1
|
Clemenceau A, Chang SL, Hanna M, Durocher F, Diorio C. Association between vitamin D and calcium intakes, breast microcalcifications, breast tissue age-related lobular involution and breast density. Menopause 2022; 29:1404-1415. [PMID: 36219808 DOI: 10.1097/gme.0000000000002070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To demystify the potential role of vitamin D and calcium intakes in breast carcinogenesis, we explored the association between these two nutrients and three biomarkers of breast cancer risk: the presence of microcalcifications, age-related lobular involution and breast density. METHODS A total of 82 premenopausal and 79 postmenopausal women diagnosed with breast cancer completed a food frequency questionnaire to assess their total vitamin D and calcium intakes. Presence of microcalcifications was determined by reviewing pathology reports. Age-related lobular involution was assessed in nontumoral breast tissue on hematoxylin-eosin-stained slides and percent breast density was assessed by a computer-assisted method. Multivariate generalized linear models were used to evaluate associations between quartiles of vitamin D and calcium intakes and the biomarkers of breast cancer risk. RESULTS Increasing quartiles of vitamin D intake were inversely associated with the presence of microcalcifications (fourth quartile [Q4] prevalence ratio [PR] = 0.55; Ptrend = 0.021) and breast density (Q4-Q1 = -7.7%; Ptrend = 0.023) in postmenopausal women, and positively associated with age-related lobular involution in women with microcalcifications (Q4 PR = 1.62; Ptrend = 0.036). Increasing quartiles of calcium intake were inversely associated with microcalcifications among all (Q4 PR = 0.44), premenopausal (Q4 PR = 0.37) and postmenopausal women (Q4 PR = 0.38; Ptrend < 0.014 for all). It was also inversely associated with breast density in women without microcalcification (Q4-Q1 = -8.3%; Ptrend = 0.047), but positively associated with breast density in women with microcalcifications (Q4-Q1 = 10.0%; Ptrend = 0.032). CONCLUSIONS Results suggest that the association between vitamin D and calcium intakes and breast cancer risk factors could be influenced by the presence of microcalcifications.
Collapse
|
2
|
Ravi M, Sneka MK, Joshipura A. The culture conditions and outputs from breast cancer cell line in vitro experiments. Exp Cell Res 2019; 383:111548. [PMID: 31398351 DOI: 10.1016/j.yexcr.2019.111548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 10/26/2022]
Abstract
One of the major cancer types that have gained significant importance globally is the breast cancer due to its socio-economic impact. Breast cancer research is an area of considerable importance and several types of material are available for research applications. These include cancer cell lines which can be utilized in several ways. Cell lines are convenient to use and recently about 84 human breast cancer cell lines were classified by molecular sub-typing. These cells lines come under five major molecular subtypes namely the luminal A and B, HER-2+, triple- A and B subtypes. These cell lines have been well characterized and were utilized for understanding various aspects of breast cancers. Also, apart from providing an understanding of the molecular mechanisms associated with breast cancers, these cell lines have contributed significantly to areas such as drug testing. We present in this review the features of these cell lines, the studies conducted using them and the outcome of such studies. Also, the details about the culture conditions and study outcomes of the cell lines grown in 3-dimensional (3D) systems are presented.
Collapse
Affiliation(s)
- Maddaly Ravi
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India.
| | - M Kaviya Sneka
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India
| | - Aastha Joshipura
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India
| |
Collapse
|
3
|
Miyagawa Y, Matsushita Y, Suzuki H, Komatsu M, Yoshimaru T, Kimura R, Yanai A, Honda J, Tangoku A, Sasa M, Miyoshi Y, Katagiri T. Frequent downregulation of LRRC26 by epigenetic alterations is involved in the malignant progression of triple-negative breast cancer. Int J Oncol 2018; 52:1539-1558. [PMID: 29512727 DOI: 10.3892/ijo.2018.4301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/21/2018] [Indexed: 11/05/2022] Open
Abstract
Triple-negative breast cancer (TNBC), defined as breast cancer lacking estrogen- and progesterone‑receptor expression and human epidermal growth factor receptor 2 (HER2) amplification, is a heterogeneous disease. RNA-sequencing analysis of 15 TNBC specimens and The Cancer Genome Atlas-TNBC dataset analysis identified the frequent downregulation of leucine-rich repeat-containing 26 (LRRC26), which negatively regulates nuclear factor-κB (NF-κB) signaling, in TNBC tissues. Quantitative polymerase chain reaction and bisulfite pyrosequencing analyses revealed that LRRC26 was frequently silenced in TNBC tissues and cell lines as a result of promoter methylation. LRRC26 expression was restored by 5-aza-2'-deoxycytidine (5'-aza-dC) treatment in HCC1937 TNBC cells, which lack LRRC26 expression. Notably, small interfering RNA-mediated knockdown of LRRC26 expression significantly enhanced the anchorage-independent growth, invasion and migration of HCC70 cells, whereas ectopic overexpression of LRRC26 in BT20 cells suppressed their invasion and migration. Conversely, neither knockdown nor overexpression of LRRC26 had an effect on cell viability in the absence of tumor necrosis factor-α (TNF-α) stimulation. Meanwhile, overexpression of LRRC26 caused the reduction of TNF-α-mediated NF-κB luciferase reporter activity, whereas depleting LRRC26 expression resulted in the upregulation of TNF-α-mediated NF-κB downstream genes [interleukin-6 (IL-6), IL-8 and C-X-C motif chemokine ligand-1]. Taken together, these findings demonstrate that LRRC26 is frequently downregulated in TNBC due to DNA methylation and that it suppresses the TNF-α-independent anchorage-independent growth, invasion and migration of TNBC cells. Loss of LRRC26 function may be a critical event in the aggressiveness of TNBC cells through a TNF-α/NF-κB-independent mechanism.
Collapse
Affiliation(s)
- Yoshimasa Miyagawa
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima 770-8503, Japan
| | - Yosuke Matsushita
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima 770-8503, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University, Sapporo, Hokkaido 060-8556, Japan
| | - Masato Komatsu
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima 770-8503, Japan
| | - Tetsuro Yoshimaru
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima 770-8503, Japan
| | - Ryuichiro Kimura
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima 770-8503, Japan
| | - Ayako Yanai
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima 770-8503, Japan
| | - Junko Honda
- Department of Surgery, National Hospital Organization Higashitokushima Medical Center, Tokushima 779-0193, Japan
| | - Akira Tangoku
- Department of Thoracic and Endocrine Surgery and Oncology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan
| | - Mitsunori Sasa
- Department of Surgery, Tokushima Breast Care Clinic, Tokushima 770-0052, Japan
| | - Yasuo Miyoshi
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Toyomasa Katagiri
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima 770-8503, Japan
| |
Collapse
|
4
|
Shi G, Yoshida Y, Yuki K, Nishimura T, Kawata Y, Kawashima M, Iwaisako K, Yoshikawa K, Kurebayashi J, Toi M, Noda M. Pattern of RECK CpG methylation as a potential marker for predicting breast cancer prognosis and drug-sensitivity. Oncotarget 2018; 7:82158-82169. [PMID: 27058625 PMCID: PMC5347682 DOI: 10.18632/oncotarget.8620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/28/2016] [Indexed: 02/03/2023] Open
Abstract
The membrane-anchored glycoprotein RECK negatively regulates multiple metalloproteinases and is frequently downregulated in tumors. Forced RECK expression in cancer cells results in suppression of tumor angiogenesis, invasion, and metastasis in xenograft models. A previous methylome study on breast cancer tissues detected inverse correlation between RECK CpG methylation (in an intron-1 region) and relapse-free survival. In this study, we focused on another region of the RECK CpG island (a promoter/exon-1 region) and found an inverse correlation between its methylation and RECK-inducibility by an HDAC inhibitor, MS275, among a panel of breast cancer cell lines (n=15). In clinical samples (n=62), RECK intron-1 methylation was prevalent among luminal breast cancers as reported previously (26 of 38 cases; 68%) and particularly enriched in tumors of the ER+PR- subclass (10 of 10 cases) and of higher histological grades (Grade 2 and 3; 28 of 43 cases; P=0.006). In about a half of these cases, promoter/exon-1 methylation was absent, and hence, RECK may be inducible by certain drugs such as MS275. Our results indicate the value of combined use of two RECK methylation markers for predicting prognosis and drug-sensitivity of breast cancers.
