysregulation of Npy. Finally, human NPY SNPs that map to human obesity or body mass index were investigated for potential STAT3 binding sites. Although none of the SNPs were linked to direct STAT3 binding, analysis show that rs17149106 (-602 G > T) is located on an upstream enhancer element of NPY, where the variant is predicted to disrupt validated binding of KLF4, a known inhibitory cofactor of STAT3 and downstream effector of leptin signaling. Collectively, this study demonstrates that STAT3 signaling negatively regulates Npy transcription, and that disruption of this interaction may contribute to metabolic disorders.
Collapse
Affiliation(s)
- Wenyuan He
- Departments of Physiology, University of Toronto, Ontario, Canada
| | | | - Andy Tran
- Departments of Physiology, University of Toronto, Ontario, Canada
| | - Denise D Belsham
- Departments of Physiology, University of Toronto, Ontario, Canada; Departments of Medicine, University of Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Haciosmanoglu Aldogan E, Önsü KA, Saylan CC, Günçer B, Baday S, Bektaş M. Depolymerization of actin filaments by Cucurbitacin I through binding G-actin. Food Sci Nutr 2024; 12:881-889. [PMID: 38370084 PMCID: PMC10867458 DOI: 10.1002/fsn3.3804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 02/20/2024] Open
Abstract
Cucurbitacins have high economic value as they are a major source of food and have pharmacological properties. Cucurbitacin I (CuI) is a plant-derived natural tetracyclic triterpenoid compound that shows an anticancer effect via inhibiting the JAK2-STAT3 signaling pathway. The actin cytoskeleton is the most abundant protein in cells and regulates critical events through reorganization in cells. In this study, it is aimed at determining the direct effect of CuI on actin dynamics. The fluorescence profile of G-actin in the presence of CuI (1-200 nM) shifted to a higher temperature, suggesting that G-actin binds CuI and that G-actin-CuI is more thermally stable than the ligand-free form. CuI dose-dependently inhibited the polymerization of F-actin in vitro and disrupted actin filaments in endothelial cells. Docking and MD simulations suggested that CuI binds to the binding site formed by residues I136, I175, D154, and A138 that are at the interface of monomers in F-actin. The migration ability of cells treated with CuI for 24 h was significantly lower than the control group (p < .001). This study reveals the molecular mechanisms of CuI in the regulation of actin dynamics by binding G-actin. More importantly, this study indicates a novel role of CuI as an actin-targeting drug by binding directly to G-actin and may contribute to the mode of action of CuI on anticancer activities.
Collapse
Affiliation(s)
| | - Kemal Alper Önsü
- Department of Biophysics, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
| | - Cemil Can Saylan
- Chair of Experimental Bioinformatics, TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Başak Günçer
- Department of Biophysics, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
| | - Sefer Baday
- Applied Informatics Department, Informatics InstituteIstanbul Technical UniversityIstanbulTurkey
| | - Muhammet Bektaş
- Department of Biophysics, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
| |
Collapse
|
6
|
Li Y, Li Y, Yao Y, Li H, Gao C, Sun C, Zhuang J. Potential of cucurbitacin as an anticancer drug. Biomed Pharmacother 2023; 168:115707. [PMID: 37862969 DOI: 10.1016/j.biopha.2023.115707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
In Chinese medicine, the Cucurbitaceae family contains many compounds known as cucurbitacins, which have been categorized into 12 classes ranging from A to T and more than 200 derivatives. Cucurbitacins are a class of highly oxidized tetracyclic triterpenoids with potent anticancer properties. The eight components of cucurbitacins with the strongest anticancer activity are cucurbitacins B, D, E, I, IIa, L-glucoside, Q, and R. Cucurbitacins have also been reported to suppress JAK-STAT 3, mTOR, VEGFR, Wnt/β-catenin, and MAPK signaling pathways, all of which are crucial for the survival and demise of cancer cells. In this paper, we review the progress in research on cucurbitacin-induced apoptosis, autophagy, cytoskeleton disruption, cell cycle arrest, inhibition of cell proliferation, inhibition of invasion and migration, inhibition of angiogenesis, epigenetic alterations, and synergistic anticancer effects in tumor cells. Recent studies have identified cucurbitacins as promising molecules for therapeutic innovation with broad versatility in immune response. Thus, cucurbitacin is a promising class of anticancer agents that can be used alone or in combination with chemotherapy and radiotherapy for the treatment of many types of cancer.Therefore, based on the research reports in the past five years at home and abroad, we further summarize and review the structural characteristics, chemical and biological activities, and studies of cucurbitacins based on the previous studies to provide a reference for further development and utilization of cucurbitacins.
Collapse
Affiliation(s)
- Yan Li
- College of Chinese Medicine, Weifang Medical University, Weifang, China
| | - Yingrui Li
- College of Chinese Medicine, Weifang Medical University, Weifang, China
| | - Yan Yao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250022, China
| | - Huayao Li
- College of Chinese Medicine, Weifang Medical University, Weifang, China
| | - Chundi Gao
- College of Chinese Medicine, Weifang Medical University, Weifang, China
| | - Changgang Sun
- College of Chinese Medicine, Weifang Medical University, Weifang, China; Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| |
Collapse
|
7
|
Zhang C, Sun Q, Zhao J, Jiang N, Hao Y, Luo J, Karim S, Wu L, de Perrot M, Peng C, Zhao X. JSI-124 inhibits cell proliferation and tumor growth by inducing autophagy and apoptosis in murine malignant mesothelioma. Mol Carcinog 2023; 62:1888-1901. [PMID: 37642305 DOI: 10.1002/mc.23623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
Malignant pleural mesothelioma (MPM), mainly caused by asbestos exposure, has a poor prognosis and lacks effective treatment compared with other cancer types. The intracellular transcription factor signal transducer and activator of transcription 3 (STAT3) is overexpressed and hyperactivated in most human cancers. In this study, the role of STAT3 in murine MPM was examined. Inhibition of the Janus kinase 2 (JAK2)/STAT3 pathway with the selective inhibitor JSI-124 has an antitumor effect in murine MPM. Specifically, we demonstrated that JSI-124 inhibits murine MPM cell growth and induces apoptotic and autophagic cell death. Exposure of RN5 and AB12 cells to JSI-124 resulted in apoptosis via the Bcl-2 family of proteins. JSI-124 triggered autophagosome formation, accumulation, and conversion of LC3I to LC3II. Autophagy inhibitors, Chloroquine (CQ) and Bafilomycin A1 (Baf-A1), inhibited autophagy and sensitized RN5 and AB12 cells to JSI-124-induced apoptosis. Our data indicate that JSI-124 is a promising therapeutic agent for MPM treatment.
