1
|
Korbecki J, Bosiacki M, Kupnicka P, Barczak K, Ziętek P, Chlubek D, Baranowska-Bosiacka I. Choline kinases: Enzymatic activity, involvement in cancer and other diseases, inhibitors. Int J Cancer 2025; 156:1314-1325. [PMID: 39660774 DOI: 10.1002/ijc.35286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/22/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024]
Abstract
One of the aspects of tumor metabolism that distinguish it from healthy tissue is the phosphorylation of choline by choline kinases, which initiates the synthesis of phosphatidylcholine. Presently, there is a lack of comprehensive reviews discussing the current understanding of the role of choline kinase in cancer processes, as well as studies on the anti-tumor properties of choline kinase inhibitors. To address these gaps, this review delves into the enzymatic and non-enzymatic properties of CHKα and CHKβ and explores their precise involvement in cancer processes, particularly cancer cell proliferation. Additionally, we discuss clinical aspects of choline kinases in various tumor types, including pancreatic ductal adenocarcinoma, ovarian cancer, lung adenocarcinoma, lymphoma, leukemia, hepatocellular carcinoma, colon adenocarcinoma, and breast cancer. We examine the potential of CHKα inhibitors as anti-tumor drugs, although they are not yet in the clinical trial phase. Finally, the paper also touches upon the significance of choline kinases in non-cancerous diseases.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zielona Góra, Poland
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Szczecin, Poland
| | - Paweł Ziętek
- Department of Orthopaedics, Traumatology and Orthopaedic Oncology, Pomeranian Medical University, Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
2
|
Gong K, Zheng Y, Liu Y, Zhang T, Song Y, Chen W, Guo L, Zhou J, Liu W, Fang T, Chen Y, Wang J, Pan F, Shi K. Phosphocholine inhibits proliferation and reduces stemness of endometrial cancer cells by downregulating mTOR-c-Myc signaling. Cell Mol Life Sci 2024; 82:3. [PMID: 39680126 DOI: 10.1007/s00018-024-05517-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/10/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Endometrial cancer (EC) represents a serious health concern among women globally. Excessive activation of the protooncogene c-Myc (c-Myc) is associated with the proliferation and stemness of EC cells. Phosphocholine (PC), which is synthesized by choline kinase alpha (CHKA) catalysis, is upregulated in EC tumor tissues. The present study aimed to investigate the effect of PC accumulation on EC cells and clarify the relationship between PC accumulation and c-Myc activity in EC. METHODS The c-Myc and CHKA expression in EC tumor tissues were examined using immunohistochemistry. Cell Counting Kit-8 assay, colony formation assay, flow cytometry, western blotting, BrdU staining, and tumorsphere formation assay were used to assess the effect of PC accumulation on EC cells. The mechanism by which PC accumulation inhibits c-Myc was evaluated using RNA-sequencing. Patient-derived organoid (PDO) models were utilised to explore the preclinical efficacy of PC against EC cells. RESULTS PC accumulation suppressed EC cell proliferation and stemness by inhibiting the activation of the mammalian target of rapamycin (mTOR)-c-Myc signaling. PC accumulation promoted excessive reactive oxygen species production, which reduced the expression of GTPase HRAS. This, in turn, inhibited the mTOR-c-Myc axis and induced EC cell apoptosis. Finally, PC impeded proliferation and downregulated the expression of the mTOR-MYC signaling in EC PDO models. CONCLUSIONS PC accumulation impairs the proliferation ability and stem cell characteristics of EC cells by inhibiting the activated mTOR-c-Myc axis, potentially offering a promising strategy to enhance the efficacy of EC clinical therapy through the promotion of PC accumulation in tumor cells.
Collapse
Affiliation(s)
- Kunxiang Gong
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yanqin Zheng
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yaqiong Liu
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Tiansong Zhang
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Yiming Song
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Weiwei Chen
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Lirong Guo
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Jie Zhou
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Wenjie Liu
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Tianlin Fang
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Yun Chen
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Jingyao Wang
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Feifei Pan
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Kun Shi
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China.
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| |
Collapse
|
3
|
Liu J, Jiang B, Xu W, Liu Q, Huang H, Chang X, Ma G, Xu X, Zhou L, Xiao GG, Guo J. Targeted inhibition of CHKα and mTOR in models of pancreatic ductal adenocarcinoma: A novel regimen for metastasis. Cancer Lett 2024; 605:217280. [PMID: 39343354 DOI: 10.1016/j.canlet.2024.217280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic malignancy for which there are currently no effective anti-metastatic therapies. Herein, we employed single-cell RNA sequencing and metabolomics analysis to demonstrate that metastatic cells highly express focal adhesion kinase (FAK), which promotes metastasis by remodeling choline kinase α (CHKα)-dependent choline metabolism. We designed a novel CHKα inhibitor, CHKI-03, and verified its efficacy in inhibiting metastasis in multiple preclinical models. Classical and newly synthesized small-molecule inhibitors have previously been used to assess the therapeutic potential of targeting mTOR and CHKα in various animal models. Mechanistically, FAK activated mTOR and its downstream HIF-1α, thereby elevating CHKα expression and promoting the proliferation, migration, and invasion of PDAC cells, as well as tumor growth and metastasis. Consistently, high expression levels of both FAK and CHKα are correlated with poor prognosis in patients with PDAC. Notably, CHK1-03 inhibited CHKα expression and also suppressed mTORC1 phosphorylation, disrupting the mTORC1-CHKα positive feedback loop. In addition, the combination of CHKI-03 and the mTORC1 inhibitor rapamycin synergistically inhibited tumor growth and metastasis in PDX models. The combination of CHKI-03 and rapamycin demonstrates considerable therapeutic efficacy in PDO models resistant to gemcitabine. Our findings reveal a pivotal mechanism underlying PDAC metastasis regulated by mTORC1-CHKα loop-dependent choline metabolism reprogramming, highlighting the therapeutic potential of this novel regimen for treating PDAC metastasis.
Collapse
Affiliation(s)
- Jianzhou Liu
- Department of General Surgery, Key Laboratory of Research in Pancreatic Tumor, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Bolun Jiang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 31003, China
| | - Wenchao Xu
- Department of General Surgery, Key Laboratory of Research in Pancreatic Tumor, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Qiaofei Liu
- Department of General Surgery, Key Laboratory of Research in Pancreatic Tumor, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Haoran Huang
- Department of General Surgery, Key Laboratory of Research in Pancreatic Tumor, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiaoyan Chang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Guoxu Ma
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Xudong Xu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Li Zhou
- Department of General Surgery, Key Laboratory of Research in Pancreatic Tumor, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Gary Guishan Xiao
- Functional Genomics and Proteomics Center, Creighton University Medical Center, 601N 30th ST, Omaha, NE, 68131, USA
| | - Junchao Guo
- Department of General Surgery, Key Laboratory of Research in Pancreatic Tumor, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
4
|
Khan AQ, Agha MV, Ahmad F, Anver R, Sheikhan KSAM, Mateo J, Alam M, Buddenkotte J, Uddin S, Steinhoff M. Metabolomics analyses reveal the crucial role of ERK in regulating metabolic pathways associated with the proliferation of human cutaneous T-cell lymphoma cells treated with Glabridin. Cell Prolif 2024; 57:e13701. [PMID: 38946222 PMCID: PMC11503255 DOI: 10.1111/cpr.13701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Cutaneous T-cell lymphomas (CTC) are a heterogeneous group of T-cell lymphoproliferative malignancies of the skin with limited treatment options, increased resistance and remission. Metabolic reprogramming is vital in orchestrating the uncontrolled growth and proliferation of cancer cells. Importantly, deregulated signalling plays a significant role in metabolic reprogramming. Considering the crucial role of metabolic reprogramming in cancer-cell growth and proliferation, target identification and the development of novel and multi-targeting agents are imperative. The present study explores the underlying mechanisms and metabolic signalling pathways associated with Glabridin mediated anti-cancer actions in CTCL. Our results show that Glabridin significantly inhibits the growth of CTCL cells through induction of programmed cell death (PCD) such as apoptosis, autophagy and necrosis. Interestingly, results further show that Glabridin induces PCD in CTCL cells by targeting MAPK signalling pathways, particularly the activation of ERK. Further, Glabridin also sensitized CTCL cells to the anti-cancer drug, bortezomib. Importantly, LC-MS-based metabolomics analyses further showed that Glabridin targeted multiple metabolites and metabolic pathways intricately involved in cancer cell growth and proliferation in an ERK-dependent fashion. Overall, our findings revealed that Glabridin induces PCD and attenuates the expression of regulatory proteins and metabolites involved in orchestrating the uncontrolled proliferation of CTCL cells through ERK activation. Therefore, Glabridin possesses important features of an ideal anti-cancer agent.
Collapse
Affiliation(s)
- Abdul Q. Khan
- Translational Research InstituteAcademic Health System, Hamad Medical CorporationDohaQatar
| | - Maha Victor Agha
- Translational Research InstituteAcademic Health System, Hamad Medical CorporationDohaQatar
| | - Fareed Ahmad
- Dermatology Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- Department of Dermatology and VenereologyRumailah Hospital, Hamad Medical CorporationDohaQatar
| | - Rasheeda Anver
- Translational Research InstituteAcademic Health System, Hamad Medical CorporationDohaQatar
| | | | - Jericha Mateo
- Translational Research InstituteAcademic Health System, Hamad Medical CorporationDohaQatar
| | - Majid Alam
- Translational Research InstituteAcademic Health System, Hamad Medical CorporationDohaQatar
- Dermatology Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- Department of Dermatology and VenereologyRumailah Hospital, Hamad Medical CorporationDohaQatar
| | - Joerg Buddenkotte
- Dermatology Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- Department of Dermatology and VenereologyRumailah Hospital, Hamad Medical CorporationDohaQatar
| | - Shahab Uddin
- Translational Research InstituteAcademic Health System, Hamad Medical CorporationDohaQatar
- Dermatology Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- Laboratory Animal Research CenterQatar UniversityDohaQatar
| | - Martin Steinhoff
- Translational Research InstituteAcademic Health System, Hamad Medical CorporationDohaQatar
- Dermatology Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- Department of Dermatology and VenereologyRumailah Hospital, Hamad Medical CorporationDohaQatar
- Department of MedicineWeill Cornell Medicine Qatar, Qatar Foundation‐Education CityDohaQatar
- Department of MedicineWeill Cornell MedicineNew YorkNew YorkUSA
- College of MedicineQatar UniversityDohaQatar
| |
Collapse
|
5
|
Krug A, Tosolini M, Madji Hounoum B, Fournié JJ, Geiger R, Pecoraro M, Emond P, Gaulard P, Lemonnier F, Ricci JE, Verhoeyen E. Inhibition of choline metabolism in an angioimmunoblastic T-cell lymphoma preclinical model reveals a new metabolic vulnerability as possible target for treatment. J Exp Clin Cancer Res 2024; 43:43. [PMID: 38321568 PMCID: PMC10845598 DOI: 10.1186/s13046-024-02952-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/10/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Angioimmunoblastic T-cell lymphoma (AITL) is a malignancy with very poor survival outcome, in urgent need of more specific therapeutic strategies. The drivers of malignancy in this disease are CD4+ follicular helper T cells (Tfh). The metabolism of these malignant Tfh cells was not yet elucidated. Therefore, we decided to identify their metabolic requirements with the objective to propose a novel therapeutic option. METHODS To reveal the prominent metabolic pathways used by the AITL lymphoma cells, we relied on metabolomic and proteomic analysis of murine AITL (mAITL) T cells isolated from our established mAITL model. We confirmed these results using AITL patient and healthy T cell expression data. RESULTS Strikingly, the mAITL Tfh cells were highly dependent on the second branch of the Kennedy pathway, the choline lipid pathway, responsible for the production of the major membrane constituent phosphatidylcholine. Moreover, gene expression data from Tfh cells isolated from AITL patient tumors, confirmed the upregulation of the choline lipid pathway. Several enzymes involved in this pathway such as choline kinase, catalyzing the first step in the phosphatidylcholine pathway, are upregulated in multiple tumors other than AITL. Here we showed that treatment of our mAITL preclinical mouse model with a fatty acid oxydation inhibitor, significantly increased their survival and even reverted the exhausted CD8 T cells in the tumor into potent cytotoxic anti-tumor cells. Specific inhibition of Chokα confirmed the importance of the phosphatidylcholine production pathway in neoplastic CD4 + T cells, nearly eradicating mAITL Tfh cells from the tumors. Finally, the same inhibitor induced in human AITL lymphoma biopsies cell death of the majority of the hAITL PD-1high neoplastic cells. CONCLUSION Our results suggest that interfering with choline metabolism in AITL reveals a specific metabolic vulnerability and might represent a new therapeutic strategy for these patients.