Collapse
Affiliation(s)
- Gongping Shi
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoko Yoshida
- Laboratory for Malignancy Control Research, Medical Innovation Center, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kanako Yuki
- Laboratory for Malignancy Control Research, Medical Innovation Center, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomomi Nishimura
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yukiko Kawata
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiro Kawashima
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Keiko Iwaisako
- Department of Target Therapy and Oncology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kiyotsugu Yoshikawa
- Laboratory for Malignancy Control Research, Medical Innovation Center, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Junichi Kurebayashi
- Department of Breast and Thyroid Surgery, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Masakazu Toi
- Laboratory for Malignancy Control Research, Medical Innovation Center, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Department of Breast Surgery, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Makoto Noda
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Laboratory for Malignancy Control Research, Medical Innovation Center, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
5
|
Dai X, Cheng H, Bai Z, Li J. Breast Cancer Cell Line Classification and Its Relevance with Breast Tumor Subtyping. J Cancer 2017; 8:3131-3141. [PMID: 29158785 PMCID: PMC5665029 DOI: 10.7150/jca.18457] [Citation(s) in RCA: 668] [Impact Index Per Article: 95.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 08/29/2017] [Indexed: 12/18/2022] Open
Abstract
Breast cancer cell lines have been widely used for breast cancer modelling which encompasses a panel of diseases with distinct phenotypical associations. Though cell lines provide unlimited homogenous materials for tumor studies and are relatively easy to culture, they are known to accumulate mutations duringthe initial establishment and subsequent series of cultivations. Thus, whether breast cancer cell line heterogeneity reflects that of carcinoma remains an important issue to resolve before drawing any reliable conclusion at the tumor level using cell lines. Inconsistent nomenclatures used for breast cancer cell line subtyping and the different number of subtypes grouped for cell lines and tumors make their direct matching elusive. By analyzing the molecular features of 92 breast cancer cell lines as documented by different literatures, we categorize 84 cell lines into 5 groups to be consistent with breast tumor classification. After combing through these cell lines, we summarized the molecular features, genetically and epigenetically, of each subtype, and manually documented 10 cell lines lacking explicit information on subtyping. Nine cell lines, either found inconsistent on their primary molecular features from different studies or being contaminated at the origin, are not suggested as the first choice for experimental use. We conclude that breast tumor cell lines, though having a high mutational frequency with many uncertainties and could not fully capture breast cancer heterogeneity, are feasible but crude models for tumors of the same subtype. New cell lines with enriched interferon regulated genes need to be established to enlarge the coverage of cell lines on tumor heterogeneity.
Collapse
Affiliation(s)
- Xiaofeng Dai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hongye Cheng
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhonghu Bai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jia Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Yoshimaru T, Ono M, Bando Y, Chen YA, Mizuguchi K, Shima H, Komatsu M, Imoto I, Izumi K, Honda J, Miyoshi Y, Sasa M, Katagiri T. A-kinase anchoring protein BIG3 coordinates oestrogen signalling in breast cancer cells. Nat Commun 2017; 8:15427. [PMID: 28555617 PMCID: PMC5512694 DOI: 10.1038/ncomms15427] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/30/2017] [Indexed: 12/21/2022] Open
Abstract
Approximately 70% of breast cancer cells express oestrogen receptor alpha (ERα). Previous studies have shown that the Brefeldin A-inhibited guanine nucleotide-exchange protein 3–prohibitin 2 (BIG3-PHB2) complex has a crucial role in these cells. However, it remains unclear how BIG3 regulates the suppressive activity of PHB2. Here we demonstrate that BIG3 functions as an A-kinase anchoring protein that binds protein kinase A (PKA) and the α isoform of the catalytic subunit of protein phosphatase 1 (PP1Cα), thereby dephosphorylating and inactivating PHB2. E2-induced PKA-mediated phosphorylation of BIG3-S305 and -S1208 serves to enhance PP1Cα activity, resulting in E2/ERα signalling activation via PHB2 inactivation due to PHB2-S39 dephosphorylation. Furthermore, an analysis of independent cohorts of ERα-positive breast cancers patients reveal that both BIG3 overexpression and PHB2-S39 dephosphorylation are strongly associated with poor prognosis. This is the first demonstration of the mechanism of E2/ERα signalling activation via the BIG3–PKA–PP1Cα tri-complex in breast cancer cells. BIG3 is highly expressed in breast cancers and its interaction with PHB2 results in constitutive activation of E2/ERa signalling. Here the authors unveil the mechanistic details of this regulation showing that BIG3 binds PKA and regulates PP1Ca activity in an oestrogen-dependent manner.
Collapse
Affiliation(s)
- Tetsuro Yoshimaru
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Masaya Ono
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yoshimi Bando
- Division of Pathology, Tokushima University Hospital, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yi-An Chen
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Kenji Mizuguchi
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Hiroshi Shima
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, 47-1 Nodayama, Medeshimashiote, Natori, Miyagi 981-1293, Japan
| | - Masato Komatsu
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Issei Imoto
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Keisuke Izumi
- Department of Molecular and Environmental Pathology, Graduate School of Medicine, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Junko Honda
- Department of Surgery, National Hospital Organization Higashitokushima Medical Center, 1-1 Ohmukai-kita, Ootera, Itano, Tokushima 779-0193, Japan
| | - Yasuo Miyoshi
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Mitsunori Sasa
- Department of Surgery, Tokushima Breast Care Clinic, 4-7-7 Nakashimada-cho, Tokushima 770-0052, Japan
| | - Toyomasa Katagiri
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| |
Collapse
|
7
|
Kurebayashi J, Koike Y, Ohta Y, Saitoh W, Yamashita T, Kanomata N, Moriya T. Anti-cancer stem cell activity of a hedgehog inhibitor GANT61 in estrogen receptor-positive breast cancer cells. Cancer Sci 2017; 108:918-930. [PMID: 28211214 PMCID: PMC5448645 DOI: 10.1111/cas.13205] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/09/2017] [Accepted: 02/12/2017] [Indexed: 12/28/2022] Open
Abstract
Estradiol (E2) increases not only the cell growth but also the cancer stem cell (CSC) proportion in estrogen receptor (ER)‐positive breast cancer cells. It has been suggested that the non‐canonical hedgehog (Hh) pathway activated by E2 plays an important role in the regulation of CSC proportion in ER‐positive breast cancer cells. We studied anti‐CSC activity of a non‐canonical Hh inhibitor GANT61 in ER‐positive breast cancer cells. Effects of GANT61 on the cell growth, cell cycle progression, apoptosis and CSC proportion were investigated in four ER‐positive breast cancer cell lines. CSC proportion was measured using either the mammosphere assay or CD44/CD24 assay. Expression levels of pivotal molecules in the Hh pathway were measured. Combined effects of GANT61 with antiestrogens on the anti‐cell growth and anti‐CSC activities were investigated. E2 significantly increased the cell growth and CSC proportion in all ER‐positive cell lines. E2 increased the expression levels of glioma‐associated oncogene (GLI) 1 and/or GLI2. GANT61 decreased the cell growth in association with a G1‐S cell cycle retardation and increased apoptosis. GANT61 decreased the E2‐induced CSC proportion measured by the mammosphere assay in all cell lines. Antiestrogens also decreased the E2‐induced cell growth and CSC proportion. Combined treatments of GANT61 with antiestrogens additively enhanced anti‐cell growth and/or anti‐CSC activities in some ER‐positive cell lines. In conclusion, the non‐canonical Hh inhibitor GANT61 inhibited not only the cell growth but also the CSC proportion increased by E2 in ER‐positive breast cancer cells. GANT61 enhanced anti‐cell growth and/or anti‐CSC activities of antiestrogens in ER‐positive cell lines.
