1
|
Novohradsky V, Babu T, Kostrhunova H, Plaskow M, Markova L, Acharya S, Gibson D, Brabec V. Cisplatin-eugenol Pt(IV) prodrugs target colon cancer stem cells: A novel strategy for enhanced anticancer efficacy. Biomed Pharmacother 2025; 183:117854. [PMID: 39827811 DOI: 10.1016/j.biopha.2025.117854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/02/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Platinum(IV) compounds possess distinct properties that set them apart from platinum(II) compounds. Often designed as prodrugs, they are reduced within cancer cells to their active platinum(II) form, enabling their cytotoxic effects. Their versatility also lies in their ability to be functionalized and conjugated with bioactive molecules to enhance cancer cell targeting. This report introduces new prodrugs that combine antitumor cisplatin with axially coordinated eugenol, leveraging their synergistic action to target cancer stem cells. A third bioactive ligand, 4-phenylbutyrate or octanoate, was added to further enhance biological activity, creating 'triple action' prodrugs. These new platinum(IV) prodrugs offer a novel approach to cancer therapy by improving targeting, increasing efficacy, overcoming drug resistance, and reducing tumor invasiveness while sparing healthy tissue.
Collapse
Affiliation(s)
- Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, Brno CZ-61200, Czech Republic
| | - Tomer Babu
- Institute for Drug Research, School of Pharmacy, The Hebrew University, Jerusalem 91120, Israel
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, Brno CZ-61200, Czech Republic
| | - Menucha Plaskow
- Institute for Drug Research, School of Pharmacy, The Hebrew University, Jerusalem 91120, Israel
| | - Lenka Markova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, Brno CZ-61200, Czech Republic
| | - Sourav Acharya
- Institute for Drug Research, School of Pharmacy, The Hebrew University, Jerusalem 91120, Israel
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy, The Hebrew University, Jerusalem 91120, Israel.
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, Brno CZ-61200, Czech Republic; Department of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, Olomouc 783 71, Czech Republic.
| |
Collapse
|
2
|
Singh U, Kokkanti RR, Patnaik S. Beyond chemotherapy: Exploring 5-FU resistance and stemness in colorectal cancer. Eur J Pharmacol 2025; 991:177294. [PMID: 39863147 DOI: 10.1016/j.ejphar.2025.177294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/28/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Colorectal cancer (CRC) remains a significant global health challenge, demanding continuous advancements in treatment strategies. This review explores the complexities of targeting colorectal cancer stem cells (CSCs) and the mechanisms contributing to resistance to 5-fluorouracil (5-FU). The efficacy of 5-FU is enhanced by combination therapies such as FOLFOXIRI and targeted treatments like bevacizumab, cetuximab, and panitumumab, particularly in KRAS wild-type tumors, despite associated toxicity. Biomarkers like thymidylate synthase (TYMS), thymidine phosphorylase (TP), and dihydropyrimidine dehydrogenase (DPD) are crucial for predicting 5-FU efficacy and resistance. Targeting CRC-CSCs remains challenging due to their inherent resistance to conventional therapies, marker variability, and the protective influence of the tumor microenvironment which promotes stemness and survival. Personalized treatment strategies are increasingly essential to address CRC's genetic and phenotypic diversity. Advances in immunotherapy, including immune checkpoint inhibitors and cancer vaccines, along with nanomedicine-based therapies, offer promising targeted drug delivery systems that enhance specificity, reduce toxicity, and provide novel approaches for overcoming resistance mechanisms. Integrating these innovative strategies with traditional therapies may enhance the effectiveness of CRC therapy by addressing the underlying causes of 5-FU resistance in CSCs.
Collapse
Affiliation(s)
- Ursheeta Singh
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, 751024, Odisha, India
| | - Rekha Rani Kokkanti
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, 751024, Odisha, India
| | - Srinivas Patnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, 751024, Odisha, India.
| |
Collapse
|
3
|
Cortés-Ballinas L, López-Pérez TV, Rocha-zavaleta L. STAT3 and the STAT3‑regulated inhibitor of apoptosis protein survivin as potential therapeutic targets in colorectal cancer (Review). Biomed Rep 2024; 21:175. [PMID: 39355529 PMCID: PMC11443488 DOI: 10.3892/br.2024.1863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/24/2024] [Indexed: 10/03/2024] Open
Abstract
Colorectal cancer (CRC) is one of the leading types of cancer worldwide. CRC development has been associated with the constitutive activation of signal transducer and activator of transcription 3 (STAT3). STAT3 is a master regulator of inflammation during cancer-associated colitis, and becomes upregulated in CRC. In CRC, STAT3 is activated by IL-6, among other pro-inflammatory cytokines, inducing the expression of target genes that stimulate proliferation, angiogenesis and the inhibition of apoptosis. One of the main STAT3-regulated inhibitors of apoptosis is survivin, which is a bifunctional protein that regulates apoptosis and participates in cell mitosis. Survivin expression is normally limited to foetal tissue; however, survivin is also upregulated in tumours. In silico and experimental analyses have shown that the STAT3 interactome is relevant during CRC progression, and the constitutive STAT3-survivin axis participates in development of the tumour microenvironment and response to therapy. The presence of a STAT3-survivin axis has been documented in CRC cohorts, and the expression of these molecules is associated with poor prognosis and a higher mortality rate in patients with CRC. Thus, STAT3, survivin, and the upstream activators IL-6 and IL-6 receptor, are considered therapeutic targets for CRC. Efforts to develop drugs targeting the STAT3-survivin axis include the evaluation of phytochemical compounds, small molecules and monoclonal antibodies. In the present review, the expression, function and participation of the STAT3-survivin axis in the progression of CRC were investigated. In addition, an update on the pre-clinical and clinical trials evaluating potential treatments targeting the STAT3-survivin axis is presented.
Collapse
Affiliation(s)
- Liliana Cortés-Ballinas
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Tania V. López-Pérez
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Mexico City 06720, Mexico
| | - Leticia Rocha-zavaleta
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
4
|
Demir K, Turgut R, Şentürk S, Işıklar H, Günalan E. The Therapeutic Effects of Bioactive Compounds on Colorectal Cancer via PI3K/Akt/mTOR Signaling Pathway: A Critical Review. Food Sci Nutr 2024; 12:9951-9973. [PMID: 39723045 PMCID: PMC11666977 DOI: 10.1002/fsn3.4534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 12/28/2024] Open
Abstract
Understanding the molecular signaling pathways of colorectal cancer (CRC) can be accepted as the first step in treatment strategy. Permanent mTOR signaling activation stimulates the CRC process via various biological processes. It supplies the survival of CRC stem cells, tumorigenesis, morbidity, and decreased response to drugs in CRC pathogenesis. Therefore, inhibition of the mTOR signaling by numerous bioactive components may be effective against CRC. The study aims to discuss the therapeutic capacity of various polyphenols, terpenoids, and alkaloids on CRC via the PI3K/Akt/mTOR pathway. The potential molecular effects of bioactive compounds on the mTOR pathway's upstream and downstream targets are examined. Each bioactive component causes various physiological processes, such as triggering free radical production, disruption of mitochondrial membrane potential, cell cycle arrest, inhibition of CRC stem cell migration, and suppression of glycolysis through mTOR signaling inhibition. As a result, carcinogenesis is inhibited by inducing apoptosis and autophagy. However, it should be noted that studies are primarily in vitro dose-dependent treatment researchers. This study raises awareness about the role of phenolic compounds in treating CRC, contributing to their future use as anticancer agents. These bioactive compounds have the potential to be developed into food supplementation to prevent and treat various cancer types including CRC. This review has the potential to lead to further development of clinical studies. In the future, mTOR inhibition by applying several bioactive agents using advanced drug delivery systems may contribute to CRC treatment with 3D cell culture and in vivo clinical studies.
Collapse
Affiliation(s)
- Kübra Demir
- Institute of Graduate EducationIstanbul Health and Technology UniversityIstanbulTürkiye
- Faculty of Health Science, Department of Nutrition and DieteticsSabahattin Zaim UniversityIstanbulTürkiye
| | - Rana Turgut
- Institute of Graduate EducationIstanbul Health and Technology UniversityIstanbulTürkiye
| | - Selcen Şentürk
- Institute of Graduate EducationIstanbul Health and Technology UniversityIstanbulTürkiye
| | - Handan Işıklar
- Faculty of Medicine, Department of Internal MedicineYalova UniversityYalovaTürkiye
| | - Elif Günalan
- Faculty of Health Science, Department of Nutrition and DieteticsIstanbul Health and Technology UniversityIstanbulTürkiye
| |
Collapse
|
5
|
Zhang MJ, Shi M, Yu Y, Ou R, Ge RS, Duan P. Curcuminoid PBPD induces cuproptosis and endoplasmic reticulum stress in cervical cancer via the Notch1/RBP-J/NRF2/FDX1 pathway. Mol Carcinog 2024; 63:1449-1466. [PMID: 38801356 DOI: 10.1002/mc.23735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/18/2024] [Accepted: 04/14/2024] [Indexed: 05/29/2024]
Abstract
Curcumin has been shown to have antitumor properties, but its low potency and bioavailability has limited its clinical application. We designed a novel curcuminoid, [1-propyl-3,5-bis(2-bromobenzylidene)-4-piperidinone] (PBPD), which has higher antitumor strength and improves bioavailability. Cell counting kit-8 was used to detect cell activity. Transwell assay was used to detect cell invasion and migration ability. Western blot and quantitative polymerase chain reaction were used to detect protein levels and their messenger RNA expression. Immunofluorescence was used to detect the protein location. PBPD significantly inhibited the proliferation of cervical cancer cells, with an IC50 value of 4.16 μM for Hela cells and 3.78 μM for SiHa cells, leading to the induction of cuproptosis. Transcriptome sequencing analysis revealed that PBPD significantly inhibited the Notch1/Recombination Signal Binding Protein for Immunoglobulin kappa J Region (RBP-J) and nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathways while upregulating ferredoxin 1 (FDX1) expression. Knockdown of Notch1 or RBP-J significantly inhibited NRF2 expression and upregulated FDX1 expression, leading to the inhibition of nicotinamide adenine dinucleotide phosphate activity and the induction of oxidative stress, which in turn activated endoplasmic reticulum stress and induced cell death. The overexpression of Notch1 or RBP-J resulted in the enrichment of RBP-J within the NRF2 promoter region, thereby stimulating NRF2 transcription. NRF2 knockdown resulted in increase in FDX1 expression, leading to cuproptosis. In addition, PBPD inhibited the acidification of tumor niche and reduced cell metabolism to inhibit cervical cancer cell invasion and migration. In conclusion, PBPD significantly inhibits the proliferation, invasion, and migration of cervical cancer cells and may be a novel potential drug candidate for treatment of cervical cancer.