Collapse
Affiliation(s)
- Adrien Krug
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Equipe Labellisée Ligue Contre Le Cancer, 06204, Nice, France
| | - Marie Tosolini
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier, Inserm, Toulouse, France
| | - Blandine Madji Hounoum
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Equipe Labellisée Ligue Contre Le Cancer, 06204, Nice, France
| | - Jean-Jacques Fournié
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier, Inserm, Toulouse, France
- Labex TOUCAN, Toulouse, France
| | - Roger Geiger
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Oncology Research (IOR), Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Matteo Pecoraro
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
| | - Patrick Emond
- UMR iBrain, Université de Tours, Inserm, Tours, France
| | - Philippe Gaulard
- Université Paris-Est Créteil, Institut Mondor de Recherche Biomedicale, Creteil, INSERMU955, France
- AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Département de Pathologie, 94010, Créteil, France
| | - François Lemonnier
- Université Paris-Est Créteil, Institut Mondor de Recherche Biomedicale, Creteil, INSERMU955, France
- AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Service Unité Hémopathies Lymphoides, 94010, Créteil, France
| | - Jean-Ehrland Ricci
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Equipe Labellisée Ligue Contre Le Cancer, 06204, Nice, France
| | - Els Verhoeyen
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France.
- Equipe Labellisée Ligue Contre Le Cancer, 06204, Nice, France.
- CIRI, Université de Lyon, INSERM U1111, ENS de Lyon, University Lyon1, CNRS, UMR5308, Lyon, 69007, France.
| |
Collapse
|
6
|
Yao N, Li W, Xu G, Duan N, Yu G, Qu J. Choline metabolism and its implications in cancer. Front Oncol 2023; 13:1234887. [PMID: 38023163 PMCID: PMC10646347 DOI: 10.3389/fonc.2023.1234887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Choline, a quintessential quaternary ammonium compound, plays a cardinal role in several pivotal biological mechanisms, chiefly in safeguarding cell membrane integrity, orchestrating methylation reactions, and synthesizing vital neurotransmitters. This systematic review meticulously dissects the complex interplay between choline metabolism and its profound implications in oncology. The exposition is stratified into three salient dimensions: Initially, we delve into the intricacies of choline metabolism, accentuating its indispensability in cellular physiology, the enzymatic labyrinth governing its flux, and the pivotal cellular import mechanisms. Subsequently, we elucidate the contemporary comprehension of choline metabolism in the cancer paradigm, traversing its influence from inception to the intricate metamorphosis during oncogenic progression, further compounded by dysregulated enzyme activities and aberrant signaling cascades. Conclusively, we illuminate the burgeoning potential of choline-centric metabolic imaging modalities, notably magnetic resonance spectroscopy (MRS) and positron emission tomography (PET), as avant-garde tools for cancer diagnostics and therapeutic trajectory monitoring. Synoptically, the nuanced perturbations in choline metabolism in neoplastic entities unfurl critical insights, potentially heralding paradigm shifts in diagnostic and therapeutic oncological stratagems. A deeper foray into this realm is anticipated to fortify our molecular understanding and refine intervention modalities in cancer theranostics.
Collapse
Affiliation(s)
- Nan Yao
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| | - Wenqiang Li
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| | - Guoshuai Xu
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| | - Ning Duan
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| | - Guoyong Yu
- Department of Nephrology, Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, Beijing, China
| | - Jun Qu
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| |
Collapse
|
7
|
Pang Y, Lu T, Xu-Monette ZY, Young KH. Metabolic Reprogramming and Potential Therapeutic Targets in Lymphoma. Int J Mol Sci 2023; 24:5493. [PMID: 36982568 PMCID: PMC10052731 DOI: 10.3390/ijms24065493] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Lymphoma is a heterogeneous group of diseases that often require their metabolism program to fulfill the demand of cell proliferation. Features of metabolism in lymphoma cells include high glucose uptake, deregulated expression of enzymes related to glycolysis, dual capacity for glycolytic and oxidative metabolism, elevated glutamine metabolism, and fatty acid synthesis. These aberrant metabolic changes lead to tumorigenesis, disease progression, and resistance to lymphoma chemotherapy. This metabolic reprogramming, including glucose, nucleic acid, fatty acid, and amino acid metabolism, is a dynamic process caused not only by genetic and epigenetic changes, but also by changes in the microenvironment affected by viral infections. Notably, some critical metabolic enzymes and metabolites may play vital roles in lymphomagenesis and progression. Recent studies have uncovered that metabolic pathways might have clinical impacts on the diagnosis, characterization, and treatment of lymphoma subtypes. However, determining the clinical relevance of biomarkers and therapeutic targets related to lymphoma metabolism is still challenging. In this review, we systematically summarize current studies on metabolism reprogramming in lymphoma, and we mainly focus on disorders of glucose, amino acids, and lipid metabolisms, as well as dysregulation of molecules in metabolic pathways, oncometabolites, and potential metabolic biomarkers. We then discuss strategies directly or indirectly for those potential therapeutic targets. Finally, we prospect the future directions of lymphoma treatment on metabolic reprogramming.
Collapse
Affiliation(s)
- Yuyang Pang
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Hematology, Ninth People’s Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Tingxun Lu
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Durham, NC 27710, USA
| | - Zijun Y. Xu-Monette
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Durham, NC 27710, USA
| | - Ken H. Young
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Durham, NC 27710, USA
| |
Collapse
|
8
|
Miriam Jose A, Rasool M. Choline kinase: An underappreciated rheumatoid arthritis therapeutic target. Life Sci 2022; 309:121031. [DOI: 10.1016/j.lfs.2022.121031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/15/2022]
|
9
|
MALAT1 as a Regulator of the Androgen-Dependent Choline Kinase A Gene in the Metabolic Rewiring of Prostate Cancer. Cancers (Basel) 2022; 14:cancers14122902. [PMID: 35740569 PMCID: PMC9221206 DOI: 10.3390/cancers14122902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Despite the rapid advance in cancer therapies, treatment-resistant relapse remains a significant challenge in cancer treatment. Acquired resistance arises during or after treatment administration, and is usually the main contributor to relapse. For example, prostate cancer, the most frequent type of cancer in the elderly male population, frequently develops into aggressive forms resistant to chemical and hormonal therapies. In this condition, the so-called “cholinic phenotype” that is characterized by the overexpression of choline kinase alpha (CHKA) and increased phosphocholine levels leads to aberrant lipid metabolism. Our work demonstrates that CHKA, which is necessary for membrane phospholipid synthesis, is a target of the long non-coding RNA MALAT1. This study helps to further decipher how MALAT1 affects the regulation of crucial phospholipid/sphingolipid metabolic enzymes, as well as how the androgen receptor pathway is involved in MALAT1-dependent transcriptional regulation. Abstract Background. Choline kinase alpha (CHKA), an essential gene in phospholipid metabolism, is among the modulated MALAT1-targeted transcripts in advanced and metastatic prostate cancer (PCa). Methods. We analyzed CHKA mRNA by qPCR upon MALAT1 targeting in PCa cells, which is characterized by high dose-responsiveness to the androgen receptor (AR) and its variants. Metabolome analysis of MALAT1-depleted cells was performed by quantitative High-resolution 1 H-Nuclear Magnetic Resonance (NMR) spectroscopy. In addition, CHKA genomic regions were evaluated by chromatin immunoprecipitation (ChIP) in order to assess MALAT1-dependent histone-tail modifications and AR recruitment. Results. In MALAT1-depleted cells, the decrease of CHKA gene expression was associated with reduced total choline-containing metabolites compared to controls, particularly phosphocholine (PCho). Upon MALAT1 targeting a significant increase in repressive histone modifications was observed at the CHKA intron-2, encompassing relevant AR binding sites. Combining of MALAT1 targeting with androgen treatment prevented MALAT1-dependent CHKA silencing in androgen-responsive (LNCaP) cells, while it did not in hormone-refractory cells (22RV1 cells). Moreover, AR nuclear translocation and its activation were detected by confocal microscopy analysis and ChIP upon MALAT1 targeting or androgen treatment. Conclusions. These findings support the role of MALAT1 as a CHKA activator through putative association with the liganded or unliganded AR, unveiling its targeting as a therapeutic option from a metabolic rewiring perspective.