Collapse
Affiliation(s)
- Junichi Kurebayashi
- Department of Breast and Thyroid Surgery, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Yoshikazu Koike
- Department of Breast and Thyroid Surgery, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Yusuke Ohta
- Department of Breast and Thyroid Surgery, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Wataru Saitoh
- Department of Breast and Thyroid Surgery, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Tetsumasa Yamashita
- Department of Breast and Thyroid Surgery, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Naoki Kanomata
- Department of Pathology 2, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Takuya Moriya
- Department of Pathology 2, Kawasaki Medical School, Kurashiki, Okayama, Japan
| |
Collapse
|
8
|
Koike Y, Ohta Y, Saitoh W, Yamashita T, Kanomata N, Moriya T, Kurebayashi J. Anti-cell growth and anti-cancer stem cell activities of the non-canonical hedgehog inhibitor GANT61 in triple-negative breast cancer cells. Breast Cancer 2017; 24:683-693. [DOI: 10.1007/s12282-017-0757-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/23/2017] [Indexed: 12/21/2022]
|
9
|
Kim NH, Yoshimaru T, Chen YA, Matsuo T, Komatsu M, Miyoshi Y, Tanaka E, Sasa M, Mizuguchi K, Katagiri T. BIG3 Inhibits the Estrogen-Dependent Nuclear Translocation of PHB2 via Multiple Karyopherin-Alpha Proteins in Breast Cancer Cells. PLoS One 2015; 10:e0127707. [PMID: 26052702 PMCID: PMC4460025 DOI: 10.1371/journal.pone.0127707] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/17/2015] [Indexed: 12/25/2022] Open
Abstract
We recently reported that brefeldin A-inhibited guanine nucleotide-exchange protein 3 (BIG3) binds Prohibitin 2 (PHB2) in cytoplasm, thereby causing a loss of function of the PHB2 tumor suppressor in the nuclei of breast cancer cells. However, little is known regarding the mechanism by which BIG3 inhibits the nuclear translocation of PHB2 into breast cancer cells. Here, we report that BIG3 blocks the estrogen (E2)-dependent nuclear import of PHB2 via the karyopherin alpha (KPNA) family in breast cancer cells. We found that overexpressed PHB2 interacted with KPNA1, KPNA5, and KPNA6, thereby leading to the E2-dependent translocation of PHB2 into the nuclei of breast cancer cells. More importantly, knockdown of each endogenous KPNA by siRNA caused a significant inhibition of E2-dependent translocation of PHB2 in BIG3-depleted breast cancer cells, thereby enhancing activation of estrogen receptor alpha (ERα). These data indicated that BIG3 may block the KPNAs (KPNA1, KPNA5, and KPNA6) binding region(s) of PHB2, thereby leading to inhibition of KPNAs-mediated PHB2 nuclear translocation in the presence of E2 in breast cancer cells. Understanding this regulation of PHB2 nuclear import may provide therapeutic strategies for controlling E2/ERα signals in breast cancer cells.
Collapse
Affiliation(s)
- Nam-Hee Kim
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima, Japan
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Tetsuro Yoshimaru
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima, Japan
| | - Yi-An Chen
- National Institute of Biomedical Innovation, Osaka, Japan
| | - Taisuke Matsuo
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima, Japan
| | - Masato Komatsu
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima, Japan
| | - Yasuo Miyoshi
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Hyogo, Japan
| | - Eiji Tanaka
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Mitsunori Sasa
- Department of Surgery, Tokushima Breast Care Clinic, Tokushima, Japan
| | | | - Toyomasa Katagiri
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima, Japan
- * E-mail:
| |
Collapse
|
10
|
Hashimoto Y, Murata A, Miyamoto N, Takamori T, Hosoda Y, Endo Y, Kodani Y, Sato K, Hosoya K, Ishiguro K, Hirooka Y. Clinical Significance of Microcalcifications Detection in Invasive Breast Carcinoma. Yonago Acta Med 2015; 58:89-93. [PMID: 26306060 PMCID: PMC4546962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 04/27/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Recently, a lot of cases with microcalcifications of the breast are pointed by the images of mammography (MG), because breast screening using MG become common. Although MG is a gold standard modality for detecting microcalcifications, images of ultrasonography (US) are now feasible to detect microcalcifications with recent improvements to ultrasound diagnostic devices. In this report, we analyzed clinical significance of microcalcifications detected with US images in invasive breast carcinoma. METHODS Eighty-eight patients with invasive breast carcinoma who underwent MG and US before surgery at the Division of Breast and Endocrine Surgery of Tottori University Hospital between January 2012 and August 2013. After reviewing US images, the association between the presence of echogenic spots that indicate microcalcifications and images of MG or pathological findings was assessed. RESULTS Patients without microcalcifications on US images were significantly more likely to have the Luminal A subtype and a lower nuclear grading. Conversely, patients with microcalcifications on US images were significantly more likely to have higher level of MIB-1 index, lymphovascular invasion, comedonecrosis and lymph node metastasis. The rate of detecting microcalcifications on US images was relatively good, with 81.8% of sensitivity, 94.5% of specificity and 89.8% of diagnostic accuracy. Among the calcifications detected by MG images, detected rate of calcifications with US images was higher in necrotic type (92.6%) than secretory type (33.3%). CONCLUSION This study suggest that microcalcifications of tumors detected by US images could serve as an useful prediction to evaluate the degree of malignancy for patients with invasive breast carcinoma.
Collapse
Affiliation(s)
- Yuki Hashimoto
- Department of Pathobiological Science and Technology, School of Health Science, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Aya Murata
- Department of Pathobiological Science and Technology, School of Health Science, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Naoki Miyamoto
- Department of Pathobiological Science and Technology, School of Health Science, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Toshihiro Takamori
- Department of Pathobiological Science and Technology, School of Health Science, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Yuta Hosoda
- Department of Pathobiological Science and Technology, School of Health Science, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Yukari Endo
- Department of Pathobiological Science and Technology, School of Health Science, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Yuka Kodani
- Department of Pathobiological Science and Technology, School of Health Science, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Kengo Sato
- Department of Pathobiological Science and Technology, School of Health Science, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Keiko Hosoya
- †Division of Breast and Endocrine Surgery, Tottori University Hospital, Yonago 683-8504, Japan
| | - Kiyosuke Ishiguro
- †Division of Breast and Endocrine Surgery, Tottori University Hospital, Yonago 683-8504, Japan
| | - Yasuaki Hirooka
- Department of Pathobiological Science and Technology, School of Health Science, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| |
Collapse
|
11
|
Yoshimaru T, Komatsu M, Miyoshi Y, Honda J, Sasa M, Katagiri T. Therapeutic advances in BIG3-PHB2 inhibition targeting the crosstalk between estrogen and growth factors in breast cancer. Cancer Sci 2015; 106:550-8. [PMID: 25736224 PMCID: PMC4452155 DOI: 10.1111/cas.12654] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/11/2015] [Accepted: 02/28/2015] [Indexed: 12/13/2022] Open
Abstract
Our previous studies demonstrated that specific inhibition of the BIG3-PHB2 complex, which is a critical modulator in estrogen (E2) signaling, using ERAP, a dominant negative peptide inhibitor, leads to suppression of E2-dependent estrogen receptor (ER) alpha activation through the reactivation of the tumor suppressive activity of PHB2. Here, we report that ERAP has significant suppressive effects against synergistic activation caused by the crosstalk between E2 and growth factors associated with intrinsic or acquired resistance to anti-estrogen tamoxifen in breast cancer cells. Intrinsic PHB2 released from BIG3 by ERAP effectively disrupted each interaction of membrane-associated ERα and insulin-like growth factor 1 receptor beta (IGF-1Rβ), EGFR, PI3K or human epidermal growth factor 2 (HER2) in the presence of E2 and the growth factors IGF or EGF, followed by inhibited the activation of IGF-1Rβ, EGFR or HER2, and reduced Akt, MAPK and ERα phosphorylation levels, resulting in significant suppression of proliferation of ERα-positive breast cancer cells in vitro and in vivo. More importantly, combined treatment with ERAP and tamoxifen led to a synergistic suppression of signaling that was activated by crosstalk between E2 and growth factors or HER2 amplification. Taken together, our findings suggest that the specific inhibition of BIG3-PHB2 is a novel potential therapeutic approach for the treatment of tamoxifen-resistant breast cancers activated by the crosstalk between E2 and growth factor signaling, especially in premenopausal women.