Collapse
Affiliation(s)
- Min-Jie Zhang
- Department of Obstetrics and Gynecology, Oncology Discipline Group, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatrics, Key Laboratory of Structural Malformations in Children of Zhejiang Province and Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang, China
| | - Mengna Shi
- Department of Obstetrics and Gynecology, Oncology Discipline Group, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yang Yu
- Department of Obstetrics and Gynecology, Oncology Discipline Group, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rongying Ou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, Oncology Discipline Group, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatrics, Key Laboratory of Structural Malformations in Children of Zhejiang Province and Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang, China
| | - Ping Duan
- Department of Obstetrics and Gynecology, Oncology Discipline Group, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
6
|
Brockmueller A, Ruiz de Porras V, Shakibaei M. Curcumin and its anti-colorectal cancer potential: From mechanisms of action to autophagy. Phytother Res 2024; 38:3525-3551. [PMID: 38699926 DOI: 10.1002/ptr.8220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
Colorectal cancer (CRC) development and progression, one of the most common cancers globally, is supported by specific mechanisms to escape cell death despite chemotherapy, including cellular autophagy. Autophagy is an evolutionarily highly conserved degradation pathway involved in a variety of cellular processes, such as the maintenance of cellular homeostasis and clearance of foreign bodies, and its imbalance is associated with many diseases. However, the role of autophagy in CRC progression remains controversial, as it has a dual function, affecting either cell death or survival, and is associated with cellular senescence in tumor therapy. Indeed, numerous data have been presented that autophagy in cancers serves as an alternative to cell apoptosis when the latter is ineffective or in apoptosis-resistant cells, which is why it is also referred to as programmed cell death type II. Curcumin, one of the active constituents of Curcuma longa, has great potential to combat CRC by influencing various cellular signaling pathways and epigenetic regulation in a safe and cost-effective approach. This review discusses the efficacy of curcumin against CRC in vitro and in vivo, particularly its modulation of autophagy and apoptosis in various cellular pathways. While clinical studies have assessed the potential of curcumin in cancer prevention and treatment, none have specifically examined its role in autophagy. Nonetheless, we offer an overview of potential correlations to support the use of this polyphenol as a prophylactic or co-therapeutic agent in CRC.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Vicenç Ruiz de Porras
- CARE Program, Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Barcelona, Spain
- GRET and Toxicology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
7
|
Murai T, Masaki Y, Yasuhara K. Curcumin Modulates the Membrane Raft Integrity via Phase Separation and Induces CD44 Shedding in Tumor Cells. Biochemistry 2024. [PMID: 38252070 DOI: 10.1021/acs.biochem.3c00645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
CD44 is a transmembrane cell adhesion molecule that is cleaved by the membrane proteinase, a disintegrin and metalloproteinase 10 (ADAM10), on the cell surface via ectodomain shedding after cholesterol depletion. Lipid raft-mediated CD44 shedding is essential for cancer cell invasion. As cell-cell and cell-matrix adhesions are critical for cancer progression, lipid raft-targeting agents may be effective for cancer therapy. Here, we found that curcumin and its derivatives induced the ADAM10-mediated shedding of CD44 in tumor cells. We also found that curcumin and the derivatives are membrane-active compounds whose effect depends on its planar backbone and the spatial arrangement of methoxy groups substituted on the two aromatic rings using giant unilamellar and plasma membrane vesicles. Curcumin and its derivatives with rigid backbones and hydroxy groups exerted membrane-domain-modulating activity, which may account for their pleiotropic effects via multiple signaling pathways involving membrane receptors. This study provides a basis for the use of membrane-active compounds, such as curcuminoids, to elucidate the roles of lipid rafts in cellular signaling, regulation of membrane-bound ADAM metalloproteinases, and the development of novel membrane lipid-based therapies.
Collapse
Affiliation(s)
- Toshiyuki Murai
- Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yoshikazu Masaki
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Kazuma Yasuhara
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma 630-0192, Japan
- Center for Digital Green-Innovation, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| |
Collapse
|
8
|
Zarezadeh SM, Sharafi AM, Erabi G, Tabashiri A, Teymouri N, Mehrabi H, Golzan SA, Faridzadeh A, Abdollahifar Z, Sami N, Arabpour J, Rahimi Z, Ansari A, Abbasi MR, Azizi N, Tamimi A, Poudineh M, Deravi N. Natural STAT3 Inhibitors for Cancer Treatment: A Comprehensive Literature Review. Recent Pat Anticancer Drug Discov 2024; 19:403-502. [PMID: 37534488 DOI: 10.2174/1574892818666230803100554] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 08/04/2023]
Abstract
Cancer is one of the leading causes of mortality and morbidity worldwide, affecting millions of people physically and financially every year. Over time, many anticancer treatments have been proposed and studied, including synthetic compound consumption, surgical procedures, or grueling chemotherapy. Although these treatments have improved the daily life quality of patients and increased their survival rate and life expectancy, they have also shown significant drawbacks, including staggering costs, multiple side effects, and difficulty in compliance and adherence to treatment. Therefore, natural compounds have been considered a possible key to overcoming these problems in recent years, and thorough research has been done to assess their effectiveness. In these studies, scientists have discovered a meaningful interaction between several natural materials and signal transducer and activator of transcription 3 molecules. STAT3 is a transcriptional protein that is vital for cell growth and survival. Mechanistic studies have established that activated STAT3 can increase cancer cell proliferation and invasion while reducing anticancer immunity. Thus, inhibiting STAT3 signaling by natural compounds has become one of the favorite research topics and an attractive target for developing novel cancer treatments. In the present article, we intend to comprehensively review the latest knowledge about the effects of various organic compounds on inhibiting the STAT3 signaling pathway to cure different cancer diseases.
Collapse
Affiliation(s)
- Seyed Mahdi Zarezadeh
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Mohammad Sharafi
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Arefeh Tabashiri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Teymouri
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hoda Mehrabi
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Seyyed Amirhossein Golzan
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezoo Faridzadeh
- Department of Immunology and Allergy, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Abdollahifar
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Nafiseh Sami
- Student Research Committee, Tehran Medical Sciences, Islamic Azad University Medical Branch of Tehran, Tehran, Iran
| | - Javad Arabpour
- Department of Microbiology, Faculty of New Sciences, Islamic Azad University Medical Branch of Tehran, Tehran, Iran
| | - Zahra Rahimi
- School of Medicine, Zanjan University of Medical Sciences Zanjan, Iran
| | - Arina Ansari
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Nima Azizi
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Zhao H, Han R, Wang Z, Xian J, Bai X. Colorectal Cancer Stem Cells and Targeted Agents. Pharmaceutics 2023; 15:2763. [PMID: 38140103 PMCID: PMC10748092 DOI: 10.3390/pharmaceutics15122763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Since their discovery, cancer stem cells have become a hot topic in cancer therapy research. These cells possess stem cell-like self-renewal and differentiation capacities and are important factors that dominate cancer metastasis, therapy-resistance and recurrence. Worse, their inherent characteristics make them difficult to eliminate. Colorectal cancer is the third-most common cancer and the second leading cause of cancer death worldwide. Targeting colorectal cancer stem cells (CR-CSCs) can inhibit colorectal cancer metastasis, enhance therapeutic efficacy and reduce recurrence. Here, we introduced the origin, biomarker proteins, identification, cultivation and research techniques of CR-CSCs, and we summarized the signaling pathways that regulate the stemness of CR-CSCs, such as Wnt, JAK/STAT3, Notch and Hh signaling pathway. In addition to these, we also reviewed recent anti-CR-CSC drugs targeting signaling pathways, biomarkers and other regulators. These will help researchers gain insight into the current agents targeting to CR-CSCs, explore new cancer drugs and propose potential therapies.
Collapse
Affiliation(s)
- Haobin Zhao
- Department of General Practice, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China; (H.Z.); (J.X.)
- Endocrinology Department, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China
| | - Ruining Han
- Obstetric Department, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China;
| | - Zhankun Wang
- Emergency Department, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China;
| | - Junfang Xian
- Department of General Practice, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China; (H.Z.); (J.X.)
| | - Xiaosu Bai
- Endocrinology Department, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China
| |
Collapse
|
10
|
Joshi P, Verma K, Kumar Semwal D, Dwivedi J, Sharma S. Mechanism insights of curcumin and its analogues in cancer: An update. Phytother Res 2023; 37:5435-5463. [PMID: 37649266 DOI: 10.1002/ptr.7983] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/05/2023] [Accepted: 07/30/2023] [Indexed: 09/01/2023]
Abstract
Cancer is the world's second leading cause of mortality and one of the major public health problems. Cancer incidence and mortality rates remain high despite the great advancements in existing therapeutic, diagnostic, and preventive approaches. Therefore, a quest for less toxic and more efficient anti-cancer strategies is still at the forefront of the current research. Traditionally important, curcumin commonly known as a wonder molecule has received considerable attention as an anti-cancer, anti-inflammatory, and antioxidant candidate. However, limited water solubility and low bioavailability restrict its extensive utility in different pathological states. The investigators are making consistent efforts to develop newer strategies to overcome its limitations by designing different analogues with better pharmacokinetic and pharmacodynamic properties. The present review highlights the recent updates on curcumin and its analogues with special emphasis on various mechanistic pathways involved in anti-cancer activity. In addition, the structure-activity relationship of curcumin analogues has also been precisely discussed. This article will also provide key information for the design and development of newer curcumin analogues with desired pharmacokinetic and pharmacodynamic profiles and will provide in depth understanding of molecular pathways involved in the anti-cancer activities.
Collapse
Affiliation(s)
- Priyanka Joshi
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Deepak Kumar Semwal
- Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Dehradun, Uttarakhand, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| |
Collapse
|
11
|
Suzuki M, Yamamoto Y, Nishijima-Matsunobu A, Kawasaki Y, Shibata H, Omori Y. A curcumin analogue GO-Y030 depletes cancer stem cells by inhibiting the interaction between the HSP70/HSP40 complex and its substrates. FEBS Open Bio 2023; 13:434-446. [PMID: 36648092 PMCID: PMC9989923 DOI: 10.1002/2211-5463.13550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Cancer stem cells (CSCs) are proposed to be involved in tumor initiation and play important roles in cancer relapse, metastasis, and drug resistance. Therefore, the targeting of CSCs has potential for effective anticancer therapies. Curcumin is one of the most widely characterized phytochemicals with tumor-suppressive potential. GO-Y030 is a novel curcumin analogue exhibiting a much stronger growth-inhibitory effect than curcumin. In the present study, we verified the potency of GO-Y030 against a CSC population. We observed that GO-Y030 suppressed CSC sphere-forming ability in several cancer cell lines. Interestingly, a specific inhibitor of heat shock protein (HSP) 70 also exhibited effects similar to GO-Y030 (i.e. inhibition of CSC sphere formation and upregulation of HSP70 and HSP40 protein expression), suggesting that HSP70 and/or HSP40 might be target molecules of GO-Y030. We then performed an in vitro HSP70/HSP40-mediated refolding activity assay and observed that chaperone activity was efficiently inhibited by GO-Y030. Finally, we performed a substrate-binding assay to show that GO-Y030 reduced the binding of both HSP70 and HSP40 with their substrates. HSPs prevent denaturation or unfolding of client proteins under stressful conditions such as high temperature. Because CSCs by nature adapt to various stresses by reinforcing protein-folding activity, the function of HSP70/HSP40 is important for the maintenance of CSC population. Our data suggest that GO-Y030 may impair stress tolerance in CSCs by inhibiting the interaction of HSP70/HSP40 with their substrate proteins and disrupting the function of HSP70/HSP40, thereby contributing to a reduction of the CSC population.