Collapse
|
10
|
Krug A, Tari G, Saidane A, Gaulard P, Ricci JE, Lemonnier F, Verhoeyen E. Novel T Follicular Helper-like T-Cell Lymphoma Therapies: From Preclinical Evaluation to Clinical Reality. Cancers (Basel) 2022; 14:cancers14102392. [PMID: 35625998 PMCID: PMC9139536 DOI: 10.3390/cancers14102392] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/02/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary This work reviews the multiple efforts that have been and are being invested by researchers as well as clinicians to improve the treatment of a specific T-cell lymphoma called follicular helper peripheral T-cell lymphoma. Still, though treatments for B-cell lymphomas have improved, this particular T-cell lymphoma has little to no new therapeutic options that show marked improvements in the survival of the patients compared to treatment with chemotherapy. We report here the evaluation of targeted new therapies for this T-cell lymphoma in new preclinical models for this cancer or in clinical trials with the objective to offer better (combination) treatment options. Abstract The classification of peripheral T-cell lymphomas (PTCL) is constantly changing and contains multiple subtypes. Here, we focus on Tfh-like PTCL, to which angioimmunoblastic T-cell lymphoma (AITL) belongs, according to the last WHO classification. The first-line treatment of these malignancies still relies on chemotherapy but gives very unsatisfying results for these patients. Enormous progress in the last decade in terms of understanding the implicated genetic mutations leading to signaling and epigenetic pathway deregulation in Tfh PTCL allowed the research community to propose new therapeutic approaches. These findings point towards new biomarkers and new therapies, including hypomethylating agents, such as azacytidine, and inhibitors of the TCR-hyperactivating molecules in Tfh PTCL. Additionally, metabolic interference, inhibitors of the NF-κB and PI3K-mTOR pathways and possibly novel immunotherapies, such as antibodies and chimeric antigen receptors (CAR) directed against Tfh malignant T-cell surface markers, are discussed in this review among other new treatment options.
Collapse
Affiliation(s)
- Adrien Krug
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (A.K.); (A.S.); (J.-E.R.)
| | - Gamze Tari
- Univ Paris Est Créteil, INSERM, IMRB, 94010 Créteil, France;
| | - Aymen Saidane
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (A.K.); (A.S.); (J.-E.R.)
| | - Philippe Gaulard
- Département de Pathologie, AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, 94010 Créteil, France;
| | - Jean-Ehrland Ricci
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (A.K.); (A.S.); (J.-E.R.)
| | - François Lemonnier
- Service Unité Hémopathies Lymphoides, AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, 94010 Créteil, France;
| | - Els Verhoeyen
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (A.K.); (A.S.); (J.-E.R.)
- CIRI, Université de Lyon, INSERM U1111, ENS de Lyon, Université Lyon1, CNRS, UMR 5308, 69007 Lyon, France
- Correspondence: or ; Tel.: +33-4-72728731
| |
Collapse
|
11
|
Zhu R, Yang Y, Shao F, Wang J, Gao Y, He J, Lu Z. Choline Kinase Alpha2 Promotes Lipid Droplet Lipolysis in Non-Small-Cell Lung Carcinoma. Front Oncol 2022; 12:848483. [PMID: 35463311 PMCID: PMC9021865 DOI: 10.3389/fonc.2022.848483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
Background Rapid tumor growth inevitably results in energy stress, including deficiency of glutamine, a critical amino acid for tumor cell proliferation. However, whether glutamine deficiency allows tumor cells to use lipid droplets as an energy resource and the mechanism underlying this potential regulation remain unclear. Methods We purified lipid droplets from H322 and H358 human non-small-cell lung cancer (NSCLC) cells under glutamine deprivation conditions and performed immunoblotting to determine the binding of choline kinase (CHK) α2 to lipid droplets. Immunofluorescence was used to quantify lipid droplet numbers and sizes. Immunoprecipitation and immunoblotting were performed to examine AMPK activation and CHKα2 phosphorylation. Cellular fatty acid levels, mitochondrial acetyl coenzyme A and ATP production, and cell apoptosis and proliferation were measured. Immunohistochemical analyses were performed to determine the expression levels of ACC pS79 and CHKα2 pS279 in tumor specimens from NSCLC patients. The prognostic value of ACC pS79 and CHKα2 pS279 was assessed using the Kaplan-Meier method and Cox regression models. Results Glutamine deficiency induces AMPK-mediated CHKα2 S279 phosphorylation, which promotes the binding of CHKα2 to lipid droplets, resulting in recruitment of cytosolic lipase ATGL and autophagosomes and subsequent lipolysis of lipid droplets to sustain tumor cell survival and proliferation. In addition, the levels of ACC pS79 and CHKα S279 were much higher in human NSCLC specimens than in their adjacent normal tissues and positively correlated with each other. Notably, ACC pS79 and CHKα pS279 expression levels alone were associated with poor prognosis of NSCLC patients, and combined values of both phosphorylation levels were correlated with worse prognosis of the patients. Conclusion CHKα2 plays a critical role in lipolysis of lipid droplets in NSCLC. ACC pS79 and CHKα2 pS279 alone or in combination can be used as prognostic markers in NSCLC.
Collapse
Affiliation(s)
- Rongxuan Zhu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yannan Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Shao
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Juhong Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhimin Lu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Lu J, Li Y, Li YA, Wang L, Zeng AR, Ma XL, Qiang JW. In vivo detection of dysregulated choline metabolism in paclitaxel-resistant ovarian cancers with proton magnetic resonance spectroscopy. J Transl Med 2022; 20:92. [PMID: 35168606 PMCID: PMC8845351 DOI: 10.1186/s12967-022-03292-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 02/02/2022] [Indexed: 02/07/2023] Open
Abstract
Background Chemoresistance gradually develops during treatment of epithelial ovarian cancer (EOC). Metabolic alterations, especially in vivo easily detectable metabolites in paclitaxel (PTX)-resistant EOC remain unclear. Methods Xenograft models of the PTX-sensitive and PTX-resistant EOCs were built. Using a combination of in vivo proton-magnetic resonance spectroscopy (1H-MRS), metabolomics and proteomics, we investigated the in vivo metabolites and dysregulated metabolic pathways in the PTX-resistant EOC. Furthermore, we analyzed the RNA expression to validate the key enzymes in the dysregulated metabolic pathway. Results On in vivo 1H-MRS, the ratio of (glycerophosphocholine + phosphocholine) to (creatine + phosphocreatine) ((GPC + PC) to (Cr + PCr))(i.e. Cho/Cr) in the PTX-resistant tumors (1.64 [0.69, 4.18]) was significantly higher than that in the PTX-sensitive tumors (0.33 [0.10, 1.13]) (P = 0.04). Forty-five ex vivo metabolites were identified to be significantly different between the PTX-sensitive and PTX-resistant tumors, with the majority involved of lipids and lipid-like molecules. Spearman’s correlation coefficient analysis indicated in vivo and ex vivo metabolic characteristics were highly consistent, exhibiting the highest positive correlation between in vivo GPC + PC and ex vivo GPC (r = 0.885, P < 0.001). These metabolic data suggested that abnormal choline concentrations were the results from the dysregulated glycerophospholipid metabolism, especially choline metabolism. The proteomics data indicated that the expressions of key enzymes glycerophosphocholine phosphodiesterase 1 (GPCPD1) and glycerophosphodiester phosphodiesterase 1 (GDE1) were significantly lower in the PTX-resistant tumors compared to the PTX-sensitive tumors (both P < 0.01). Decreased expressions of GPCPD1 and GDE1 in choline metabolism led to an increased GPC levels in the PTX-resistant EOCs, which was observed as an elevated total choline (tCho) on in vivo 1H-MRS. Conclusions These findings suggested that dysregulated choline metabolism was associated with PTX-resistance in EOCs and the elevated tCho on in vivo 1H-MRS could be as an indicator for the PTX-resistance in EOCs. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03292-z.
Collapse
Affiliation(s)
- Jing Lu
- Department of Radiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Ying Li
- Department of Radiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Yong Ai Li
- Department of Radiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Li Wang
- Department of Pathology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - An Rong Zeng
- Department of Radiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Xiao Liang Ma
- Department of Radiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Jin Wei Qiang
- Department of Radiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China.
| |
Collapse
|
13
|
Wang S, Li J, Wang Y. M2PP: a novel computational model for predicting drug-targeted pathogenic proteins. BMC Bioinformatics 2022; 23:7. [PMID: 34983358 PMCID: PMC8728953 DOI: 10.1186/s12859-021-04522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Detecting pathogenic proteins is the origin way to understand the mechanism and resist the invasion of diseases, making pathogenic protein prediction develop into an urgent problem to be solved. Prediction for genome-wide proteins may be not necessarily conducive to rapidly cure diseases as developing new drugs specifically for the predicted pathogenic protein always need major expenditures on time and cost. In order to facilitate disease treatment, computational method to predict pathogenic proteins which are targeted by existing drugs should be exploited. RESULTS In this study, we proposed a novel computational model to predict drug-targeted pathogenic proteins, named as M2PP. Three types of features were presented on our constructed heterogeneous network (including target proteins, diseases and drugs), which were based on the neighborhood similarity information, drug-inferred information and path information. Then, a random forest regression model was trained to score unconfirmed target-disease pairs. Five-fold cross-validation experiment was implemented to evaluate model's prediction performance, where M2PP achieved advantageous results compared with other state-of-the-art methods. In addition, M2PP accurately predicted high ranked pathogenic proteins for common diseases with public biomedical literature as supporting evidence, indicating its excellent ability. CONCLUSIONS M2PP is an effective and accurate model to predict drug-targeted pathogenic proteins, which could provide convenience for the future biological researches.
Collapse
Affiliation(s)
- Shiming Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Jie Li
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.
| | - Yadong Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.
| |
Collapse
|
14
|
Quartieri F, Nesi M, Avanzi NR, Borghi D, Casale E, Corti E, Cucchi U, Donati D, Fasolini M, Felder ER, Galvani A, Giorgini ML, Lomolino A, Menichincheri M, Orrenius C, Perrera C, Re Depaolini S, Riccardi-Sirtori F, Salsi E, Isacchi A, Gnocchi P. Identification of unprecedented ATP-competitive choline kinase inhibitors. Bioorg Med Chem Lett 2021; 51:128310. [PMID: 34416377 DOI: 10.1016/j.bmcl.2021.128310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/22/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
In this article we describe the identification of unprecedented ATP-competitive ChoKα inhibitors starting from initial hit NMS-P830 that binds to ChoKα in an ATP concentration-dependent manner. This result is confirmed by the co-crystal structure of NMS-P830 in complex with Δ75-ChoKα. NMS-P830 is able to inhibit ChoKα in cells resulting in the reduction of intracellular phosphocholine formation. A structure-based medicinal chemistry program resulted in the identification of selective compounds that have good biochemical activity, solubility and metabolic stability and are suitable for further optimization. The ChoKα inhibitors disclosed in this article demonstrate for the first time the possibility to inhibit ChoKα with ATP-competitive compounds.
