1
|
Yu CJ, Damania B. Molecular Mechanisms of Kaposi Sarcoma-Associated Herpesvirus (HHV8)-Related Lymphomagenesis. Cancers (Basel) 2024; 16:3693. [PMID: 39518131 PMCID: PMC11544871 DOI: 10.3390/cancers16213693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Approximately 15-20% of cancers are caused by viruses. Kaposi sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV8), is an oncogenic virus that is the etiologic agent of not only Kaposi sarcoma but also the lymphoproliferative disorders, primary effusion lymphoma (PEL) and multicentric Castleman disease (MCD). KSHV can infect a broad tropism of cells, including B lymphocytes, wherein KSHV encodes specific viral proteins that can transform the cell. KSHV infection precedes the progression of PEL and MCD. KSHV establishes lifelong infection and has two phases of its lifecycle: latent and lytic. During the latent phase, viral genomes are maintained episomally with limited gene expression. Upon sporadic reactivation, the virus enters its replicative lytic phase to produce infectious virions. KSHV relies on its viral products to modulate host factors to evade immune detection or to co-opt their function for KSHV persistence. These manipulations dysregulate normal cell pathways to ensure cell survival and inhibit antiviral immune responses, which in turn, contribute to KSHV-associated malignancies. Here, we highlight the known molecular mechanisms of KSHV that promote lymphomagenesis and how these findings identify potential therapeutic targets for KSHV-associated lymphomas.
Collapse
Affiliation(s)
| | - Blossom Damania
- Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA;
| |
Collapse
|
2
|
Co-Infection of the Epstein-Barr Virus and the Kaposi Sarcoma-Associated Herpesvirus. Viruses 2022; 14:v14122709. [PMID: 36560713 PMCID: PMC9782805 DOI: 10.3390/v14122709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
The two human tumor viruses, Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV), have been mostly studied in isolation. Recent studies suggest that co-infection with both viruses as observed in one of their associated malignancies, namely primary effusion lymphoma (PEL), might also be required for KSHV persistence. In this review, we discuss how EBV and KSHV might support each other for persistence and lymphomagenesis. Moreover, we summarize what is known about their innate and adaptive immune control which both seem to be required to ensure asymptomatic persistent co-infection with these two human tumor viruses. A better understanding of this immune control might allow us to prepare for vaccination against EBV and KSHV in the future.
Collapse
|
3
|
Ferrad M, Ghazzaui N, Issaoui H, Drouineau E, Oblet C, Marchiol T, Cook-Moreau J, Denizot Y. Homozygous iMycCα transgenic mice as a model of plasma B-cell lymphomas. Leuk Lymphoma 2022; 63:2114-2125. [DOI: 10.1080/10428194.2022.2064989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Melissa Ferrad
- UMR CNRS 7276, INSERM U1262, Equipe Labellisée LIGUE 2018, Université de Limoges, Limoges, France
| | - Nour Ghazzaui
- UMR CNRS 7276, INSERM U1262, Equipe Labellisée LIGUE 2018, Université de Limoges, Limoges, France
| | - Hussein Issaoui
- UMR CNRS 7276, INSERM U1262, Equipe Labellisée LIGUE 2018, Université de Limoges, Limoges, France
| | - Emilie Drouineau
- I2BC, IBITEC-S, CEA, CNRS, Université Paris‐Sud, Université Paris‐Saclay, Gif-sur-Yvette, France
| | - Christelle Oblet
- UMR CNRS 7276, INSERM U1262, Equipe Labellisée LIGUE 2018, Université de Limoges, Limoges, France
| | - Tiffany Marchiol
- UMR CNRS 7276, INSERM U1262, Equipe Labellisée LIGUE 2018, Université de Limoges, Limoges, France
| | - Jeanne Cook-Moreau
- UMR CNRS 7276, INSERM U1262, Equipe Labellisée LIGUE 2018, Université de Limoges, Limoges, France
| | - Yves Denizot
- UMR CNRS 7276, INSERM U1262, Equipe Labellisée LIGUE 2018, Université de Limoges, Limoges, France
| |
Collapse
|
4
|
Witte HM, Künstner A, Hertel N, Bernd HW, Bernard V, Stölting S, Merz H, von Bubnoff N, Busch H, Feller AC, Gebauer N. Integrative genomic and transcriptomic analysis in plasmablastic lymphoma identifies disruption of key regulatory pathways. Blood Adv 2022; 6:637-651. [PMID: 34714908 PMCID: PMC8791589 DOI: 10.1182/bloodadvances.2021005486] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/02/2021] [Indexed: 11/20/2022] Open
Abstract