Collapse
Affiliation(s)
- Maya Suzuki
- Department of Molecular and Tumour Pathology, Akita University Graduate School of Medicine, Japan
| | - Yohei Yamamoto
- Department of Molecular and Tumour Pathology, Akita University Graduate School of Medicine, Japan
| | - Aki Nishijima-Matsunobu
- Department of Molecular and Tumour Pathology, Akita University Graduate School of Medicine, Japan
| | - Yohei Kawasaki
- Department of Otorhinolaryngology and Head-and-Neck Surgery, Akita University Graduate School of Medicine, Japan
| | - Hiroyuki Shibata
- Department of Clinical Oncology, Akita University Graduate School of Medicine, Japan
| | - Yasufumi Omori
- Department of Molecular and Tumour Pathology, Akita University Graduate School of Medicine, Japan
| |
Collapse
|
12
|
Liao W, Zhang L, Chen X, Xiang J, Zheng Q, Chen N, Zhao M, Zhang G, Xiao X, Zhou G, Zeng J, Tang J. Targeting cancer stem cells and signalling pathways through phytochemicals: A promising approach against colorectal cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154524. [PMID: 36375238 DOI: 10.1016/j.phymed.2022.154524] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/10/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Cancer stem cells (CSCs) are strongly associated with high tumourigenicity, chemotherapy or radiotherapy resistance, and metastasis and recurrence, particularly in colorectal cancer (CRC). Therefore, targeting CSCs may be a promising approach. Recently, discovery and research on phytochemicals that effectively target colorectal CSCs have been gaining popularity because of their broad safety profile and multi-target and multi-pathway modes of action. PURPOSE This review aimed to elucidate and summarise the effects and mechanisms of phytochemicals with potential anti-CSC agents that could contribute to the better management of CRC. METHODS We reviewed PubMed, EMBASE, Web of Science, Ovid, ScienceDirect and China National Knowledge Infrastructure databases from the original publication date to March 2022 to review the mechanisms by which phytochemicals inhibit CRC progression by targeting CSCs and their key signalling pathways. Phytochemicals were classified and summarised based on the mechanisms of action. RESULTS We observed that phytochemicals could affect the biological properties of colorectal CSCs. Phytochemicals significantly inhibit self-renewal, migration, invasion, colony formation, and chemoresistance and induce apoptosis and differentiation of CSCs by regulating the Wnt/β-catenin pathway (e.g., diallyl trisulfide and genistein), the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin pathway (e.g., caffeic acid and piperlongumine), the neurogenic locus notch homolog protein pathway (e.g., honokiol, quercetin, and α-mangostin), the Janus kinase-signal transducer and activator of transcription pathway (e.g., curcumin, morin, and ursolic acid), and other key signalling pathways. It is worth noting that several phytochemicals, such as resveratrol, silibinin, evodiamine, and thymoquinone, highlight multi-target and multi-pathway effects in restraining the malignant biological behaviour of CSCs. CONCLUSIONS This review demonstrates the potential of targeted therapies for colorectal CSCs using phytochemicals. Phytochemicals could serve as novel therapeutic agents for CRC and aid in drug development.
Collapse
Affiliation(s)
- Wenhao Liao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Lanlan Zhang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian Chen
- Department of Pathology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Juyi Xiang
- Center for drug evaluation, National Medical Products Administration, Beijing 100022, China
| | - Qiao Zheng
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Nianzhi Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Maoyuan Zhao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Gang Zhang
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Xiaolin Xiao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Gang Zhou
- Center for drug evaluation, National Medical Products Administration, Beijing 100022, China.
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| |
Collapse
|
13
|
Zhang Y, Liu K, Yan C, Yin Y, He S, Qiu L, Li G. Natural Polyphenols for Treatment of Colorectal Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248810. [PMID: 36557939 PMCID: PMC9787795 DOI: 10.3390/molecules27248810] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is a prevalent and serious gastrointestinal malignancy with high mortality and morbidity. Chemoprevention refers to a newly emerged strategy that uses drugs with chemopreventive properties to promote antioxidation, regulate cancer cell cycle, suppress proliferation, and induce cellular apoptosis, so as to improve cancer treatment outcomes. Natural polyphenols are currently recognized as a class of chemopreventive agents that have shown remarkable anticarcinogenic properties. Numerous in vitro and in vivo studies have elucidated the anti-CRC mechanisms of natural polyphenols, such as regulation of various molecular and signaling pathways. Natural polyphenols are also reportedly capable of modulating the gut microbiota and cancer stem cells (CSCs) to suppress tumor formation and progression. Combined use of different natural polyphenols is recommended due to their low bioavailability and instability, and combination treatment can exert synergistical effects, reduce side effects, and avoid drug resistance in CRC treatment. In summary, the application of polyphenols in the chemoprevention and treatment of CRC is promising. Further clinical evaluation of their effectiveness is warranted and anticipated.
Collapse
Affiliation(s)
- Yiwen Zhang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Kunjian Liu
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Chengqiu Yan
- Anorectal Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130021, China
| | - Yu Yin
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Shuangyan He
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Li Qiu
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Guofeng Li
- Anorectal Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130021, China
- Correspondence:
| |
Collapse
|
14
|
Koh YC, Tsai YW, Lee PS, Nagabhushanam K, Ho CT, Pan MH. Amination Potentially Augments the Ameliorative Effect of Curcumin on Inhibition of the IL-6/Stat3/c-Myc Pathway and Gut Microbial Modulation in Colitis-Associated Tumorigenesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14744-14754. [PMID: 36368792 DOI: 10.1021/acs.jafc.2c06645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Epigallocatechin gallate and tetrahydrocurcumin are aminated as colonic metabolites, preserving their bioactivities and improving their capabilities. We compared the bioactivities of unaminated (CUR) and aminated (AC) curcumin in inflammatory colitis-associated tumorigenesis. The anti-inflammatory and anticancer capabilities of CUR and AC were evaluated using RAW264.7 and HT29 cell lines, respectively. An azoxymethane/dextran sodium sulfate-induced colitis-associated carcinogenesis mouse model was used with CUR and two-dose AC interventions. AC had a greater anti-inflammatory effect but a similar anticancer effect as CUR in vitro. CUR and low-dose AC (LAC) significantly preserved colon length and reduced tumor number in vivo. Both CUR and LAC inhibited activation of the protein kinase B (AKT)/nuclear factor kappa B (NF-κB) signaling pathway, its downstream cytokines, and the interleukin (IL)-6/signal transducer and activator of transcription 3 (STAT3)/c-myelocytomatosis oncogene (c-MYC) pathway. However, only LAC significantly preserved E-cadherin, reduced N-cadherin, and facilitated beneficial gut microbial growth, including Akkermansia and Bacteroides, potentially explaining AC's better ameliorative effect at low than high doses.
Collapse
Affiliation(s)
- Yen-Chun Koh
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Wen Tsai
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Pei-Sheng Lee
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan
| | | | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Min-Hsiung Pan
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
15
|
Sanlier N, Kocabas Ş, Erdogan K, Sanlier NT. Effects of curcumin, its analogues, and metabolites on various cancers: focusing on potential mechanisms. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2067173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Nevin Sanlier
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, Ankara, Turkey
| | - Şule Kocabas
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, Ankara, Turkey
| | - Kadriye Erdogan
- Department of Obstetrics and Gynecology, Ankara Gulhane Health Application and Research Center, Health Sciences University, Ankara, Turkey
| | - Nazlı Tunca Sanlier
- Department of Obstetrics and Gynecology, Ankara City Hospital, Ankara, Turkey
| |
Collapse
|
16
|
Pashirzad M, Sathyapalan T, Sheikh A, Kesharwani P, Sahebkar A. Cancer stem cells: An overview of the pathophysiological and prognostic roles in colorectal cancer. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Silva VR, Santos LDS, Dias RB, Quadros CA, Bezerra DP. Emerging agents that target signaling pathways to eradicate colorectal cancer stem cells. Cancer Commun (Lond) 2021; 41:1275-1313. [PMID: 34791817 PMCID: PMC8696218 DOI: 10.1002/cac2.12235] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/28/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) represents the third most commonly diagnosed cancer and the second leading cause of cancer death worldwide. The modern concept of cancer biology indicates that cancer is formed of a small population of cells called cancer stem cells (CSCs), which present both pluripotency and self-renewal properties. These cells are considered responsible for the progression of the disease, recurrence and tumor resistance. Interestingly, some cell signaling pathways participate in CRC survival, proliferation, and self-renewal properties, and most of them are dysregulated in CSCs, including the Wingless (Wnt)/β-catenin, Notch, Hedgehog, nuclear factor kappa B (NF-κB), Janus kinase/signal transducer and activator of transcription (JAK/STAT), peroxisome proliferator-activated receptor (PPAR), phosphatidyl-inositol-3-kinase/Akt/mechanistic target of rapamycin (PI3K/Akt/mTOR), and transforming growth factor-β (TGF-β)/Smad pathways. In this review, we summarize the strategies for eradicating CRC stem cells by modulating these dysregulated pathways, which will contribute to the study of potential therapeutic schemes, combining conventional drugs with CSC-targeting drugs, and allowing better cure rates in anti-CRC therapy.
Collapse
Affiliation(s)
- Valdenizia R Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Luciano de S Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Rosane B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Claudio A Quadros
- São Rafael Hospital, Rede D'Or/São Luiz, Salvador, Bahia, 41253-190, Brazil.,Bahia State University, Salvador, Bahia, 41150-000, Brazil
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| |
Collapse
|
18
|
Targeting Cancer Stem Cells by Dietary Agents: An Important Therapeutic Strategy against Human Malignancies. Int J Mol Sci 2021; 22:ijms222111669. [PMID: 34769099 PMCID: PMC8584029 DOI: 10.3390/ijms222111669] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/23/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023] Open
Abstract
As a multifactorial disease, treatment of cancer depends on understanding unique mechanisms involved in its progression. The cancer stem cells (CSCs) are responsible for tumor stemness and by enhancing colony formation, proliferation as well as metastasis, and these cells can also mediate resistance to therapy. Furthermore, the presence of CSCs leads to cancer recurrence and therefore their complete eradication can have immense therapeutic benefits. The present review focuses on targeting CSCs by natural products in cancer therapy. The growth and colony formation capacities of CSCs have been reported can be attenuated by the dietary agents. These compounds can induce apoptosis in CSCs and reduce tumor migration and invasion via EMT inhibition. A variety of molecular pathways including STAT3, Wnt/β-catenin, Sonic Hedgehog, Gli1 and NF-κB undergo down-regulation by dietary agents in suppressing CSC features. Upon exposure to natural agents, a significant decrease occurs in levels of CSC markers including CD44, CD133, ALDH1, Oct4 and Nanog to impair cancer stemness. Furthermore, CSC suppression by dietary agents can enhance sensitivity of tumors to chemotherapy and radiotherapy. In addition to in vitro studies, as well as experiments on the different preclinical models have shown capacity of natural products in suppressing cancer stemness. Furthermore, use of nanostructures for improving therapeutic impact of dietary agents is recommended to rapidly translate preclinical findings for clinical use.