Collapse
Affiliation(s)
- Francesca Quartieri
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy.
| | - Marcella Nesi
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Nilla R Avanzi
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Daniela Borghi
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Elena Casale
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Emiliana Corti
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Ulisse Cucchi
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Daniele Donati
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Marina Fasolini
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Eduard R Felder
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Arturo Galvani
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Maria L Giorgini
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Antonio Lomolino
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | | | - Christian Orrenius
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Claudia Perrera
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | | | | | - Enea Salsi
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Antonella Isacchi
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Paola Gnocchi
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| |
Collapse
|
15
|
SLC1A1 mediated glutamine addiction and contributed to natural killer T-cell lymphoma progression with immunotherapeutic potential. EBioMedicine 2021; 72:103614. [PMID: 34628354 PMCID: PMC8511843 DOI: 10.1016/j.ebiom.2021.103614] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Metabolic reprogramming plays an essential role on lymphoma progression. Dysregulation of glutamine metabolism is implicated in natural-killer T-cell lymphoma (NKTCL) and tumor cell response to asparaginase-based anti-metabolic treatment. METHODS To understand the metabolomic alterations and determine the potential therapeutic target of asparaginase, we assessed metabolomic profile using liquid chromatography-mass spectrometry in serum samples of 36 NKTCL patients, and integrated targeted metabolic analysis and RNA sequencing in tumor samples of 102 NKTCL patients. The biological function of solute carrier family 1 member 1 (SLC1A1) on metabolic flux, lymphoma cell growth, and drug sensitivity was further examined in vitro in NK-lymphoma cell line NK-92 and SNK-6, and in vivo in zebrafish xenograft models. FINDINGS In NKTCL patients, serum metabolomic profile was characterized by aberrant glutamine metabolism and SLC1A1 was identified as a central regulator of altered glutaminolysis. Both in vitro and in vivo, ectopic expression of SLC1A1 increased cellular glutamine uptake, enhanced glutathione metabolic flux, and induced glutamine addiction, leading to acceleration of cell proliferation and tumor growth. Of note, SLC1A1 overexpression was significantly associated with PD-L1 downregulation and reduced cytotoxic CD3+/CD8+ T cell activity when co-cultured with peripheral blood mononuclear cells. Asparaginase treatment counteracted SLC1A1-mediated glutamine addiction, restored SLC1A1-induced impaired T-cell immunity. Clinically, high EAAT3 (SLC1A1-encoded protein) expression independently predicted superior progression-free and overall survival in 90 NKTCL patients treated with asparaginase-based regimens. INTERPRETATION SLC1A1 functioned as an extracellular glutamine transporter, promoted tumor growth through reprogramming glutamine metabolism of NKTCL, while rendered tumor cells sensitive to asparaginase treatment. Moreover, SLC1A1-mediated modulation of PD-L1 expression might provide clinical rationale of co-targeting metabolic vulnerability and immunosuppressive microenvironment in NKTCL. FUNDING This study was supported, in part, by research funding from the National Natural Science Foundation of China (82130004, 81830007 and 81900192), Chang Jiang Scholars Program, Shanghai Municipal Education Commission Gaofeng Clinical Medicine Grant Support (20152206 and 20152208), Clinical Research Plan of SHDC (2020CR1032B), Multicenter Clinical Research Project by Shanghai Jiao Tong University School of Medicine (DLY201601), Shanghai Chenguang Program (19CG15), Shanghai Sailing Program (19YF1430800), Medical-Engineering Cross Foundation of Shanghai Jiao Tong University (ZH2018QNA46), and Shanghai Yi Yuan Xin Xing Program.
Collapse
|
16
|
Zang B, Wang W, Wang Y, Li P, Xia T, Liu X, Chen D, Piao HL, Qi H, Ma Y. Metabolomic Characterization Reveals ILF2 and ILF3 Affected Metabolic Adaptions in Esophageal Squamous Cell Carcinoma. Front Mol Biosci 2021; 8:721990. [PMID: 34568427 PMCID: PMC8459612 DOI: 10.3389/fmolb.2021.721990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Esophageal cancer (EC) is a common malignant disease in eastern countries. However, a study of the metabolomic characteristics associated with other biological factors in esophageal squamous cell carcinoma (ESCC) is limited. Interleukin enhancer binding factor 2 (ILF2) and ILF3, double-stranded RNA-binding proteins, have been reported to contribute to the occurrence and development of various types of malignancy. Nevertheless, the underlying functions of ILF2 and ILF3 in ESCC metabolic reprogramming have never been reported. This study aimed to contribute to the metabolic characterization of ESCC and to investigate the metabolomic alterations associated with ILF2 and ILF3 in ESCC tissues. Here, we identified 112 differential metabolites, which were mainly enriched in phosphatidylcholine biosynthesis, fatty acid metabolism, and amino acid metabolism pathways, based on liquid chromatography–mass spectrometry and capillary electrophoresis–mass spectrometry approaches using ESCC tissues and paired para-cancer tissues from twenty-eight ESCC patients. In addition, ILF2 and ILF3 expression were significantly elevated in EC tissues compared to the histologically normal samples, and closely associated with PI3K/AKT and MAPK signaling pathways in ESCC. Moreover, in ESCC tissues with a high ILF2 expression, several short-chain acyl-carnitines (C3:0, C4:0, and C5:0) related to the BCAA metabolic pathway and long-chain acyl-carnitines (C14:0, C16:0, C16:0-OH, and C18:0) involved in the oxidation of fatty acids were obviously upregulated. Additionally, a series of intermediate metabolites involved in the glycolysis pathway, including G6P/F6P, F1,6BP, DHAP, G3P, and 2,3BPG, were remarkably downregulated in highly ILF3-expressed ESCC tissues compared with the corresponding para-cancer tissues. Overall, these findings may provide evidence for the roles of ILF2 and ILF3 during the process of ESCC metabolic alterations, and new insights into the development of early diagnosis and treatment for ESCC. Further investigation is needed to clarify the underlying mechanism of ILF2 and ILF3 on acyl-carnitines and the glycolysis pathway, respectively.
Collapse
Affiliation(s)
- Bin Zang
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China.,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Wen Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yiqian Wang
- Department of Radiotherapy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Pengfei Li
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Tian Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xiaolong Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Di Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, China
| | - Huan Qi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yegang Ma
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
17
|
Fang CY, Chen JS, Hsu BM, Hussain B, Rathod J, Lee KH. Colorectal Cancer Stage-Specific Fecal Bacterial Community Fingerprinting of the Taiwanese Population and Underpinning of Potential Taxonomic Biomarkers. Microorganisms 2021; 9:microorganisms9081548. [PMID: 34442626 PMCID: PMC8401100 DOI: 10.3390/microorganisms9081548] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 12/12/2022] Open
Abstract
Despite advances in the characterization of colorectal cancer (CRC), it still faces a poor prognosis. There is growing evidence that gut microbiota and their metabolites potentially contribute to the development of CRC. Thus, microbial dysbiosis and their metabolites associated with CRC, based on stool samples, may be used to advantage to provide an excellent opportunity to find possible biomarkers for the screening, early detection, prevention, and treatment of CRC. Using 16S rRNA amplicon sequencing coupled with statistical analysis, this study analyzed the cause–effect shift of the microbial taxa and their metabolites that was associated with the fecal gut microbiota of 17 healthy controls, 21 polyps patients, and 21 cancer patients. The microbial taxonomic shift analysis revealed striking differences among the healthy control, polyps and cancer groups. At the phylum level, Synergistetes was reduced significantly in the polyps group compared to the healthy control and cancer group. Additionally, at the genus level and in association with the cancer group, a total of 12 genera were highly enriched in abundance. In contrast, only Oscillosprira was significantly higher in abundance in the healthy control group. Comparisons of the polyps and cancer groups showed a total of 18 significantly enriched genera. Among them, 78% of the genera associated with the cancer group were in higher abundance, whereas the remaining genera showed a higher abundance in the polyps group. Additionally, the comparison of healthy control and polyp groups showed six significantly abundant genera. More than 66% of these genera showed a reduced abundance in the polyps group than in healthy controls, whereas the remaining genera were highly abundant in the polyps group. Based on tumor presence and absence, the abundance of Olsenella and Lactobacillus at the genus level was significantly reduced in the patient group compared to healthy controls. The significant microbial function prediction revealed an increase in the abundance of metabolites in the polyps and cancer groups compared to healthy controls. A correlation analysis revealed a higher contribution of Dorea in the predicted functions. This study showed dysbiosis of gut microbiota at the taxonomic level and their metabolic functions among healthy subjects and in two stages of colorectal cancer, including adenoma and adenocarcinoma, which might serve as potential biomarkers for the early diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Chuan-Yin Fang
- Division of Colon and Rectal Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 621, Taiwan;
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung 824, Taiwan;
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan;
- Center for Innovative on Aging Society (CIRAS), National Chung Cheng University, Chiayi 621, Taiwan
- Correspondence: ; Tel.: +886-52720411 (ext. 66218)
| | - Bashir Hussain
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan;
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 621, Taiwan
| | - Jagat Rathod
- Department of Earth Sciences, National Cheng Kung University, Tainan 701, Taiwan;
| | - Kuo-Hsin Lee
- Department of Emergency Medicine, E-Da Hospital, I-Shou University, Kaohsiung 824, Taiwan;
- School of Medicine, I-Shou University, Kaohsiung 824, Taiwan
| |
Collapse
|
18
|
Zhao Y, Hasse S, Bourgoin SG. Phosphatidylserine-specific phospholipase A1: A friend or the devil in disguise. Prog Lipid Res 2021; 83:101112. [PMID: 34166709 DOI: 10.1016/j.plipres.2021.101112] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
Various human tissues and cells express phospholipase A1 member A (PLA1A), including the liver, lung, prostate gland, and immune cells. The enzyme belongs to the pancreatic lipase family. PLA1A specifically hydrolyzes sn-1 fatty acid of phosphatidylserine (PS) or 1-acyl-lysophosphatidylserine (1-acyl-lysoPS). PS externalized by activated cells or apoptotic cells or extracellular vesicles is a potential source of substrate for the production of unsaturated lysoPS species by PLA1A. Maturation and functions of many immune cells, such as T cells, dendritic cells, macrophages, and mast cells, can be regulated by PLA1A and lysoPS. Several lysoPS receptors, including GPR34, GPR174 and P2Y10, have been identified. High serum levels and high PLA1A expression are associated with autoimmune disorders such as Graves' disease and systemic lupus erythematosus. Increased expression of PLA1A is associated with metastatic melanomas. PLA1A may contribute to cardiometabolic disorders through mediating cholesterol transportation and producing lysoPS. Furthermore, PLA1A is necessary for hepatitis C virus assembly and can play a role in the antivirus innate immune response. This review summarizes recent findings on PLA1A expression, lysoPS and lysoPS receptors in autoimmune disorders, cancers, cardiometabolic disorders, antivirus immune responses, as well as regulations of immune cells.