Plasmablastic lymphoma (PBL) represents a clinically heterogeneous subtype of aggressive B-cell non-Hodgkin lymphoma. Targeted-sequencing studies and a single-center whole-exome sequencing (WES) study in HIV-positive patients recently revealed several genes associated with PBL pathogenesis; however, the global mutational landscape and transcriptional profile of PBL remain elusive. To inform on disease-associated mutational drivers, mutational patterns, and perturbed pathways in HIV-positive and HIV-negative PBL, we performed WES and transcriptome sequencing (RNA-sequencing) of 33 PBL tumors. Integrative analysis of somatic mutations and gene expression profiles was performed to acquire insights into the divergent genotype-phenotype correlation in Epstein-Barr virus-positive (EBV+) and EBV- PBL. We describe a significant accumulation of mutations in the JAK signal transducer and transcription activator (OSMR, STAT3, PIM1, and SOCS1), as well as receptor tyrosine-kinase RAS (ERBB3, NRAS, PDGFRB, and NTRK) pathways. We provide further evidence of frequent perturbances of NF-κB signaling (NFKB2 and BTK). Induced pathways, identified by RNA-sequencing, closely resemble the mutational profile regarding alterations accentuated in interleukin-6/JAK/STAT signaling, NF-κB activity, and MYC signaling. Moreover, class I major histocompatibility complex-mediated antigen processing and cell cycle regulation were significantly affected by EBV status. An almost exclusive upregulation of phosphatidylinositol 3-kinase/AKT/mTOR signaling in EBV+ PBL and a significantly induced expression of NTRK3 in concert with recurrent oncogenic mutations in EBV- PBL hint at a specific therapeutically targetable mechanism in PBL subgroups. Our characterization of a mutational and transcriptomic landscape in PBL, distinct from that of diffuse large B-cell lymphoma and multiple myeloma, substantiates the pathobiological independence of PBL in the spectrum of B-cell malignancies and thereby refines the taxonomy for aggressive lymphomas.
Collapse
Affiliation(s)
- Hanno M. Witte
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Department of Hematology and Oncology, Federal Armed Forces Hospital Ulm, Ulm, Germany
| | - Axel Künstner
- Medical Systems Biology Group, and
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany; and
| | - Nadine Hertel
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Heinz-Wolfram Bernd
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Veronica Bernard
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Stephanie Stölting
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Hartmut Merz
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany; and
| | - Hauke Busch
- Medical Systems Biology Group, and
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany; and
| | - Alfred C. Feller
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Niklas Gebauer
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany; and
| |
Collapse
|
5
|
Prusinkiewicz MA, Mymryk JS. Metabolic Control by DNA Tumor Virus-Encoded Proteins. Pathogens 2021; 10:560. [PMID: 34066504 PMCID: PMC8148605 DOI: 10.3390/pathogens10050560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
Viruses co-opt a multitude of host cell metabolic processes in order to meet the energy and substrate requirements for successful viral replication. However, due to their limited coding capacity, viruses must enact most, if not all, of these metabolic changes by influencing the function of available host cell regulatory proteins. Typically, certain viral proteins, some of which can function as viral oncoproteins, interact with these cellular regulatory proteins directly in order to effect changes in downstream metabolic pathways. This review highlights recent research into how four different DNA tumor viruses, namely human adenovirus, human papillomavirus, Epstein-Barr virus and Kaposi's associated-sarcoma herpesvirus, can influence host cell metabolism through their interactions with either MYC, p53 or the pRb/E2F complex. Interestingly, some of these host cell regulators can be activated or inhibited by the same virus, depending on which viral oncoprotein is interacting with the regulatory protein. This review highlights how MYC, p53 and pRb/E2F regulate host cell metabolism, followed by an outline of how each of these DNA tumor viruses control their activities. Understanding how DNA tumor viruses regulate metabolism through viral oncoproteins could assist in the discovery or repurposing of metabolic inhibitors for antiviral therapy or treatment of virus-dependent cancers.