Collapse
Affiliation(s)
- Chengke Zhang
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- Key Laboratory of Thoracic Cancer, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Qifeng Sun
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Jiangfeng Zhao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- Key Laboratory of Thoracic Cancer, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Ning Jiang
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- Key Laboratory of Thoracic Cancer, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yingtao Hao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- Key Laboratory of Thoracic Cancer, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Junwen Luo
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- Key Laboratory of Thoracic Cancer, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Saraf Karim
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Licun Wu
- Key Laboratory of Thoracic Cancer, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Marc de Perrot
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Chuanliang Peng
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- Key Laboratory of Thoracic Cancer, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- Key Laboratory of Thoracic Cancer, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
8
|
Tsai TH, Lee KT, Hsu YC. JSI-124 Induces Cell Cycle Arrest and Regulates the Apoptosis in Glioblastoma Cells. Biomedicines 2023; 11:2999. [PMID: 38001999 PMCID: PMC10669163 DOI: 10.3390/biomedicines11112999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Cucurbitacin I (JSI-124), derived from Cucurbitaceae, has shown the potential to induce apoptosis and cell cycle arrest in some cancer cells. However, the effect of JSI-124 on glioblastoma multiforme (GBM) cell cycle and apoptosis is still unclear. Our investigation revealed that JSI-124 effectively reduced cell viability in GBM cells, leading to apoptosis and increased caspase-3 activity. Intriguingly, JSI-124 caused the accumulation of G2/M phase to regulate cell cycle, confirmed by MPM-2 staining and increased protein synthesis during mitosis by mitotic index analysis. Western blot analysis found that JSI-124 affected the progression of G2/M arrest by downregulating the CDK1 and upregulating the cyclinB1, suggesting that JSI-124 disrupted the formation and function of the cyclin B1/CDK1 complex in GBM8401 and U87MG cells. However, we found the JSI-124-regulated cell cycle G2/M and apoptosis-relative gene in GBM8401 and U87MG cells by NGS data analysis. Notably, we found that the GBM8401 and U87MG cells observed regulation of apoptosis and cell-cycle-related signaling pathways. Taken together, JSI-124 exhibited the ability to induce G2/M arrest, effectively arresting the cell cycle at critical stages. This arrest is accompanied by the initiation of apoptosis, highlighting the dual mechanism of action of JSI-124. Collectively, our findings emphasize that JSI-124 holds potential as a therapeutic agent for GBM by impeding cell cycle progression, inhibiting cell proliferation, and promoting apoptosis. As demonstrated by our in vitro experiments, these effects are mediated through modulation of key molecular targets.
Collapse
Affiliation(s)
- Tai-Hsin Tsai
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan
- Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
- Division of Neurosurgery, Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Kuan-Ting Lee
- Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
- Division of Neurosurgery, Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Yi-Chiang Hsu
- School of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| |
Collapse
|
9
|
Gong X, Liu Y, Liang K, Chen Z, Ding K, Qiu L, Wei J, Du H. Cucurbitacin I Reverses Tumor-Associated Macrophage Polarization to Affect Cancer Cell Metastasis. Int J Mol Sci 2023; 24:15920. [PMID: 37958903 PMCID: PMC10650020 DOI: 10.3390/ijms242115920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
The tumor microenvironment plays a critical role in tumor progression and immune regulation. As one of the most important components of the tumor microenvironment, macrophages have become a new therapeutic target for inhibiting tumor progression. Despite the well-documented anticancer activity of cucurbitacin I, its effect on macrophages remains unclear. In this study, we established a coculture system of macrophages and cancer cells under hypoxic conditions to simulate the tumor-promoting environment mediated by M2-like macrophages. We determined whether cucurbitacin I modulates M2-like polarization in macrophages in vitro and conducted RNA sequencing to identify gene expression changes induced by cucurbitacin I in macrophages. The results indicated a remarkable inhibition of the M2-like polarization phenotype in macrophages following treatment with cucurbitacin I, which was accompanied by the significant downregulation of heme oxygenase-1. Moreover, we found that cucurbitacin I-treated macrophages reduced the migration of cancer cells by inhibiting the M2 polarization in vitro. These findings highlight the potential of cucurbitacin I as a therapeutic agent that targets M2-like macrophages to inhibit cancer cell metastasis. Our study provides novel insights into the intricate interplay among macrophage polarization, cucurbitacin I, and heme oxygenase-1, thereby opening new avenues for cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jinfen Wei
- School of Biology and Biological Engineering, South China University of Technology, University Town Campus, Guangzhou Higher Education Mega Centre, Panyu District, Guangzhou 510006, China; (X.G.); (Y.L.); (K.L.); (Z.C.); (K.D.); (L.Q.)
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, University Town Campus, Guangzhou Higher Education Mega Centre, Panyu District, Guangzhou 510006, China; (X.G.); (Y.L.); (K.L.); (Z.C.); (K.D.); (L.Q.)
| |
Collapse
|
10
|
He X, Fu J, Lyu W, Huang M, Mo J, Cheng Y, Xu Y, Zheng L, Zhang X, Qi L, Zhang L, Zheng Y, Huang M, Ni L, Lu J. Identification of Bulbocodin D and C as novel STAT3 inhibitors and their anticancer activities in lung cancer cells. Chin J Nat Med 2023; 21:842-851. [PMID: 38035939 DOI: 10.1016/s1875-5364(23)60521-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Indexed: 12/02/2023]
Abstract
Cancer stands as one of the predominant causes of mortality globally, necessitating ongoing efforts to develop innovative therapeutics. Historically, natural products have been foundational in the quest for anticancer agents. Bulbocodin D (BD) and Bulbocodin C (BC), two bibenzyls derived from Pleione bulbocodioides (Franch.) Rolfe, have demonstrated notable in vitro anticancer activity. In human lung cancer A549 cells, the IC50s for BD and BC were 11.63 and 11.71 μmol·L-1, respectively. BD triggered apoptosis, as evidenced by an upsurge in Annexin V-positive cells and elevated protein expression of cleaved-PARP in cancer cells. Furthermore, BD and BC markedly inhibited the migratory and invasive potentials of A549 cells. The altered genes identified through RNA-sequencing analysis were integrated into the CMap dataset, suggesting BD's role as a potential signal transducer and activator of transcription 3 (STAT3) inhibitor. SwissDock and MOE analyses further revealed that both BD and BC exhibited a commendable binding affinity with STAT3. Additionally, a surface plasmon resonance assay confirmed the direct binding affinity between these compounds and STAT3. Notably, treatment with either BD or BC led to a significant reduction in p-STAT3 (Tyr 705) protein levels, regardless of interleukin-6 stimulation in A549 cells. In addition, the extracellular signal-regulated kinase (ERK) was activated after BD or BC treatment. An enhancement in cancer cell mortality was observed upon combined treatment of BD and U0126, the MEK1/2 inhibitor. In conclusion, BD and BC emerge as promising novel STAT3 inhibitors with potential implications in cancer therapy.