Collapse
Affiliation(s)
- Tetsuro Yoshimaru
- Division of Genome Medicine, Institute for Genome Research, The University of Tokushima, Tokushima, Japan
| | - Masato Komatsu
- Division of Genome Medicine, Institute for Genome Research, The University of Tokushima, Tokushima, Japan
| | - Yasuo Miyoshi
- Division of Breast and Endocrine, Department of Surgery, Hyogo College of Medicine, Hyogo, Japan
| | - Junko Honda
- Department of Surgery, National Hospital Organization Higashitokushima Medical Center, Tokushima, Japan
| | - Mitsunori Sasa
- Department of Surgery, Tokushima Breast Care Clinic, Tokushima, Japan
| | - Toyomasa Katagiri
- Division of Genome Medicine, Institute for Genome Research, The University of Tokushima, Tokushima, Japan
| |
Collapse
|
12
|
Antitumor and anticancer stem cell activities of eribulin mesylate and antiestrogens in breast cancer cells. Breast Cancer 2015; 23:425-36. [PMID: 25552385 DOI: 10.1007/s12282-014-0580-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/23/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND Eribulin mesylate (eribulin), a non-taxane microtubule dynamic inhibitor, has been widely used in the treatment of patients with advanced or metastatic breast cancer. The combined antitumor and anticancer stem cell (CSC) activities of eribulin with endocrine therapeutic agents have not yet been examined in breast cancer cells. We herein investigated the combined effects of eribulin and antiestrogens. METHODS A panel of eight breast cancer cell lines, including five estrogen receptor (ER)-positive and three ER-negative cell lines, was used. These cells were treated with eribulin and/or the antiestrogen, 4-hydroxytamoxifen or fulvestrant. Their growth inhibitory activities and effects on cell cycle progression, apoptosis, and the CSC population were investigated. CSCs were detected using the CD44/CD24/EpCAM, Aldefluor, and mammosphere assays. RESULTS The 50% growth inhibitory concentrations of eribulin were 0.38-2.64 nM for the eight cell lines tested. Eribulin exhibited significant antitumor activity under estrogen-supplemented conditions in ER-positive breast cancer cells. The combined antitumor activity of eribulin with an antiestrogen was evaluated using the combination index. The combination index was 0.43-1.46 for ER-positive cell lines. The additive antitumor effect of eribulin with 4-OHT was only significant in MCF-7 cells. Eribulin induced the accumulation of G2/M and apoptosis, while antiestrogens induced the retardation of G1-S cell cycle and apoptosis, respectively. Estrogen markedly increased the proportion of CSCs, whereas antiestrogens inhibited increases in ER-positive cell lines. Moreover, eribulin decreased the proportion of CSCs in either ER-positive or ER-negative cell lines. The combined treatment of eribulin with an antiestrogen did not additively decrease the proportion of CSCs in ER-positive cell lines. DISCUSSION The results of the present study demonstrated that eribulin had potent antitumor effects on estrogen-stimulated ER-positive breast cancer cells and the combined treatment of eribulin with an antiestrogen resulted in a weakly additive antitumor effect. We herein suggested for the first time that eribulin exhibited anti-CSC effects on either ER-positive or ER-negative breast cancer cells.
Collapse
|
13
|
Yoshimaru T, Komatsu M, Tashiro E, Imoto M, Osada H, Miyoshi Y, Honda J, Sasa M, Katagiri T. Xanthohumol suppresses oestrogen-signalling in breast cancer through the inhibition of BIG3-PHB2 interactions. Sci Rep 2014; 4:7355. [PMID: 25483453 PMCID: PMC4258681 DOI: 10.1038/srep07355] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/18/2014] [Indexed: 12/13/2022] Open
Abstract
Xanthohumol (XN) is a natural anticancer compound that inhibits the proliferation of oestrogen receptor-α (ERα)-positive breast cancer cells. However, the precise mechanism of the antitumour effects of XN on oestrogen (E2)-dependent cell growth, and especially its direct target molecule(s), remain(s) largely unknown. Here, we focus on whether XN directly binds to the tumour suppressor protein prohibitin 2 (PHB2), forming a novel natural antitumour compound targeting the BIG3-PHB2 complex and acting as a pivotal modulator of E2/ERα signalling in breast cancer cells. XN treatment effectively prevented the BIG3-PHB2 interaction, thereby releasing PHB2 to directly bind to both nuclear- and cytoplasmic ERα. This event led to the complete suppression of the E2-signalling pathways and ERα-positive breast cancer cell growth both in vitro and in vivo, but did not suppress the growth of normal mammary epithelial cells. Our findings suggest that XN may be a promising natural compound to suppress the growth of luminal-type breast cancer.
Collapse
Affiliation(s)
- Tetsuro Yoshimaru
- Division of Genome Medicine, Institute for Genome Research, The University of Tokushima, Tokushima, Japan
| | - Masato Komatsu
- Division of Genome Medicine, Institute for Genome Research, The University of Tokushima, Tokushima, Japan
| | - Etsu Tashiro
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Masaya Imoto
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | | | - Yasuo Miyoshi
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Hyogo, Japan
| | - Junko Honda
- Department of Surgery, National Hospital Organization Higashitokushima Medical Center, Tokushima, Japan
| | - Mitsunori Sasa
- Department of Surgery, Tokushima Breast Care Clinic, Tokushima, Japan
| | - Toyomasa Katagiri
- Division of Genome Medicine, Institute for Genome Research, The University of Tokushima, Tokushima, Japan
| |
Collapse
|
14
|
Shimo T, Kurebayashi J, Kanomata N, Yamashita T, Kozuka Y, Moriya T, Sonoo H. Antitumor and anticancer stem cell activity of a poly ADP-ribose polymerase inhibitor olaparib in breast cancer cells. Breast Cancer 2012; 21:75-85. [DOI: 10.1007/s12282-012-0356-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 03/07/2012] [Indexed: 01/01/2023]
|
15
|
Kurebayashi J, Kanomata N, Moriya T, Kozuka Y, Watanabe M, Sonoo H. Preferential antitumor effect of the Src inhibitor dasatinib associated with a decreased proportion of aldehyde dehydrogenase 1-positive cells in breast cancer cells of the basal B subtype. BMC Cancer 2010; 10:568. [PMID: 20959018 PMCID: PMC2967550 DOI: 10.1186/1471-2407-10-568] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 10/20/2010] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Recent studies have suggested that the Src inhibitor dasatinib preferentially inhibits the growth of breast cancer cells of the basal-like subtype. To clarify this finding and further investigate combined antitumor effects of dasatinib with cytotoxic agents, a panel of breast cancer cell lines of various subtypes was treated with dasatinib and/or chemotherapeutic agents. METHODS Seven human breast cancer cell lines were treated with dasatinib and/or seven chemotherapeutic agents. Effects of the treatments on c-Src activation, cell growth, cell cycle, apoptosis and the proportion of aldehyde dehydrogenase (ALDH) 1-positive cells were examined. RESULTS The 50%-growth inhibitory concentrations (IC50s) of dasatinib were much lower in two basal B cell lines than those in the other cell lines. The IC50s of chemotherapeutic agents were not substantially different among the cell lines. Dasatinib enhanced antitumor activity of etoposide in the basal B cell lines. Dasatinib induced a G1-S blockade with a slight apoptosis, and a combined treatment of dasatinib with etoposide also induced a G1-S blockade in the basal B cell lines. Dasatinib decreased the expression levels of phosphorylated Src in all cell lines. Interestingly, dasatinib significantly decreased the proportion of ALDH1-positive cells in the basal B cell lines but not in the other cell lines. CONCLUSIONS The present study indicates that dasatinib preferentially inhibits the growth of breast cancer cells of the basal B subtype associated with a significant loss of putative cancer stem cell population. A combined use of dasatinib with etoposide additively inhibits their growth. Further studies targeting breast cancers of the basal B subtype using dasatinib with cytotoxic agents are warranted.