Collapse
Affiliation(s)
- Yang Zhao
- Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, G1V 4G2, Canada
| | - Stephan Hasse
- Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, G1V 4G2, Canada
| | - Sylvain G Bourgoin
- Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, G1V 4G2, Canada.
| |
Collapse
|
19
|
ChoK-Full of Potential: Choline Kinase in B Cell and T Cell Malignancies. Pharmaceutics 2021; 13:pharmaceutics13060911. [PMID: 34202989 PMCID: PMC8234087 DOI: 10.3390/pharmaceutics13060911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 12/20/2022] Open
Abstract
Aberrant choline metabolism, characterized by an increase in total choline-containing compounds, phosphocholine and phosphatidylcholine (PC), is a metabolic hallmark of carcinogenesis and tumor progression. This aberration arises from alterations in metabolic enzymes that control PC biosynthesis and catabolism. Among these enzymes, choline kinase α (CHKα) exhibits the most frequent alterations and is commonly overexpressed in human cancers. CHKα catalyzes the phosphorylation of choline to generate phosphocholine, the first step in de novo PC biosynthesis. CHKα overexpression is associated with the malignant phenotype, metastatic capability and drug resistance in human cancers, and thus has been recognized as a robust biomarker and therapeutic target of cancer. Of clinical importance, increased choline metabolism and CHKα activity can be detected by non-invasive magnetic resonance spectroscopy (MRS) or positron emission tomography/computed tomography (PET/CT) imaging with radiolabeled choline analogs for diagnosis and treatment monitoring of cancer patients. Both choline-based MRS and PET/CT imaging have also been clinically applied for lymphoid malignancies, including non-Hodgkin lymphoma, multiple myeloma and central nervous system lymphoma. However, information on how choline kinase is dysregulated in lymphoid malignancies is very limited and has just begun to be unraveled. In this review, we provide an overview of the current understanding of choline kinase in B cell and T cell malignancies with the goal of promoting future investigation in this area.
Collapse
|
20
|
Lacal JC, Zimmerman T, Campos JM. Choline Kinase: An Unexpected Journey for a Precision Medicine Strategy in Human Diseases. Pharmaceutics 2021; 13:788. [PMID: 34070409 PMCID: PMC8226952 DOI: 10.3390/pharmaceutics13060788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022] Open
Abstract
Choline kinase (ChoK) is a cytosolic enzyme that catalyzes the phosphorylation of choline to form phosphorylcholine (PCho) in the presence of ATP and magnesium. ChoK is required for the synthesis of key membrane phospholipids and is involved in malignant transformation in a large variety of human tumours. Active compounds against ChoK have been identified and proposed as antitumor agents. The ChoK inhibitory and antiproliferative activities of symmetrical bispyridinium and bisquinolinium compounds have been defined using quantitative structure-activity relationships (QSARs) and structural parameters. The design strategy followed in the development of the most active molecules is presented. The selective anticancer activity of these structures is also described. One promising anticancer compound has even entered clinical trials. Recently, ChoKα inhibitors have also been proposed as a novel therapeutic approach against parasites, rheumatoid arthritis, inflammatory processes, and pathogenic bacteria. The evidence for ChoKα as a novel drug target for approaches in precision medicine is discussed.
Collapse
Affiliation(s)
- Juan Carlos Lacal
- Instituto de Investigaciones Biomédicas, CSIC, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital La Paz, IDIPAZ, 28046 Madrid, Spain
| | - Tahl Zimmerman
- Food Microbiology and Biotechnology Laboratory, Department of Family and Consumer Sciences, College of Agriculture and Environmental Sciences, North Carolina University, 1601 East Market Street, Greensboro, NC 27411, USA;
| | - Joaquín M. Campos
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, c/Campus de Cartuja, s/n, Universidad de Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs. GRANADA), SAS-Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
21
|
Pacheco-Torres J, Penet MF, Mironchik Y, Krishnamachary B, Bhujwalla ZM. The PD-L1 metabolic interactome intersects with choline metabolism and inflammation. Cancer Metab 2021; 9:10. [PMID: 33608051 PMCID: PMC7893974 DOI: 10.1186/s40170-021-00245-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Background Harnessing the power of the immune system by using immune checkpoint inhibitors has resulted in some of the most exciting advances in cancer treatment. The full potential of this approach has, however, not been fully realized for treating many cancers such as pancreatic and breast cancer. Cancer metabolism influences many aspects of cancer progression including immune surveillance. An expanded understanding of how cancer metabolism can directly impact immune checkpoints may allow further optimization of immunotherapy. We therefore investigated, for the first time, the relationship between the overexpression of choline kinase-α (Chk-α), an enzyme observed in most cancers, and the expression of the immune checkpoint PD-L1. Methods We used small interfering RNA to downregulate Chk-α, PD-L1, or both in two triple-negative human breast cancer cell lines (MDA-MB-231 and SUM-149) and two human pancreatic ductal adenocarcinoma cell lines (Pa09C and Pa20C). The effects of the downregulation were studied at the genomic, proteomic, and metabolomic levels. The findings were compared with the results obtained by the analysis of public data from The Cancer Genome Atlas Program. Results We identified an inverse dependence between Chk-α and PD-L1 at the genomic, proteomic, and metabolomic levels. We also found that prostaglandin-endoperoxide synthase 2 (COX-2) and transforming growth factor beta (TGF-β) play an important role in this relationship. We independently confirmed this relationship in human cancers by analyzing data from The Cancer Genome Atlas Program. Conclusions Our data identified previously unknown roles of PD-L1 in cancer cell metabolic reprogramming, and revealed the immunosuppressive increased PD-L1 effect of Chk-α downregulation. These data suggest that PD-L1 regulation of metabolism may be mediated through Chk-α, COX-2, and TGF-β. The observations provide new insights that can be applied to the rational design of combinatorial therapies targeting immune checkpoints and cancer metabolism. Supplementary Information The online version contains supplementary material available at 10.1186/s40170-021-00245-w.
Collapse
Affiliation(s)
- Jesus Pacheco-Torres
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Rm 208C Traylor Building, Baltimore, MD, 21205, USA
| | - Marie-France Penet
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Rm 208C Traylor Building, Baltimore, MD, 21205, USA.,Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yelena Mironchik
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Rm 208C Traylor Building, Baltimore, MD, 21205, USA
| | - Balaji Krishnamachary
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Rm 208C Traylor Building, Baltimore, MD, 21205, USA
| | - Zaver M Bhujwalla
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Rm 208C Traylor Building, Baltimore, MD, 21205, USA. .,Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
22
|
Roland A, Drouet C, Boulahdour H, Cochet A, De Bari B. Unusual uptakes on 18F-fluorocholine positron emission tomography/computed tomography (PET/CT): a retrospective study of 368 prostate cancer patients referred for a biochemical recurrence or an initial staging. Quant Imaging Med Surg 2021; 11:172-182. [PMID: 33392020 DOI: 10.21037/qims-19-981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background 18F-fluorocholine positron emission tomography/computed tomography (F-choline PET/CT) is considered a cornerstone in the staging and restaging of patients with prostate cancer (PCa). The aim of this study was to retrospectively assess unusual uptakes in patients who underwent a F-choline PET/CT for the initial staging or for the restaging of a relapsing PCa. Methods Three hundred and sixty-eight PCa patients were staged or restaged using F-choline PET/CT. Unusual uptakes were defined as uptakes occurring outside the usual paths of diffusion of PCa or as uptake in bone with a clear morphological evidence of nonmetastatic lesion. Results We found unusual uptakes in 47/368 patients (12.8%). Among them, 41/47 presented with benign F-choline uptake, usually within lymph nodes, due to inflammatory processes (22/47). Other benign processes were found in: thyroid (3/47), adrenal gland (3/47), brain (2/47), liver (1/47), bowel (3/47), frontal sinus (1/47), lungs (4/47), parotid gland (1/47) and bone (1/47). The six remaining patients presented with a second cancer, including lymphoma (1/47), non-small cell lung cancer (4/47) and neuroendocrine tumor (1/47). Conclusions unusual uptakes on F-choline PET/CT are quite frequent and should be explored since they may correspond to non-PCa.
Collapse
Affiliation(s)
- Antoine Roland
- Nuclear Medicine Department, University Hospital of Besançon, Besançon, France
| | - Clément Drouet
- Department of Nuclear Medicine, Georges-François Leclerc Cancer Center, Dijon, France
| | - Hatem Boulahdour
- Nuclear Medicine Department, University Hospital of Besançon, Besançon, France
| | - Alexandre Cochet
- Department of Nuclear Medicine, Georges-François Leclerc Cancer Center, Dijon, France.,ImViA EA 7535, University of Burgundy, Dijon, France
| | - Berardino De Bari
- Radiation Oncology Department, University Hospital of Besançon, Besançon, France
| |
Collapse
|
23
|
Serrán-Aguilera L, Mariotto E, Rubbini G, Castro Navas FF, Marco C, Carrasco-Jiménez MP, Ballarotto M, Macchiarulo A, Hurtado-Guerrero R, Viola G, Lopez-Cara LC. Synthesis, biological evaluation, in silico modeling and crystallization of novel small monocationic molecules with potent antiproliferative activity by dual mechanism. Eur J Med Chem 2020; 207:112797. [PMID: 32977218 DOI: 10.1016/j.ejmech.2020.112797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/28/2022]
Abstract
Seeking for new anticancer drugs with strong antiproliferative activity and simple molecular structure, we designed a novel series of compounds based on our previous reported pharmacophore model composed of five moieties. Antiproliferative assays on four tumoral cell lines and evaluation of Human Choline Kinase CKα1 enzymatic activity was performed for these compounds. Among tested molecules, those ones with biphenyl spacer showed betters enzymatic and antiproliferative activities (n-v). Docking and crystallization studies validate the hypothesis and confirm the results. The most active compound (t) induces a significant arrest of the cell cycle in G0/G1 phase that ultimately lead to apoptosis, following the mitochondrial pathway, as demonstrated for other choline kinase inhibitors. However additional assays reveal that the inhibition of choline uptake could also be involved in the antiproliferative outcome of this class of compounds.