Collapse
Affiliation(s)
| | - Joe S. Mymryk
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada;
- Department of Otolaryngology, Head & Neck Surgery, Western University, London, ON N6A 3K7, Canada
- Department of Oncology, Western University, London, ON N6A 3K7, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6C 2R5, Canada
| |
Collapse
|
6
|
Münz C. The Role of Lytic Infection for Lymphomagenesis of Human γ-Herpesviruses. Front Cell Infect Microbiol 2021; 11:605258. [PMID: 33842383 PMCID: PMC8034291 DOI: 10.3389/fcimb.2021.605258] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/09/2021] [Indexed: 01/02/2023] Open
Abstract
Epstein Barr virus (EBV) and Kaposi sarcoma associated herpesvirus (KSHV) are two oncogenic human γ-herpesviruses that are each associated with 1-2% of human tumors. They encode bona fide oncogenes that they express during latent infection to amplify their host cells and themselves within these. In contrast, lytic virus particle producing infection has been considered to destroy host cells and might be even induced to therapeutically eliminate EBV and KSHV associated tumors. However, it has become apparent in recent years that early lytic replication supports tumorigenesis by these two human oncogenic viruses. This review will discuss the evidence for this paradigm change and how lytic gene products might condition the microenvironment to facilitate EBV and KSHV associated tumorigenesis.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
7
|
Ferrad M, Ghazzaui N, Issaoui H, Cook-Moreau J, Denizot Y. Mouse Models of c-myc Deregulation Driven by IgH Locus Enhancers as Models of B-Cell Lymphomagenesis. Front Immunol 2020; 11:1564. [PMID: 32793219 PMCID: PMC7390917 DOI: 10.3389/fimmu.2020.01564] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/15/2020] [Indexed: 01/18/2023] Open
Abstract
Chromosomal translocations linking various oncogenes to transcriptional enhancers of the immunoglobulin heavy chain (IgH) locus are often implicated as the cause of B-cell malignancies. Two major IgH transcriptional enhancers have been reported so far. The Eμ enhancer located upstream of the Cμ gene controls early events in B-cell maturation such as VDJ recombination. The 3' regulatory region (3'RR) located downstream from the Cα gene controls late events in B-cell maturation such as IgH transcription, somatic hypermutation, and class switch recombination. Convincing demonstrations of the essential contributions of both Eμ and 3'RR in B-cell lymphomagenesis have been provided by transgenic and knock-in animal models which bring the oncogene c-myc under Eμ/3'RR transcriptional control. This short review summarizes the different mouse models so far available and their interests/limitations for progress in our understanding of human c-myc-induced B-cell lymphomagenesis.