Collapse
Affiliation(s)
- Junichi Kurebayashi
- Department of Breast and Thyroid Surgery, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Naoki Kanomata
- Department of Pathology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Takuya Moriya
- Department of Pathology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Yuji Kozuka
- Department of Pathology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Mika Watanabe
- Department of Pathology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Hiroshi Sonoo
- Department of Breast and Thyroid Surgery, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| |
Collapse
|
16
|
Aberrant Expression of Fra-1 in Estrogen Receptor-negative Breast Cancers and Suppression of their Propagation In Vivo by Ascochlorin, an Antibiotic that Inhibits Cellular Activator Protein-1 Activity. J Antibiot (Tokyo) 2007; 60:682-9. [DOI: 10.1038/ja.2007.87] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Alokail MS, Peddie MJ. Characterisation of ligand binding to the parathyroid hormone/parathyroid hormone-related peptide receptor in MCF7 breast cancer cells and SaOS-2 osteosarcoma cells. Cell Biochem Funct 2007; 25:139-47. [PMID: 16170852 DOI: 10.1002/cbf.1280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Parathyroid hormone-related peptide (PTHrP) and parathyroid hormone (PTH)/PTHrP-receptor, PTH/PTHrP-R, are frequently expressed in mammary carcinomas as well as in bone cells. In this study we compared the ligand binding characteristics of the PTH/PTHrP-R in SaOS-2 human osteosarcoma cells with those in MCF7 breast cancer cells. We used both Scatchard analysis of saturation kinetics for iodinated ligand and the level of expressed receptor protein by visualising the single radio-labelled receptor-ligand complex from isolated membrane preparations from the two cell lines. In MCF7 cells, ligand binding, (receptor number) was increased by prior exposure of the cultured cells to epidermal growth factor (EGF), estradiol (E2), or dexamethasone (DEX), and decreased following calcitriol (1,25 DHCC). In contrast in the SaOS-2 cells, PTH/PTHrP-R number was increased by exposure to E2 and 1,25DHCC and decreased by DEX while EGF had no effect. These data were confirmed when the PTH/PTHrP-R was cross linked with (125)I-PTHrP-1-34(Tyr), and extended by visualising the intensity of the isolated radiolabelled receptor complex by autoradiography following SDS-PAGE at several time points during the treatment.
Collapse
Affiliation(s)
- Majed S Alokail
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | | |
Collapse
|
18
|
Nakatsu N, Yoshida Y, Yamazaki K, Nakamura T, Dan S, Fukui Y, Yamori T. Chemosensitivity profile of cancer cell lines and identification of genes determining chemosensitivity by an integrated bioinformatical approach using cDNA arrays. Mol Cancer Ther 2005; 4:399-412. [PMID: 15767549 DOI: 10.1158/1535-7163.mct-04-0234] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have established a panel of 45 human cancer cell lines (JFCR-45) to explore genes that determine the chemosensitivity of these cell lines to anticancer drugs. JFCR-45 comprises cancer cell lines derived from tumors of three different organs: breast, liver, and stomach. The inclusion of cell lines derived from gastric and hepatic cancers is a major point of novelty of this study. We determined the concentration of 53 anticancer drugs that could induce 50% growth inhibition (GI50) in each cell line. Cluster analysis using the GI50s indicated that JFCR-45 could allow classification of the drugs based on their modes of action, which coincides with previous findings in NCI-60 and JFCR-39. We next investigated gene expression in JFCR-45 and developed an integrated database of chemosensitivity and gene expression in this panel of cell lines. We applied a correlation analysis between gene expression profiles and chemosensitivity profiles, which revealed many candidate genes related to the sensitivity of cancer cells to anticancer drugs. To identify genes that directly determine chemosensitivity, we further tested the ability of these candidate genes to alter sensitivity to anticancer drugs after individually overexpressing each gene in human fibrosarcoma HT1080. We observed that transfection of HT1080 cells with the HSPA1A and JUN genes actually enhanced the sensitivity to mitomycin C, suggesting the direct participation of these genes in mitomycin C sensitivity. These results suggest that an integrated bioinformatical approach using chemosensitivity and gene expression profiling is useful for the identification of genes determining chemosensitivity of cancer cells.
Collapse
Affiliation(s)
- Noriyuki Nakatsu
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-10-6, Ariake, Koto-ku, Tokyo 135-8550, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Lacroix M, Leclercq G. Relevance of breast cancer cell lines as models for breast tumours: an update. Breast Cancer Res Treat 2004; 83:249-89. [PMID: 14758095 DOI: 10.1023/b:brea.0000014042.54925.cc] [Citation(s) in RCA: 563] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The number of available breast cancer cell (BCC) lines is small, and only a very few of them have been extensively studied. Whether they are representative of the tumours from which they originated remains a matter of debate. Whether their diversity mirrors the well-known inter-tumoural heterogeneity is another essential question. While numerous similarities have long been found between cell lines and tumours, recent technical advances, including the use of micro-arrays and comparative genetic analysis, have brought new data to the discussion. This paper presents most of the BCC lines that have been described in some detail to date. It evaluates the accuracy of the few of them widely used (MCF-7, T-47D, BT-474, SK-BR-3, MDA-MB-231, Hs578T) as tumour models. It is concluded that BCC lines are likely to reflect, to a large extent, the features of cancer cells in vivo. The importance of oestrogen receptor-alpha (gene ESR1 ) and Her-2/ neu ( ERBB2 ) as classifiers for cell lines and tumours is underlined. The recourse to a larger set of cell lines is suggested since the exact origin of some of the widely used lines remains ambiguous. Investigations on additional specific lines are expected to improve our knowledge of BCC and of the dialogue that these maintain with their surrounding normal cells in vivo.
Collapse
Affiliation(s)
- Marc Lacroix
- Laboratoire Jean-Claude Heuson de Cancérologie Mammaire, Institut Jules Bordet, Université Libre de Bruxelles, Bruxelles, Belgium.
| | | |
Collapse
|
20
|
Lenkinski RE, Ahmed M, Zaheer A, Frangioni JV, Goldberg SN. Near-infrared fluorescence imaging of microcalcification in an animal model of breast cancer. Acad Radiol 2004; 10:1159-64. [PMID: 14587634 DOI: 10.1016/s1076-6332(03)00253-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
RATIONALE AND OBJECTIVES At present, there is no animal model of breast cancer that forms reproducible microcalcification. The aim of this study was to develop a straightforward, reproducible model system that could be used to develop multimodality contrast agents for the identification of breast cancer microcalcification. METHODS The R3230 mammary adenocarcinoma cell line was implanted in the mammary fat pad of female Fischer 344 rats (two rats with two implanted tumors and two rats with a single implanted tumor). After growth to 1-2 cm in diameter, tumors were implanted with 100 microm hydroxyapatite crystals (positive control) or calcium oxalate crystals (negative control). Twenty-four hours after crystal implantation, rats were injected intravenously with a previously described near-infrared fluorescent bisphosphonate derivative known as Pam78, and the tumors were imaged using a reflectance optical imaging system. RESULTS Tumors implanted with hydroxyapatite displayed bright, focal, near-infrared fluorescence in the area of crystal implantation. Control tumors, grown in the same animal and implanted with calcium oxalate, did not display any near-infrared fluorescence, even along the needle track used for crystal implantation. CONCLUSIONS A simple and rapid animal model of focal calcification in breast cancer tumors has been developed and validated. The model used Pam78, a near-infrared fluorescent contrast agent specific for hydroxyapatite. The potential usefulness of the model for developing similar contrast agents for magnetic resonance and other imaging modalities is discussed.
Collapse
Affiliation(s)
- Robert E Lenkinski
- Department of Radiology, Molecular Imaging Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 1 Deaconess Road, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
21
|
Okubo S, Kurebayashi J, Otsuki T, Yamamoto Y, Tanaka K, Sonoo H. Additive antitumour effect of the epidermal growth factor receptor tyrosine kinase inhibitor gefitinib (Iressa, ZD1839) and the antioestrogen fulvestrant (Faslodex, ICI 182,780) in breast cancer cells. Br J Cancer 2004; 90:236-44. [PMID: 14710235 PMCID: PMC2395342 DOI: 10.1038/sj.bjc.6601504] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A high expression level of epidermal growth factor receptor (EGFR)/HER1 has been suggested to lead to a shorter survival time and resistance to endocrine therapy in patients with breast cancer. To test the hypothesis that inhibition of the EGFR signalling pathway affects the antitumour effect of endocrine therapy, an EGFR tyrosine kinase inhibitor (EGFR-TKI), gefitinib, and an oestrogen receptor (ER) antagonist, fulvestrant, were administered to human breast cancer cells. A total of five human breast cancer cell lines were used. The effects of single or combined treatments with gefitinib and/or fulvestrant on cell growth, cell cycle progression and apoptosis were analysed. Changes in the expression levels of cyclin-dependent kinase inhibitors, p21 and p27, an antiapoptotic factor, Bcl-2, and a proapoptotic factor, Bax, were also investigated. All cell lines tested were sensitive to gefitinib (50% growth inhibitory concentration, 10–28.5 μM). Breast cancer cell lines with a high expression level of HER1 or HER2 were more sensitive to gefitinib than the others. Gefitinib induced a significant G1–S blockade in ER-positive KPL-3C cells. Gefitinib induced significant apoptosis in HER1-overexpressing MDA-MB-231 cells. Gefitinib additively increased the antitumour effect of fulvestrant in all three ER-positive cell lines in a medium supplemented with 17β-oestradiol. The combined treatment promoted cell cycle retardation in KPL-3C cells, which is associated with an upregulation of p21 by fulvestrant and gefitinib, respectively. Apoptosis was associated with downregulation of Bcl-2 by gefitinib in MDA-MB-231 cells. These results suggest an additive interaction between the EGFR-TKI gefitinib and the antioestrogen fulvestrant in ER-positive breast cancer cells.