Collapse
Affiliation(s)
- Lucía Serrán-Aguilera
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, Campus Cartuja S/n. University of Granada, 18010, Granada, Spain
| | - Elena Mariotto
- Department of Woman's and Child's Health, Laboratory of Oncohematology, University of Padova, 35128, Padova, Italy
| | - Gianluca Rubbini
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, Campus Cartuja S/n. University of Granada, 18010, Granada, Spain
| | - Francisco Fermín Castro Navas
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, Campus Cartuja S/n. University of Granada, 18010, Granada, Spain
| | - Carmen Marco
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, 18071, Granada, Spain
| | | | - Marco Ballarotto
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo 1, Perugia, 06123, Italy
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo 1, Perugia, 06123, Italy
| | - Ramón Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Institute for Biocomputation and Physics of Complex Systems (BIFI) and Laboratorio de Microscopías Avanzada (LMA), Mariano Esquillor S/n, Campus Rio Ebro, Edificio I+D; Fundacion ARAID, 50018, Zaragoza, Spain; Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, Copenhagen, Denmark
| | - Giampietro Viola
- Department of Woman's and Child's Health, Laboratory of Oncohematology, University of Padova, 35128, Padova, Italy
| | - Luisa Carlota Lopez-Cara
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, Campus Cartuja S/n. University of Granada, 18010, Granada, Spain.
| |
Collapse
|
24
|
Fiore D, Cappelli LV, Broccoli A, Zinzani PL, Chan WC, Inghirami G. Peripheral T cell lymphomas: from the bench to the clinic. Nat Rev Cancer 2020; 20:323-342. [PMID: 32249838 DOI: 10.1038/s41568-020-0247-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/18/2020] [Indexed: 02/07/2023]
Abstract
Peripheral T cell lymphomas (PTCLs) are a heterogeneous group of orphan neoplasms. Despite the introduction of anthracycline-based chemotherapy protocols, with or without autologous haematopoietic transplantation and a plethora of new agents, the progression-free survival of patients with PTCLs needs to be improved. The rarity of these neoplasms, the limited knowledge of their driving defects and the lack of experimental models have impaired clinical successes. This scenario is now rapidly changing with the discovery of a spectrum of genomic defects that hijack essential signalling pathways and foster T cell transformation. This knowledge has led to new genomic-based stratifications, which are being used to establish objective diagnostic criteria, more effective risk assessment and target-based interventions. The integration of genomic and functional data has provided the basis for targeted therapies and immunological approaches that underlie individual tumour vulnerabilities. Fortunately, novel therapeutic strategies can now be rapidly tested in preclinical models and effectively translated to the clinic by means of well-designed clinical trials. We believe that by combining new targeted agents with immune regulators and chimeric antigen receptor-expressing natural killer and T cells, the overall survival of patients with PTCLs will dramatically increase.
Collapse
MESH Headings
- Epigenesis, Genetic/genetics
- Epigenesis, Genetic/physiology
- Humans
- Immunotherapy
- Lymphoma, T-Cell, Peripheral/drug therapy
- Lymphoma, T-Cell, Peripheral/genetics
- Lymphoma, T-Cell, Peripheral/immunology
- Lymphoma, T-Cell, Peripheral/metabolism
- Molecular Targeted Therapy
- Mutation
- Signal Transduction/genetics
- Signal Transduction/physiology
- T-Lymphocytes/physiology
- Transcription Factors/genetics
- Transcription Factors/physiology
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Danilo Fiore
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Luca Vincenzo Cappelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Alessandro Broccoli
- Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Pier Luigi Zinzani
- Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy.
| | - Wing C Chan
- Department of Pathology, City of Hope Medical Center, Duarte, CA, USA.
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
25
|
Identification of tipifarnib sensitivity biomarkers in T-cell acute lymphoblastic leukemia and T-cell lymphoma. Sci Rep 2020; 10:6721. [PMID: 32317694 PMCID: PMC7174413 DOI: 10.1038/s41598-020-63434-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/27/2020] [Indexed: 01/14/2023] Open
Abstract
Patients diagnosed with T-cell leukemias and T-cell lymphomas (TCLs) still have a poor prognosis and an inadequate response to current therapies, highlighting the need for targeted treatments. We have analyzed the potential therapeutic value of the farnesyltransferase inhibitor, tipifarnib, in 25 TCL cell lines through the identification of genomic and/or immunohistochemical markers of tipifarnib sensitivity. More than half of the cell lines (60%) were considered to be sensitive. Tipifarnib reduced cell viability in these T-cell leukemia and TCL cell lines, induced apoptosis and modified the cell cycle. A mutational study showed TP53, NOTCH1 and DNMT3 to be mutated in 84.6%, 69.2% and 30.0% of sensitive cell lines, and in 62.5%, 0% and 0% of resistant cell lines, respectively. An immunohistochemistry study showed that p-ERK and RelB were associated as potential biomarkers of tipifarnib sensitivity and resistance, respectively. Data from RNA-seq show that tipifarnib at IC50 after 72 h downregulated a great variety of pathways, including those controlling cell cycle, metabolism, and ribosomal and mitochondrial activity. This study establishes tipifarnib as a potential therapeutic option in T-cell leukemia and TCL. The mutational state of NOTCH1, p-ERK and RelB could serve as potential biomarkers of tipifarnib sensitivity and resistance.
Collapse
|
26
|
Gokhale S, Lu W, Zhu S, Liu Y, Hart RP, Rabinowitz JD, Xie P. Elevated Choline Kinase α-Mediated Choline Metabolism Supports the Prolonged Survival of TRAF3-Deficient B Lymphocytes. THE JOURNAL OF IMMUNOLOGY 2019; 204:459-471. [PMID: 31826940 DOI: 10.4049/jimmunol.1900658] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/13/2019] [Indexed: 12/27/2022]
Abstract
Specific deletion of the tumor suppressor TRAF3 from B lymphocytes in mice leads to the prolonged survival of mature B cells and expanded B cell compartments in secondary lymphoid organs. In the current study, we investigated the metabolic basis of TRAF3-mediated regulation of B cell survival by employing metabolomic, lipidomic, and transcriptomic analyses. We compared the polar metabolites, lipids, and metabolic enzymes of resting splenic B cells purified from young adult B cell-specific Traf3 -/- and littermate control mice. We found that multiple metabolites, lipids, and enzymes regulated by TRAF3 in B cells are clustered in the choline metabolic pathway. Using stable isotope labeling, we demonstrated that phosphocholine and phosphatidylcholine biosynthesis was markedly elevated in Traf3 -/- mouse B cells and decreased in TRAF3-reconstituted human multiple myeloma cells. Furthermore, pharmacological inhibition of choline kinase α, an enzyme that catalyzes phosphocholine synthesis and was strikingly increased in Traf3 -/- B cells, substantially reversed the survival phenotype of Traf3 -/- B cells both in vitro and in vivo. Taken together, our results indicate that enhanced phosphocholine and phosphatidylcholine synthesis supports the prolonged survival of Traf3 -/- B lymphocytes. Our findings suggest that TRAF3-regulated choline metabolism has diagnostic and therapeutic value for B cell malignancies with TRAF3 deletions or relevant mutations.
Collapse
Affiliation(s)
- Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854
| | - Wenyun Lu
- Department of Chemistry, Princeton University, Princeton, NJ 08544.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901; and
| | - Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854
| | - Yingying Liu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901; and.,W.M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ 08854
| | - Joshua D Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ 08544.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901; and
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854; .,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901; and
| |
Collapse
|
27
|
Barré FPY, Claes BSR, Dewez F, Peutz-Kootstra C, Munch-Petersen HF, Grønbæk K, Lund AH, Heeren RMA, Côme C, Cillero-Pastor B. Specific Lipid and Metabolic Profiles of R-CHOP-Resistant Diffuse Large B-Cell Lymphoma Elucidated by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry Imaging and in Vivo Imaging. Anal Chem 2018; 90:14198-14206. [PMID: 30422637 PMCID: PMC6328237 DOI: 10.1021/acs.analchem.8b02910] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Diffuse
large B-cell lymphoma (DLBCL) is the most common B-cell
non-Hodgkin lymphoma. To treat this aggressive disease, R-CHOP, a
combination of immunotherapy (R; rituximab) and chemotherapy (CHOP;
cyclophosphamide, doxorubicin, vincristine, and prednisone), remains
the most commonly used regimen for newly diagnosed DLBCLs. However,
up to one-third of patients ultimately becomes refractory to initial
therapy or relapses after treatment, and the high mortality rate highlights
the urgent need for novel therapeutic approaches based upon selective
molecular targets. In order to understand the molecular mechanisms
underlying relapsed DLBCL, we studied differences in the lipid and
metabolic composition of nontreated and R-CHOP-resistant tumors, using
a combination of in vivo DLBCL xenograft models and mass spectrometry
imaging. Together, these techniques provide information regarding
analyte composition and molecular distributions of therapy-resistant
and sensitive areas. We found specific lipid and metabolic profiles
for R-CHOP-resistant tumors, such as a higher presence of phosphatidylinositol
and sphingomyelin fragments. In addition, we investigated intratumor
heterogeneity and identified specific lipid markers of viable and
necrotic areas. Furthermore, we could monitor metabolic changes and
found reduced adenosine triphosphate and increased adenosine monophosphate
in the R-CHOP-resistant tumors. This work highlights the power of
combining in vivo imaging and MSI to track molecular signatures in
DLBCL, which has potential application for other diseases.
Collapse
Affiliation(s)
- Florian P Y Barré
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands
| | - Britt S R Claes
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands
| | - Frédéric Dewez
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands
| | - Carine Peutz-Kootstra
- Department of Pathology , Maastricht University Medical Center, Cardiovascular Research Institute Maastricht , 6229 HX Maastricht , The Netherlands
| | - Helga F Munch-Petersen
- Department of Haematology and Department of Pathology , Rigshospitalet , 2100 Copenhagen , Denmark
| | - Kirsten Grønbæk
- Epigenomlaboratoriet, Rigshospitalet Dept. 3733 , Bartholin Institute , Copenhagen Biocenter, 2200 Copenhagen , Denmark.,Biotech Research and Innovation Centre (BRIC) , University of Copenhagen , 2200 Copenhagen , Denmark
| | - Anders H Lund
- Biotech Research and Innovation Centre (BRIC) , University of Copenhagen , 2200 Copenhagen , Denmark
| | - Ron M A Heeren
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands
| | - Christophe Côme
- Epigenomlaboratoriet, Rigshospitalet Dept. 3733 , Bartholin Institute , Copenhagen Biocenter, 2200 Copenhagen , Denmark.,Biotech Research and Innovation Centre (BRIC) , University of Copenhagen , 2200 Copenhagen , Denmark
| | - Berta Cillero-Pastor
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands
| |
Collapse
|
28
|
One-Carbon Metabolism: Biological Players in Epithelial Ovarian Cancer. Int J Mol Sci 2018; 19:ijms19072092. [PMID: 30029471 PMCID: PMC6073728 DOI: 10.3390/ijms19072092] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/06/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023] Open
Abstract
Metabolism is deeply involved in cell behavior and homeostasis maintenance, with metabolites acting as molecular intermediates to modulate cellular functions. In particular, one-carbon metabolism is a key biochemical pathway necessary to provide carbon units required for critical processes, including nucleotide biosynthesis, epigenetic methylation, and cell redox-status regulation. It is, therefore, not surprising that alterations in this pathway may acquire fundamental importance in cancer onset and progression. Two of the major actors in one-carbon metabolism, folate and choline, play a key role in the pathobiology of epithelial ovarian cancer (EOC), the deadliest gynecological malignancy. EOC is characterized by a cholinic phenotype sustained via increased activity of choline kinase alpha, and via membrane overexpression of the alpha isoform of the folate receptor (FRα), both of which are known to contribute to generating regulatory signals that support EOC cell aggressiveness and proliferation. Here, we describe in detail the main biological processes associated with one-carbon metabolism, and the current knowledge about its role in EOC. Moreover, since the cholinic phenotype and FRα overexpression are unique properties of tumor cells, but not of normal cells, they can be considered attractive targets for the development of therapeutic approaches.
