1
|
Wang J, Zhuang H, Yang X, Guo Z, Zhou K, Liu N, An Y, Chen Y, Zhang Z, Wang M, Chen J, Li C, Chang X. Exploring the Mechanism of Ferroptosis Induction by Sappanone A in Cancer: Insights into the Mitochondrial Dysfunction Mediated by NRF2/xCT/GPX4 Axis. Int J Biol Sci 2024; 20:5145-5161. [PMID: 39430236 PMCID: PMC11488586 DOI: 10.7150/ijbs.96748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/21/2024] [Indexed: 10/22/2024] Open
Abstract
Non-small cell lung cancer (NSCLC), a major subtype of lung cancer, encompasses squamous cell carcinoma, adenocarcinoma, and large cell carcinoma. Compared to small cell lung cancer, NSCLC cells grow and divide more slowly, and their metastasis occurs at a later stage. Currently, chemotherapy is the primary treatment for this disease. Sappanone A (SA) is a flavonoid compound extracted from the plant Caesalpinia sappan, known for its antitumor, redox-regulating, and anti-inflammatory properties. Recent studies have investigated the interaction of SA with mitochondrial pathways in regulating cell death through the Nrf-2/GPX-4/xCT axis. This study specifically explores the mechanism by which SA affects mitochondrial morphology and structure through the regulation of mitophagy and mitochondrial biogenesis in tumor cells. The study primarily utilizes second-generation transcriptomic sequencing data and molecular docking techniques to elucidate the role of SA in regulating programmed cell death in tumor cells. The omics results indicate that SA treatment significantly targets genes involved in oxidative phosphorylation, mitophagy, mitochondrial dynamics, and oxidative stress. Further findings confirmed that the Nrf-2/GPX4/xCT pathway serves as a crucial target of SA in the treatment of NSCLC. Knockdown of Nrf-2 (si-Nrf-2) and Nrf-2 overexpression (ad-Nrf-2) were shown to modulate the therapeutic efficacy of SA to varying degrees. Additionally, modifications to the GPX4/xCT genes significantly affected the regulatory effects of SA on mitochondrial autophagy, biogenesis, and energy metabolism. These regulatory mechanisms may be mediated through the caspase pathway and ferroptosis-related signaling. Molecular biology experiments have demonstrated that SA intervention further inhibits the phosphorylation of FUNDC1 at Tyr18 and downregulates TOM20 expression. SA treatment was found to reduce the expression of PGC1α, Nrf-1, and Tfam, resulting in a decrease in mitochondrial respiration and energy metabolism. Overexpression of Nrf-2 was shown to counteract the regulatory effects of SA on mitophagy and mitochondrial biogenesis. Confocal microscopy experiments further revealed that SA treatment increases mitochondrial fragmentation, subsequently inducing mitochondrial pathway-mediated programmed cell death. However, genetic modification of the Nrf-2/GPX4/xCT pathway significantly altered the regulatory effects of SA on tumor cells. In conclusion, SA has been identified as a promising therapeutic agent for NSCLC. The mitochondrial pathway-mediated apoptosis and ferroptosis may represent key mechanisms in regulating tumor cell death. Targeting the Nrf-2/GPX-4/xCT axis offers a novel therapeutic approach for maintaining mitochondrial homeostasis within the cellular microenvironment.
Collapse
Affiliation(s)
- Junyan Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Haowen Zhuang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xiaocui Yang
- The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, 110032, China
| | - Zhijiang Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Kainan Zhou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Nanyang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang An
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110032, China
| | - Ye Chen
- Xianning Medical College, Hubei University of Science & Technology, Xianning, 437000, China
| | - Zhongzheng Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Mengyuan Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jinhong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Chun Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| |
Collapse
|
2
|
Alalawy AI. Key genes and molecular mechanisms related to Paclitaxel Resistance. Cancer Cell Int 2024; 24:244. [PMID: 39003454 PMCID: PMC11245874 DOI: 10.1186/s12935-024-03415-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/22/2024] [Indexed: 07/15/2024] Open
Abstract
Paclitaxel is commonly used to treat breast, ovarian, lung, esophageal, gastric, pancreatic cancer, and neck cancer cells. Cancer recurrence is observed in patients treated with paclitaxel due to paclitaxel resistance emergence. Resistant mechanisms are observed in cancer cells treated with paclitaxel, docetaxel, and cabazitaxel including changes in the target molecule β-tubulin of mitosis, molecular mechanisms that activate efflux drug out of the cells, and alterations in regulatory proteins of apoptosis. This review discusses new molecular mechanisms of taxane resistance, such as overexpression of genes like the multidrug resistance genes and EDIL3, ABCB1, MRP1, and TRAG-3/CSAG2 genes. Moreover, significant lncRNAs are detected in paclitaxel resistance, such as lncRNA H19 and cross-resistance between taxanes. This review contributed to discovering new treatment strategies for taxane resistance and increasing the responsiveness of cancer cells toward chemotherapeutic drugs.
Collapse
Affiliation(s)
- Adel I Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| |
Collapse
|
3
|
Mahon KL, Sutherland SI, Lin HM, Stockler MR, Gurney H, Mallesara G, Briscoe K, Marx G, Higano CS, de Bono JS, Chi KN, Clark G, Breit SN, Brown DA, Horvath LG. Clinical validation of circulating GDF15/MIC-1 as a marker of response to docetaxel and survival in men with metastatic castration-resistant prostate cancer. Prostate 2024; 84:747-755. [PMID: 38544345 DOI: 10.1002/pros.24691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Elevated circulating growth differentiation factor (GDF15/MIC-1), interleukin 4 (IL4), and IL6 levels were associated with resistance to docetaxel in an exploratory cohort of men with metastatic castration-resistant prostate cancer (mCRPC). This study aimed to establish level 2 evidence of cytokine biomarker utility in mCRPC. METHODS IntVal: Plasma samples at baseline (BL) and Day 21 docetaxel (n = 120). ExtVal: Serum samples at BL and Day 42 of docetaxel (n = 430). IL4, IL6, and GDF15 levels were measured by ELISA. Monocytes and dendritic cells were treated with 10% plasma from men with high or low GDF15 or recombinant GDF15. RESULTS IntVal: Higher GDF15 levels at BL and Day 21 were associated with shorter overall survival (OS) (BL; p = 0.03 and Day 21; p = 0.004). IL4 and IL6 were not associated with outcomes. ExtVal: Higher GDF15 levels at BL and Day 42 predicted shorter OS (BL; p < 0.0001 and Day 42; p < 0.0001). Plasma from men with high GDF15 caused an increase in CD86 expression on monocytes (p = 0.03), but was not replicated by recombinant GDF15. CONCLUSIONS Elevated circulating GDF15 is associated with poor prognosis in men with mCRPC receiving docetaxel and may be a marker of changes in the innate immune system in response to docetaxel resistance. These findings provide a strong rationale to consider GDF15 as a biomarker to guide a therapeutic trial of drugs targeting the innate immune system in combination with docetaxel in mCRPC.