Collapse
Affiliation(s)
- Melissa Ferrad
- Inserm U1262, UMR CNRS 7276, Equipe Labellisée LIGUE 2018, Université de Limoges, Limoges, France
| | - Nour Ghazzaui
- Inserm U1262, UMR CNRS 7276, Equipe Labellisée LIGUE 2018, Université de Limoges, Limoges, France
| | - Hussein Issaoui
- Inserm U1262, UMR CNRS 7276, Equipe Labellisée LIGUE 2018, Université de Limoges, Limoges, France
| | - Jeanne Cook-Moreau
- Inserm U1262, UMR CNRS 7276, Equipe Labellisée LIGUE 2018, Université de Limoges, Limoges, France
| | - Yves Denizot
- Inserm U1262, UMR CNRS 7276, Equipe Labellisée LIGUE 2018, Université de Limoges, Limoges, France
| |
Collapse
|
8
|
Ghazzaui N, Issaoui H, Ferrad M, Carrion C, Cook-Moreau J, Denizot Y, Boyer F. Eμ and 3'RR transcriptional enhancers of the IgH locus cooperate to promote c-myc-induced mature B-cell lymphomas. Blood Adv 2020; 4:28-39. [PMID: 31899800 PMCID: PMC6960469 DOI: 10.1182/bloodadvances.2019000845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/12/2019] [Indexed: 01/18/2023] Open
Abstract
Numerous B-cell lymphomas feature translocations linking oncogenes to different locations in the immunoglobulin heavy chain (IgH) locus. During Burkitt lymphoma (BL), IgH breakpoints for c-myc translocation stand either close to JH segments or within switch regions. Transcription, accessibility, and remodeling of the IgH locus are under the control of the 2 potent cis-acting enhancer elements: Eμ and the 3' regulatory region (3'RR). To ensure their respective contributions to oncogene deregulation in the context of the endogenous IgH locus, we studied transgenic mice harboring a knock-in of c-myc in various positions of the IgH locus (3' to JH segments, 5' to Cμ with Eμ deletion and Cα). The observed spectrum of tumors, kinetics of emergence, and transcriptome analysis provide strong evidence that both Eμ and 3'RR deregulate c-myc and cooperate together to promote B-cell lymphomagenesis. Transgenics mimicking endemic BL (with c-myc placed 3' to JH segments) exhibited the highest rate of B-cell lymphoma emergence, the highest Ki67 index of proliferation, and the highest transcriptomic similarities to human BL. The 3'RR enhancer alone deregulated c-myc and initiated the development of BL-like lymphomas, suggesting that its targeting would be of therapeutic interest to reduce c-myc oncogenicity in vivo.
Collapse
Affiliation(s)
- Nour Ghazzaui
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 7276, Institut National de la Santé et de la Recherche Médicale U1262, Equipe Labellisée Ligue 2018, Université de Limoges, Limoges, France
| | - Hussein Issaoui
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 7276, Institut National de la Santé et de la Recherche Médicale U1262, Equipe Labellisée Ligue 2018, Université de Limoges, Limoges, France
| | - Mélissa Ferrad
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 7276, Institut National de la Santé et de la Recherche Médicale U1262, Equipe Labellisée Ligue 2018, Université de Limoges, Limoges, France
| | - Claire Carrion
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 7276, Institut National de la Santé et de la Recherche Médicale U1262, Equipe Labellisée Ligue 2018, Université de Limoges, Limoges, France
| | - Jeanne Cook-Moreau
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 7276, Institut National de la Santé et de la Recherche Médicale U1262, Equipe Labellisée Ligue 2018, Université de Limoges, Limoges, France
| | - Yves Denizot
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 7276, Institut National de la Santé et de la Recherche Médicale U1262, Equipe Labellisée Ligue 2018, Université de Limoges, Limoges, France
| | - François Boyer
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 7276, Institut National de la Santé et de la Recherche Médicale U1262, Equipe Labellisée Ligue 2018, Université de Limoges, Limoges, France
| |
Collapse
|
9
|
Scherger AK, Al-Maarri M, Maurer HC, Schick M, Maurer S, Öllinger R, Gonzalez-Menendez I, Martella M, Thaler M, Pechloff K, Steiger K, Sander S, Ruland J, Rad R, Quintanilla-Martinez L, Wunderlich FT, Rose-John S, Keller U. Activated gp130 signaling selectively targets B cell differentiation to induce mature lymphoma and plasmacytoma. JCI Insight 2019; 4:128435. [PMID: 31391340 DOI: 10.1172/jci.insight.128435] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/09/2019] [Indexed: 12/22/2022] Open
Abstract
Aberrant activity of the glycoprotein 130 130/JAK/STAT3 (gp130/JAK/STAT3) signaling axis is a recurrent event in inflammation and cancer. In particular, it is associated with a wide range of hematological malignancies, including multiple myeloma and leukemia. Novel targeted therapies have only been successful for some subtypes of these malignancies, underlining the need for developing robust mouse models to better dissect the role of this pathway in specific tumorigenic processes. Here, we investigated the role of selective gp130/JAK/STAT3 activation by generating a conditional mouse model. This model targeted constitutively active, cell-autonomous gp130 activity to B cells, as well as to the entire hematopoietic system. We found that regardless of the timing of activation in B cells, constitutively active gp130 signaling resulted in the formation specifically of mature B cell lymphomas and plasma cell disorders with full penetrance, only with different latencies, where infiltrating CD138+ cells were a dominant feature in every tumor. Furthermore, constitutively active gp130 signaling in all adult hematopoietic cells also led to the development specifically of largely mature, aggressive B cell cancers, again with a high penetrance of CD138+ tumors. Importantly, gp130 activity abrogated the differentiation block induced by a B cell-targeted Myc transgene and resulted in a complete penetrance of the gp130-associated, CD138+, mature B cell lymphoma phenotype. Thus, gp130 signaling selectively provides a strong growth and differentiation advantage for mature B cells and directs lymphomagenesis specifically toward terminally differentiated B cell cancers.