Collapse
Affiliation(s)
- Xinyu He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Jiarui Fu
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenyu Lyu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Muyang Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Jianshan Mo
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yaxin Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Yulian Xu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Lijun Zheng
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou 350100, China
| | - Xiaolei Zhang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Lu Qi
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lele Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Mingqing Huang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China.
| | - Lin Ni
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jinjian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao 999078, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, University of Macau, Macao 999078, China.
| |
Collapse
|
11
|
Standing D, Feess E, Kodiyalam S, Kuehn M, Hamel Z, Johnson J, Thomas SM, Anant S. The Role of STATs in Ovarian Cancer: Exploring Their Potential for Therapy. Cancers (Basel) 2023; 15:cancers15092485. [PMID: 37173951 PMCID: PMC10177275 DOI: 10.3390/cancers15092485] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Ovarian cancer (OvCa) is a deadly gynecologic malignancy that presents many clinical challenges due to late-stage diagnoses and the development of acquired resistance to standard-of-care treatment protocols. There is an increasing body of evidence suggesting that STATs may play a critical role in OvCa progression, resistance, and disease recurrence, and thus we sought to compile a comprehensive review to summarize the current state of knowledge on the topic. We have examined peer reviewed literature to delineate the role of STATs in both cancer cells and cells within the tumor microenvironment. In addition to summarizing the current knowledge of STAT biology in OvCa, we have also examined the capacity of small molecule inhibitor development to target specific STATs and progress toward clinical applications. From our research, the best studied and targeted factors are STAT3 and STAT5, which has resulted in the development of several inhibitors that are under current evaluation in clinical trials. There remain gaps in understanding the role of STAT1, STAT2, STAT4, and STAT6, due to limited reports in the current literature; as such, further studies to establish their implications in OvCa are necessitated. Moreover, due to the deficiency in our understanding of these STATs, selective inhibitors also remain elusive, and therefore present opportunities for discovery.
Collapse
Affiliation(s)
- David Standing
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Emma Feess
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Satvik Kodiyalam
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Michael Kuehn
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Zachary Hamel
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Jaimie Johnson
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Sufi Mary Thomas
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| |
Collapse
|
12
|
Nanoparticle-Mediated Delivery of STAT3 Inhibitors in the Treatment of Lung Cancer. Pharmaceutics 2022; 14:pharmaceutics14122787. [PMID: 36559280 PMCID: PMC9781630 DOI: 10.3390/pharmaceutics14122787] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is a common malignancy worldwide, with high morbidity and mortality. Signal transducer and activator of transcription 3 (STAT3) is an important transcription factor that not only regulates different hallmarks of cancer, such as tumorigenesis, cell proliferation, and metastasis but also regulates the occurrence and maintenance of cancer stem cells (CSCs). Abnormal STAT3 activity has been found in a variety of cancers, including lung cancer, and its phosphorylation level is associated with a poor prognosis of lung cancer. Therefore, the STAT3 pathway may represent a promising therapeutic target for the treatment of lung cancer. To date, various types of STAT3 inhibitors, including natural compounds, small molecules, and gene-based therapies, have been developed through direct and indirect strategies, although most of them are still in the preclinical or early clinical stages. One of the main obstacles to the development of STAT3 inhibitors is the lack of an effective targeted delivery system to improve their bioavailability and tumor targetability, failing to fully demonstrate their anti-tumor effects. In this review, we will summarize the recent advances in STAT3 targeting strategies, as well as the applications of nanoparticle-mediated targeted delivery of STAT3 inhibitors in the treatment of lung cancer.
Collapse
|
13
|
Vidal-Gutiérrez M, Torres-Moreno H, Arenas-Luna V, Loredo-Mendoza ML, Tejeda-Dominguez F, Velazquez C, Vilegas W, Hernández-Gutiérrez S, Robles-Zepeda RE. Standardized phytopreparations and cucurbitacin IIb from Ibervillea sonorae (S. Watson) greene induce apoptosis in cervical cancer cells by Nrf2 inhibition. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115606. [PMID: 35944738 DOI: 10.1016/j.jep.2022.115606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/23/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Ibervillea sonorae (S. Watson) Greene is a plant from northwestern Mexico, known as "Wereke" or "Guareque", used by the Mayo ethnic group to treat diabetes and cancer. Cucurbitacin IIb (CIIb), isolated from I. sonorae has apoptotic and antitumor activity in a model of cervical cancer with the HeLa cell line. One pathway affected by cucurbitacins is Nrf2, a glutathione transferase (GST) transcription factor, important in the regulation of mitochondrial oxidative stress (MOS). A signal of MOS is the change in the mitochondrial membrane potential (ΔΨm), which has been detected in HeLa in the presence of CIIb. Fito-Ison-EtOH (Etanison) and Fito-Ison-EtOAc (Acetison) are phytopreparations from I. sonorae standardized according to their CIIb content (6.7 mg/g and 18.4 mg/g of CIIb, respectively). Etanison and Acetison have been reported to induce morphological changes in HeLa like those induced by CIIb. AIM OF THE STUDY To evaluate the apoptotic and Nrf2 inhibition activity of the phytopreparations Acetison and Etanison from Ibervillea Sonorae in the HeLa cervical cancer cell line. MATERIALS AND METHODS Antiproliferative activity was evaluated by the MTT method at 24, 48, and 72 h. For Acetison and Etanison, serial concentrations from 6.25 μg/mL to 100 μg/mL were tested, and for CIIb from 1.56 μg/mL to 50 μg/mL. The expression of Nrf2, caspase 3, and caspase 9 was evaluated by western blot, using concentrations of 30 μg/mL for Acetison, 50 μg/mL for Etanison, and 15 μg/mL for CIIb. Cisplatin was used as a positive control. RESULTS AND CONCLUSIONS Apoptotic activity of Etanison and Acetison was demonstrated in HeLa, due to the presence of caspase-9 and caspase-3 in western blot assays. Likewise, both the phytopreparations and CIIb showed inhibition of Nrf2, associating apoptotic activity with the inhibition of the GST transcription factor. In this sense, the phytopreparations of I. sonorae, as well as their derivatives, have the potential to obtain and develop anticancer products.
Collapse
Affiliation(s)
- Max Vidal-Gutiérrez
- Departamento de Ciencias Químico Biológicas y de la Salud, Universidad de Sonora - Blvd. Luis Donaldo Colosio esq. Rosales S/N, Centro, Hermosillo Sonora, CP: 83000, Mexico; Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Rodovia Araraquara - Jaú, Km 1, Araraquara, São Paulo, CEP: 14800-903, Brazil
| | - Heriberto Torres-Moreno
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora - Avenida Universidad e Irigoyen, Caborca Sonora, CP:83621, Mexico
| | - Víctor Arenas-Luna
- Facultad de Ciencias de la Salud, Escuela de Medicina, Universidad Panamericana - Augusto Rodin No. 498, Col. Insurgentes Mixcoac, Ciudad de México, CP: 03920, Mexico
| | - María Lilia Loredo-Mendoza
- Facultad de Ciencias de la Salud, Escuela de Medicina, Universidad Panamericana - Augusto Rodin No. 498, Col. Insurgentes Mixcoac, Ciudad de México, CP: 03920, Mexico
| | - Farid Tejeda-Dominguez
- Facultad de Ciencias de la Salud, Escuela de Medicina, Universidad Panamericana - Augusto Rodin No. 498, Col. Insurgentes Mixcoac, Ciudad de México, CP: 03920, Mexico
| | - Carlos Velazquez
- Departamento de Ciencias Químico Biológicas y de la Salud, Universidad de Sonora - Blvd. Luis Donaldo Colosio esq. Rosales S/N, Centro, Hermosillo Sonora, CP: 83000, Mexico
| | - Wagner Vilegas
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Rodovia Araraquara - Jaú, Km 1, Araraquara, São Paulo, CEP: 14800-903, Brazil; Universidade Estadual Paulista (UNESP), Coastal Campus of São Vicente, Praça Infante Dom Henrique s/n, São Vicente, São Paulo, CEP 11330-205, Brazil
| | - Salomón Hernández-Gutiérrez
- Facultad de Ciencias de la Salud, Escuela de Medicina, Universidad Panamericana - Augusto Rodin No. 498, Col. Insurgentes Mixcoac, Ciudad de México, CP: 03920, Mexico.