Collapse
|
19
|
Abd Wahab NA, Abas F, Othman I, Naidu R. Diarylpentanoid (1,5-bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadiene-3-one) (MS13) Exhibits Anti-proliferative, Apoptosis Induction and Anti-migration Properties on Androgen-independent Human Prostate Cancer by Targeting Cell Cycle-Apoptosis and PI3K Signalling Pathways. Front Pharmacol 2021; 12:707335. [PMID: 34366863 PMCID: PMC8343533 DOI: 10.3389/fphar.2021.707335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/02/2021] [Indexed: 01/10/2023] Open
Abstract
Diarylpentanoids exhibit a high degree of anti-cancer activity and stability in vitro over curcumin in prostate cancer cells. Hence, this study aims to investigate the effects of a diarylpentanoid, 1,5-bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadiene-3-one (MS13) on cytotoxicity, anti-proliferative, apoptosis-inducing, anti-migration properties, and the underlying molecular mechanisms on treated androgen-independent prostate cancer cells, DU 145 and PC-3. A cell viability assay has shown greater cytotoxicity effects of MS13-treated DU 145 cells (EC50 7.57 ± 0.2 µM) and PC-3 cells (EC50 7.80 ± 0.7 µM) compared to curcumin (EC50: DU 145; 34.25 ± 2.7 µM and PC-3; 27.77 ± 6.4 µM). In addition, MS13 exhibited significant anti-proliferative activity against AIPC cells compared to curcumin in a dose- and time-dependent manner. Morphological observation, increased caspase-3 activity, and reduced Bcl-2 protein levels in these cells indicated that MS13 induces apoptosis in a time- and dose-dependent. Moreover, MS13 effectively inhibited the migration of DU 145 and PC-3 cells. Our results suggest that cell cycle-apoptosis and PI3K pathways were the topmost significant pathways impacted by MS13 activity. Our findings suggest that MS13 may demonstrate the anti-cancer activity by modulating DEGs associated with the cell cycle-apoptosis and PI3K pathways, thus inhibiting cell proliferation and cell migration as well as inducing apoptosis in AIPC cells.
Collapse
Affiliation(s)
- Nurul Azwa Abd Wahab
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
20
|
Wan Mohd Tajuddin WNB, Abas F, Othman I, Naidu R. Molecular Mechanisms of Antiproliferative and Apoptosis Activity by 1,5-Bis(4-Hydroxy-3-Methoxyphenyl)1,4-Pentadiene-3-one (MS13) on Human Non-Small Cell Lung Cancer Cells. Int J Mol Sci 2021; 22:ijms22147424. [PMID: 34299042 PMCID: PMC8307969 DOI: 10.3390/ijms22147424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/30/2021] [Accepted: 07/04/2021] [Indexed: 01/12/2023] Open
Abstract
Diarylpentanoid (DAP), an analog that was structurally modified from a naturally occurring curcumin, has shown to enhance anticancer efficacy compared to its parent compound in various cancers. This study aims to determine the cytotoxicity, antiproliferative, and apoptotic activity of diarylpentanoid MS13 on two subtypes of non-small cell lung cancer (NSCLC) cells: squamous cell carcinoma (NCI-H520) and adenocarcinoma (NCI-H23). Gene expression analysis was performed using Nanostring PanCancer Pathways Panel to determine significant signaling pathways and targeted genes in these treated cells. Cytotoxicity screening revealed that MS13 exhibited greater inhibitory effect in NCI-H520 and NCI-H23 cells compared to curcumin. MS13 induced anti-proliferative activity in both cells in a dose- and time-dependent manner. Morphological analysis revealed that a significant number of MS13-treated cells exhibited apoptosis. A significant increase in caspase-3 activity and decrease in Bcl-2 protein concentration was noted in both MS13-treated cells in a time- and dose-dependent manner. A total of 77 and 47 differential expressed genes (DEGs) were regulated in MS13 treated-NCI-H520 and NCI-H23 cells, respectively. Among the DEGs, 22 were mutually expressed in both NCI-H520 and NCI-H23 cells in response to MS13 treatment. The top DEGs modulated by MS13 in NCI-H520—DUSP4, CDKN1A, GADD45G, NGFR, and EPHA2—and NCI-H23 cells—HGF, MET, COL5A2, MCM7, and GNG4—were highly associated with PI3K, cell cycle-apoptosis, and MAPK signaling pathways. In conclusion, MS13 may induce antiproliferation and apoptosis activity in squamous cell carcinoma and adenocarcinoma of NSCLC cells by modulating DEGs associated with PI3K-AKT, cell cycle-apoptosis, and MAPK pathways. Therefore, our present findings could provide an insight into the anticancer activity of MS13 and merits further investigation as a potential anticancer agent for NSCLC cancer therapy.
Collapse
Affiliation(s)
- Wan Nur Baitty Wan Mohd Tajuddin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; (W.N.B.W.M.T.); (I.O.)
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia;
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; (W.N.B.W.M.T.); (I.O.)
- Global Asia in the 21s Century Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; (W.N.B.W.M.T.); (I.O.)
- Global Asia in the 21s Century Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
- Correspondence: ; Tel.: +60-3-5514-63-45
| |
Collapse
|
21
|
Erkisa M, Sariman M, Geyik OG, Geyik CG, Stanojkovic T, Ulukay E. Natural Products as a Promising Therapeutic Strategy to Target Cancer Stem Cells. Curr Med Chem 2021; 29:741-783. [PMID: 34182899 DOI: 10.2174/0929867328666210628131409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 11/22/2022]
Abstract
Cancer is still a deadly disease, and its treatment desperately needs to be managed in a very sophisticated way through fast-developing novel strategies. Most of the cancer cases eventually develop into recurrencies, for which cancer stem cells (CSCs) are thought to be responsible. They are considered as a subpopulation of all cancer cells of tumor tissue with aberrant regulation of self-renewal, unbalanced proliferation, and cell death properties. Moreover, CSCs show a serious degree of resistance to chemotherapy or radiotherapy and immune surveillance as well. Therefore, new classes of drugs are rushing into the market each year, which makes the cost of therapy increase dramatically. Natural products are also becoming a new research area as a diverse chemical library to suppress CSCs. Some of the products even show promise in this regard. So, the near future could witness the introduction of natural products as a source of new chemotherapy modalities, which may result in the development of novel anticancer drugs. They could also be a reasonably-priced alternative to highly expensive current treatments. Nowadays, considering the effects of natural compounds on targeting surface markers, signaling pathways, apoptosis, and escape from immunosurveillance have been a highly intriguing area in preclinical and clinical research. In this review, we present scientific advances regarding their potential use in the inhibition of CSCs and the mechanisms by which they kill the CSCs.
Collapse
Affiliation(s)
- Merve Erkisa
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| | - Melda Sariman
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| | - Oyku Gonul Geyik
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| | - Caner Geyik Geyik
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| | - Tatjana Stanojkovic
- Experimental Oncology Deparment, Institute for Oncology and Radiology of Serbia, 11000 Belgrade, Pasterova 14. Serbia
| | - Engin Ulukay
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| |
Collapse
|
22
|
Morshedi K, Borran S, Ebrahimi MS, Masoud Khooy MJ, Seyedi ZS, Amiri A, Abbasi-Kolli M, Fallah M, Khan H, Sahebkar A, Mirzaei H. Therapeutic effect of curcumin in gastrointestinal cancers: A comprehensive review. Phytother Res 2021; 35:4834-4897. [PMID: 34173992 DOI: 10.1002/ptr.7119] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/18/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
Gastrointestinal (GI) cancers with a high global prevalence are a leading cause of morbidity and mortality. Accordingly, there is a great need to develop efficient therapeutic approaches. Curcumin, a naturally occurring agent, is a promising compound with documented safety and anticancer activities. Recent studies have demonstrated the activity of curcumin in the prevention and treatment of different cancers. According to systematic studies on curcumin use in various diseases, it can be particularly effective in GI cancers because of its high bioavailability in the gastrointestinal tract. Nevertheless, the clinical applications of curcumin are largely limited because of its low solubility and low chemical stability in water. These limitations may be addressed by the use of relevant analogues or novel delivery systems. Herein, we summarize the pharmacological effects of curcumin against GI cancers. Moreover, we highlight the application of curcumin's analogues and novel delivery systems in the treatment of GI cancers.
Collapse
Affiliation(s)
- Korosh Morshedi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sarina Borran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Zeynab Sadat Seyedi
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Atefeh Amiri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Fallah
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
23
|
Adeluola A, Zulfiker AHM, Brazeau D, Amin ARMR. Perspectives for synthetic curcumins in chemoprevention and treatment of cancer: An update with promising analogues. Eur J Pharmacol 2021; 906:174266. [PMID: 34146588 DOI: 10.1016/j.ejphar.2021.174266] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022]
Abstract
Curcumin, a pure compound extracted from the flowering plant, turmeric (Curcuma longa. Zingiberaceae), is a common dietary ingredient found in curry powder. It has been studied extensively for its anti-inflammatory, antioxidant, antimicrobial and anti-tumour activities. Evidence is accumulating demonstrating its potential in chemoprevention and as an anti-tumour agent for the treatment of cancer. Despite demonstrated safety and tolerability, the clinical application of curcumin is frustrated by its poor solubility, metabolic instability and low oral bioavailability. Consequently researchers have tried novel techniques of formulation and delivery as well as synthesis of analogues with enhanced properties to overcome these barriers. This review presents the synthetic analogues of curcumin that have proven their anticancer potential from different studies. It also highlights studies that combined these analogues with approved chemotherapies and delivered them via novel techniques. Currently, there are no reports of clinical studies on any of the synthetic congeners of curcumin and this presents an opportunity for future research. This review presents the synthetic analogues of curcumin and makes a compelling argument for their potential application in the management of cancerous disease.
Collapse
Affiliation(s)
- Adeoluwa Adeluola
- Department of Pharmaceutical Sciences and Research, School of Pharmacy, Marshall University, Huntington, WV, 25701, USA.
| | - Abu Hasanat Md Zulfiker
- Department of Pharmaceutical Sciences and Research, School of Pharmacy, Marshall University, Huntington, WV, 25701, USA
| | - Daniel Brazeau
- Department of Pharmacy Practice, Administration and Research, School of Pharmacy, Marshall University, Huntington, WV, 25701, USA
| | - A R M Ruhul Amin
- Department of Pharmaceutical Sciences and Research, School of Pharmacy, Marshall University, Huntington, WV, 25701, USA.
| |
Collapse
|
24
|
Chalikonda G, Lee H, Sheik A, Huh YS. Targeting key transcriptional factor STAT3 in colorectal cancer. Mol Cell Biochem 2021; 476:3219-3228. [PMID: 33866491 DOI: 10.1007/s11010-021-04156-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 04/02/2021] [Indexed: 12/22/2022]
Abstract
In developed countries, colorectal cancer (CRC) is the fourth most common cancer and the second leading cause of malignant-related deaths. CRC is treatable cancer when diagnosed early; however, diagnosis at the advanced stage is associated with a poor prognosis. Although chemotherapy is generally very promising, STAT3 protein which is overexpressed and persistently activated in CRC cells is observed to be the major contributor of chemoresistance development. It has been shown to play a prominent and pathogenic role in CRC initiation, progression, and metastasis. While over the past few years, research has been focused on STAT3 which is expressed at the center of various oncogenic pathways. This review is a discussion of the oncogenic role of STAT3 in CRC and potential therapeutic STAT3 inhibitors and analogs used to control and treat CRC.