Collapse
Affiliation(s)
- Anna K Scherger
- Internal Medicine III, Technische Universität München, Munich, Germany
| | - Mona Al-Maarri
- Max Planck Institute for Metabolism Research, Center for Endocrinology, Preventive Medicine and Diabetes, Cologne, Germany
| | | | - Markus Schick
- Internal Medicine III, Technische Universität München, Munich, Germany
| | - Sabine Maurer
- Internal Medicine III, Technische Universität München, Munich, Germany
| | - Rupert Öllinger
- Internal Medicine II.,Center for Translational Cancer Research, and.,Institute of Molecular Oncology and Functional Genomics, Technische Universität München, Munich, Germany
| | | | - Manuela Martella
- Institute of Pathology, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Markus Thaler
- Institute of Clinical Chemistry and Pathobiochemistry, Technische Universität München, Munich, Germany
| | - Konstanze Pechloff
- Center for Translational Cancer Research, and.,Institute of Clinical Chemistry and Pathobiochemistry, Technische Universität München, Munich, Germany.,German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany
| | - Katja Steiger
- German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany.,Institute of Pathology, Technische Universität München, Munich, Germany
| | - Sandrine Sander
- Adaptive Immunity and Lymphoma, German Cancer Research Center/National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
| | - Jürgen Ruland
- Center for Translational Cancer Research, and.,Institute of Clinical Chemistry and Pathobiochemistry, Technische Universität München, Munich, Germany.,German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany
| | - Roland Rad
- Internal Medicine II.,Center for Translational Cancer Research, and.,Institute of Molecular Oncology and Functional Genomics, Technische Universität München, Munich, Germany.,German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany
| | | | - Frank T Wunderlich
- Max Planck Institute for Metabolism Research, Center for Endocrinology, Preventive Medicine and Diabetes, Cologne, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Ulrich Keller
- Internal Medicine III, Technische Universität München, Munich, Germany.,German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany.,Department of Hematology, Oncology and Tumor Immunology (Campus Benjamin Franklin), Charité - Universitätsmedizin Berlin, Germany
| |
Collapse
|
10
|
In Vivo Models of Oncoproteins Encoded by Kaposi's Sarcoma-Associated Herpesvirus. J Virol 2019; 93:JVI.01053-18. [PMID: 30867309 DOI: 10.1128/jvi.01053-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 03/06/2019] [Indexed: 12/12/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a human oncogenic virus. KSHV utilizes its proteins to modify the cellular environment to promote viral replication and persistence. Some of these proteins are oncogenic, modulating cell proliferation, apoptosis, angiogenesis, genome stability, and immune responses, among other cancer hallmarks. These changes can lead to the development of KSHV-associated malignancies. In this Gem, we focus on animal models of oncogenic KSHV proteins that were developed to enable better understanding of KSHV tumorigenesis.