Collapse
Affiliation(s)
- S Okubo
- Department of Breast and Thyroid Surgery, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - J Kurebayashi
- Department of Breast and Thyroid Surgery, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
- Department of Breast and Thyroid Surgery, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan. E-mail:
| | - T Otsuki
- Department of Hygiene, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Y Yamamoto
- Department of Breast and Thyroid Surgery, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - K Tanaka
- Department of Breast and Thyroid Surgery, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - H Sonoo
- Department of Breast and Thyroid Surgery, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| |
Collapse
|
22
|
Kurebayashi J, Otsuki T, Tanaka K, Yamamoto Y, Moriya T, Sonoo H. Medroxyprogesterone acetate decreases secretion of interleukin-6 and parathyroid hormone-related protein in a new anaplastic thyroid cancer cell line, KTC-2. Thyroid 2003; 13:249-58. [PMID: 12729473 DOI: 10.1089/105072503321582042] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A new thyroid cancer cell line, KTC-2, was established from the malignant pleural effusion of a patient with recurrent thyroid cancer associated with anaplastic transformation from thyroid papillary cancer. Karyotype analysis showed a mode of 109 chromosomes. Subcutaneous cell injections produced small regressing tumors in athymic or severe combined immunodeficiency disorders (SCID) mice. Histologic examination showed anaplastic tumor cells surrounded by prominent mononuclear cells. An expression of thyroglobulin, thyroid transcription factor-1, and PAX-8 but not thyroid peroxidase and thyrotropin (TSH) receptor was detected. Biochemical analysis revealed secretion of interleukin (IL)-6, parathyroid hormone-related protein (PTHrP), and granulocyte-macrophage colony-stimulating factor. All the cytokines are known to induce paraneoplastic syndromes in patients with anaplastic thyroid cancer. Our previous studies revealed that medroxyprogesterone acetate (MPA) reduces secretion of IL-6 and PTHrP from human breast cancer cells. To investigate the regulatory mechanisms of secretion of these cytokines, MPA was administered to the KTC-2 cells. MPA dose-dependently decreased the secretion and mRNA expression of IL-6 and PTHrP. Expression of androgen receptor and glucocorticoid receptor (GR) but not progesterone receptor was detected. Dexamethasone but not dihydrotestosterone and progesterone decreased IL-6 and PTHrP secretion. These findings suggest that MPA decreases IL-6 and PTHrP secretion as a glucocorticoid mediated by GR in the KTC-2 cells. This KTC-2 cell line may be a suitable model for developing new strategies against paraneoplastic syndromes caused by anaplastic thyroid cancer.
Collapse
Affiliation(s)
- Junichi Kurebayashi
- Department of Breast and Thyroid Surgery, Kawasaki Medical School, Kurashiki, Japan.
| | | | | | | | | | | |
Collapse
|
23
|
Kurebayashi J. Regulation of interleukin-6 secretion from breast cancer cells and its clinical implications. Breast Cancer 2001; 7:124-9. [PMID: 11029783 DOI: 10.1007/bf02967443] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Interleukin (IL)-6 may play possible roles in the proliferation and metastasis of cancer cells, in the development of osteolysis and humoral hypercalcemia, and in the regulation of estrogen production in breast cancer tissues. IL-6 is also suggested to be a cachectic factor in cancer patients. A decrease in serum IL-6 levels induced by medroxyprogesterone acetate (MPA) has been reported to correlate with a reversion of body weight loss in patients with advanced breast cancer. To elucidate the mechanisms of action of the anti-cachectic effect of MPA its effects on IL-6 secretion from the KPL-4 cell line, the first human breast cancer cell line to secrete IL-6 and to induce cachexia, were explored. It has been suggested that an inhibitory effect of MPA on IL-6 secretion from breast cancer cells causes the anti-cachectic effect of MPA. Our other studies have revealed that 5'-fluorouridine (5'-DFUR) inhibits the growth of KPL-4 tumors and decreases IL-6 levels in both serum and tumor tissues. Decreasing serum IL-6 levels resulted in alleviation of body weight loss. Docetaxel increased IL-6 levels in both serum and KPL-4 tumors, but combined treatment with docetaxel and 5'-DFUR resulted not only in a potent antitumor effect but also in a drastic decrease of serum IL-6 levels. In the present paper the possible roles of IL-6 in the development and progression of breast cancer are reviewed, and the regulatory mechanisms of IL-6 secretion from breast cancer cells and the possible clinical implications of decreasing IL-6 secretion by therapeutic agents are discussed.
Collapse
Affiliation(s)
- J Kurebayashi
- Department of Breast and Thyroid Surgery, Kawasaki Medical School, 577 Matsushima, Kurashiki 701-0192, Japan
| |
Collapse
|
24
|
Otsuki T, Yamada O, Kurebayashi J, Sakaguchi H, Yata K, Uno M, Oka T, Yawata Y, Ueki A. Expression and in vitro modification of parathyroid hormone-related protein (PTHrP) and PTH/PTHrP-receptor in human myeloma cells. Leuk Lymphoma 2001; 41:397-409. [PMID: 11378553 DOI: 10.3109/10428190109057995] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To elucidate the role of PTHrP in myeloma, we examined the expression levels of PTHrP and its receptor in human myeloma cell lines and clinical specimens from 13 myeloma cases. In vitro modification of PTHrP expression and production induced by TGF-beta and PMA in PTHrP expressing myeloma cell lines was also investigated. PTHrP expression was detected in six out of seven myeloma cell lines with an inverse correlation with the expression of its receptor, and in 10 out of 13 clinical specimens in varying degrees. The PTHrP expression and secretion into culture medium were enhanced by supplemental TGF-beta and PMA. PMA also seemed to affect PTHrP upregulation via TGF-beta activation. The fundamental role of PTHrP in bone lesions and hypercalcemia in myeloma may be important to consider even during the initial phase of the disease and particularly in the progression of bone complications with hypercalcemia.
Collapse
Affiliation(s)
- T Otsuki
- Department of Hygiene; Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Luparello C, Santamaria F, Schilling T. Regulation of PTHrP and PTH/PTHrP receptor by extracellular Ca2+ concentration and hormones in the breast cancer cell line 8701-BC. Biol Chem 2000; 381:303-8. [PMID: 10839458 DOI: 10.1515/bc.2000.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It was previously reported that 8701-BC breast tumour cells express the gene for parathyroid hormone-related peptide (PTHrP) and PTH/PTHrP receptor (PTHrP-R) and release immunoreactive PTHrP (iPTHrP) into the extracellular medium. Since the regulation of PTHrP and PTHrP-R by breast cancer cells has been poorly investigated so far, we have chosen the 8701-BC cell line as a model system to investigate whether alterations in the extracellular Ca2+ concentration ([Ca2+]e) and treatment with some well-known differentiation agents for breast cells, such as dimethyl sulfoxide, hydrocortisone, progesterone, prolactin, all-trans retinoic acid and transforming growth factor-beta1 might (i) modulate quantitatively the release of iPTHrP, (ii) affect the PTHrP promoter usage and mRNA splicing patterns, and (iii) modify the expression of PTHrP-R. The data obtained indicate that 8701-BC cells are potentially able to utilise different start sites and mRNA splicing patterns for PTHrP transcription, and respond to variations of [Ca2+]e and to the addition of two hormones, hydrocortisone and progesterone, with modifications in the extracellular amount of iPTHrP. Moreover, expression of PTHrP-R is also modulated by changes of [Ca2+]e or treatment with hydrocortisone. This indicates that the 8701 -BC cell line is a suitable in vitro model for further studies on the complex molecular regulation of the PTHrP/PTHrP-R pair in breast cancer.