Collapse
Affiliation(s)
- Kate L Mahon
- Chris O'Brien Lifehouse, Sydney, New South Wales, Australia
- Prostate Cancer Research Group, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Sarah Im Sutherland
- Chris O'Brien Lifehouse, Sydney, New South Wales, Australia
- Prostate Cancer Research Group, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Cancer Research Group, The ANZAC Research Institute, Sydney, New South Wales, Australia
| | - Hui Ming Lin
- Prostate Cancer Research Group, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Clinical Medicine, University of NSW, Sydney, New South Wales, Australia
| | - Martin R Stockler
- Chris O'Brien Lifehouse, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital, Sydney, New South Wales, Australia
| | - Howard Gurney
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Calvary Mater, Newcastle, New South Wales, Australia
| | - Girish Mallesara
- Medical Oncology Department, Mid North Coast Cancer Institute, Coffs Harbour, New South Wales, Australia
| | - Karen Briscoe
- Northern Haematology Oncology Group, Sydney, New South Wales, Australia
| | - Gavin Marx
- BC Cancer Agency, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Johann S de Bono
- St Vincent's Centre for Applied Medical Research, Sydney, New South Wales, Australia
| | - Kim N Chi
- Royal Marsden Hospital and Institute of Cancer Research, London, UK
| | - Georgina Clark
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Cancer Research Group, The ANZAC Research Institute, Sydney, New South Wales, Australia
| | - Samuel N Breit
- School of Clinical Medicine, University of NSW, Sydney, New South Wales, Australia
- Concord Hospital, Sydney, New South Wales, Australia
| | - David A Brown
- School of Clinical Medicine, University of NSW, Sydney, New South Wales, Australia
- Concord Hospital, Sydney, New South Wales, Australia
| | - Lisa G Horvath
- Chris O'Brien Lifehouse, Sydney, New South Wales, Australia
- Prostate Cancer Research Group, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, University of NSW, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Muniyan S, Pothuraju R, Seshacharyulu P, Batra SK. Macrophage inhibitory cytokine-1 in cancer: Beyond the cellular phenotype. Cancer Lett 2022; 536:215664. [PMID: 35351601 PMCID: PMC9088220 DOI: 10.1016/j.canlet.2022.215664] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 01/22/2023]
Abstract
Despite technological advances in diagnostic abilities and improved treatment methods, the burden of cancers remains high, leading to significant morbidity and mortality. One primary reason is that cancer cell secretory factors modulate the tumor microenvironment, supporting tumor growth and circumvents anticancer activities of conventional therapies. Macrophage inhibitory cytokine-1 (MIC-1) is a pleiotropic cytokine elevated in various cancers. MIC-1 regulates various cancer hallmarks, including sustained proliferation, tumor-promoting inflammation, avoiding immune destruction, inducing invasion, metastasis, angiogenesis, and resisting cell death. Despite these facts, the molecular regulation and downstream signaling of MIC-1 in cancer remain elusive, partly because its receptor (GFRAL) was unknown until recently. Binding of MIC-1 to GFRAL recruits the coreceptor tyrosine kinase RET to execute its downstream signaling. So far, studies have shown that GFRAL expression is restricted to the brain stem and is responsible for MIC-1/GFRAL/RET-mediated metabolic disorders. Nevertheless, abundant levels of MIC-1 expression have been reported in all cancer types and have been proposed as a surrogate biomarker. Given the ubiquitous expression of MIC-1 in cancers, it is crucial to understand both upstream regulation and downstream MIC-1/GFRAL/RET signaling in cancer hallmark traits.
Collapse
Affiliation(s)
- Sakthivel Muniyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
5
|
GDF15 promotes prostate cancer bone metastasis and colonization through osteoblastic CCL2 and RANKL activation. Bone Res 2022; 10:6. [PMID: 35058441 PMCID: PMC8776828 DOI: 10.1038/s41413-021-00178-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/27/2021] [Accepted: 09/12/2021] [Indexed: 12/13/2022] Open
Abstract
Bone metastases occur in patients with advanced-stage prostate cancer (PCa). The cell-cell interaction between PCa and the bone microenvironment forms a vicious cycle that modulates the bone microenvironment, increases bone deformities, and drives tumor growth in the bone. However, the molecular mechanisms of PCa-mediated modulation of the bone microenvironment are complex and remain poorly defined. Here, we evaluated growth differentiation factor-15 (GDF15) function using in vivo preclinical PCa-bone metastasis mouse models and an in vitro bone cell coculture system. Our results suggest that PCa-secreted GDF15 promotes bone metastases and induces bone microarchitectural alterations in a preclinical xenograft model. Mechanistic studies revealed that GDF15 increases osteoblast function and facilitates the growth of PCa in bone by activating osteoclastogenesis through osteoblastic production of CCL2 and RANKL and recruitment of osteomacs. Altogether, our findings demonstrate the critical role of GDF15 in the modulation of the bone microenvironment and subsequent development of PCa bone metastasis.
Collapse
|
6
|
Pathophysiological role of growth differentiation factor 15 (GDF15) in obesity, cancer, and cachexia. Cytokine Growth Factor Rev 2021; 64:71-83. [PMID: 34836750 DOI: 10.1016/j.cytogfr.2021.11.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 02/08/2023]
Abstract
Growth differentiation factor 15 or macrophage inhibitory cytokine-1 (GDF15/MIC-1) is a divergent member of the transforming growth factor β superfamily and has a diverse pathophysiological roles in cancers, cardiometabolic disorders, and other diseases. GDF15 controls hematopoietic growth, energy homeostasis, adipose tissue metabolism, body growth, bone remodeling, and response to stress signals. The role of GDF15 in cancer development and progression is complicated and depends on the specific cancer type, stage, and tumor microenvironment. Recently, research on GDF15 and GDF15-associated signaling has accelerated due to the identification of the GDF15 receptor: glial cell line-derived neurotrophic factor (GDNF) family receptor α-like (GFRAL). Therapeutic interventions to target GDF15 and/or GFRAL revealed the mechanisms that drive its activity and might improve overall outcomes of patients with metabolic disorders and cancer. This review highlights the structure and functions of GDF15 and its receptor, emphasizing the pleiotropic role of GDF15 in obesity, tumorigenesis, metastasis, immunomodulation, and cachexia.
Collapse
|
7
|
Huang M, Narita S, Koizumi A, Nara T, Numakura K, Satoh S, Nanjo H, Habuchi T. Macrophage inhibitory cytokine-1 induced by a high-fat diet promotes prostate cancer progression by stimulating tumor-promoting cytokine production from tumor stromal cells. Cancer Commun (Lond) 2021; 41:389-403. [PMID: 33773090 PMCID: PMC8118591 DOI: 10.1002/cac2.12137] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/29/2020] [Accepted: 01/17/2021] [Indexed: 12/18/2022] Open
Abstract
Background Recent studies have indicated that a high‐fat diet (HFD) and/or HFD‐induced obesity may influence prostate cancer (PCa) progression, but the role of HFD in PCa microenvironment is unclear. This study aimed to delineate the molecular mechanisms of PCa progression under HFD milieus and define the stromal microenvironment focusing on macrophage inhibitory cytokine‐1 (MIC‐1) activation. Methods We investigated the effects of HFD on PCa stromal microenvironment and MIC‐1 signaling activation using PC‐3M‐luc‐C6 PCa model mice fed with HFD or control diet. Further, we explored the effect of periprostatic adipocytes derived from primary PCa patients on activation and cytokine secretion of prostate stromal fibroblasts. Expression patterns and roles of MIC‐1 signaling on human PCa stroma activation and progression were also investigated. Results HFD stimulated PCa cell growth and invasion as a result of upregulated MIC‐1 signaling and subsequently increased the secretion of interleukin (IL)‐8 and IL‐6 from prostate stromal fibroblasts in PC‐3M‐luc‐C6 PCa mouse model. In addition, periprostatic adipocytes directly stimulated MIC‐1 production from PC‐3 cells and IL‐8 secretion in prostate stromal fibroblasts through the upregulation of adipose lipolysis and free fatty acid release. The increased serum MIC‐1 was significantly correlated with human PCa stroma activation, high serum IL‐8, IL‐6, and lipase activity, advanced PCa progression, and high body mass index of the patients. Glial‐derived neurotrophic factor receptor α‐like (GFRAL), a specific receptor of MIC‐1, was highly expressed in both cytoplasm and membrane of PCa cells and surrounding stromal fibroblasts, and the expression level was decreased by androgen deprivation therapy and chemotherapy. Conclusion HFD‐mediated activation of the PCa stromal microenvironment through metabolically upregulated MIC‐1 signaling by increased available free fatty acids may be a critical mechanism of HFD and/or obesity‐induced PCa progression.