Collapse
|
11
|
Bernier A, Sagan SM. The Diverse Roles of microRNAs at the Host⁻Virus Interface. Viruses 2018; 10:v10080440. [PMID: 30126238 PMCID: PMC6116274 DOI: 10.3390/v10080440] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression at the post-transcriptional level. Through this activity, they are implicated in almost every cellular process investigated to date. Hence, it is not surprising that miRNAs play diverse roles in regulation of viral infections and antiviral responses. Diverse families of DNA and RNA viruses have been shown to take advantage of cellular miRNAs or produce virally encoded miRNAs that alter host or viral gene expression. MiRNA-mediated changes in gene expression have been demonstrated to modulate viral replication, antiviral immune responses, viral latency, and pathogenesis. Interestingly, viruses mediate both canonical and non-canonical interactions with miRNAs to downregulate specific targets or to promote viral genome stability, translation, and/or RNA accumulation. In this review, we focus on recent findings elucidating several key mechanisms employed by diverse virus families, with a focus on miRNAs at the host–virus interface during herpesvirus, polyomavirus, retroviruses, pestivirus, and hepacivirus infections.
Collapse
Affiliation(s)
- Annie Bernier
- Department of Microbiology & Immunology, McGill University, Montréal, QC H3G 1Y6, Canada.
| | - Selena M Sagan
- Department of Microbiology & Immunology, McGill University, Montréal, QC H3G 1Y6, Canada.
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada.
| |
Collapse
|
12
|
Hussein HAM, Okafor IB, Walker LR, Abdel-Raouf UM, Akula SM. Cellular and viral oncogenes: the key to unlocking unknowns of Kaposi's sarcoma-associated herpesvirus pathogenesis. Arch Virol 2018; 163:2633-2643. [PMID: 29936609 DOI: 10.1007/s00705-018-3918-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/08/2018] [Indexed: 02/06/2023]
Abstract
Oncogenic viruses carry an extensive arsenal of oncogenes for hijacking cellular pathways. Notably, variations in oncogenes among tumor-producing viruses give rise to different mechanisms for cellular transformation. Specifically, Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic virus able to infect and transform a variety of cell types. The oncogenicity of KSHV disseminates from the virus' ability to induce and encode a wide variety of both cellular and viral oncogenes. Such an array of cellular and viral oncogenes enables KSHV to induce the malignant phenotype of a KSHV-associated cancer. Evolutionarily, KSHV has acquired many oncogenic homologues capable of inducing cell proliferation, cell differentiation, cell survival, and immune evasion. Integration between inducing and encoding oncogenes plays a vital role in KSHV pathogenicity. KSHV is alleged to harbor the highest number of potential oncogenes by which a virus promotes cellular transformation and malignancy. Many KSHV inducing/encoding oncogenes are mainly expressed during the latent phase of KSHV infection, a period required for virus establishment of malignant cellular transformation. Elucidation of the exact mechanism(s) by which oncogenes promote KSHV pathogenicity would not only give rise to potential novel therapeutic targets/drugs but would also add to our understanding of cancer biology. The scope of this review is to examine the roles of the most important cellular and viral oncogenes involved in KSHV pathogenicity.
Collapse
Affiliation(s)
- Hosni A M Hussein
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Ikenna B Okafor
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Lia R Walker
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Usama M Abdel-Raouf
- Faculty of Science, Al Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Shaw M Akula
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
13
|
The IgH 3' regulatory region and c-myc-induced B-cell lymphomagenesis. Oncotarget 2018; 8:7059-7067. [PMID: 27729620 PMCID: PMC5351691 DOI: 10.18632/oncotarget.12535] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/05/2016] [Indexed: 01/18/2023] Open
Abstract
Deregulation and mutations of c-myc have been reported in multiple mature B-cell malignancies such as Burkitt lymphoma, myeloma and plasma cell lymphoma. After translocation into the immunoglobulin heavy chain (IgH) locus, c-myc is constitutively expressed under the control of active IgH cis-regulatory enhancers. Those located in the IgH 3 regulatory region (3RR) are master control elements of transcription. Over the past decade numerous convincing demonstrations of 3RRs contribution to mature c-myc-induced lymphomagenesis have been made using transgenic models with various types of IgH-c-myc translocations and transgenes. This review highlights how IgH 3RR physiological functions play a critical role in c-myc deregulation during lymphomagenesis.