Collapse
Affiliation(s)
- C Luparello
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università di Palermo, Viale delle Scienze, Italy
| | | | | |
Collapse
|
26
|
Luparello C, Schilling T, Cirincione R, Pucci-Minafra I. Extracellular matrix regulation of PTHrP and PTH/PTHrP receptor in a human breast cancer cell line. FEBS Lett 1999; 463:265-9. [PMID: 10606734 DOI: 10.1016/s0014-5793(99)01635-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
It was previously reported that 8701-BC breast cancer cells express the gene for parathyroid hormone-related peptide (PTHrP) and its cognate receptor (PTHrP-R), and release immunoreactive PTHrP in the extracellular medium; it was also found that PTHrP, in turn, exerts a role on the proliferative and invasive behavior in vitro of the same cell line. On the other hand, evidence has been produced that adhesion of 8701-BC cells onto different collagen substrates influences in various ways a number of phenotypic expressions, such as cell growth, motility, invasion of reconstituted basement membrane and production of lytic enzymes of the extracellular matrix (ECM). In light of these previous data, we have examined whether substrates of either reconstituted basement membrane or representative collagen components of the breast tumor stroma (type I, V and OF/LB) might (i) regulate the PTHrP promoter usage and mRNA splicing patterns, (ii) modulate quantitatively the extracellular release of immunoreactive PTHrP (iPTHrP), and (iii) affect the expression of PTHrP-R. The results obtained give evidence that (i) 8701-BC cells are able to utilize different start sites and mRNA splicing patterns for PTHrP transcription; (ii) 'structural' components of the stroma, such as collagens, are by themselves capable of controlling both the expression pattern of the PTHrP gene and the extent of extracellular release of iPTHrP, and (iii) PTHrP-R expression can be up- or down-regulated in response to the ECM substrate present. These data demonstrate that PTHrP and PTHrP-R expression by 8701-BC neoplastic cells can be modulated by ECM molecules, indirectly supporting the active participation of stromal collagen composition in the regulation of PTHrP-controlled circuits which may play a role in carcinogenesis.
Collapse
Affiliation(s)
- C Luparello
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università, Viale delle Scienze, 90128, Palermo, Italy.
| | | | | | | |
Collapse
|
27
|
Kohno N, Kitazawa S, Konishi M, Wakita K, Furuya Y, Kawaguti K. New Treatment Strategy for Bone Metastases from Breast Cancer. Breast Cancer 1999; 6:292-297. [PMID: 11091732 DOI: 10.1007/bf02966442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Breast cancer patients frequently develop bone metastasis. Parathyroid hormone-related protein, an osteoclast activating factor, might be necessary for tumorto erode bone and grow at skeletal site. Bisphosphonates have an affinity for bone and are potent inhibitors of osteoclastic bone resorption. In light of this,53 patients with bone metastasis from breast cancer were treated with chemoendocrine(mainly high-dose medroxyprogesterone acetate as the endocrine therapy) therapy + bisphosphonate (pamidronate, Aredia (R)). During the previous 6 years (median 27 months), 53 breast cancer patients with bone metastasis were treated with pamidronate + chemoendocrine therapy. The regimen consisting of pamidronate + chemoendocrine agent was administered to 27 patients as a post relapse first-line regimen and to the remaining 26 cases, which failed first- or second-line treatment as a second or third line regimen. As a result of the combination therapy, sclerotic changes were observed in the osteolytic lesions in 31 of the 53 patients (59%). The effect on the osteolytic lesions did not correlate with the duration of disease free interval, estrogen receptor (ER) status, presence/absence of previous therapy or number of " hot spot(s) ] on bone scintigraphy. Lessening of pain from the bone metastasis was achieved in 83% of the patients after 3 months of pamidronate administration. Pamidronate + chemoendocrine therapy seems highly promising.
Collapse
|
28
|
Kurebayashi J, Otsuki T, Kunisue H, Mikami Y, Tanaka K, Yamamoto S, Sonoo H. Expression of vascular endothelial growth factor (VEGF) family members in breast cancer. Jpn J Cancer Res 1999; 90:977-81. [PMID: 10551327 PMCID: PMC5926164 DOI: 10.1111/j.1349-7006.1999.tb00844.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Vascular endothelial growth factor (VEGF)-A is known to play an important role in tumor angiogenesis. Three additional members of the VEGF family, VEGF-B, -C and -D, have recently been discovered. VEGF-C and VEGF-D are ligands for VEGF receptor-3, which is expressed in the endothelium of lymphatic vessels. The expression of VEGF-C is known to be associated with the development of lymphatic vessels. Therefore, it is conceivable that VEGF-C and VEGF-D might play a role in the development of lymphatic vessels in solid tumors. To obtain some clue as to this role, we developed a semi-quantitative reverse transcription-polymerase chain reaction method to investigate the mRNA expression levels of each VEGF family member in breast cancer. All the VEGF family members were expressed at different levels in seven human breast cancer cell lines explored. Although VEGF-A and VEGF-B expressions were detected in both node-positive and node-negative breast tumors, VEGF-C expression was detected only in node-positive tumors. VEGF-D expression was detected only in an inflammatory breast cancer and a tumor which developed an inflammatory skin metastasis. These findings suggest a possible relationship between the expression level of VEGF-C and/or VEGF-D and the development of lymphatic tumor spread.
Collapse
Affiliation(s)
- J Kurebayashi
- Department of Breast & Thyroid Surgery, Kawasaki Medical School, Okayama.
| | | | | | | | | | | | | |
Collapse
|
29
|
Sugimoto T, Shiba E, Watanabe T, Takai S. Suppression of parathyroid hormone-related protein messenger RNA expression by medroxyprogesterone acetate in breast cancer tissues. Breast Cancer Res Treat 1999; 56:11-23. [PMID: 10517339 DOI: 10.1023/a:1006254006088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The level of parathyroid hormone-related protein (PTHrP) expressed in breast cancer tissue is closely related to the incidence of bone metastasis. We examined the PTHrP mRNA expression in breast cancer tissues by coamplification polymerase chain reaction (PCR) in mole ratio to internal standard beta-actin mRNA. The PTHrP expression was higher in premenopausal patients than in postmenopausal patients (P < 0.05). More pronounced difference by menopause found in estrogen receptor (ER) positive groups (P < 0.001) indicated that the PTHrP expression in breast cancer tissue is hormonally regulated and might be altered by endocrine agents. To clarify the changes of PTHrP expression by endocrine therapy of breast cancer, we measured PTHrP expression in the breast cancer tissue incubated for 24 h with 1 x 10(-8) M of estradiol (E2), 1 x 10(-6) M of tamoxifen (TAM) and 1 x 10(-5) M of medroxyprogesterone acetate (MPA). The PTHrP expression was decreased significantly by MPA (P < 0.005), while E2 and TAM did not change the PTHrP expression. Progesterone receptor (PgR) mRNA expression was also examined to confirm that the breast cancer tissue responds to E2 and TAM. The results were well compatible with the better therapeutic effect of MPA reported for the treatment of breast cancer with bone metastases. As a potential candidate for the receptor that mediates the suppressive effect of MPA, androgen receptor (AR) is suggested most probable. Present results also demonstrated that the clinical response of individual tumors is closely associated with the early in vitro changes of gene expression detected in the cancer specimen.