Collapse
Affiliation(s)
| | - Hoomin Lee
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Aliya Sheik
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea.
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
25
|
Ma YS, Xin R, Yang XL, Shi Y, Zhang DD, Wang HM, Wang PY, Liu JB, Chu KJ, Fu D. Paving the way for small-molecule drug discovery. Am J Transl Res 2021; 13:853-870. [PMID: 33841626 PMCID: PMC8014367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Small-molecule drugs are organic compounds affecting molecular pathways by targeting important proteins, which have a low molecular weight, making them penetrate cells easily. Small-molecule drugs can be developed from leads derived from rational drug design or isolated from natural resources. As commonly used medications, small-molecule drugs can be taken orally, which enter cells to act on intracellular targets. These characteristics make small-molecule drugs promising candidates for drug development, and they are increasingly favored in the pharmaceutical market. Despite the advancements in molecular genetics and effective new processes in drug development, the drugs currently used in clinical practice are inadequate due to their poor efficacy or severe side effects. Therefore, developing new safe and efficient drugs is a top priority for disease control and curing.
Collapse
Affiliation(s)
- Yu-Shui Ma
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and TechnologyChangsha 410004, Hunan, China
- Cancer Institute, Nantong Tumor HospitalNantong 226631, China
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Rui Xin
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Xiao-Li Yang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Yi Shi
- Cancer Institute, Nantong Tumor HospitalNantong 226631, China
| | - Dan-Dan Zhang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Hui-Min Wang
- Cancer Institute, Nantong Tumor HospitalNantong 226631, China
| | - Pei-Yao Wang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Ji-Bin Liu
- Cancer Institute, Nantong Tumor HospitalNantong 226631, China
| | - Kai-Jian Chu
- Department of Biliary Tract Surgery I, Third Affiliated Hospital of Second Military Medical UniversityShanghai 200438, China
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| |
Collapse
|
26
|
Sultana S, Munir N, Mahmood Z, Riaz M, Akram M, Rebezov M, Kuderinova N, Moldabayeva Z, Shariati MA, Rauf A, Rengasamy KRR. Molecular targets for the management of cancer using Curcuma longa Linn. phytoconstituents: A Review. Biomed Pharmacother 2021; 135:111078. [PMID: 33433356 DOI: 10.1016/j.biopha.2020.111078] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/21/2020] [Accepted: 11/27/2020] [Indexed: 12/17/2022] Open
Abstract
Medicinal plants are being used for therapeutic purposes since the dawn of human civilization. The therapeutic efficacy of medicinal plants is due to the presence of wide range phytochemical constituents or secondary metabolites. The medicinal plants are traditionally used for several types of ailments. Even in those pathological conditions where other methods of treatment fail to work. Curcuma longa Linn is very common ingredient used as spice in foods as preservative and coloring material in different part of the world. It has been used as a home remedy for a variety of diseases. Curcuma longa and its isolated constituent curcumin are widely evaluated for anticancer activity. Curcumin possesses broad remedial potential due to its multi-targeting effect against many different carcinoma including leukemia, genitourinary cancers, gastrointestinal cancers and breast cancer etc. Hence, Curcumin has potential for the development of new medicine for the treatment of several diseases.
Collapse
Affiliation(s)
- Sabira Sultana
- Department of Eastern Medicine, Government College University Faisalabad, Pakistan
| | - Naveed Munir
- Department of Biochemistry, Government College University Faisalabad, Pakistan
| | - Zahed Mahmood
- Department of Biochemistry, Government College University Faisalabad, Pakistan
| | - Muhammad Riaz
- Department of Allied Health Sciences, Sargodha Medical College, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad, Pakistan
| | - Maksim Rebezov
- V. M. Gorbatov Federal Research Center for Food Systems of RussianAcademy of Sciences, Moscow, Russian Federation; Prokhorov General Physics Institute, Russian Academy of Sciences,Moscow, Russian Federation; K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation
| | | | | | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation; Shakarim State University of Semey, Semey, Kazakhstan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, KPK, Pakistan
| | - Kannan R R Rengasamy
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam; Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2745, North West Province, South Africa.
| |
Collapse
|
27
|
Curcumin may be a potential adjuvant treatment drug for colon cancer by targeting CD44. Int Immunopharmacol 2020; 88:106991. [PMID: 33182071 DOI: 10.1016/j.intimp.2020.106991] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022]
Abstract
Despite the considerable advances in treatment method development, the mortality rate related to colon cancer still ranks the fifth in all tumor-related diseases. Recently, there has been growing evidences supporting the existence of colon cancer stem cells (CSCs) might be one of the main causes for initiation, progression and recurrence of colon cancer. Curcumin has been shown to possess anticancer activities. It has also been suggested that curcumin was effective against colon CSCs by coupling with CD44, a robust marker and functional important molecule for colorectal CSC. In the present study, we confirmed that curcumin can inhibit the proliferation, colony formation, migration and tumor sphere formation of colon cancer cells. Results from real-time PCR and western blotting had suggested that curcumin could down-regulate the expression of CD44. Moreover, results from flow cytometry had further revealed that curcumin could decrease the proportion of CD44+ colon cancer cells. After the expression of CD44 had been knocked down by using siRNA, the inhibition effects of curcumin against CD44+ colon cancer cells were observed to be reduced significantly. Moreover, it had been observed that the cellular uptake of curcumin was significantly higher in CD44+ colon cancer cells. Results from flow cytometry had shown that curcumin could induce apoptosis in CD44+ colon cancer cells. Altogether, our results suggested that curcumin might be an adjuvant drug for the treatment of colorectal cancer by targeting CD44.
Collapse
|
28
|
The Curcumin Analogue, MS13 (1,5-Bis(4-hydroxy-3- methoxyphenyl)-1,4-pentadiene-3-one), Inhibits Cell Proliferation and Induces Apoptosis in Primary and Metastatic Human Colon Cancer Cells. Molecules 2020; 25:molecules25173798. [PMID: 32825505 PMCID: PMC7504349 DOI: 10.3390/molecules25173798] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/26/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
The cytotoxic and apoptotic effects of turmeric (Curcuma longa) on colon cancer have been well documented but specific structural modifications of curcumin have been shown to possess greater growth-suppressive potential on colon cancer than curcumin. Therefore, the aim of this study is to identify the anti-cancer properties of curcumin analogue-MS13, a diarylpentanoid on the cytotoxicity, anti-proliferative and apoptotic activity of primary (SW480) and metastatic (SW620) human colon cancer cells. A cell viability assay showed that MS13 has greater cytotoxicity effect on SW480 (EC50: 7.5 ± 2.8 µM) and SW620 (EC50: 5.7 ± 2.4 µM) compared to curcumin (SW480, EC50: 30.6 ± 1.4 µM) and SW620, EC50: 26.8 ± 2.1 µM). Treatment with MS13 at two different doses 1X EC50 and 2X EC50 suppressed the colon cancer cells growth with lower cytotoxicity against normal cells. A greater anti-proliferative effect was also observed in MS13 treated colon cancer cells compared to curcumin at 48 and 72 h. Subsequent analysis on the induction of apoptosis showed that MS13 treated cells exhibited morphological features associated with apoptosis. The findings are also consistent with cellular apoptotic activities shown by increased caspase-3 activity and decreased Bcl-2 protein level in both colon cancer cell lines. In conclusion, MS13 able to suppress colon cancer cell growth by inhibiting cell proliferation and induce apoptosis in primary and metastatic human colon cancer cells.
Collapse
|
29
|
Ma YS, Li W, Liu Y, Shi Y, Lin QL, Fu D. Targeting Colorectal Cancer Stem Cells as an Effective Treatment for Colorectal Cancer. Technol Cancer Res Treat 2020; 19:1533033819892261. [PMID: 32748700 PMCID: PMC7785997 DOI: 10.1177/1533033819892261] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
As one of the common cancers that threaten human life, the recurrence and metastasis of colorectal cancer seriously affect the prognosis of patients. Although new drugs and comprehensive treatments have been adopted, the current treatment effect on this tumor, especially in advanced colorectal cancer, is still not satisfactory. More and more evidence shows that tumors are likely to be a stem cell disease. In recent years, the rise of cancer stem cell theory has provided a new way for cancer treatment. Studies have found that a small number of special cells in colorectal cancer tissues that induce tumorigenesis, proliferation, and promote tumor migration and metastasis, namely, colorectal cancer stem cells. Colorectal cancer stem cells are defined with a group of cell-surface markers, such as CD44, CD133, CD24, epithelial cell adhesion factor molecule, LGR5, and acetaldehyde dehydrogenase. They are highly tumorigenic, aggressive, and chemoresistant and thus are critical in the metastasis and recurrence of colorectal cancer. Therefore, targeting colorectal cancer stem cells may become an important research direction for the future cure of colorectal cancer.
Collapse
Affiliation(s)
- Yu-Shui Ma
- National Engineering Laboratory for Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China.,Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen Li
- National Engineering Laboratory for Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Yu Liu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Shi
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qin-Lu Lin
- National Engineering Laboratory for Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Da Fu
- National Engineering Laboratory for Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China.,Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Lee GY, Lee JS, Son CG, Lee NH. Combating Drug Resistance in Colorectal Cancer Using Herbal Medicines. Chin J Integr Med 2020; 27:551-560. [PMID: 32740824 DOI: 10.1007/s11655-020-3425-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2020] [Indexed: 12/11/2022]
Abstract
Colorectal cancer (CRC) is one of the most prevalent and lethal cancer types around the world. Most of the CRC patients are treated with chemotherapeutic drugs alone or combined. However, up to 90% of metastatic cancer patients experience the failure of treatment mostly because of the acquired drug resistance, which can be led to multidrug resistance (MDR). In this study, we reviewed the recent literature which studied potential CRC MDR reversal agents among herbal medicines (HMs). Among abundant HMs, 6 single herbs, Andrographis paniculata, Salvia miltiorrhiza, Hedyotis diffusa, Sophora flavescens, Curcuma longa, Bufo gargarizans, and 2 formulae, Pien Tze Huang and Zhi Zhen Fang, were found to overcome CRC MDR by two or more different mechanisms, which could be a promising candidate in the development of new drugs for adjuvant CRC chemotherapy.