Collapse
Affiliation(s)
- Mingguo Huang
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Shintaro Narita
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Atsushi Koizumi
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Taketoshi Nara
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Kazuyuki Numakura
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Shigeru Satoh
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Hiroshi Nanjo
- Department of Clinical Pathology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Tomonori Habuchi
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| |
Collapse
|
8
|
Abstract
Secretory proteins in tumor tissues are important components of the tumor microenvironment. Secretory proteins act on tumor cells or stromal cells or mediate interactions between tumor cells and stromal cells, thereby affecting tumor progression and clinical treatment efficacy. In this paper, recent research advances in secretory proteins in malignant tumors are reviewed.
Collapse
Affiliation(s)
- Na Zhang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiajie Hao
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yan Cai
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Mingrong Wang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
9
|
Xu C, Li L, Wang W, Zhang Q, Zhang X, Yang R. Serum macrophage inhibitory cytokine-1 as a clinical marker for non-small cell lung cancer. J Cell Mol Med 2021; 25:3169-3172. [PMID: 33605059 PMCID: PMC7957168 DOI: 10.1111/jcmm.16360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to investigate the value of serum macrophage inhibitory factor‐1 (MIC‐1) level in patients with non–small cell lung cancer (NSCLC). Serum samples from 296 patients with NSCLC and 240 healthy controls were collected. The levels of serum MIC‐1 were determined by ELISA. The serum MIC‐1 levels in NSCLC patients were higher than that of the controls (P <.001). Univariate and multivariate Cox regression analysis showed that serum MIC‐1 was an independent prognostic indicator of OS and PFS. Serum MIC‐1 is a valuable biomarker for the diagnosis and prognosis of NSCLC.
Collapse
Affiliation(s)
- Chunhua Xu
- Department of Respiratory Medicine, Nanjing Chest Hospital, Nanjing, China.,Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Li Li
- Department of Respiratory Medicine, Nanjing Chest Hospital, Nanjing, China.,Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Wang
- Department of Respiratory Medicine, Nanjing Chest Hospital, Nanjing, China.,Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Qian Zhang
- Department of Respiratory Medicine, Nanjing Chest Hospital, Nanjing, China.,Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Xiuwei Zhang
- Department of Respiratory Medicine, Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Rusong Yang
- Department of Thoracic Surgery, Nanjing Chest Hospital, Nanjing, China
| |
Collapse
|
10
|
Hasanpour Segherlou Z, Nouri-Vaskeh M, Noroozi Guilandehi S, Baghbanzadeh A, Zand R, Baradaran B, Zarei M. GDF-15: Diagnostic, prognostic, and therapeutic significance in glioblastoma multiforme. J Cell Physiol 2021; 236:5564-5581. [PMID: 33580506 DOI: 10.1002/jcp.30289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/16/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) is the commonest primary malignant brain tumor and has a remarkably weak prognosis. According to the aggressive form of GBM, understanding the accurate molecular mechanism associated with GBM pathogenesis is essential. Growth differentiation factor 15 (GDF-15) belongs to transforming growth factor-β superfamily with important roles to control biological processes. It affects cancer growth and progression, drug resistance, and metastasis. It also can promote stemness in many cancers, and also can stress reactions control, bone generation, hematopoietic growth, adipose tissue performance, and body growth, and contributes to cardiovascular disorders. The role GDF-15 to develop and progress cancer is complicated and remains unclear. GDF-15 possesses tumor suppressor properties, as well as an oncogenic effect. GDF-15 antitumorigenic and protumorigenic impacts on tumor development are linked to the cancer type and stage. However, the GDF-15 signaling and mechanism have not yet been completely identified because of no recognized cognate receptor.
Collapse
Affiliation(s)
| | - Masoud Nouri-Vaskeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Zand
- Department of Neurology, Geisinger Health System, Danville, Pennsylvania, USA
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Zarei
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Maloney SM, Hoover CA, Morejon-Lasso LV, Prosperi JR. Mechanisms of Taxane Resistance. Cancers (Basel) 2020; 12:E3323. [PMID: 33182737 PMCID: PMC7697134 DOI: 10.3390/cancers12113323] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022] Open
Abstract
The taxane family of chemotherapy drugs has been used to treat a variety of mostly epithelial-derived tumors and remain the first-line treatment for some cancers. Despite the improved survival time and reduction of tumor size observed in some patients, many have no response to the drugs or develop resistance over time. Taxane resistance is multi-faceted and involves multiple pathways in proliferation, apoptosis, metabolism, and the transport of foreign substances. In this review, we dive deeper into hypothesized resistance mechanisms from research during the last decade, with a focus on the cancer types that use taxanes as first-line treatment but frequently develop resistance to them. Furthermore, we will discuss current clinical inhibitors and those yet to be approved that target key pathways or proteins and aim to reverse resistance in combination with taxanes or individually. Lastly, we will highlight taxane response biomarkers, specific genes with monitored expression and correlated with response to taxanes, mentioning those currently being used and those that should be adopted. The future directions of taxanes involve more personalized approaches to treatment by tailoring drug-inhibitor combinations or alternatives depending on levels of resistance biomarkers. We hope that this review will identify gaps in knowledge surrounding taxane resistance that future research or clinical trials can overcome.
Collapse
Affiliation(s)
- Sara M. Maloney
- Harper Cancer Research Institute, South Bend, IN 46617, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN 46617, USA
| | - Camden A. Hoover
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| | - Lorena V. Morejon-Lasso
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| | - Jenifer R. Prosperi
- Harper Cancer Research Institute, South Bend, IN 46617, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN 46617, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| |
Collapse
|
12
|
Gong D, Wang Y, Wang Y, Chen X, Chen S, Wang R, Liu L, Duan C, Luo S. Extensive serum cytokine analysis in patients with prostate cancer. Cytokine 2020; 125:154810. [DOI: 10.1016/j.cyto.2019.154810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/09/2019] [Accepted: 08/09/2019] [Indexed: 12/23/2022]
|
13
|
Poudel K, Thapa RK, Gautam M, Ou W, Soe ZC, Gupta B, Ruttala HB, Thuy HN, Dai PC, Jeong JH, Ku SK, Choi HG, Yong CS, Kim JO. Multifaceted NIR-responsive polymer-peptide-enveloped drug-loaded copper sulfide nanoplatform for chemo-phototherapy against highly tumorigenic prostate cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 21:102042. [DOI: 10.1016/j.nano.2019.102042] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/09/2019] [Accepted: 05/29/2019] [Indexed: 12/17/2022]
|
14
|
Chemotherapy and Inflammatory Cytokine Signalling in Cancer Cells and the Tumour Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1152:173-215. [PMID: 31456184 DOI: 10.1007/978-3-030-20301-6_9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer is the result of a cell's acquisition of a variety of biological capabilities or 'hallmarks' as outlined by Hanahan and Weinberg. These include sustained proliferative signalling, the ability to evade growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and the ability to invade other tissue and metastasize. More recently, the ability to escape immune destruction has been recognized as another important hallmark of tumours. It is suggested that genome instability and inflammation accelerates the acquisition of a variety of the above hallmarks. Inflammation, is a product of the body's response to tissue damage or pathogen invasion. It is required for tissue repair and host defense, but prolonged inflammation can often be the cause for disease. In a cancer patient, it is often unclear whether inflammation plays a protective or deleterious role in disease progression. Chemotherapy drugs can suppress tumour growth but also induce pathways in tumour cells that have been shown experimentally to support tumour progression or, in other cases, encourage an anti-tumour immune response. Thus, with the goal of better understanding the context under which each of these possible outcomes occurs, recent progress exploring chemotherapy-induced inflammatory cytokine production and the effects of cytokines on drug efficacy in the tumour microenvironment will be reviewed. The implications of chemotherapy on host and tumour cytokine pathways and their effect on the treatment of cancer patients will also be discussed.