Collapse
|
14
|
Saintamand A, Ghazzaui N, Issaoui H, Denizot Y. [The IgH 3'RR: Doctor Jekyll and Mister Hyde of B-cell maturation and lymphomagenesis]. Med Sci (Paris) 2017; 33:963-970. [PMID: 29200394 DOI: 10.1051/medsci/20173311013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The four transcriptional enhancers located in the 3' regulatory region (3'RR) of the IgH locus control the late phases of B-cell maturation, namely IgH locus transcription, somatic hypermutation and class switch recombination. Doctor Jekyll by nature, the 3'RR acts as Mister Hyde in case of oncogenic translocation at the IgH locus taking under its transcriptional control the translocated oncogene. The aim of this review is to show this duality on the basis of the latest scientific advances in the structure and function of the 3'RR and to hIghlight the targeting of the 3'RR as a potential therapeutic approach in mature B-cell lymphomas.
Collapse
Affiliation(s)
- Alexis Saintamand
- UMR CNRS 7276, Université de Limoges, rue Pr Descottes, 87025 Limoges, France
| | - Nour Ghazzaui
- UMR CNRS 7276, Université de Limoges, rue Pr Descottes, 87025 Limoges, France
| | - Hussein Issaoui
- UMR CNRS 7276, Université de Limoges, rue Pr Descottes, 87025 Limoges, France
| | - Yves Denizot
- UMR CNRS 7276, Université de Limoges, rue Pr Descottes, 87025 Limoges, France
| |
Collapse
|
15
|
Mine S, Hishima T, Suganuma A, Fukumoto H, Sato Y, Kataoka M, Sekizuka T, Kuroda M, Suzuki T, Hasegawa H, Fukayama M, Katano H. Interleukin-6-dependent growth in a newly established plasmablastic lymphoma cell line and its therapeutic targets. Sci Rep 2017; 7:10188. [PMID: 28860565 PMCID: PMC5579229 DOI: 10.1038/s41598-017-10684-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 08/14/2017] [Indexed: 12/26/2022] Open
Abstract
Plasmablastic lymphoma (PBL) is a rare, highly aggressive subtype of non-Hodgkin lymphoma with plasma-cell differentiation occurring typically in immune-suppressed patients such as those with AIDS. This study reports the establishment and characterization of a new cell line, PBL-1, derived from a patient with AIDS-associated PBL. Morphological assessment of PBL-1 indicated plasma-cell differentiation with a CD20(-) CD38(+) CD138(+) immunophenotype and IgH/c-myc translocation. The cell line harbours Epstein-Barr virus, but a 52.7-kbp length defect was identified in its genome, resulting in no expression of viral microRNAs encoded in the BamHI-A Rightward Transcript region. Importantly, supplementation of culture medium with >5 ng/mL of interleukin-6 (IL-6) was required for PBL-1 growth. Starvation of IL-6 or addition of tocilizumab, an inhibitory antibody for the IL-6 receptor, induced apoptosis of PBL-1. Transduction of IL-6 into PBL-1 by lentivirus vector induced autologous growth without IL-6 supplementation of culture medium. These data indicate the IL-6 dependency of PBL-1 for proliferation and survival. mTOR inhibitors induced cell death effectively, suggesting mTOR in the IL-6 signalling pathway is a potential therapeutic target for PBL. This established PBL cell line will be a useful tool to further understand the pathophysiology of PBL and aid the future development of PBL treatment.
Collapse
Affiliation(s)
- Sohtaro Mine
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsunekazu Hishima
- Department of Pathology, Tokyo Metropolitan Komagome Hospital, Tokyo, Japan
| | - Akihiko Suganuma
- Department of Infectious Diseases, Tokyo Metropolitan Komagome Hospital, Tokyo, Japan
| | - Hitomi Fukumoto
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuko Sato
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Michiyo Kataoka
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomic Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Kuroda
- Pathogen Genomic Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|