| | - Ramón E Robles-Zepeda
- Departamento de Ciencias Químico Biológicas y de la Salud, Universidad de Sonora - Blvd. Luis Donaldo Colosio esq. Rosales S/N, Centro, Hermosillo Sonora, CP: 83000, Mexico.
| |
Collapse
|
14
|
Patel A, Rasheed A, Reilly I, Pareek Z, Hansen M, Haque Z, Simon-Fajardo D, Davies C, Tummala A, Reinhardt K, Bustabad A, Shaw M, Robins J, Vera Gomez K, Suphakorn T, Camacho Gemelgo M, Law A, Lin K, Hospedales E, Haley H, Perez Martinez JP, Khan S, DeCanio J, Padgett M, Abramov A, Nanjundan M. Modulation of Cytoskeleton, Protein Trafficking, and Signaling Pathways by Metabolites from Cucurbitaceae, Ericaceae, and Rosaceae Plant Families. Pharmaceuticals (Basel) 2022; 15:1380. [PMID: 36355554 PMCID: PMC9698530 DOI: 10.3390/ph15111380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 10/22/2023] Open
Abstract
One promising frontier within the field of Medical Botany is the study of the bioactivity of plant metabolites on human health. Although plant metabolites are metabolic byproducts that commonly regulate ecological interactions and biochemical processes in plant species, such metabolites also elicit profound effects on the cellular processes of human and other mammalian cells. In this regard, due to their potential as therapeutic agents for a variety of human diseases and induction of toxic cellular responses, further research advances are direly needed to fully understand the molecular mechanisms induced by these agents. Herein, we focus our investigation on metabolites from the Cucurbitaceae, Ericaceae, and Rosaceae plant families, for which several plant species are found within the state of Florida in Hillsborough County. Specifically, we compare the molecular mechanisms by which metabolites and/or plant extracts from these plant families modulate the cytoskeleton, protein trafficking, and cell signaling to mediate functional outcomes, as well as a discussion of current gaps in knowledge. Our efforts to lay the molecular groundwork in this broad manner hold promise in supporting future research efforts in pharmacology and drug discovery.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Meera Nanjundan
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| |
Collapse
|
15
|
Xu Z, Chu M. Advances in Immunosuppressive Agents Based on Signal Pathway. Front Pharmacol 2022; 13:917162. [PMID: 35694243 PMCID: PMC9178660 DOI: 10.3389/fphar.2022.917162] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/02/2022] [Indexed: 12/13/2022] Open
Abstract
Immune abnormality involves in various diseases, such as infection, allergic diseases, autoimmune diseases, as well as transplantation. Several signal pathways have been demonstrated to play a central role in the immune response, including JAK/STAT, NF-κB, PI3K/AKT-mTOR, MAPK, and Keap1/Nrf2/ARE pathway, in which multiple targets have been used to develop immunosuppressive agents. In recent years, varieties of immunosuppressive agents have been approved for clinical use, such as the JAK inhibitor tofacitinib and the mTOR inhibitor everolimus, which have shown good therapeutic effects. Additionally, many immunosuppressive agents are still in clinical trials or preclinical studies. In this review, we classified the immunosuppressive agents according to the immunopharmacological mechanisms, and summarized the phase of immunosuppressive agents.
Collapse
Affiliation(s)
- Zhiqing Xu
- Department of Immunology, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University, Beijing, China
- Department of Pharmacology, Jilin University, Changchun, China
| | - Ming Chu
- Department of Immunology, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
16
|
Albarano L, Zupo V, Guida M, Libralato G, Caramiello D, Ruocco N, Costantini M. PAHs and PCBs Affect Functionally Intercorrelated Genes in the Sea Urchin Paracentrotus lividus Embryos. Int J Mol Sci 2021; 22:ijms222212498. [PMID: 34830379 PMCID: PMC8619768 DOI: 10.3390/ijms222212498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 01/05/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) represent the most common pollutants in the marine sediments. Previous investigations demonstrated short-term sublethal effects of sediments polluted with both contaminants on the sea urchin Paracentrotus lividus after 2 months of exposure in mesocosms. In particular, morphological malformations observed in P. lividus embryos deriving from adults exposed to PAHs and PCBs were explained at molecular levels by de novo transcriptome assembly and real-time qPCR, leading to the identification of several differentially expressed genes involved in key physiological processes. Here, we extensively explored the genes involved in the response of the sea urchin P. lividus to PAHs and PCBs. Firstly, 25 new genes were identified and interactomic analysis revealed that they were functionally connected among them and to several genes previously defined as molecular targets of response to the two pollutants under analysis. The expression levels of these 25 genes were followed by Real Time qPCR, showing that almost all genes analyzed were affected by PAHs and PCBs. These findings represent an important further step in defining the impacts of slight concentrations of such contaminants on sea urchins and, more in general, on marine biota, increasing our knowledge of molecular targets involved in responses to environmental stressors.
Collapse
Affiliation(s)
- Luisa Albarano
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (L.A.); (G.L.); (N.R.)
- Department of Biology, University of Naples Federico II, Complesso di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy;
| | - Valerio Zupo
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Dohrn, Punta San Pietro, 80077 Naples, Italy;
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Complesso di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy;
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Giovanni Libralato
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (L.A.); (G.L.); (N.R.)
- Department of Biology, University of Naples Federico II, Complesso di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy;
| | - Davide Caramiello
- Stazione Zoologica Anton Dohrn, Department of Research Infrastructures for Marine Biological Resources, Marine Organisms Core Facility, Villa Comunale, 80121 Naples, Italy;
| | - Nadia Ruocco
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (L.A.); (G.L.); (N.R.)
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, C. da Torre Spaccata, 87071 Amendolara, Italy
| | - Maria Costantini
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (L.A.); (G.L.); (N.R.)