Collapse
|
29
|
Mariotto E, Bortolozzi R, Volpin I, Carta D, Serafin V, Accordi B, Basso G, Navarro PL, López-Cara LC, Viola G. EB-3D a novel choline kinase inhibitor induces deregulation of the AMPK-mTOR pathway and apoptosis in leukemia T-cells. Biochem Pharmacol 2018; 155:213-223. [PMID: 30006194 DOI: 10.1016/j.bcp.2018.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/09/2018] [Indexed: 11/26/2022]
Abstract
Choline kinase alpha 1 (ChoKα1) has recently become an interesting therapeutic target since its overexpression has been associated to tumorigenesis in many cancers. Nevertheless, little is known regarding hematological malignancies. In this manuscript, we investigated the effect of a novel and selective ChoKα inhibitor EB-3D in T acute lymphoblastic leukemia (T-ALL). The effect of EB-3D was evaluated in a panel of T-leukemia cell lines and ex-vivo primary cultures derived from pediatric T-ALL patients. We also evaluated in detail, using Reverse Phase Protein Array (RPPA), protein phosphorylation level changes in T-ALL cells upon treatment. The drug exhibits a potent antiproliferative activity in a panel of T-leukemia cell lines and primary cultures of pediatric patients. Moreover, the drug strongly induces apoptosis and more importantly it enhanced T-leukemia cell sensitivity to chemotherapeutic agents, such as dexamethasone and l-asparaginase. In addition, the compound induces an early activation of AMPK, the main regulator of cellular energy homeostasis, by its phosphorylation at residue T712 of catalytic subunit α, and thus repressing mTORC1 pathway, as shown by mTOR S2448 dephosphorylation. The inhibition of mTOR in turn affects the activity of several known downstream targets, such as 4E-BP1, p70S6K, S6 Ribosomal Protein and GSK3 that ultimately may lead to a reduction of protein synthesis and cell death. Taken together, our findings suggest that targeting ChoKα may be an interesting option for treating T-ALL and that EB-3D could represent a valuable therapeutic tool.
Collapse
Affiliation(s)
- Elena Mariotto
- Department of Woman's and Child's Health, Oncohematology Laboratory, University of Padova, 35128 Padova, Italy.
| | - Roberta Bortolozzi
- Department of Woman's and Child's Health, Oncohematology Laboratory, University of Padova, 35128 Padova, Italy
| | - Ilaria Volpin
- Department of Woman's and Child's Health, Oncohematology Laboratory, University of Padova, 35128 Padova, Italy
| | - Davide Carta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Valentina Serafin
- Department of Woman's and Child's Health, Oncohematology Laboratory, University of Padova, 35128 Padova, Italy
| | - Benedetta Accordi
- Department of Woman's and Child's Health, Oncohematology Laboratory, University of Padova, 35128 Padova, Italy
| | - Giuseppe Basso
- Department of Woman's and Child's Health, Oncohematology Laboratory, University of Padova, 35128 Padova, Italy
| | - Pilar Luque Navarro
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Campus de Cartuja, 18071 Granada, Spain
| | - Luisa Carlota López-Cara
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Campus de Cartuja, 18071 Granada, Spain
| | - Giampietro Viola
- Department of Woman's and Child's Health, Oncohematology Laboratory, University of Padova, 35128 Padova, Italy.
| |
Collapse
|
30
|
Patent Highlights February-March 2018. Pharm Pat Anal 2018; 7:147-154. [PMID: 29882729 DOI: 10.4155/ppa-2018-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research development.
Collapse
|
31
|
Hu L, Wang RY, Cai J, Feng D, Yang GZ, Xu QG, Zhai YX, Zhang Y, Zhou WP, Cai QP. Overexpression of CHKA contributes to tumor progression and metastasis and predicts poor prognosis in colorectal carcinoma. Oncotarget 2018; 7:66660-66678. [PMID: 27556502 PMCID: PMC5341828 DOI: 10.18632/oncotarget.11433] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 08/13/2016] [Indexed: 12/13/2022] Open
Abstract
Aberrant expression of choline kinase alpha (CHKA) has been reported in a variety of human malignancies including colorectal carcinoma (CRC). However, the role of CHKA in the progression and prognosis of CRC remains unknown. In this study, we found that CHKA was frequently upregulated in CRC clinical samples and CRC-derived cell lines and was significantly correlated with lymph node metastasis (p = 0.028), TNM stage (p = 0.009), disease recurrence (p = 0.004) and death (p < 0.001). Survival analyses indicated that patients with higher CHKA expression had a significantly shorter disease-free survival (DFS) and disease-specific survival (DSS) than those with lower CHKA expression. Multivariate analyses confirmed that increased CHKA expression was an independent unfavorable prognostic factor for CRC patients. In addition, combination of CHKA with TNM stage was a more powerful predictor of poor prognosis than either parameter alone. Functional study demonstrated that knockdown of CHKA expression profoundly suppressed the growth and metastasis of CRC cells both in vitro and in vivo. Mechanistic investigation revealed that EGFR/PI3K/AKT pathway was essential for mediating CHKA function. In conclusion, our results provide the first evidence that CHKA contributes to tumor progression and metastasis and may serve as a novel prognostic biomarker and potential therapeutic target in CRC.
Collapse
Affiliation(s)
- Liang Hu
- Anal-Colorectal Surgery Institute, 150th Hospital of PLA, Luoyang, China.,Department of Gastrointestine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ruo-Yu Wang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jian Cai
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dan Feng
- Department of Oncology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Guang-Zhen Yang
- Department of Clinical Laboratory, 150th Hospital of PLA, Luoyang, China
| | - Qing-Guo Xu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yan-Xia Zhai
- Anal-Colorectal Surgery Institute, 150th Hospital of PLA, Luoyang, China
| | - Yu Zhang
- Anal-Colorectal Surgery Institute, 150th Hospital of PLA, Luoyang, China
| | - Wei-Ping Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Qing-Ping Cai
- Department of Gastrointestine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
32
|
Pera B, Krumsiek J, Assouline SE, Marullo R, Patel J, Phillip JM, Román L, Mann KK, Cerchietti L. Metabolomic Profiling Reveals Cellular Reprogramming of B-Cell Lymphoma by a Lysine Deacetylase Inhibitor through the Choline Pathway. EBioMedicine 2018; 28:80-89. [PMID: 29396295 PMCID: PMC5835559 DOI: 10.1016/j.ebiom.2018.01.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 01/24/2023] Open
Abstract
Despite the proven clinical antineoplastic activity of histone deacetylase inhibitors (HDACI), their effect has been reported to be lower than expected in B-cell lymphomas. Traditionally considered as “epigenetic drugs”, HDACI modify the acetylation status of an extensive proteome, acting as general lysine deacetylase inhibitors (KDACI), and thus potentially impacting various branches of cellular metabolism. Here, we demonstrate through metabolomic profiling of patient plasma and cell lines that the KDACI panobinostat alters lipid metabolism and downstream survival signaling in diffuse large B-cell lymphomas (DLBCL). Specifically, panobinostat induces metabolic adaptations resulting in newly acquired dependency on the choline pathway and activation of PI3K signaling. This metabolic reprogramming decreased the antineoplastic effect of panobinostat. Conversely, inhibition of these metabolic adaptations resulted in superior anti-lymphoma effect as demonstrated by the combination of panobinostat with a choline pathway inhibitor. In conclusion, our study demonstrates the power of metabolomics in identifying unknown effects of KDACI, and emphasizes the need for a better understanding of these drugs in order to achieve successful clinical implementation. Lysine deacetylase inhibitor (KDACI) treatment alters choline metabolism in B-cell lymphoma patients. KDACI-treated lymphoma cells acquire PI3K pathway dependency via increased choline kinase A (CHKA) activity. Targeting the acquired choline dependency improves the anti-lymphoma effect of KDACI.
Pera et al. explored the effects of the lysine deacetylase inhibitor panobinostat in the metabolism of patients with lymphoma. They demonstrated that panobinostat alters choline metabolism leading to PI3K pathway activation. Their findings revealed the mechanism behind the anti-lymphoma activity of dual lysine deacetylase/PI3K inhibitors, and uncovered a novel therapeutic strategy based on targeting choline pathway following panobinostat treatment.
Collapse
Affiliation(s)
- Benet Pera
- Hematology and Oncology Division, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jan Krumsiek
- Hematology and Oncology Division, Weill Cornell Medicine, Cornell University, New York, NY, USA; Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Sarit E Assouline
- Segal Cancer Center, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Rossella Marullo
- Hematology and Oncology Division, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jayeshkumar Patel
- Hematology and Oncology Division, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jude M Phillip
- Hematology and Oncology Division, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Lidia Román
- Hematology and Oncology Division, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Koren K Mann
- Segal Cancer Center, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Leandro Cerchietti
- Hematology and Oncology Division, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
33
|
Xu PP, Sun YF, Fang Y, Song Q, Yan ZX, Chen Y, Jiang XF, Fei XC, Zhao Y, Leboeuf C, Li B, Wang CF, Janin A, Wang L, Zhao WL. JAM-A overexpression is related to disease progression in diffuse large B-cell lymphoma and downregulated by lenalidomide. Sci Rep 2017; 7:7433. [PMID: 28785100 PMCID: PMC5547054 DOI: 10.1038/s41598-017-07964-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/06/2017] [Indexed: 01/10/2023] Open
Abstract
Cancer stem cells play an important role on tumor progression. Biomarkers of stem cell property and their relationship to extranodal involvement of malignant lymphocytes are undefined in diffuse large B-cell lymphoma (DLBCL). Here we showed that junctional adhesion molecule-A (JAM-A) was highly expressed in DLBCL patients with multiple extranodal lesions. JAM-A maintained B-lymphoma cell stemness and was associated with cell invasion and epithelial-to-mesenchymal transition both in vitro and in vivo. As mechanism of action, JAM-A overexpression selectively activated transforming growth factor-β (TGF-β)/NODAL signaling, thereby enhanced B-lymphoma cell aggressiveness and induced extranodal involvement to mesoendoderm-derived organs in DLBCL. Lenalidomide downregulated JAM-A and downstream NODAL expression, resulting in inhibition of B-lymphoma cell invasion and epithelial-to-mesenchymal transition. In a murine xenograft model established with subcutaneous injection of JAM-A-overexpressing B-lymphoma cells, lenalidomide retarded tumor growth and prevented cell invasion to mesoendoderm-derived organs, consistent with the downregulation of JAM-A and NODAL expression. Collectively, these findings indicated that JAM-A was related to extranodal involvement in DLBCL through modulating TGF-β/NODAL signaling. Identified as a biomarker of stem cell property, JAM-A indicated the sensitivity of B-lymphoma cells to lenalidomide. Therapeutic targeting of JAM-A/NODAL axis could thus be a promising clinical strategy to impede tumor progression in DLBCL.