Collapse
Affiliation(s)
- Ga-Young Lee
- Department of Clinical Oncology, Cheonan Korean Medicine Hospital of Daejeon University, Cheonan, 31099, Republic of Korea.,Liver & Immunology Research Center, Dunsan Korean Medicine Hospital of Daejeon University, Daejeon, 35235, Republic of Korea.,Department of Internal Medicine, Graduated School of Korean Medicine, University of Daejeon, Daejeon, 34520, Republic of Korea
| | - Jin-Seok Lee
- Liver & Immunology Research Center, Dunsan Korean Medicine Hospital of Daejeon University, Daejeon, 35235, Republic of Korea.,Department of Internal Medicine, Graduated School of Korean Medicine, University of Daejeon, Daejeon, 34520, Republic of Korea
| | - Chang-Gue Son
- Liver & Immunology Research Center, Dunsan Korean Medicine Hospital of Daejeon University, Daejeon, 35235, Republic of Korea.,Department of Internal Medicine, Graduated School of Korean Medicine, University of Daejeon, Daejeon, 34520, Republic of Korea
| | - Nam-Hun Lee
- Department of Clinical Oncology, Cheonan Korean Medicine Hospital of Daejeon University, Cheonan, 31099, Republic of Korea. .,Liver & Immunology Research Center, Dunsan Korean Medicine Hospital of Daejeon University, Daejeon, 35235, Republic of Korea. .,Department of Internal Medicine, Graduated School of Korean Medicine, University of Daejeon, Daejeon, 34520, Republic of Korea.
| |
Collapse
|
31
|
Xu T, Guo P, He Y, Pi C, Wang Y, Feng X, Hou Y, Jiang Q, Zhao L, Wei Y. Application of curcumin and its derivatives in tumor multidrug resistance. Phytother Res 2020; 34:2438-2458. [PMID: 32255545 DOI: 10.1002/ptr.6694] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/27/2020] [Accepted: 03/22/2020] [Indexed: 12/16/2022]
Abstract
Malignant tumor endangers seriously the health of all mankind. Multidrug resistance (MDR) is one of the main causes of clinical tumor chemotherapy failure. Curcumin (CUR) has not only antitumor activity but also reversing tumor MDR effect. CUR reverses tumor MDR via regulating related signal pathways or corresponding expressed proteins or gene. When combined with chemotherapeutic agents, CUR can be a chemotherapeutic sensitive agent to enhance chemotherapy efficacy and weaken tumor MDR. On the other hand, to improve the MDR reversal effect of CUR, its derivatives have been extensively studied. Therefore, this article mainly focuses on reviewing the application of CUR and its derivatives in MDR and its mechanism of reversing MDR.
Collapse
Affiliation(s)
- Ting Xu
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Pu Guo
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yingmeng He
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Chao Pi
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yuanyuan Wang
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Xianhu Feng
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yi Hou
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Qingsheng Jiang
- School of International Education, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Ling Zhao
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yumeng Wei
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| |
Collapse
|
32
|
Fernández-Tomé S, Xu F, Han Y, Hernández-Ledesma B, Xiao H. Inhibitory Effects of Peptide Lunasin in Colorectal Cancer HCT-116 Cells and Their Tumorsphere-Derived Subpopulation. Int J Mol Sci 2020; 21:ijms21020537. [PMID: 31947688 PMCID: PMC7014180 DOI: 10.3390/ijms21020537] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 01/06/2023] Open
Abstract
The involvement of cancer stem-like cells (CSC) in the tumor pathogenesis has profound implications for cancer therapy and chemoprevention. Lunasin is a bioactive peptide from soybean and other vegetal sources with proven protective activities against cancer and other chronic diseases. The present study focused on the cytotoxic effect of peptide lunasin in colorectal cancer HCT-116 cells, both the bulk tumor and the CSC subpopulations. Lunasin inhibited the proliferation and the tumorsphere-forming capacity of HCT-116 cells. Flow cytometry results demonstrated that the inhibitory effects were related to apoptosis induction and cell cycle-arrest at G1 phase. Moreover, lunasin caused an increase in the sub-GO/G1 phase of bulk tumor cells, linked to the apoptotic events found. Immunoblotting analysis further showed that lunasin induced apoptosis through activation of caspase-3 and cleavage of PARP, and could modulate cell cycle progress through the cyclin-dependent kinase inhibitor p21. Together, these results provide new evidence on the chemopreventive activity of peptide lunasin on colorectal cancer by modulating both the parental and the tumorsphere-derived subsets of HCT-116 cells.
Collapse
Affiliation(s)
- Samuel Fernández-Tomé
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM CEI UAM+CSIC), Nicolás Cabrera, 9, 28049 Madrid, Spain;
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (F.X.); (Y.H.)
| | - Fei Xu
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (F.X.); (Y.H.)
| | - Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (F.X.); (Y.H.)
| | - Blanca Hernández-Ledesma
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM CEI UAM+CSIC), Nicolás Cabrera, 9, 28049 Madrid, Spain;
- Correspondence: (B.H.-L.); (H.X.); Tel.: +34 910017970 (B.H.-L.); +1 413-545-2281 (H.X.)
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (F.X.); (Y.H.)
- Correspondence: (B.H.-L.); (H.X.); Tel.: +34 910017970 (B.H.-L.); +1 413-545-2281 (H.X.)
| |
Collapse
|
33
|
Xiang DB, Zhang KQ, Zeng YL, Yan QZ, Shi Z, Tuo QH, Lin LM, Xia BH, Wu P, Liao DF. Curcumin: From a controversial "panacea" to effective antineoplastic products. Medicine (Baltimore) 2020; 99:e18467. [PMID: 31914018 PMCID: PMC6959860 DOI: 10.1097/md.0000000000018467] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Curcumin, a controversial "panacea," has been broadly studied. Its bioactivities including antioxidant, anti-inflammatory, and especially antineoplastic activities have been documented. However, due to its extensive bioactivities, some scientists hold a skeptical point of view toward curcumin and described curcumin as a "deceiver" to chemists. The objective of this study was to explore curcumin's another possibility as a potential supplementary leading compound to cancer treatments. METHODS Literature searches were conducted using electronic databases. Search terms such as "curcumin," "curcumin analogues," and so on were used. The literatures were collected and summarized. In this article, reported targets of curcumin are reviewed. The limitations of a curcumin as a therapeutic anticancer product including low bioavailability and poor targeting are mentioned. Furthermore, modified curcumin analogues and antitumor mechanisms are listed and discussed in the aspects of cell death and tumor microenvironment including angiogenesis, tissue hypoxia status, and energy metabolism. RESULTS Several possible modification strategies were presented by analyzing the relationships between the antitumor activity of curcumin analogues and their structural characteristics, including the introduction of hydrophilic group, shortening of redundant hydrocarbon chain, the introduction of extra chemical group, and so on. CONCLUSIONS From our perspective, after structural modification curcumin could be more effective complementary product for cancer therapies by the enhancement of targeting abilities and the improvement of bioavailability.
Collapse
Affiliation(s)
- De-Biao Xiang
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province
| | - Kai-Qiang Zhang
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province
| | - Ya-Ling Zeng
- Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qing-Zi Yan
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province
| | - Zhe Shi
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province
| | - Qin-Hui Tuo
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province
| | - Li-Mei Lin
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province
| | - Bo-Hou Xia
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province
| | - Ping Wu
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province
| | - Duan-Fang Liao
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province
| |
Collapse
|
34
|
Pakizehkar S, Ranji N, Sohi AN, Sadeghizadeh M. Polymersome‐assisted delivery of curcumin: A suitable approach to decrease cancer stemness markers and regulate miRNAs expression in HT29 colorectal cancer cells. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Safura Pakizehkar
- Department of Biology, Faculty of Sciences, Rasht BranchIslamic Azad University Rasht Iran
| | - Najmeh Ranji
- Department of Biology, Faculty of Sciences, Rasht BranchIslamic Azad University Rasht Iran
| | | | - Majid Sadeghizadeh
- Department of Genetics, School of Biological SciencesTarbiat Modares University Tehran Iran
| |
Collapse
|
35
|
Selvam C, Prabu SL, Jordan BC, Purushothaman Y, Umamaheswari A, Hosseini Zare MS, Thilagavathi R. Molecular mechanisms of curcumin and its analogs in colon cancer prevention and treatment. Life Sci 2019; 239:117032. [PMID: 31704450 DOI: 10.1016/j.lfs.2019.117032] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/20/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023]
Abstract
Colorectal cancer remains to be the most prevalent malignancy in humans and 1.5 million men and women living in the United States are diagnosed with colorectal cancer, with a predicted 145,600 new cases to be diagnosed in 2019. Curcuminoids and its synthetic analogs are now of interest due to their bioactive attributes, especially their action as anticancer activity in various cancer cell line models. Several in vivo and in vitro studies have substantially proved their anticancer activities against colon cancer cell lines. Curcumin analogues like IND-4, FLLL, GO-Y030 and C086 have demonstrated to produce greater cytotoxicity when experimentally studied and study results from many have been suggested to be the same. Combination of curcumin with therapeutic cancer agents like tolfenamic acid, 5-fluorouracil, resveratrol and dasatinib showed improved cytotoxicity and chemotherapeutic effect. The results propose that employment of curcumin with novel drug delivery systems like liposome, micelles and nanoparticle have been performed which could improve the therapeutic efficacy against colon cancer. The present review highlights the mechanism of action, synergistic effect and novel delivery methods to improve the therapeutic potential of curcumin.
Collapse
Affiliation(s)
- Chelliah Selvam
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, 77004, USA.
| | - Sakthivel Lakshmana Prabu
- Department of Pharmaceutical Technology, University College of Engineering (BIT Campus), Anna University, Thiruchirappalli, India
| | - Brian C Jordan
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, 77004, USA
| | - Yasodha Purushothaman
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, India
| | - Appavoo Umamaheswari
- Department of Pharmaceutical Technology, University College of Engineering (BIT Campus), Anna University, Thiruchirappalli, India
| | - Maryam Sadat Hosseini Zare
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, 77004, USA
| | - Ramasamy Thilagavathi
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, India
| |
Collapse
|
36
|
Akbari M, Shomali N, Faraji A, Shanehbandi D, Asadi M, Mokhtarzadeh A, Shabani A, Baradaran B. CD133: An emerging prognostic factor and therapeutic target in colorectal cancer. Cell Biol Int 2019; 44:368-380. [PMID: 31579983 DOI: 10.1002/cbin.11243] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/29/2019] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) is one of the leading causes of death worldwide. Recently, the role of cancer stem cells (CSCs) has been highlighted as a crucial emerging factor in chemoresistance, cancer relapse, and metastasis. CD133 is a surface marker of CSCs and has been argued to have prognostic and therapeutic values in CRC along with its related pathways such as Wnt, Notch, and hedgehog. Several studies have successfully applied targeted therapies against CD133 in CRC models namely bispecific antibodies (BiAbs) and anti-Wnt and notch pathways agents. These studies have yielded initial promising results in this regard. However, none of the therapeutics have been used in the clinical setting and their efficacy and adverse effects profile are yet to be elucidated. This review aims to gather the old and most recent data on the prognostic and therapeutic values of CD133 and CD133-targeted therapies in CRC.