Collapse
|
15
|
Xu CH, Xue JS, Zhang XW, Yu LK, Lin Y. The value of macrophage inhibitory cytokine‐1 level in differentiating benign from malignant solitary pulmonary nodules. CLINICAL RESPIRATORY JOURNAL 2017; 12:1473-1478. [DOI: 10.1111/crj.12693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chun Hua Xu
- Endoscopic Center of Nanjing Chest HospitalNanjingJiangsu 210029 China
- Clinical Center of Nanjing Respiratory Diseases and ImagingNanjingJiangsu 210029 China
| | - Jin Shan Xue
- Department of Respiratory MedicineThe First People's Hospital of YanchengYancheng Jiangsu 224006 China
| | - Xiu Wei Zhang
- Department of Respiratory MedicineNanjing Jiangning HospitalNanjing Jiangsu 211100 China
| | - Li Ke Yu
- Endoscopic Center of Nanjing Chest HospitalNanjingJiangsu 210029 China
- Clinical Center of Nanjing Respiratory Diseases and ImagingNanjingJiangsu 210029 China
| | - Yong Lin
- Endoscopic Center of Nanjing Chest HospitalNanjingJiangsu 210029 China
- Department of Respiratory MedicineNanjing Chest HospitalNanjing Jiangsu 210029 China
| |
Collapse
|
16
|
León-Mateos L, Casas H, Abalo A, Vieito M, Abreu M, Anido U, Gómez-Tato A, López R, Abal M, Muinelo-Romay L. Improving circulating tumor cells enumeration and characterization to predict outcome in first line chemotherapy mCRPC patients. Oncotarget 2017; 8:54708-54721. [PMID: 28903376 PMCID: PMC5589615 DOI: 10.18632/oncotarget.18025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/02/2017] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION There is a critical need of new surrogate markers for improving the therapeutic selection and monitoring of metastatic prostate cancer patients. Nowadays clinical management of these patients is been driven by biochemical and clinical parameters without enough accuracy to allow a real personalized medicine. The present study was conducted to go insight the molecular profile of circulating tumor cells (CTCs) isolated from advanced metastatic castration-resistant prostate cancer (mCRPC) with the aim of identifying prognostic marker with potential utility for therapy selection and monitoring. MATERIALS AND METHODS CTCs isolation was carried out in peripheral blood samples from 29 mCRPC patients that undergo systemic chemotherapy based on taxanes (docetaxel/cabazitaxel) and 19 healthy controls using in parallel CellSearch and an alternative EpCAM-based immunoisolation followed by RT-qPCR analysis to characterize the CTC population. A panel of 17 genes related with prostate biology, hormone regulation, stem properties, tumor aggressiveness and taxanes responsiveness was analysed to identify an expression signature characterizing the CTCs. RESULTS Patients with ≥ 5 CTCs/7.5ml of peripheral blood at baseline and during the treatment showed lower progression free survival (PFS) and overall survival (OS). Changes of CTCs levels during the treatment were also associated with the patient's outcome. These results confirmed previous data obtained using CellSearch in mCRPC. In addition, we found a CTC profile mainly characterized by the expression of relevant genes for the hormone dependent regulation of PCa such as AR and CYP19 together with genes strongly implicated in PCa progression and resistance development such as BIRC5, TUB1A, GDF15, RAB7 and SPINK1. Our gene-expression profiling also permitted the identification of valuable prognostic biomarkers. Thus, high levels of AR, CYP19 and GDF15 were associated with poor PFS rates while AR, GDF15 and BIRC5 were also found as reliable predictors of OS. Besides, a logistic model using KLK3 and BIRC5 showed a high specificity and sensitivity compared to CellSearch to discriminate patients with a more aggressive evolution. CONCLUSIONS The molecular characterization of CTCs from advanced mCRPC patients provided with a panel of specific biomarkers, including genes related to taxanes resistance, with a promising applicability as "liquid biopsy" for the management of these patients.
Collapse
Affiliation(s)
- Luis León-Mateos
- Axencia Galega de Coñecemento en Saúde (ACIS), SERGAS, Santiago de Compostela, Spain
| | - Helena Casas
- Liquid Biopsy Analysis Unit, Health Research Institute of Santiago (IDIS), CIBERONC, Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Alicia Abalo
- Liquid Biopsy Analysis Unit, Health Research Institute of Santiago (IDIS), CIBERONC, Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
- Translational Medical Oncology Group, Health Research Institute of Santiago (IDIS), CIBERONC, Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - María Vieito
- Research Unit for Molecular Therapy of Cancer, CNS Tumors, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Manuel Abreu
- Liquid Biopsy Analysis Unit, Health Research Institute of Santiago (IDIS), CIBERONC, Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
- Translational Medical Oncology Group, Health Research Institute of Santiago (IDIS), CIBERONC, Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Urbano Anido
- Translational Medical Oncology Group, Health Research Institute of Santiago (IDIS), CIBERONC, Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Antonio Gómez-Tato
- School of Mathematics, University of Santiago de Compostela (Campus Vida), Santiago de Compostela, Spain
| | - Rafael López
- Liquid Biopsy Analysis Unit, Health Research Institute of Santiago (IDIS), CIBERONC, Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
- Translational Medical Oncology Group, Health Research Institute of Santiago (IDIS), CIBERONC, Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
- Roche-Chus Joint Unit for Precision Oncology, Health Research Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Miguel Abal
- Translational Medical Oncology Group, Health Research Institute of Santiago (IDIS), CIBERONC, Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Laura Muinelo-Romay
- Translational Medical Oncology Group, Health Research Institute of Santiago (IDIS), CIBERONC, Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| |
Collapse
|
17
|
Chettu SK, Konidena LNS, Korupolu RB, Kameswara Rao N, Doddipalla R, Gandham HB, Guduru R. Ring opening of benzoxazinones: An improved and efficient synthesis of clavatustides A & B. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.07.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Libardi do Amaral C. Epithelial-Mesenchymal Transition in Docetaxel-Resistant Prostate Cancer. EUROPEAN MEDICAL JOURNAL 2017. [DOI: 10.33590/emj/10310149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
Abstract
Castration-resistant prostate cancer (CRPCa) is an advanced stage of prostate cancer in which a tumour progresses even under androgen deprivation. Treatment alternatives for CRPCa remain very limited and mostly rely on docetaxel-based chemotherapy. Despite being shown to increase patients’ overall survival, docetaxel’s clinical efficacy is impaired by development of chemoresistance. Most patients do not respond to docetaxel treatment and even those initially responsive ultimately develop resistance. Recently, chemoresistance was found to be closely related to epithelial-mesenchymal transition (EMT), a process in which epithelial cells transition into a mesenchymal phenotype. In fact, EMT markers are overexpressed in prostate cancer and are correlated to a higher Gleason score. For this reason, new therapeutic strategies are being studied to inhibit this process in several cancers. However, the clinical usefulness of targeting EMT as a way to overcome docetaxel resistance in CRPCa is still questionable and suffers from some significant limitations. This review briefly summarises the most common mechanisms of EMT-induced chemoresistance and evaluates its use as a new approach to overcome docetaxel resistance in CRPCa.