Collapse
Affiliation(s)
- T Sugimoto
- Department of Surgical Oncology, Osaka University Medical School, Suita, Japan
| | | | | | | |
Collapse
|
30
|
Kurebayashi J, Otsuki T, Tang CK, Kurosumi M, Yamamoto S, Tanaka K, Mochizuki M, Nakamura H, Sonoo H. Isolation and characterization of a new human breast cancer cell line, KPL-4, expressing the Erb B family receptors and interleukin-6. Br J Cancer 1999; 79:707-17. [PMID: 10070858 PMCID: PMC2362677 DOI: 10.1038/sj.bjc.6690114] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A new human breast cancer cell line, KPL-4, was recently isolated from the malignant pleural effusion of a breast cancer patient with an inflammatory skin metastasis. This cell line can be cultured under serum-free conditions and is tumorigenic in female athymic nude mice. Flow cytometric analysis revealed the expression of Erb B-1, -2 and -3. Dot blot hybridization showed a 15-fold amplification of the erb B-2. Reverse transcription-polymerase chain reaction analysis showed a detectable level of mRNA expression of all the Erb B family receptors. In addition, all the receptors were autophosphorylated under a serum-supplemented condition. Unexpectedly, transplanted KPL-4 tumours induced cachexia of recipient mice. A high concentration of interleukin-6 (IL-6) was detected in both the culture medium and the serum of mice. The weight of tumours significantly correlated with the serum IL-6 level. The antiproliferative effect of a humanized anti-Erb B-2 monoclonal antibody, rhuMAbHER2, was investigated. This antibody significantly inhibited the growth of KPL-4 cells in vitro but modestly in vivo. Loss of mouse body weight was partly reversed by rhuMAbHER2. These findings suggest that KPL-4 cells may be useful in the development of new strategies against breast cancer overexpressing the Erb B family receptors and against IL-6-induced cachexia.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/immunology
- Breast Neoplasms/pathology
- Breast Neoplasms/surgery
- Cell Culture Techniques/methods
- Cell Division
- Chromosome Aberrations
- Chromosome Disorders
- Female
- Genes, erbB-2
- Humans
- Interleukin-6/biosynthesis
- Interleukin-6/blood
- Interleukin-6/genetics
- Karyotyping
- Mice
- Mice, Nude
- Middle Aged
- Neoplasm Metastasis
- RNA, Messenger/genetics
- Receptor, ErbB-2/biosynthesis
- Receptor, ErbB-2/genetics
- Receptors, Estrogen/analysis
- Receptors, Progesterone/analysis
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription, Genetic
- Transplantation, Heterologous
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- J Kurebayashi
- Department of Breast and Thyroid Surgery, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Funk JL, Wei H. Regulation of parathyroid hormone-related protein expression in MCF-7 breast carcinoma cells by estrogen and antiestrogens. Biochem Biophys Res Commun 1998; 251:849-54. [PMID: 9790998 DOI: 10.1006/bbrc.1998.9568] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Expression of parathyroid hormone-related protein (PTHrP) in breast carcinoma is a frequent cause of the paraneoplastic syndrome of hypercalcemia. In response to treatment with estrogen or tamoxifen, some breast cancer patients also develop a transient hypercalcemia. Therefore, the effect of 17beta-estradiol (E2), tamoxifen, or its more potent metabolite, 4-hydroxytamoxifen (OH-tamoxifen), on PTHrP expression in an estrogen receptor (ER)-positive breast carcinoma cell line (MCF-7) was evaluated. E2 increased PTHrP mRNA levels in MCF-7 cells and stimulated PTHrP(1-86) release in a dose-dependent fashion (10(-10)-10(-6) M). Tamoxifen and OH-tamoxifen also stimulated PTHrP release in a concentration-dependent fashion that paralleled their relative ER binding affinities (10(-6) or 10(-8)-10(-6) M, respectively). Combined treatment with the partial estrogen agonist, OH-tamoxifen, and E2 decreased E2-stimulated PTHrP secretion in MCF-7 cells to the levels seen with OH-tamoxifen treatment alone. These results suggest that transient estrogen- or tamoxifen-induced hypercalcemia in patients with breast carcinoma may be a PTHrP-mediated effect that is a marker of ER positivity.
Collapse
Affiliation(s)
- J L Funk
- Department of Medicine, University of Arizona, Tucson, Arizona, 85724, USA
| | | |
Collapse
|
32
|
|
33
|
Yamada T, Okajima F, Adachi M, Ohwada S, Kondo Y. Growth dependency of a new human pancreatic cancer cell line, YAPC, on autocrine interleukin-1alpha stimulation. Int J Cancer 1998; 76:141-7. [PMID: 9533774 DOI: 10.1002/(sici)1097-0215(19980330)76:1<141::aid-ijc22>3.0.co;2-e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We established a new human pancreatic cancer cell line from the malignant ascites of a patient with pancreatic cancer and called it YAPC. Cytogenetic and morphological analysis indicated that this cell line is monoclonal and of human origin. YAPC cells grow in nude mice, resulting in the formation of a tumor with some functional characteristics of the original tumor. The cells secreted a large amount of inflammatory cytokines including interleukin-1alpha(IL-1alpha), IL-6 and IL-8 in the culture medium. Removal of serum from the culture medium did not change the growth rate of YAPC cells, but the removal of the conditioned medium arrested their proliferation under the serum-free conditions. Exogenous IL-1alpha but neither IL-6 nor IL-8 stimulated DNA synthesis of the cells and accelerated the progress of cell cycle from G1 to the S phase. Anti-IL-1alpha antibody prevented growth of the cells in a dose-dependent fashion. In this pancreatic cancer cell line cell growth is dependent on IL-1alpha in an autocrine fashion. This line may be a useful model for studying growth regulation mechanisms of pancreatic cancer.
Collapse
Affiliation(s)
- T Yamada
- Second Department of Surgery, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi/Gunma, Japan.
| | | | | | | | | |
Collapse
|
34
|
Hidaka N, Nishimura M, Nagao K. Establishment of two human small cell lung cancer cell lines: the evidence of accelerated production of parathyroid hormone-related protein with tumor progression. Cancer Lett 1998; 125:149-55. [PMID: 9566709 DOI: 10.1016/s0304-3835(97)00503-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Two small cell lung cancer (SCLC) cell lines have been established from malignant effusions obtained from an SCLC patient with hypercalcemia during a 3-month follow-up period. The two cell lines established were shown to transcribe the parathyroid hormone-related protein (PTHrP) gene and to constantly secrete fairly large amounts of PTHrP into the culture medium. The efficiency of PTHrP gene transcription and secretion was greater in the cell line established in the late stage (KOT-2) as compared with that obtained in the early stage (KOT-1). Immunohistochemical studies showed that these cells also coexpress neuroendocrine (NE) products such as chromogranin A and neuron-specific enolase (NSE).
Collapse
Affiliation(s)
- N Hidaka
- Third Department of Internal Medicine, Teikyo University School of Medicine, Ichihara, Chiba, Japan
| | | | | |
Collapse
|
35
|
Kurebayashi J, Sonoo H. Parathyroid hormone-related protein secretion is inhibited by oestradiol and stimulated by antioestrogens in KPL-3C human breast cancer cells. Br J Cancer 1997; 75:1819-25. [PMID: 9192988 PMCID: PMC2223620 DOI: 10.1038/bjc.1997.310] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We recently established a human breast cancer cell line, KPL-3C, from a breast cancer patient with humoral hypercalcaemia. This cell line possesses oestrogen receptor (ER) and secretes parathyroid hormone-related protein (PTHrP) into medium. To investigate the effects of oestrogen and antioestrogens on PTHrP secretion, KPL-3C cells were cultured for 48 h in an oestrogen-eliminated medium with 17beta-oestradiol (E2), tamoxifen (TAM) and/or a pure antioestrogen, ICI182,780 (ICI), and PTHrP secretion was measured using an immunoradiometric assay. The effects of these agents on cell cycle progression were also studied using flow cytometry. E2 (1-100 nM) significantly inhibited PTHrP secretion, whereas both TAM (0.1-10 microM) and ICI (1-100 nM) significantly stimulated it. These effects were completely blocked by the simultaneous addition of 1 nM E2 to the medium. At the same time, E2 significantly increased the percentage of cells during the S and G2/M phases, whereas both antioestrogens significantly increased the percentage of cells during the G0/G1 phase. Again, these cytostatic effects were completely reversed by the addition of E2. These findings indicate that antioestrogens inhibit the growth of ER-positive breast cancer cells but may stimulate PTHrP secretion and that these effects may be mediated by ER.
Collapse
Affiliation(s)
- J Kurebayashi
- Department of Breast and Thyroid Surgery, Kawasaki Medical School, Okayama, Japan
| | | |
Collapse
|