Collapse
Affiliation(s)
- Morteza Akbari
- Department of Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, 3514799422, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran.,Semnan Biotechnology Research Center, Semnan University of Medical sciences, Semnan, 3514799422, Iran
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran
| | - Afsaneh Faraji
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran
| | - Milad Asadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran
| | - Aliakbar Shabani
- Semnan Biotechnology Research Center, Semnan University of Medical sciences, Semnan, 3514799422, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran
| |
Collapse
|
37
|
Bhummaphan N, Petpiroon N, Prakhongcheep O, Sritularak B, Chanvorachote P. Lusianthridin targeting of lung cancer stem cells via Src-STAT3 suppression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 62:152932. [PMID: 31100681 DOI: 10.1016/j.phymed.2019.152932] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cancer stem cells (CSCs) are well-recognized as a majority cause of treatment failure and can give rise to relapse. The discovery of compounds attenuating CSCs' properties is crucial for enabling advances in novel therapeutics to limit recurrence. CSCs' features in lung cancer are regulated through a reduction in Src-STAT3-c-Myc, which drives cancer progression, drug resistance, and metastasis. METHODS The effect of lusianthridin suppresses CSC-like phenotypes was determined by 3D culture and anchorage independent growth. The expression of CSC markers and associated proteins were determined by Western blot analyses. Protein ubiquitination and degradation were assessed using immunoprecipitation. RESULTS Herein, we report that lusianthridin, a pure compound from Dendrobium venustum, dramatically suppressed CSCs in lung cancer cells as verified by several CSC phenotype assessments and CSC markers. The CSC phenotypes in lusianthridin-treated cells were suppressed through downregulation of Src-STAT3-c-Myc pathways. Ectopic Src introduced by the transfection augmented CSC phenotypes in lung cancer cells through STAT3 (increased active p-STAT3Tyr705) and c-Myc signals, while the ShRNA-Src transfection or Src inhibitor dasatinib exhibited opposite results. Treatment of the Src-overexpressing cells with lusianthridin resulted in the reversal of active STAT3 (p-STAT3Tyr705) and c-Myc as well as the CSC marker CD133. Importantly, we confirmed the CSC-targeted activity of lusianthridin in CSC-rich primary lung cancer cells. The compound dramatically inhibited the formation of tumor spheres of primary lung cancer cells. Finally, we demonstrated that after CSC-attenuation by lusianthridin, the lung cancer cells exhibited significantly higher susceptibility to chemotherapeutic drugs. Such a sensitizing effect caused by pro-survival suppression and pro-apoptotic induction together with the abolishment of stemness indicated by the decrease in CSC markers CD133, ABCG2, and ALDH1A1. CONCLUSION These findings revealed a novel pharmacological action and the underlying mechanism of lusianthridin in negatively regulating CSC-like phenotypes and sensitizing resistant cancer cells to cemetery.
Collapse
Affiliation(s)
- Narumol Bhummaphan
- Inter-Department Program of Biomedical Sciences, Faculty of Graduate School, Chulalongkorn University, Bangkok 10330, Thailand; Cell-Based Drug and Health Product Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nalinrat Petpiroon
- Cell-Based Drug and Health Product Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Ornjira Prakhongcheep
- Cell-Based Drug and Health Product Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Boonchoo Sritularak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pithi Chanvorachote
- Cell-Based Drug and Health Product Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
38
|
Paulraj F, Abas F, H Lajis N, Othman I, Naidu R. Molecular Pathways Modulated by Curcumin Analogue, Diarylpentanoids in Cancer. Biomolecules 2019; 9:E270. [PMID: 31295798 PMCID: PMC6681237 DOI: 10.3390/biom9070270] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 01/09/2023] Open
Abstract
While curcumin has a range of therapeutic benefits, its potent anticancer activity remains an attractive avenue for anticancer research owing to the multifactorial nature of cancer itself. The structure of curcumin has thus been used as a lead to design more potent analogues, and diarylpentanoids in particular have shown improved cytotoxicity over curcumin. Investigations of diarylpentanoids have demonstrated that these compounds exert anti-cancer effects through several signalling pathways that are associated with cancer. This review focuses on selected diarylpentanoids and highlights molecular targets that modulate key pathways involved in cancer such as NF-κB, MAPK/ERK, and STAT signalling. Future research will need to focus on drug interactions to explore potential synergistic actions of diarylpentanoids and further establish the use of diverse animal models.
Collapse
Affiliation(s)
- Felicia Paulraj
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Nordin H Lajis
- Laboratory of Natural Products, Faculty of Science, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia.
| |
Collapse
|
39
|
Chainoglou E, Hadjipavlou-Litina D. Curcumin analogues and derivatives with anti-proliferative and anti-inflammatory activity: Structural characteristics and molecular targets. Expert Opin Drug Discov 2019; 14:821-842. [DOI: 10.1080/17460441.2019.1614560] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Eirini Chainoglou
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra Hadjipavlou-Litina
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
40
|
Zendehdel E, Abdollahi E, Momtazi‐Borojeni AA, Korani M, Alavizadeh SH, Sahebkar A. The molecular mechanisms of curcumin’s inhibitory effects on cancer stem cells. J Cell Biochem 2019; 120:4739-4747. [DOI: 10.1002/jcb.27757] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 09/06/2018] [Indexed: 08/30/2023]
Abstract
AbstractCurcumin is a dietary polyphenol and a bioactive phytochemical that possesses anti‐inflammatory, antioxidant, anticancer, and chemopreventive properties, which make it capable of affecting multiple sites along the stem cell pathways to induce apoptosis in these cells. Curcumin’s function is through suppression of cytokine release, especially the secretion of interleukins. Some of the predominant activities of stem cells include regeneration of identical cells and the ability to maintain the proliferation and multipotentiality. However, these cells could be stimulated to differentiate into specific cell types, leading to the development of tumors. Cancer stem cells (CSC) are capable of sustaining tumor formation and differentiation, and are normally characterized by self‐renewal mechanisms. Furthermore, these cells might be responsible for tumor relapse and resistance to therapy. Several studies have focused on the mechanisms of curcumin action in manipulating transcription factors, signaling pathways, CSC markers, microRNAs related to CSCs functions and apoptosis induction in various human cancer cells. In the present review, we aimed to summarize the reported molecular mechanisms of curcumin’s effects on CSCs.
Collapse
Affiliation(s)
- Elham Zendehdel
- Department of Biochemistry and Biophysics, Faculty of Sciences, Mashhad Branch Islamic Azad University Mashhad Iran
| | - Elham Abdollahi
- Department of Medical Immunology, Student Research Committee, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Amir Abbas Momtazi‐Borojeni
- Nanotechnology Research Center, Bu‐Ali Research Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Medical Biotechnology, Student Research Committee, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Mitra Korani
- Nanotechnology Research Center, Bu‐Ali Research Institute Mashhad University of Medical Sciences Mashhad Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center Mashhad University of Medical Sciences Mashhad Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
41
|
Targeting cancer stem cells as therapeutic approach in the treatment of colorectal cancer. Int J Biochem Cell Biol 2019; 110:75-83. [PMID: 30818083 DOI: 10.1016/j.biocel.2019.02.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023]
Abstract
Colorectal cancer is one of the most common cancers globally. A large portion of colorectal cancer patients who are treated with conventional chemotherapy eventually develop local recurrence or metastases. The failure of a complete cure in colorectal cancer patients may be related to the lack of complete eradication of cancer stem cells when using conventional therapy. Colorectal cancer stem cells comprise a small population of tumor cells that possess the properties of rapid proliferation and differentiation. The colorectal cancer stem cells are also phenotypically and molecularly distinct, and resistant to conventional chemo-radiotherapy. Therefore, it is important to identify approaches in combination with conventional therapy for targeting and eradicating cancer cells. The aim of this review was to summarize the main findings of recent studies on targeting colorectal cancer stem cells as a novel therapeutic approach in colorectal cancer treatment.
Collapse
|
42
|
Yoshida T, Maruyama T, Miura M, Inoue M, Fukuda K, Shimazu K, Taguchi D, Kanda H, Oshima M, Iwabuchi Y, Shibata H. Dietary intake of pyrolyzed deketene curcumin inhibits gastric carcinogenesis. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.09.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
43
|
Gothai S, Muniandy K, Gnanaraj C, Ibrahim IAA, Shahzad N, Al-Ghamdi SS, Ayoub N, Veeraraghavan VP, Kumar SS, Esa NM, Arulselvan P. Pharmacological insights into antioxidants against colorectal cancer: A detailed review of the possible mechanisms. Biomed Pharmacother 2018; 107:1514-1522. [DOI: 10.1016/j.biopha.2018.08.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 02/07/2023] Open
|
44
|
Wang Y, Zhou P, Qin S, Xu D, Liu Y, Fu W, Ruan B, Zhang L, Zhang Y, Wang X, Pan Y, Wang S, Yan H, Qin J, Wang X, Liu Q, Du Z, Liu Z, Wang Y. The Curcumin Analogs 2-Pyridyl Cyclohexanone Induce Apoptosis via Inhibition of the JAK2-STAT3 Pathway in Human Esophageal Squamous Cell Carcinoma Cells. Front Pharmacol 2018; 9:820. [PMID: 30186159 PMCID: PMC6113578 DOI: 10.3389/fphar.2018.00820] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/09/2018] [Indexed: 12/12/2022] Open
Abstract
Multiple modifications to the structure of curcumin have been investigated with an aim to improve its potency and biochemical properties. Previously, we have synthesized a series of curcumin analogs. In the present study, the anticancer effect of 2-pyridyl cyclohexanone, one of the curcumin analogs, on esophageal carcinoma Eca109 and EC9706 cell lines and its molecular mechanisms were investigated. 2-Pyridyl cyclohexanone inhibited the proliferation of Eca109 and EC9706 cells by inducing apoptosis as indicated by morphological changes, membrane phospholipid phosphatidylserine ectropion, caspase 3 activation, and cleavage of poly(ADP-ribose) polymerase. Mechanistic studies indicated that 2-pyridyl cyclohexanone disrupted mitochondrial membrane potential, disturbed the balance of the Bcl-2 family proteins, and triggered apoptosis via the mitochondria-mediated intrinsic pathway. In 2-pyridine cyclohexanone-treated cells, the phosphorylation levels of JAK2 and STAT3 were dose-dependently decreased and p38 and p-ERK signals were notably activated in a dose-dependent manner. Moreover, we found that the addition of S3I-201, a STAT3 inhibitor, led to a decreased expression level of Bcl-2 in Eca109 cells. The chromatin immunoprecipitation assay demonstrated that STAT3 bound to the promoter of Bcl-2 in the Eca109 cells. Furthermore, the mutation of four STAT3 binding sites (−1733/−1723, −1627/−1617, −807/−797, and −134/−124) on the promote of Bcl-2 gene alone attenuated the transcriptional activation of STAT3. In addition, down-regulation of STAT3 resulted in less of transcriptional activity of STAT3 on Bcl-2 expression. These data provide a potential molecular mechanism of the apoptotic induction function of 2-pyridyl cyclohexanone, and emphasize its important roles as a therapeutic agent for esophageal squamous carcinoma.