Collapse
Affiliation(s)
- Camila Libardi do Amaral
- Laboratory of Disorders of Metabolism, School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| |
Collapse
|
19
|
Armstrong CM, Liu C, Lou W, Lombard AP, Evans CP, Gao AC. MicroRNA-181a promotes docetaxel resistance in prostate cancer cells. Prostate 2017; 77:1020-1028. [PMID: 28485104 PMCID: PMC5448975 DOI: 10.1002/pros.23358] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/23/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Docetaxel is one of the primary drugs used for treating castration resistant prostate cancer (CRPC). Unfortunately, over time patients invariably develop resistance to docetaxel therapy and their disease will continue to progress. The mechanisms by which resistance develops are still incompletely understood. This study seeks to determine the involvement of miRNAs, specifically miR-181a, in docetaxel resistance in CRPC. METHODS Real-time PCR was used to measure miR-181a expression in parental and docetaxel resistant C4-2B and DU145 cells (TaxR and DU145-DTXR). miR-181a expression was modulated in parental or docetaxel resistant cells by transfecting them with miR-181a mimics or antisense, respectively. Following transfection, cell number was determined after 48 h with or without docetaxel. Cross resistance to cabazitaxel induced by miR-181a was also determined. Western blots were used to determine ABCB1 protein expression and rhodamine assays used to assess activity. Phospho-p53 expression was assessed by Western blot and apoptosis was measured by ELISA in C4-2B TaxR and PC3 cells with inhibited or overexpressed miR-181a expression with or without docetaxel. RESULTS miR-181a is significantly overexpressed in TaxR and DU145-DTXR cells compared to parental cells. Overexpression of miR-181a in parental cells confers docetaxel and cabazitaxel resistance and knockdown of miR-181a in TaxR cells re-sensitizes them to treatment with both docetaxel and cabazitaxel. miR-181a was not observed to impact ABCB1 expression or activity, a protein which was previously demonstrated to be highly involved in docetaxel resistance. Knockdown of miR-181a in TaxR cells induced phospho-p53 expression. Furthermore, miR-181a knockdown alone induced apoptosis in TaxR cells which could be further enhanced by the addition of DTX. CONCLUSIONS Overexpression of mir-181a in prostate cancer cells contributes to their resistance to docetaxel and cabazitaxel and inhibition of mir-181a expression can restore treatment response. This is due, in part, to modulation of p53 phosphorylation and apoptosis.
Collapse
Affiliation(s)
| | - Chengfei Liu
- Department of Urology, University of California Davis, CA, USA
| | - Wei Lou
- Department of Urology, University of California Davis, CA, USA
| | - Alan P. Lombard
- Department of Urology, University of California Davis, CA, USA
| | - Christopher P Evans
- Department of Urology, University of California Davis, CA, USA
- UC Davis Comprehensive Cancer Center, University of California Davis, CA, USA
| | - Allen C. Gao
- Department of Urology, University of California Davis, CA, USA
- UC Davis Comprehensive Cancer Center, University of California Davis, CA, USA
- VA Northern California Health Care System, Sacramento, CA, USA
| |
Collapse
|
20
|
Hotte SJ. Addressing taxane resistance in metastatic castration-resistant prostate cancer: a focus on chaperone proteins. Future Oncol 2017; 13:369-379. [DOI: 10.2217/fon-2016-0279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Despite the significant survival benefit of taxane therapy in metastatic castration-resistant prostate cancer (mCRPC), all patients inevitably develop treatment resistance. An understanding of resistance mechanisms has led to new therapies for prostate cancer (cabazitaxel, abiraterone and enzalutamide), all of which have improved survival following first-line docetaxel. Another treatment, currently in development, targets the prosurvival molecule clusterin. Custirsen, an antisense molecule that inhibits clusterin production, has shown promise in combination with docetaxel in mCRPC patients at risk for poor outcomes. Although optimal sequence and combination of available therapies is unclear, the heterogeneity of mCRPC suggests a continuing need for personalized treatment regimens and improved abilities to predict which patients will respond to the available treatment options.
Collapse
Affiliation(s)
- Sebastien J Hotte
- Department of Oncology, Division of Medical Oncology, Juravinski Cancer Centre, 699 Concession Street, Hamilton, Ontario, L8V 5C2, Canada
| |
Collapse
|
21
|
Codó P, Weller M, Kaulich K, Schraivogel D, Silginer M, Reifenberger G, Meister G, Roth P. Control of glioma cell migration and invasiveness by GDF-15. Oncotarget 2016; 7:7732-46. [PMID: 26741507 PMCID: PMC4884950 DOI: 10.18632/oncotarget.6816] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 11/15/2015] [Indexed: 12/11/2022] Open
Abstract
Growth and differentiation factor (GDF)-15 is a member of the transforming growth factor (TGF)-β family of proteins. GDF-15 levels are increased in the blood and cerebrospinal fluid of glioblastoma patients. Using a TCGA database interrogation, we demonstrate that high GDF-15 expression levels are associated with poor survival of glioblastoma patients. To elucidate the role of GDF-15 in glioblastoma in detail, we confirmed that glioma cells express GDF-15 mRNA and protein in vitro. To allow for a detailed functional characterization, GDF-15 expression was silenced using RNA interference in LNT-229 and LN-308 glioma cells. Depletion of GDF-15 had no effect on cell viability. In contrast, GDF-15-deficient cells displayed reduced migration and invasion, in the absence of changes in Smad2 or Smad1/5/8 phosphorylation. Conversely, exogenous GDF-15 stimulated migration and invasiveness. Large-scale expression profiling revealed that GDF-15 gene silencing resulted in minor changes in the miRNA profile whereas several genes, including members of the plasminogen activator/inhibitor complex, were deregulated at the mRNA level. One of the newly identified genes induced by GDF-15 gene silencing was the serpin peptidase inhibitor, clade E nexin group 1 (serpine1) which is induced by TGF-β and known to inhibit migration and invasiveness. However, serpine1 down-regulation alone did not mediate GDF-15-induced promotion of migration and invasiveness. Our findings highlight the complex contributions of GDF-15 to the invasive phenotype of glioma cells and suggest anti-GDF-15 approaches as a promising therapeutic strategy.