- Correspondence:
| |
Collapse
|
17
|
Georgieva E, Leber SL, Wex C, Garbers C. Perturbation of the Actin Cytoskeleton in Human Hepatoma Cells Influences Interleukin-6 (IL-6) Signaling, but Not Soluble IL-6 Receptor Generation or NF-κB Activation. Int J Mol Sci 2021; 22:ijms22137171. [PMID: 34281231 PMCID: PMC8268250 DOI: 10.3390/ijms22137171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 01/10/2023] Open
Abstract
The transcription factor nuclear factor-kappa B (NF-κB) is critically involved in inflammation and cancer development. Activation of NF-κB induces the expression and release of several pro-inflammatory proteins, which include the cytokine interleukin-6 (IL-6). Perturbation of the actin cytoskeleton has been previously shown to activate NF-κB signaling. In this study, we analyze the influence of different compounds that modulate the actin cytoskeleton on NF-κB activation, IL-6 signaling and the proteolytic generation of the soluble IL-6 receptor (sIL-6R) in human hepatoma cells. We show that perturbation of the actin cytoskeleton is not sufficient to induce NF-κB activation and IL-6 secretion. However, perturbation of the actin cytoskeleton reduces IL-6-induced activation of the transcription factor STAT3 in Hep3B cells. In contrast, IL-6R proteolysis by the metalloprotease ADAM10 did not depend upon the integrity of the actin cytoskeleton. In summary, we uncover a previously unknown function of the actin cytoskeleton in IL-6-mediated signal transduction in Hep3B cells.
Collapse
Affiliation(s)
- Elizabeta Georgieva
- Department of Pathology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany;
| | - Stefan L. Leber
- Division of Neuroradiology, Vascular & Interventional Radiology, Department of Radiology, Medical University of Graz, 8036 Graz, Austria;
| | - Cora Wex
- Department of General, Visceral, Vascular and Transplantation Surgery, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany;
| | - Christoph Garbers
- Department of Pathology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany;
- Correspondence:
| |
Collapse
|
18
|
Abstract
Cucurbitacins (CUCUs) are triterpenoids known to display potent cytotoxic effects; however, their clinical application is limited due to poor pharmacokinetics and systemic toxicity. This work focuses on the development of c(RGDyK)-CUCU conjugates for the selective delivery of CUCUs to integrin-overexpressing cancer cells. The activity of the conjugates against various cancer cells was studied. They exhibited a mild cytostatic effect to six cancer cell lines and a cytotoxic effect against integrin-overexpressing MCF-7 and A549 cells. Their chemical and metabolic stability was extensively studied using LC-MS analysis. The conjugates maintained high affinity for αvβ3 integrin receptors. c(RGDyK) conjugation via a PEG linker was beneficial for CUCU-D and the resulting conjugate was approximately three-times more active than the free CUCU-D in MCF7 cells.
Collapse
|
19
|
Use of cucurbitacins for lung cancer research and therapy. Cancer Chemother Pharmacol 2021; 88:1-14. [PMID: 33825035 DOI: 10.1007/s00280-021-04265-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 03/17/2021] [Indexed: 02/05/2023]
Abstract
As the main substance in some traditional Chinese medicines, cucurbitacins have been used to treat hepatitis for decades in China. Currently, the use of cucurbitacins against cancer and other diseases has achieved towering popularity among researchers worldwide, as detailed in this review with summarized tables. Numerous studies have reported the potential tumor-killing activities of cucurbitacins in multiple aspects of human malignancies. Continuous research on its anticancer activity mechanisms also brings a glimmer of light to the treatment of patients with lung cancer. In line with the promising roles of cucurbitacins against cancer, through various molecular signaling pathways, it is justifiable to propose the use of cucurbitacins as a potential mainline chemotherapy before the onset and after the diagnosis of lung cancers. Here, this article mainly summarized the findings about the biological functions and underlying mechanisms of cucurbitacins on lung cancer pathogenesis and treatment. In addition, we also discussed the safety and efficacy of their application for further research and even clinical practice.
Collapse
|
20
|
Vilariño M, García-Sanmartín J, Ochoa-Callejero L, López-Rodríguez A, Blanco-Urgoiti J, Martínez A. Macrocybin, a Natural Mushroom Triglyceride, Reduces Tumor Growth In Vitro and In Vivo through Caveolin-Mediated Interference with the Actin Cytoskeleton. Molecules 2020; 25:molecules25246010. [PMID: 33353176 PMCID: PMC7766322 DOI: 10.3390/molecules25246010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/03/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
Mushrooms have been used for millennia as cancer remedies. Our goal was to screen several mushroom species from the rainforests of Costa Rica, looking for new antitumor molecules. Mushroom extracts were screened using two human cell lines: A549 (lung adenocarcinoma) and NL20 (immortalized normal lung epithelium). Extracts able to kill tumor cells while preserving non-tumor cells were considered “anticancer”. The mushroom with better properties was Macrocybe titans. Positive extracts were fractionated further and tested for biological activity on the cell lines. The chemical structure of the active compound was partially elucidated through nuclear magnetic resonance, mass spectrometry, and other ancillary techniques. Chemical analysis showed that the active molecule was a triglyceride containing oleic acid, palmitic acid, and a more complex fatty acid with two double bonds. The synthesis of all possible triglycerides and biological testing identified the natural compound, which was named Macrocybin. A xenograft study showed that Macrocybin significantly reduces A549 tumor growth. In addition, Macrocybin treatment resulted in the upregulation of Caveolin-1 expression and the disassembly of the actin cytoskeleton in tumor cells (but not in normal cells). In conclusion, we have shown that Macrocybin constitutes a new biologically active compound that may be taken into consideration for cancer treatment.
Collapse
Affiliation(s)
- Marcos Vilariño
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain; (M.V.); (J.G.-S.); (L.O.-C.)
| | - Josune García-Sanmartín
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain; (M.V.); (J.G.-S.); (L.O.-C.)
| | - Laura Ochoa-Callejero
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain; (M.V.); (J.G.-S.); (L.O.-C.)
| | - Alberto López-Rodríguez
- CsFlowchem, Campus Universidad San Pablo CEU, Boadilla del Monte, 28668 Madrid, Spain; (A.L.-R.); (J.B.-U.)
| | - Jaime Blanco-Urgoiti
- CsFlowchem, Campus Universidad San Pablo CEU, Boadilla del Monte, 28668 Madrid, Spain; (A.L.-R.); (J.B.-U.)
| | - Alfredo Martínez
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain; (M.V.); (J.G.-S.); (L.O.-C.)