Collapse
Affiliation(s)
- Peng-Peng Xu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Pairs, France
| | - Yi-Feng Sun
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Pairs, France
| | - Ying Fang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Pairs, France
| | - Qi Song
- Department of Radiology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Pairs, France
| | - Zi-Xun Yan
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Pairs, France
| | - Yi Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Pairs, France
| | - Xu-Feng Jiang
- Department of Nuclear Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Pairs, France
| | - Xiao-Chun Fei
- Department of Pathology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Pairs, France
| | - Yan Zhao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Pairs, France
| | - Christophe Leboeuf
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Pairs, France.,U1165 Inserm/Université Paris 7, Hôpital Saint Louis, Pairs, France
| | - Biao Li
- Department of Nuclear Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Pairs, France
| | - Chao-Fu Wang
- Department of Pathology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Pairs, France
| | - Anne Janin
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Pairs, France.,U1165 Inserm/Université Paris 7, Hôpital Saint Louis, Pairs, France
| | - Li Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Pairs, France. .,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Pairs, France.
| | - Wei-Li Zhao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Pairs, France. .,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Pairs, France.
| |
Collapse
|
34
|
Xiong J, Wang L, Fei XC, Jiang XF, Zheng Z, Zhao Y, Wang CF, Li B, Chen SJ, Janin A, Gale RP, Zhao WL. MYC is a positive regulator of choline metabolism and impedes mitophagy-dependent necroptosis in diffuse large B-cell lymphoma. Blood Cancer J 2017; 7:e0. [PMID: 28686226 PMCID: PMC5549253 DOI: 10.1038/bcj.2017.61] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/19/2017] [Accepted: 06/01/2017] [Indexed: 02/07/2023] Open
Abstract
The activation of oncogenes can reprogram tumor cell metabolism. Here, in diffuse large B-cell lymphoma (DLBCL), serum metabolomic analysis revealed that oncogenic MYC could induce aberrant choline metabolism by transcriptionally activating the key enzyme phosphate cytidylyltransferase 1 choline-α (PCYT1A). In B-lymphoma cells, as a consequence of PCYT1A upregulation, MYC impeded lymphoma cells undergo a mitophagy-dependent necroptosis. In DLBCL patients, overexpression of PCYT1A was in parallel with an increase in tumor MYC, as well as a decrease in serum choline metabolite phosphatidylcholine levels and an International Prognostic Index, indicating intermediate-high or high risk. Both in vitro and in vivo, lipid-lowering alkaloid berberine (BBR) exhibited an anti-lymphoma activity through inhibiting MYC-driven downstream PCYT1A expression and inducing mitophagy-dependent necroptosis. Collectively, PCYT1A was upregulated by MYC, which resulted in the induction of aberrant choline metabolism and the inhibition of B-lymphoma cell necroptosis. Referred as a biomarker for DLBCL progression, PCYT1A can be targeted by BBR, providing a potential lipid-modifying strategy in treating MYC-High lymphoma.
Collapse
Affiliation(s)
- J Xiong
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai Rui Jin Hospital, Shanghai, China
| | - L Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai Rui Jin Hospital, Shanghai, China
| | - X-C Fei
- Department of Pathology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - X-F Jiang
- Department of Nuclear Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Z Zheng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai Rui Jin Hospital, Shanghai, China
| | - Y Zhao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai Rui Jin Hospital, Shanghai, China
| | - C-F Wang
- Department of Pathology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - B Li
- Department of Nuclear Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - S-J Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai Rui Jin Hospital, Shanghai, China
| | - A Janin
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai Rui Jin Hospital, Shanghai, China.,Laboratory of Pathology, Paris Diderot University, U1165 Inserm, Paris, France
| | - R P Gale
- Haematology Research Centre, Division of Experimental Medicine, Department of Medicine, Imperial College London, London, UK
| | - W-L Zhao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai Rui Jin Hospital, Shanghai, China
| |
Collapse
|
35
|
Chen X, Qiu H, Wang C, Yuan Y, Tickner J, Xu J, Zou J. Molecular structure and differential function of choline kinases CHKα and CHKβ in musculoskeletal system and cancer. Cytokine Growth Factor Rev 2016; 33:65-72. [PMID: 27769579 DOI: 10.1016/j.cytogfr.2016.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 12/20/2022]
Abstract
Choline, a hydrophilic cation, has versatile physiological roles throughout the body, including cholinergic neurotransmission, memory consolidation and membrane biosynthesis and metabolism. Choline kinases possess enzyme activity that catalyses the conversion of choline to phosphocholine, which is further converted to cytidine diphosphate-coline (CDP-choline) in the biosynthesis of phosphatidylcholine (PC). PC is a major constituent of the phospholipid bilayer which constitutes the eukaryotic cell membrane, and regulates cell signal transduction. Choline Kinase consists of three isoforms, CHKα1, CHKα2 and CHKβ, encoded by two separate genes (CHKA(Human)/Chka(Mouse) and CHKB(Human)/Chkb(Mouse)). Both isoforms have similar structures and enzyme activity, but display some distinct molecular structural domains and differential tissue expression patterns. Whilst Choline Kinase was discovered in early 1950, its pivotal role in the development of muscular dystrophy, bone deformities, and cancer has only recently been identified. CHKα has been proposed as a cancer biomarker and its inhibition as an anti-cancer therapy. In contrast, restoration of CHKβ deficiency through CDP-choline supplements like citicoline may be beneficial for the treatment of muscular dystrophy, bone metabolic diseases, and cognitive conditions. The molecular structure and expression pattern of Choline Kinase, the differential roles of Choline Kinase isoforms and their potential as novel therapeutic targets for muscular dystrophy, bone deformities, cognitive conditions and cancer are discussed.
Collapse
Affiliation(s)
- Xi Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China; School of Sports Science, Wenzhou Medical University, Wenzhou, 325035, PR China; School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Heng Qiu
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Chao Wang
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Yu Yuan
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China; School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Jennifer Tickner
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Jiake Xu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China; School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, 6009, Australia.
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China.
| |
Collapse
|
36
|
Bagnoli M, Granata A, Nicoletti R, Krishnamachary B, Bhujwalla ZM, Canese R, Podo F, Canevari S, Iorio E, Mezzanzanica D. Choline Metabolism Alteration: A Focus on Ovarian Cancer. Front Oncol 2016; 6:153. [PMID: 27446799 PMCID: PMC4916225 DOI: 10.3389/fonc.2016.00153] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/07/2016] [Indexed: 12/31/2022] Open
Abstract
Compared with normal differentiated cells, cancer cells require a metabolic reprograming to support their high proliferation rates and survival. Aberrant choline metabolism is a fairly new metabolic hallmark reflecting the complex reciprocal interactions between oncogenic signaling and cellular metabolism. Alterations of the involved metabolic network may be sustained by changes in activity of several choline transporters as well as of enzymes such as choline kinase-alpha (ChoK-α) and phosphatidylcholine-specific phospholipases C and D. Of note, the net outcome of these enzymatic alterations is an increase of phosphocholine and total choline-containing compounds, a "cholinic phenotype" that can be monitored in cancer by magnetic resonance spectroscopy. This review will highlight the molecular basis for targeting this pathway in epithelial ovarian cancer (EOC), a highly heterogeneous and lethal malignancy characterized by late diagnosis, frequent relapse, and development of chemoresistance. Modulation of ChoK-α expression impairs only EOC but not normal ovarian cells, thus supporting the hypothesis that "cholinic phenotype" is a peculiar feature of transformed cells and indicating ChoK-α targeting as a novel approach to improve efficacy of standard EOC chemotherapeutic treatments.
Collapse
Affiliation(s)
- Marina Bagnoli
- Unit of Molecular Therapies, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori , Milan , Italy
| | - Anna Granata
- Unit of Molecular Therapies, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori , Milan , Italy
| | - Roberta Nicoletti
- Unit of Molecular Therapies, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori , Milan , Italy
| | - Balaji Krishnamachary
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, In Vivo Cellular and Molecular Imaging Center, The Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Zaver M Bhujwalla
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, In Vivo Cellular and Molecular Imaging Center, The Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Rossella Canese
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità , Rome , Italy
| | - Franca Podo
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità , Rome , Italy
| | - Silvana Canevari
- Unit of Molecular Therapies, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Functional Genomics and Informatics, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Egidio Iorio
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità , Rome , Italy
| | - Delia Mezzanzanica
- Unit of Molecular Therapies, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori , Milan , Italy
| |
Collapse
|
37
|
Design, synthesis, crystallization and biological evaluation of new symmetrical biscationic compounds as selective inhibitors of human Choline Kinase α1 (ChoKα1). Sci Rep 2016; 6:23793. [PMID: 27029499 PMCID: PMC4814829 DOI: 10.1038/srep23793] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/14/2016] [Indexed: 01/20/2023] Open
Abstract
A novel family of compounds derivative of 1,1′-(((ethane-1,2-diylbis(oxy))bis(4,1-phenylene))bis(methylene))-bispyridinium or –bisquinolinium bromide (10a-l) containing a pair of oxygen atoms in the spacer of the linker between the biscationic moieties, were synthesized and evaluated as inhibitors of choline kinase against a panel of cancer-cell lines. The most promising compounds in this series were 1,1′-(((ethane-1,2-diylbis(oxy))bis(4,1-phenylene))bis(methylene))bis(4-(dimethylamino)pyridinium) bromide (10a) and 1,1′-(((ethane-1,2-diylbis(oxy))bis(4,1-phenylene))bis(methylene))-bis(7-chloro-4-(pyrrolidin-1-yl)quinolinium) bromide (10l), which inhibit human choline kinase (ChoKα1) with IC50 of 1.0 and 0.92 μM, respectively, in a range similar to that of the previously reported biscationic compounds MN58b and RSM932A. Our compounds show greater antiproliferative activities than do the reference compounds, with unprecedented values of GI50 in the nanomolar range for several of the cancer-cell lines assayed, and more importantly they present low toxicity in non-tumoral cell lines, suggesting a cancer-cell-selective antiproliferative activity. Docking studies predict that the compounds interact with the choline-binding site in agreement with the binding mode of most previously reported biscationic compounds. Moreover, the crystal structure of ChoKα1 with compound 10a reveals that this compound binds to the choline-binding site and mimics HC-3 binding mode as never before.
Collapse
|