Collapse
Affiliation(s)
- Paula Codó
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Kerstin Kaulich
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Schraivogel
- Department of Biochemistry I, University of Regensburg, Regensburg, Germany
| | - Manuela Silginer
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Guido Reifenberger
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gunter Meister
- Department of Biochemistry I, University of Regensburg, Regensburg, Germany
| | - Patrick Roth
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Weide B, Schäfer T, Martens A, Kuzkina A, Uder L, Noor S, Garbe C, Harter PN, Mittelbronn M, Wischhusen J. High GDF-15 Serum Levels Independently Correlate with Poorer Overall Survival of Patients with Tumor-Free Stage III and Unresectable Stage IV Melanoma. J Invest Dermatol 2016; 136:2444-2452. [PMID: 27705749 DOI: 10.1016/j.jid.2016.07.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/28/2016] [Accepted: 07/11/2016] [Indexed: 12/20/2022]
Abstract
Biomarkers are strongly needed for diagnostic surveillance of patients with metastatic melanoma. On the basis of its known association with tumor metastasis and its ability to induce cancer cachexia, we investigated serum levels of growth and differentiation factor 15 (sGDF-15) as a marker for overall survival (OS). sGDF-15 was retrospectively measured by ELISA in 761 samples obtained at distinct time points during routine clinical care of patients with stage III/IV melanoma. In the entire cohort, sGDF-15 ≥ 1.5 ng/ml was strongly associated with reduced OS after assessment. Subsequent analyses were performed separately for tumor-free stage III, tumor-free stage IV, and unresectable stage IV patients. For patients with unresectable distant metastasis (n = 206), sGDF-15 was independently associated with OS when considered together with the M-category and superior to serum level of lactate dehydrogenase. Analysis in tumor-free stage III patients during routine surveillance (n = 468) revealed sGDF-15 to be associated with OS and an independent factor when considered together with S100B and the pattern of locoregional metastasis. Only in tumor-free stage IV patients (n = 87) sGDF-15 was not associated with OS. sGDF-15 should thus be further validated as a marker for early detection of recurrence in stage III patients and as a prognostic or predictive marker particularly in the context newly available treatments in unresectable stage IV patients.
Collapse
Affiliation(s)
- Benjamin Weide
- Department of Dermatology, University Medical Center Tübingen, Tübingen, Germany; Department of Immunology, University of Tübingen, Tübingen, Germany.
| | - Tina Schäfer
- Department of Gynecology, University of Würzburg Medical School, Würzburg, Germany
| | - Alexander Martens
- Department of Dermatology, University Medical Center Tübingen, Tübingen, Germany
| | - Anastasia Kuzkina
- Department of Gynecology, University of Würzburg Medical School, Würzburg, Germany
| | - Laura Uder
- Department of Dermatology, University Medical Center Tübingen, Tübingen, Germany
| | - Seema Noor
- Department of Dermatology, University Medical Center Tübingen, Tübingen, Germany
| | - Claus Garbe
- Department of Dermatology, University Medical Center Tübingen, Tübingen, Germany
| | - Patrick N Harter
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Edinger Institute (Neurological Institute), Goethe University, Frankfurt/Main, Germany
| | - Michel Mittelbronn
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Edinger Institute (Neurological Institute), Goethe University, Frankfurt/Main, Germany
| | - Jörg Wischhusen
- Department of Gynecology, University of Würzburg Medical School, Würzburg, Germany
| |
Collapse
|
23
|
Zhai Y, Zhang J, Wang H, Lu W, Liu S, Yu Y, Weng W, Ding Z, Zhu Q, Shi J. Growth differentiation factor 15 contributes to cancer-associated fibroblasts-mediated chemo-protection of AML cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:147. [PMID: 27643489 PMCID: PMC5029001 DOI: 10.1186/s13046-016-0405-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 08/11/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Chemo-resistance is still a major obstacle in efforts to overcome acute myeloid leukemia (AML). An emerging concept has proposed that interactions between the bone marrow (BM) microenvironment and leukemia cells reduce the sensitivity of the leukemia cells to chemotherapy. As an important element of the tumor microenvironment, the cancer-associated fibroblasts (CAFs) are considered to be activated modulators in the chemo-resistance of many solid tumors. But their contribution to AML has yet to be fully understood. Here we report a critical role for CAFs which were thought to be a survival and chemo-protective factor for leukemia cells. METHODS A retrospective study on the BM biopsies from 63 primary AML patients and 59 normal controls was applied to quantitative analysis the fiber stroma in the BM sections. Then immunohistochemistry on the BM biopsies were used to detect the makers of the CAFs. Their effects on drug resistance of leukemia cells were further to be assessed by co-cultured experiments in vitro. Moreover, the possible mechanisms involved in CAF-mediated chemo-protection of AML cells was investigated by antibody neutralization and siRNA knockdown experiments, with particular emphasis on the role of GDF15. RESULTS In our study, excessive reticular fibers in the BM led to higher frequency of relapse and mortality in primary AML patients, bringing the inspiration for us to investigate the functional roles of the fiber-devied cells. We declared that the CAF cells which expressed higher levels of FSP1, α-SMA or FAP protein were widely distributed in the marrow of AML. Then in vitro co-cultured tests showed that these CAFs could protect leukemia cell lines (THP-1/K562) from chemotherapy. Interestingly, this effect could be decreased by either treatment with a neutralizing anti-GDF15 antibody or knockdown GDF15 (with siGDF15) in CAFs. Furthermore, we also confirmed that the GDF15(+) cells mainly co-localized with FAP, which was identified as the typical phenotype of CAFs in the BM stroma. CONCLUSIONS We firstly demonstrate that the functional CAFs are widespread within the BM of AML patients and should be a critical chemo-protective element for AML cells by producing amount of GDF15.
Collapse
Affiliation(s)
- Yuanmei Zhai
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jing Zhang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Hui Wang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Wei Lu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Sihong Liu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yehua Yu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Wei Weng
- Department of Hematology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Zhiyong Ding
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South campus, Shanghai, 201400, China
| | - Qi Zhu
- Department of Hematology, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, 200011, China
| | - Jun Shi
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
24
|
A biodistribution study of solid lipid-polyethyleneimine hybrid nanocarrier for cancer RNAi therapy. Eur J Pharm Biopharm 2016; 108:68-75. [PMID: 27569032 DOI: 10.1016/j.ejpb.2016.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/11/2016] [Accepted: 08/23/2016] [Indexed: 01/06/2023]
Abstract
Solid lipid-polymer hybrid nanocarrier (LPN) was previously reported to achieve high siRNA transfection efficiency and induce sustained RNAi-based chemosensitizing effect at cellular level. In this study, our objectives were to evaluate the in vivo biodistribution of LPNs in a prostate cancer model and determine the factors that potentially affect tumor penetration by LPNs. The LPN formulation with the highest transfection efficiency (64%) and stability was selected for the study. Mice bearing tumors of PC-3Mcells were treated with LPNs labeled with IR780 or AF647-siRNA. Near infrared imaging showed that LPNs achieved favorable in vivo biodistribution with high tumor/low organ ratios. LPN accumulation was also observed in liver metastatic tissue. Result of extravasation study confirmed that encapsulated siRNA molecules were able to escape into the tumor tissue at the extravascular area. When LPN levels in large (volume>750mm3) and small (<500mm3) tumors were compared, no significant difference was observed. However, both docetaxel pretreatment (72hbefore LPN) and concurrent docetaxel treatment significantly enhanced the tumor LPN levels by 3.9- and 3.1-fold, respectively (both p<0.01). In conclusion, LPN is a promising carrier system to deliver RNAi therapy to solid malignancies that also receive chemotherapy.