- Correspondence: ; Tel.: +34-941278775
| |
Collapse
|
21
|
Lin X, Farooqi AA. Cucurbitacin mediated regulation of deregulated oncogenic signaling cascades and non-coding RNAs in different cancers: Spotlight on JAK/STAT, Wnt/β-catenin, mTOR, TRAIL-mediated pathways. Semin Cancer Biol 2020; 73:302-309. [PMID: 33152487 DOI: 10.1016/j.semcancer.2020.10.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 01/03/2023]
Abstract
Research over decades has enabled us in developing a better understanding of the multifaceted and heterogeneous nature of cancer. High-throughput technologies have helped the researchers in unraveling of the underlying mechanisms which centrally regulate cancer onset, metastasis and drug resistance. Our rapidly expanding knowledge about signal transduction cascade has added another layer of complexity to already complicated nature of cancer. Deregulation of cell signaling pathways played a linchpin role in carcinogenesis and metastasis. Cucurbitacins have gained tremendous attention because of their remarkable pharmacological properties and considerable ability to mechanistically modulate myriad of cell signaling pathways in different cancers. In this review, we have attempted to provide a mechanistic and comprehensive analysis of regulation of oncogenic pathways by cucurbitacins in different cancers. We have partitioned this review into separate sections for exclusive analysis of each signaling pathway and critical assessment of the knowledge gaps. In this review, we will summarize most recent and landmark developments related to regulation of Wnt/β-catenin, JAK/STAT, mTOR, VEGFR, EGFR and Hippo pathway by cucurbitacins. Moreover, we will also address how cucurbitacins regulate DNA damage repair pathway and TRAIL-driven signaling in various cancers. However, there are still outstanding questions related to regulation of SHH/GLI, TGF/SMAD and Notch-driven pathway by cucurbitacins in different cancers. Future studies must converge on the analysis of full-fledge potential of cucurbitacins by in-depth analysis of these pathways and how these pathways can be therapeutically targeted by cucurbitacins.
Collapse
Affiliation(s)
- Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan.
| |
Collapse
|
22
|
Malik M, Britten J, DeAngelis A, Catherino WH. Cross-talk between Janus kinase-signal transducer and activator of transcription pathway and transforming growth factor beta pathways and increased collagen1A1 production in uterine leiomyoma cells. F&S SCIENCE 2020; 1:206-220. [PMID: 35559929 DOI: 10.1016/j.xfss.2020.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/01/2020] [Accepted: 07/31/2020] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To characterize the potential interaction between interleukin-6 (IL6), Janus kinase (JAK)-signal transducer and activator of transcription (STAT)-3 (JAK/STAT3) pathway, and Transforming growth factor beta (TGFβ)-3 , and to determine whether such cross-talk was a contributing factor in the dysregulation of type I collagen production in leiomyomas. DESIGN Laboratory study. SETTING University research laboratory. PATIENTS None. INTERVENTIONS Exposure of leiomyoma and myometrial cell lines to IL6 and STAT3 activators/inhibitors. Western immunoblot analysis and immunohistochemistry. MAIN OUTCOME MEASURES Expression of STAT3, pSTAT3, SOCS3, COL1A1, and TGFb3. RESULTS We observed that IL6 increased pSTAT3 as well as collagen1A1 in uterine leiomyoma cells. Direct activation of the JAK/STAT3 pathway increased collagen1A1 production in leiomyoma cells, whereas inhibition of the pathway significantly decreased collagen1A1 production. We further observed that modulation of the JAK/STAT3 pathway also increased the expression of TGFβ3 protein. Leiomyoma cells exposed to TGFβ3 demonstrated a significant decrease in pSTAT3 protein. Myometrial cells demonstrated a less sensitive response to STAT3 modulation and collagen production. CONCLUSION Cross-talk between the TGFβ pathway and JAK/STAT3 pathway contributes to the fibrotic nature of uterine leiomyomas.
Collapse
Affiliation(s)
- Minnie Malik
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Joy Britten
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Anthony DeAngelis
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland; Program in Reproductive Endocrinology and Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - William H Catherino
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland; Program in Reproductive Endocrinology and Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
23
|
Chen FF, Li Z, Ma D, Yu Q. Small-molecule PD-L1 inhibitor BMS1166 abrogates the function of PD-L1 by blocking its ER export. Oncoimmunology 2020; 9:1831153. [PMID: 33110706 PMCID: PMC7567511 DOI: 10.1080/2162402x.2020.1831153] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Therapeutic monoclonal antibodies against the PD-L1/PD-1 (programmed death ligand-1/programmed cell death protein-1) axis have achieved great successes in cancer treatments, but the development of small-molecule immunomodulators of the pathway has lagged far behind. We established a cellular coculture assay with two stable transfectant cell lines, a PD-L1-expressing tumor cell line PC9/PD-L1 and a PD-1-expressing T cell line Jurkat/PD-1. Western blotting analyses were used to monitor the PD-L1/PD-1 interaction and signaling. We analyzed PD-L1 glycosylation by lectin binding assay and glycosidase digestion, and examined subcellular localization of PD-L1 by immunocytochemical staining. Luciferase assay and real-time PCR were used to evaluate T cell activation in the coculture experiments. We found that coculturing of the PC9/PD-L1 cells with the Jurkat/PD-1 cells induced a lysosomal degradation of PD-1. A small-molecule PD-L1 inhibitor BMS1166 developed by Bristol-Myers Squibb inhibited the coculture-induced PD-1 degradation through a unique mechanism. BMS1166 specifically affected PD-L1 glycosylation and prevented transporting of the under-glycosylated form of PD-L1 from endoplasmic reticulum (ER) to Golgi, leading to accumulation of PD-L1 in ER. In doing so, BMS1166 blocked PD-L1/PD-1 signaling. Coculturing PD-L1-expressing cells with PD-1-expressing cells induced degradation of PD-1, which could be used as a readout to identify inhibitors of PD-L1/PD-1 signaling. The small-molecule PD-L1 inhibitor BMS1166 abolished the glycosylation and maturation of PD-L1 by blocking its exporting from ER to Golgi. Our study discovered a new strategy to identify inhibitors of the PD-L1/PD-1 signaling pathway and to develop new drugs for the treatment of cancer.
Collapse
Affiliation(s)
- Fang-Fang Chen
- Chinese Academy of Sciences, Shanghai Institute of Materia Medica, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zheng Li
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dawei Ma
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiang Yu
- Chinese Academy of Sciences, Shanghai Institute of Materia Medica, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
STAT3 transcription factor as target for anti-cancer therapy. Pharmacol Rep 2020; 72:1101-1124. [PMID: 32880101 DOI: 10.1007/s43440-020-00156-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022]
Abstract
STATs constitute a large family of transcription activators and transducers of signals that have an important role in many cell functions as regulation of proliferation and differentiation of the cell also regulation of apoptosis and angiogenesis. STAT3 as a member of that family, recently was discovered to have a vital role in progression of different types of cancers. The activation of STAT3 was observed to regulate multiple gene functions during cancer-like cell proliferation, differentiation, apoptosis, metastasis, inflammation, immunity, cell survival, and angiogenesis. The inhibition of STAT3 activation has been an important target for cancer therapy. Inhibitors of STAT3 have been used for a long time for treatment of many types of cancers like leukemia, melanoma, colon, and renal cancer. In this review article, we summarize and discuss different drugs inhibiting the action of STAT3 and used in treatment of different types of cancer.