Collapse
Affiliation(s)
- Ying Wang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Pengjun Zhou
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Shurong Qin
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Dandan Xu
- Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Yukun Liu
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Wuyu Fu
- School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, China
| | - Bibo Ruan
- School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, China
| | - Li Zhang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yi Zhang
- Cancer Center, Department of Surgery, Yale University, New Haven, CT, United States
| | - Xiao Wang
- Department of Pharmacy, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Yuwei Pan
- College of Medicine, Jinan University, Guangzhou, China
| | - Sheng Wang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Haizhao Yan
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | - Jinhong Qin
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiaoyan Wang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qiuying Liu
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhiyun Du
- Institute of Natural Medicine and Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Zhong Liu
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yifei Wang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
45
|
Su P, Yang Y, Wang G, Chen X, Ju Y. Curcumin attenuates resistance to irinotecan via induction of apoptosis of cancer stem cells in chemoresistant colon cancer cells. Int J Oncol 2018; 53:1343-1353. [PMID: 29956726 DOI: 10.3892/ijo.2018.4461] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/30/2018] [Indexed: 11/06/2022] Open
Abstract
Resistance to conventional chemotherapeutic agents, including irinotecan (CPT‑11), 5-fluorouracil and capecitabine is a major cause for therapeutic failure in patients with colorectal cancer (CRC). Increasing evidence has demonstrated that cancer cells exhibiting stem cell-like characteristics are associated with the development of resistance to chemotherapeutic agents. As a plant polyphenol, curcumin has been demonstrated to have the ability to ameliorate resistance of CRC to chemotherapeutic agents, but the associations among curcumin, cancer stem cells (CSCs) and chemoresistance of CRC remain unclear. The present study established a CPT‑11-resistant colon cancer cell line, LoVo/CPT‑11 cells, and detected the expression levels of CSC identification markers [cluster of differentiation (CD)44, CD133, epithelial cell adhesion molecule (EpCAM) and CD24] in parental cells and CPT‑11-resistant cells. It was revealed that the expression levels of the colon CSC markers in LoVo/CPT‑11 cells were significantly higher compared those in parental cells at the mRNA and protein level. The effect of curcumin on the chemoresistance to CPT‑11 and the expression levels of CSC identification markers in LoVo/CPT‑11 cells separately treated with curcumin and CPT‑11 were further investigated. The results revealed that curcumin significantly attenuated chemoresistance to CPT‑11, and treatment with curcumin resulted in a significant reduction of the expression levels of CSC identification markers. Furthermore, a tumor sphere formation assay was used to enrich colon CSCs from LoVo/CPT‑11 cells, and demonstrated that curcumin efficiently diminished the traits of colon CSCs, as evidenced by the inability to form tumor spheres, the reduction in the expression of CSC identification markers, and apoptosis-induced effects on sphere-forming cells treated with curcumin alone or in combination with CPT‑11. Altogether, the present data demonstrated that curcumin attenuated resistance to chemotherapeutic drugs through induction of apoptosis of CSCs among colon cancer cells. These findings may provide novel evidence for the therapeutic application of curcumin in CRC intervention.
Collapse
Affiliation(s)
- Pengfei Su
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, Shunde, Guangdong 528300, P.R. China
| | - Yong Yang
- Department of General Surgery, Heping Hospital Affiliated with Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Guoxin Wang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, Shunde, Guangdong 528300, P.R. China
| | - Xiaowu Chen
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, Shunde, Guangdong 528300, P.R. China
| | - Yongle Ju
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, Shunde, Guangdong 528300, P.R. China
| |
Collapse
|
46
|
Jalili‐Nik M, Soltani A, Moussavi S, Ghayour‐Mobarhan M, Ferns GA, Hassanian SM, Avan A. Current status and future prospective of Curcumin as a potential therapeutic agent in the treatment of colorectal cancer. J Cell Physiol 2018; 233:6337-6345. [DOI: 10.1002/jcp.26368] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/02/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Mohammad Jalili‐Nik
- Department of Medical BiochemistryFaculty of MedicineMashhad University of Medical SciencesMashhadIran
- Student Research CommitteeMashhad University of Medical SciencesMashhadIran
| | - Arash Soltani
- Department of Medical BiochemistryFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Soussan Moussavi
- Student Research CommitteeMashhad University of Medical SciencesMashhadIran
| | | | - Gordon A. Ferns
- Division of Medical EducationBrighton and Sussex Medical SchoolFalmerBrighton, SussexUK
| | - Seyed Mahdi Hassanian
- Department of Medical BiochemistryFaculty of MedicineMashhad University of Medical SciencesMashhadIran
- Metabolic Syndrome Research CenterMashhad University of Medical SciencesMashhadIran
| | - Amir Avan
- Metabolic Syndrome Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Modern Sciences and TechnologiesSchool of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
47
|
Review on Research about Traditional Chinese Medicine in Cancer Stem Cell. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4505194. [PMID: 29234398 PMCID: PMC5646331 DOI: 10.1155/2017/4505194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 05/23/2017] [Accepted: 06/15/2017] [Indexed: 01/22/2023]
Abstract
Cancer stem cells (CSCs) are small subpopulations of neoplastic cells within a tumor, which have self-renewal and differentiation abilities and could generate new tumors with few cells. Researches have showed that CSCs are considered the most likely reason for cancer recurrence and metastasis. Accumulating evidences have showed that traditional Chinese medicine (TCM) has significant effect on CSCs. It could inhibit the proliferation, self-renew, and multidifferentiation of CSCs. We aimed to summarize the theories of CSCs in TCM, the inhibitory effect, and the pathway on CSCs of TCM. This review will provide potential new strategies and alternative perspectives for CSCs treatments and basic research into complementary and alternative medicine.
Collapse
|
48
|
Lin J, Feng J, Yang H, Yan Z, Li Q, Wei L, Lai Z, Jin Y, Peng J. Scutellaria barbata D. Don inhibits 5-fluorouracil resistance in colorectal cancer by regulating PI3K/AKT pathway. Oncol Rep 2017; 38:2293-2300. [PMID: 28849113 DOI: 10.3892/or.2017.5892] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/31/2017] [Indexed: 11/05/2022] Open
Abstract
5-Fluorouracil (5-FU) resistance or multidrug resistance (MDR) has become a major obstacle in clinical treatment of cancers including colorectal cancer (CRC). Aberrant activation of phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) pathway may lead to unlimited growth and chemoresistance in CRC cells, which thus could be a promising therapeutic target. As a long-term used traditional Chinese folk-medicine, Scutellaria barbata D. Don (SB) processes specific anticancer activity, but its activity against cancer chemoresistance is less known. Therefore, using a 5-FU-resistant CRC cell line HCT-8/5-FU, in this study we evaluated the therapeutic efficacy of the ethanol extracts of SB (EESB) against 5-FU resistance and explored the possible molecular mechanisms. We found that EESB significantly suppressed proliferation and promoted apoptosis in HCT-8/5-FU cells. Additionally, EESB displayed remarkable effect enhancing the retention of the ATP-binding cassette (ABC) transporter substrate, rhodamine‑123 (Rh‑123) in HCT-8/5-FU cells. Furthermore, EESB obviously downregulated the expression of cyclin D1, Bcl-2 and ABCG2, while upregulated p21 and Bax expression. Moreover, EESB showed a prominent suppressive effect on the activation of PI3K/AKT pathway. The findings suggested that Scutellaria barbata D. Don was able to inhibit chemoresistance in colorectal cancer by suppression of the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Jiumao Lin
- Academy of Integrative Medicine Biomedical Research Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jianyu Feng
- Academy of Integrative Medicine Biomedical Research Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Hong Yang
- Academy of Integrative Medicine Biomedical Research Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Zhaokun Yan
- Academy of Integrative Medicine Biomedical Research Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Qiongyu Li
- Academy of Integrative Medicine Biomedical Research Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Lihui Wei
- Academy of Integrative Medicine Biomedical Research Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Zijun Lai
- Academy of Integrative Medicine Biomedical Research Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yiyi Jin
- Academy of Integrative Medicine Biomedical Research Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jun Peng
- Academy of Integrative Medicine Biomedical Research Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
49
|
Taylor WF, Jabbarzadeh E. The use of natural products to target cancer stem cells. Am J Cancer Res 2017; 7:1588-1605. [PMID: 28744407 PMCID: PMC5523038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023] Open
Abstract
The cancer stem cell hypothesis has been used to explain many cancer complications resulting in poor patient outcomes including induced drug resistance, metastases to distant organs, and tumor recurrence. While the validity of the cancer stem cell model continues to be the cause of much scientific debate, a number of putative cancer stem cell markers have been identified making studies concerning the targeting of cancer stem cells possible. In this review, a number of identifying properties of cancer stem cells have been outlined including properties contributing to the drug resistance and metastatic potential commonly observed in supposed cancer stem cells. Due to cancer stem cells' numerous survival mechanisms, the diversity of cancer stem cell markers between cancer types and tissues, and the prevalence of cancer stem cell markers among healthy stem and somatic cells, it is likely that currently utilized treatments will continue to fail to eradicate cancer stem cells. The successful treatment of cancer stem cells will rely upon the development of anti-neoplastic drugs capable of influencing many cellular mechanisms simultaneously in order to prevent the survival of this evasive subpopulation. Natural compounds represent a historically rich source of novel, biologically active compounds which are able to interact with a large number of cellular targets while limiting the painful side-effects commonly associated with cancer treatment. A brief review of select natural products that have been demonstrated to diminish the clinically devastating properties of cancer stem cells or to induce cancer stem cell death is also presented.
Collapse
Affiliation(s)
- Wesley F Taylor
- Department of Chemical Engineering, University of South CarolinaColumbia 29208, SC, USA
| | - Ehsan Jabbarzadeh
- Department of Chemical Engineering, University of South CarolinaColumbia 29208, SC, USA
- Biomedical Engineering Program, University of South CarolinaColumbia 29208, SC, USA
- Department of Orthopedic Surgery, School of Medicine, University of South CarolinaColumbia 29209, SC, USA
| |
Collapse
|
50
|
Bahrami A, Amerizadeh F, ShahidSales S, Khazaei M, Ghayour-Mobarhan M, Sadeghnia HR, Maftouh M, Hassanian SM, Avan A. Therapeutic Potential of Targeting Wnt/β-Catenin Pathway in Treatment of Colorectal Cancer: Rational and Progress. J Cell Biochem 2017; 118:1979-1983. [DOI: 10.1002/jcb.25903] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 01/19/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Afsane Bahrami
- Department of Modern Sciences and Technologies; Faculty of Medicine, Mashhad University of Medical Sciences; Mashhad Iran
| | - Forouzan Amerizadeh
- Department of Modern Sciences and Technologies; Faculty of Medicine, Mashhad University of Medical Sciences; Mashhad Iran
| | - Soodabeh ShahidSales
- Cancer Research Center, School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - Majid Khazaei
- Department of Physiology, Neurogenic Inflammatory Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| | - Majid Ghayour-Mobarhan
- Cancer Research Center, School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - Hamid Reza Sadeghnia
- Department of Modern Sciences and Technologies; Faculty of Medicine, Mashhad University of Medical Sciences; Mashhad Iran
| | - Mina Maftouh
- Metabolic Syndrome Research Center, School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - Seyed Mahdi Hassanian
- Department of Medical Biochemistry, School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
- Metabolic Syndrome Research Center, School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
- Cancer Research Center, School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|