Collapse
|
25
|
Armstrong CM, Gao AC. Adaptive pathways and emerging strategies overcoming treatment resistance in castration resistant prostate cancer. Asian J Urol 2016. [PMID: 28642838 PMCID: PMC5477778 DOI: 10.1016/j.ajur.2016.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The therapies available for prostate cancer patients whom progress from hormone-sensitive to castration resistant prostate cancer include both systemic drugs, including docetaxel and cabazitaxel, and drugs that inhibit androgen signaling such as enzalutamide and abiraterone. Unfortunately, it is estimated that up to 30% of patients have primary resistance to these treatments and over time even those who initially respond to therapy will eventually develop resistance and their disease will continue to progress regardless of the presence of the drug. Determining the mechanisms involved in the development of resistance to these therapies has been the area of intense study and several adaptive pathways have been uncovered. Androgen receptor (AR) mutations, expression of AR-V7 (or other constitutively active androgen receptor variants), intracrine androgen production and overexpression of androgen synthesis enzymes such as Aldo-Keto Reductase Family 1, Member C3 (AKR1C3) are among the many mechanisms associated with resistance to anti-androgens. In regards to the taxanes, one of the key contributors to drug resistance is increased drug efflux through ATP Binding Cassette Subfamily B Member 1 (ABCB1). Targeting these resistance mechanisms using different strategies has led to various levels of success in overcoming resistance to current therapies. For instance, targeting AR-V7 with niclosamide or AKR1C3 with indomethacin can improve enzalutamide and abiraterone treatment. ABCB1 transport activity can be inhibited by the dietary constituent apigenin and antiandrogens such as bicalutamide which in turn improves response to docetaxel. A more thorough understanding of how drug resistance develops will lead to improved treatment strategies. This review will cover the current knowledge of resistance mechanisms to castration resistant prostate cancer therapies and methods that have been identified which may improve treatment response.
Collapse
Affiliation(s)
| | - Allen C Gao
- Department of Urology, University of California, Davis, Sacramento, CA, USA.,Comprehensive Cancer Center, University of California, Davis, Sacramento, CA, USA.,VA Northern California Health Care System, Sacramento, CA, USA
| |
Collapse
|
26
|
Mimeault M, Rachagani S, Muniyan S, Seshacharyulu P, Johansson SL, Datta K, Lin MF, Batra SK. Inhibition of hedgehog signaling improves the anti-carcinogenic effects of docetaxel in prostate cancer. Oncotarget 2016; 6:3887-903. [PMID: 25682877 PMCID: PMC4414161 DOI: 10.18632/oncotarget.2932] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 12/16/2014] [Indexed: 12/11/2022] Open
Abstract
The establishment of docetaxel-based chemotherapeutic treatments has improved the survival of castration-resistant prostate cancer (CRPC) patients. However, most patients develop resistance supporting the development of therapy. The current study was undertaken to establish the therapeutic benefit to target hedgehog signaling cascade using GDC-0449 to improve the efficacy of chemotherapeutic drug, docetaxel. Here, we show that the combination of GDC-0449 plus docetaxel inhibited the proliferation of WPE1-NB26 cells and PC3 cells via a blockade of G1 and G2M phases. The combined treatment significantly inhibited PC cell migration in vitro. Moreover, the apoptotic effect induced by GDC-0449 plus docetaxel on PC3 cells was mediated, at least partly, via the mitochondrial membrane depolarization, H2O2 production and caspase cascade activation. Interestingly, GDC-0449 was effective at inhibiting the prostasphere formation, inducing the prostasphere disintegration and apoptotic death of side population (SP) from PC3 cells and reversing the resistance of SP cells to docetaxel. In addition, GDC-0449 plus docetaxel also have shown a greater anti-tumoral growth inhibitory effect on PC3 cell xenografts. These findings support the use of the hedgehog inhibitor GDC-0449, which is currently in clinical trials, for improving the anticarcinogenic efficacy of docetaxel-based chemotherapeutic treatments against locally advanced, AI and metastatic PC.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sakthivel Muniyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Sonny L Johansson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Buffet Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ming-Fong Lin
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Buffet Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Buffet Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
27
|
Armstrong CM, Gao AC. Drug resistance in castration resistant prostate cancer: resistance mechanisms and emerging treatment strategies. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2015; 3:64-76. [PMID: 26309896 PMCID: PMC4539108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 07/17/2015] [Indexed: 06/04/2023]
Abstract
Several mechanisms facilitate the progression of hormone-sensitive prostate cancer to castration-resistant prostate cancer (CRPC). At present, the approved chemotherapies for CRPC include systemic drugs (docetaxel and cabazitaxel) and agents that target androgen signaling, including enzalutamide and abiraterone. While up to 30% of patients have primary resistance to these treatments, each of these drugs confers a significant survival benefit for many. Over time, however, all patients inevitably develop resistance to treatment and their disease will continue to progress. Several key mechanisms have been identified that give rise to drug resistance. Expression of constitutively active variants of the androgen receptor, such as AR-V7, intracrine androgens and overexpression of androgen synthesis enzymes like AKR1C3, and increased drug efflux through ABCB1 are just some of the many discovered mechanisms of drug resistance. Treatment strategies are being developed to target these pathways and reintroduce drug sensitivity. Niclosamide has been discovered to reduce AR-V7 activity and synergized to enzalutamide. Indomethacin has been explored to inhibit AKR1C3 activity and showed to be able to reverse resistance to enzalutamide. ABCB1 transport activity can be mitigated by the phytochemical apigenin and by antiandrogens such as bicalutamide, with each improving cellular response to chemotherapeutics. By better understanding the mechanisms by which drug resistance develops improved treatment strategies will be made possible. Herein, we review the existing knowledge of CRPC therapies and resistance mechanisms as well as methods that have been identified which may improve drug sensitivity.