Collapse
|
25
|
Jing S, Zou H, Wu Z, Ren L, Zhang T, Zhang J, Wei Z. Cucurbitacins: Bioactivities and synergistic effect with small-molecule drugs. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
26
|
Tse C, Warner A, Farook R, Cronin JG. Phytochemical Targeting of STAT3 Orchestrated Lipid Metabolism in Therapy-Resistant Cancers. Biomolecules 2020; 10:biom10081118. [PMID: 32731620 PMCID: PMC7464013 DOI: 10.3390/biom10081118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Lipids are critical for maintaining homeostasis and cellular metabolism. However, the dysregulation of lipid metabolism contributes to the pathogenesis of chronic inflammatory diseases and is a hallmark of several cancer types. Tumours exist in a microenvironment of poor vascularization-depleted oxygen and restricted nutrients. Under these conditions, tumours have been shown to increasingly depend on the metabolism of fatty acids for sustained proliferation and survival. Signal transducer and activator of transcription 3 (STAT3) plays a key role in cellular processes such as cell growth, apoptosis and lipid metabolism. Aberrant STAT3 activity, as seen in several cancer types, is associated with tumour progression and malignancy, in addition to propagating crosstalk between tumour cells and the microenvironment. Furthermore, STAT3-regulated lipid metabolism is critical for cancer stem cell self-renewal and therapy resistance. Plant-derived compounds known as phytochemicals are a potential source for novel cancer therapeutic drugs. Dietary phytochemicals are known to modulate key cellular signalling pathways involved in lipid homeostasis and metabolism, including the STAT3 signalling pathways. Targeting STAT3 orchestrated lipid metabolism has shown therapeutic promise in human cancer models. In this review, we summarize the antitumour activity of phytochemicals with an emphasis placed on their effect on STAT3-regulated lipid metabolism and their role in abrogating therapy resistance.
Collapse
|
27
|
Significance of STAT3 in Immune Infiltration and Drug Response in Cancer. Biomolecules 2020; 10:biom10060834. [PMID: 32486001 PMCID: PMC7355836 DOI: 10.3390/biom10060834] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a transcription factor and regulates tumorigenesis. However, the functions of STAT3 in immune and drug response in cancer remain elusive. Hence, we aim to reveal the impact of STAT3 in immune infiltration and drug response comprehensively by bioinformatics analysis. The expression of STAT3 and its relationship with tumor stage were explored by Tumor Immune Estimation Resource (TIMER), Human Protein Altas (HPA), and UALCAN databases. The correlations between STAT3 and immune infiltration, gene markers of immune cells were analyzed by TIMER. Moreover, the association between STAT3 and drug response was evaluated by the Cancer Cell Line Encyclopedia (CCLE) and Cancer Therapeutics Response Portal (CTRP). The results suggested that the mRNA transcriptional level of STAT3 was lower in tumors than normal tissues and mostly unrelated to tumor stage. Besides, the protein expression of STAT3 decreased in colorectal and renal cancer compared with normal tissues. Importantly, STAT3 was correlated with immune infiltration and particularly regulated tumor-associated macrophage (TAM), M2 macrophage, T-helper 1 (Th1), follicular helper T (Treg), and exhausted T-cells. Remarkably, STAT3 was closely correlated with the response to specified inhibitors and natural compounds in cancer. Furthermore, the association between STAT3 and drug response was highly cell line type dependent. Significantly, the study provides thorough insight that STAT3 is associated with immunosuppression, as well as drug response in clinical treatment.
Collapse
|
28
|
Liposome Delivery of Natural STAT3 Inhibitors for the Treatment of Cancer. PHARMACEUTICAL FRONTIERS 2019; 1. [PMID: 31886474 DOI: 10.20900/pf20190007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the tumor microenvironment, cytokines, growth factors, and oncogenes mediate constitutive activation of the signal transducer and activator of transcription 3 (STAT3) signaling pathway in both cancer cells and infiltrating immune cells. STAT3 activation in cancer cells drives tumorigenic changes that allow for increased survival, proliferation, and resistance to apoptosis. The modulation of immune cells is more complicated and conflicting. STAT3 signaling drives the myeloid cell phenotype towards an immune suppressive state, which mediates T cell inhibition. On the other hand, STAT3 signaling in T cells leads to proliferation and T cell activity required for an anti-tumor response. Targeted delivery of STAT3 inhibitors to cancer cells and myeloid cells could therefore improve therapeutic outcomes. Many compounds that inhibit the STAT3 pathways for cancer treatment include peptide drugs, small molecule inhibitors, and natural compounds. However, natural compounds that inhibit STAT3 are often hydrophobic, which reduces their bioavailability and leads to unfavorable pharmacokinetics. This review focuses specifically on liposome-encapsulated natural STAT3 inhibitors and their ability to target cancer cells and myeloid cells to reduce tumor growth and decrease STAT3-mediated immune suppression. Many of these liposome formulations have led to profound tumor reduction and examples of combination formulations have been shown to eliminate tumors through immune modulation.
Collapse
|
29
|
Shan H, Yao S, Ye Y, Yu Q. 3-Deoxy-2β,16-dihydroxynagilactone E, a natural compound from Podocarpus nagi, preferentially inhibits JAK2/STAT3 signaling by allosterically interacting with the regulatory domain of JAK2 and induces apoptosis of cancer cells. Acta Pharmacol Sin 2019; 40:1578-1586. [PMID: 31201357 PMCID: PMC7471446 DOI: 10.1038/s41401-019-0254-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/20/2019] [Indexed: 02/08/2023] Open
Abstract
The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathways, especially the JAK2/STAT3 pathway, play vital roles in the development of many malignancies. Overactivation of STAT3 promotes cancer cell survival and proliferation. Therefore, the JAK2/STAT3-signaling pathway has been considered a promising target for cancer therapy. In this study, we identified a natural compound 3-deoxy-2β,16-dihydroxynagilactone E (B6) from the traditional Chinese medicinal plant Podocarpus nagi as a potent inhibitor of STAT3 signaling. B6 preferentially inhibited the phosphorylation of STAT3 by interacting with and inactivating JAK2, the main upstream kinase of STAT3. B6 dose-dependently inhibited IL-6-induced STAT3 signaling with an IC50 of 0.2 μM. In contrast to other JAK2 inhibitors, B6 did not interact with the catalytic domain but instead with the FERM-SH2 domain of JAK2. This interaction was JAK-specific since B6 had little effect on other tyrosine kinases. Furthermore, B6 potently inhibited the growth and induced apoptosis of MDA-MB-231 and MDA-MB-468 breast cancer cells with overactivated STAT3. Taken together, our study uncovers a novel compound and a novel mechanism for the regulation of JAK2 and offers a new therapeutic approach for the treatment of cancers with overactivated JAK2/STAT3.