Collapse
Affiliation(s)
| | - Allen C Gao
- Department of Urology, University of California at DavisSacramento, CA, USA
- Comprehensive Cancer Center, University of California at DavisSacramento, CA, USA
| |
Collapse
|
28
|
Mimeault M, Batra SK. Altered gene products involved in the malignant reprogramming of cancer stem/progenitor cells and multitargeted therapies. Mol Aspects Med 2014; 39:3-32. [PMID: 23994756 PMCID: PMC3938987 DOI: 10.1016/j.mam.2013.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 08/16/2013] [Accepted: 08/21/2013] [Indexed: 12/17/2022]
Abstract
Recent studies in the field of cancer stem cells have revealed that the alterations in key gene products involved in the epithelial-mesenchymal transition (EMT) program, altered metabolic pathways such as enhanced glycolysis, lipogenesis and/or autophagy and treatment resistance may occur in cancer stem/progenitor cells and their progenies during cancer progression. Particularly, the sustained activation of diverse developmental cascades such as hedgehog, epidermal growth factor receptor (EGFR), Wnt/β-catenin, Notch, transforming growth factor-β (TGF-β)/TGF-βR receptors and/or stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor 4 (CXCR4) can play critical functions for high self-renewal potential, survival, invasion and metastases of cancer stem/progenitor cells and their progenies. It has also been observed that cancer cells may be reprogrammed to re-express different pluripotency-associated stem cell-like markers such as Myc, Oct-3/4, Nanog and Sox-2 along the EMT process and under stressful and hypoxic conditions. Moreover, the enhanced expression and/or activities of some drug resistance-associated molecules such as Bcl-2, Akt/molecular target of rapamycin (mTOR), nuclear factor-kappaB (NF-κB), hypoxia-inducible factors (HIFs), macrophage inhibitory cytokine-1 (MIC-1) and ATP-binding cassette (ABC) multidrug transporters frequently occur in cancer cells during cancer progression and metastases. These molecular events may cooperate for the survival and acquisition of a more aggressive and migratory behavior by cancer stem/progenitor cells and their progenies during cancer transition to metastatic and recurrent disease states. Of therapeutic interest, these altered gene products may also be exploited as molecular biomarkers and therapeutic targets to develop novel multitargeted strategies for improving current cancer therapies and preventing disease relapse.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, College of Medicine, Fred & Pamela Buffett Cancer Center, Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, Fred & Pamela Buffett Cancer Center, Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| |
Collapse
|
29
|
MAGADOUX L, ISAMBERT N, PLENCHETTE S, JEANNIN J, LAURENS V. Emerging targets to monitor and overcome docetaxel resistance in castration resistant prostate cancer (Review). Int J Oncol 2014; 45:919-28. [DOI: 10.3892/ijo.2014.2517] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/18/2014] [Indexed: 11/06/2022] Open
|
30
|
Zn-driven discovery of a hydrothermal vent fungal metabolite clavatustide C, and an experimental study of the anti-cancer mechanism of clavatustide B. Mar Drugs 2014; 12:3203-17. [PMID: 24879544 PMCID: PMC4071572 DOI: 10.3390/md12063203] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/07/2014] [Accepted: 04/24/2014] [Indexed: 01/03/2023] Open
Abstract
A naturally new cyclopeptide, clavatustide C, was produced as a stress metabolite in response to abiotic stress elicitation by one of the hydrothermal vent fluid components Zn in the cultured mycelia of Aspergillus clavatus C2WU, which were isolated from Xenograpsus testudinatus. X. testudinatus lives at extreme, toxic habitat around the sulphur-rich hydrothermal vents in Taiwan Kueishantao. The known compound clavatustide B was also isolated and purified. This is the first example of a new hydrothermal vent microbial secondary metabolite produced in response to abiotic Zn treatment. The structures were established by spectroscopic means. The regulation of G1-S transition in hepatocellular carcinoma cell lines by clavatustide B was observed in our previous study. The purpose of the present study was to verify these results in other types of cancer cell lines and elucidate the possible molecular mechanism for the anti-cancer activities of clavatustide B. In different human cancer cell lines, including pancreatic cancer (Panc-1), gastric cancer (MGC-803), colorectal cancer (SW-480), retinoblastoma (WERI-Rb-1) and prostate cancer (PC3), clavatustide B efficiently suppressed cell proliferations in a dose-dependent manner. Although different cancer cell lines presented variety in Max effect dose and IC50 dose, all cancer cell lines showed a lower Max effect dose and IC50 dose compared with human fibroblasts (hFB) (p < 0.05). Moreover, significant accumulations in G1 phases and a reduction in S phases (p < 0.05) were observed under clavatustide B treatment. The expression levels of 2622 genes including 39 cell cycle-associated genes in HepG2 cells were significantly altered by the treatment with 15 μg/mL clavatustide B after 48 h. CCNE2 (cyclin E2) was proved to be the key regulator of clavatustide B-induced G1-S transition blocking in several cancer cell lines by using real-time PCR.
Collapse
|
31
|
Chen YZ, Liu D, Zhao YX, Wang HT, Gao Y, Chen Y. Diagnostic performance of serum macrophage inhibitory cytokine-1 in pancreatic cancer: a meta-analysis and meta-regression analysis. DNA Cell Biol 2014; 33:370-7. [PMID: 24592997 DOI: 10.1089/dna.2013.2237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Many existing studies have demonstrated that the macrophage inhibitory cytokine-1 (MIC-1) might be a powerful diagnostic biomarker in patients with pancreatic cancer; but individually published results are inconclusive. This meta-analysis aimed to derive a more precise estimation of the diagnostic performance of serum MIC-1 in pancreatic cancer. We searched CISCOM, CINAHL, Web of Science, PubMed, Google Scholar, EBSCO, Cochrane Library, China BioMedicine (CBM), and China National Knowledge Infrastructure (CNKI) databases from their inception through August 1st, 2013. Meta-analysis was performed using Meta-Disc version 1.4 and STATA version 12.0 software. Crude standardized mean difference (SMD) and their 95% confidence intervals (CI) were estimated. Data from selected studies were pooled to yield summary sensitivity, specificity, positive and negative likelihood ratio (LR), diagnostic odds ratio (DOR), and receiver operating characteristic (SROC) curve. Ten case-control studies were included in this meta-analysis with a total of 1235 pancreatic cancer patients and 730 healthy subjects. Our meta-analysis results revealed that serum MIC-1 levels in pancreatic patients were higher than those of healthy subjects (SMD=1.38, 95% CI=1.15-1.62, p<0.001). The area under the SROC curve was 0.92 (SE=0.020); the pooled sensitivity was 0.79 (95% CI=0.77-0.82); and the pooled specificity was 0.86 (95% CI=0.84-0.88). The pooled positive LR was 6.20 (95% CI=1.24-30.91); the pooled DOR was 35.73 (95% CI=18.52-68.93). In conclusion, the present meta-analysis suggests that serum MIC-1 may be a useful diagnostic biomarker with high sensitivity and specificity for identifying pancreatic cancer.
Collapse
Affiliation(s)
- Yan-Zhi Chen
- Department of Radiotherapy, The Fourth Affiliated Hospital of China Medical University , Shenyang, People's Republic of China
| | | | | | | | | | | |
Collapse
|
32
|
Mimeault M, Batra SK. Molecular biomarkers of cancer stem/progenitor cells associated with progression, metastases, and treatment resistance of aggressive cancers. Cancer Epidemiol Biomarkers Prev 2014; 23:234-54. [PMID: 24273063 PMCID: PMC3977531 DOI: 10.1158/1055-9965.epi-13-0785] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The validation of novel diagnostic, prognostic, and predictive biomarkers and therapeutic targets in tumor cells is of critical importance for optimizing the choice and efficacy of personalized therapies. Importantly, recent advances have led to the identification of gene-expression signatures in cancer cells, including cancer stem/progenitor cells, in the primary tumors, exosomes, circulating tumor cells (CTC), and disseminated cancer cells at distant metastatic sites. The gene-expression signatures may help to improve the accuracy of diagnosis and predict the therapeutic responses and overall survival of patients with cancer. Potential biomarkers in cancer cells include stem cell-like markers [CD133, aldehyde dehydrogenase (ALDH), CD44, and CD24], growth factors, and their cognate receptors [epidermal growth factor receptor (EGFR), EGFRvIII, and HER2], molecules associated with epithelial-mesenchymal transition (EMT; vimentin, N-cadherin, snail, twist, and Zeb1), regulators of altered metabolism (phosphatidylinositol-3' kinase/Akt/mTOR), and drug resistance (multidrug transporters and macrophage inhibitory cytokine-1). Moreover, different pluripotency-associated transcription factors (Oct3/4, Nanog, Sox2, and Myc) and microRNAs that are involved in the epigenetic reprogramming and acquisition of stem cell-like properties by cancer cells during cancer progression may also be exploited as molecular biomarkers to predict the risk of metastases, systemic treatment resistance, and disease relapse of patients with cancer.
Collapse
Affiliation(s)
- Murielle Mimeault
- Authors' Affiliation: Department of Biochemistry and Molecular Biology, Fred & Pamela Buffet Cancer Center, Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, Nebraska
| | | |
Collapse
|