Collapse
|
30
|
Thilakasiri PS, Dmello RS, Nero TL, Parker MW, Ernst M, Chand AL. Repurposing of drugs as STAT3 inhibitors for cancer therapy. Semin Cancer Biol 2019; 68:31-46. [PMID: 31711994 DOI: 10.1016/j.semcancer.2019.09.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023]
Abstract
Drug repurposing is a valuable approach in delivering new cancer therapeutics rapidly into the clinic. Existing safety and patient tolerability data for drugs already in clinical use represent an untapped resource in terms of identifying therapeutic agents for off-label protein targets. The multicellular effects of STAT3 mediated by a range of various upstream signaling pathways make it an attractive therapeutic target with utility in a range of diseases including cancer, and has led to the development of a variety of STAT3 inhibitors. Moreover, heightened STAT3 transcriptional activation in tumor cells and within the cells of the tumor microenvironment contribute to disease progression. Consequently, there are many STAT3 inhibitors in preclinical development or under evaluation in clinical trials for their therapeutic efficacy predominantly in inflammatory diseases and cancer. Despite these advances, many challenges remain in ultimately providing STAT3 inhibitors to patients as cancer treatments, highlighting the need not only for a better understanding of the mechanisms associated with STAT3 activation, but also how various pharmaceutical agents suppress STAT3 activity in various cancers. In this review we discuss the importance of STAT3-dependent functions in cancer, review the status of compounds designed as direct-acting STAT3 inhibitors, and describe some of the strategies for repurposing of drugs as STAT3 inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Pathum S Thilakasiri
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia
| | - Rhynelle S Dmello
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia
| | - Tracy L Nero
- ACRF Rational Drug Discovery Centre, St Vincent's Institute, Melbourne, Vic., Australia; Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, Vic., Australia
| | - Michael W Parker
- ACRF Rational Drug Discovery Centre, St Vincent's Institute, Melbourne, Vic., Australia; Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, Vic., Australia
| | - Matthias Ernst
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia
| | - Ashwini L Chand
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia.
| |
Collapse
|
31
|
Yang X, Tang Z, Zhang P, Zhang L. [Research Advances of JAK/STAT Signaling Pathway in Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2019; 22:45-51. [PMID: 30674393 PMCID: PMC6348154 DOI: 10.3779/j.issn.1009-3419.2019.01.09] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Janus激酶(Janus kinase, JAK)/信号转导子和转录活化子(signal transducer and activator of transcription, STAT)信号通路是细胞因子信号传导的下游通路,调控细胞的发育、分化、增殖、凋亡等,不仅参与调节正常的生理过程,在肿瘤的发生发展中也起着重要作用,尤其是在血液系统肿瘤中意义重大。近年来,随着对JAK/STAT信号通路研究的深入,人们发现该通路在实体肿瘤的发生发展中也扮演关键角色。本文就近年来JAK/STAT信号通路参与肺癌发生发展、肺癌转移、肺癌耐药机制形成以及靶向该通路的抑制剂在肺癌治疗中的应用现状进行综述。
Collapse
Affiliation(s)
- Xin Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhe Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
32
|
Cao P, Liu B, Du F, Li D, Wang Y, Yan X, Li X, Li Y. Scutellarin suppresses proliferation and promotes apoptosis in A549 lung adenocarcinoma cells via AKT/mTOR/4EBP1 and STAT3 pathways. Thorac Cancer 2019; 10:492-500. [PMID: 30666790 PMCID: PMC6397905 DOI: 10.1111/1759-7714.12962] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/25/2022] Open
Abstract
Background Scutellarin (SCU), a flavonoid isolated from Erigeron breviscapus (Vant.) Hand.‐Mazz., increases autophagy and apoptosis in the adenocarcinoma A549 cell line, which is resistant to cisplatin. However, whether SCU alone has antitumor activity against non‐small cell lung cancer (NSCLC) is unknown. Methods Cell Counting Kit‐8, flow cytometry, colony formation, Hoechst 33258 staining, and Western blot analyses were used to examine the proliferation and apoptosis of A549 cells treated with SCU and the possible molecular mechanisms. Results The cell viability assay indicated that SCU markedly suppressed the proliferation of A549 cells in concentration and time‐dependent manners. SCU caused significant G0/G1 phase arrest and apoptosis, as evidenced by flow cytometric analyses, Hoechst 33258 staining, and Western blot analyses of cyclin D1, cyclin E, BCL‐2, cleaved‐caspase‐3, and BAX. Furthermore, SCU treatment reduced the level of pan‐AKT, phosphorylated (p)‐mTOR, mTOR, BCL‐XL, STAT3, and p‐STAT3, and increased the level of 4EBP1. Conclusions SCU can suppress proliferation and promote apoptosis in A549 cells through AKT/mTOR/4EBP1 and STAT3 pathways. This suggests that SCU may be developed into a promising antitumor agent for treating NSCLC.
Collapse
Affiliation(s)
- Pikun Cao
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bin Liu
- Department of Interventional Medicine, The Second Hospital of Shandong University, Jinan, China.,Interventional Oncology Institute of Shandong University, Jinan, China
| | - Feng Du
- Department of Radiology, Pingyin County Hospital of Traditional Chinese Medicine, Jinan, China
| | - Dong Li
- Department of Interventional Medicine, The Second Hospital of Shandong University, Jinan, China.,Interventional Oncology Institute of Shandong University, Jinan, China
| | - Yongzheng Wang
- Department of Interventional Medicine, The Second Hospital of Shandong University, Jinan, China.,Interventional Oncology Institute of Shandong University, Jinan, China
| | - Xiaoyan Yan
- Department of Radiology, Pingyin County Hospital of Traditional Chinese Medicine, Jinan, China
| | - Xiao Li
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuliang Li
- Department of Interventional Medicine, The Second Hospital of Shandong University, Jinan, China.,Interventional Oncology Institute of Shandong University, Jinan, China
| |
Collapse
|
33
|
Chen F, Song Q, Yu Q. Axl inhibitor R428 induces apoptosis of cancer cells by blocking lysosomal acidification and recycling independent of Axl inhibition. Am J Cancer Res 2018; 8:1466-1482. [PMID: 30210917 PMCID: PMC6129480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023] Open
Abstract
R428 (BGB324) is an anti-cancer drug candidate under clinical investigation. It inhibits the receptor tyrosine kinase Axl and induces apoptosis of many types of cancer cells, but the relationship between the two has not been well established. We investigated the molecular mechanisms of the R428-induced apoptosis and found that R428 induced extensive cytoplasmic vacuolization and caspase activation, independent of its inhibitory effects on Axl. Further analyses revealed that R428 blocked lysosomal acidification and recycling, accumulated autophagosomes and lysosomes, and induced cell apoptosis. Inhibition of autophagy by autophagy inhibitors or autophagic gene-knockout alleviated the R428-induced vacuoles formation and cell apoptosis. Our study uncovered a novel function and mechanism of R428 in addition to its ability to inhibit Axl. These data will help to better direct the application of R428 as an anti-cancer reagent. It also adds new knowledge to understand the regulation of autophagy and apoptosis.
Collapse
Affiliation(s)
- Fangfang Chen
- Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghai 201203, China
- University of Chinese Academy of SciencesBeijing 100049, China
| | - Qiaoling Song
- Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghai 201203, China
- University of Chinese Academy of SciencesBeijing 100049, China
| | - Qiang Yu
- Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghai 201203, China
- University of Chinese Academy of SciencesBeijing 100049, China
| |
Collapse
|