1
|
Lo SY, Lai MJ, Yang CH, Li HC. Unveiling the Connection: Viral Infections and Genes in dNTP Metabolism. Viruses 2024; 16:1412. [PMID: 39339888 PMCID: PMC11437409 DOI: 10.3390/v16091412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
Deoxynucleoside triphosphates (dNTPs) are crucial for the replication and maintenance of genomic information within cells. The balance of the dNTP pool involves several cellular enzymes, including dihydrofolate reductase (DHFR), ribonucleotide reductase (RNR), and SAM and HD domain-containing protein 1 (SAMHD1), among others. DHFR is vital for the de novo synthesis of purines and deoxythymidine monophosphate, which are necessary for DNA synthesis. SAMHD1, a ubiquitously expressed deoxynucleotide triphosphohydrolase, converts dNTPs into deoxynucleosides and inorganic triphosphates. This process counteracts the de novo dNTP synthesis primarily carried out by RNR and cellular deoxynucleoside kinases, which are most active during the S phase of the cell cycle. The intracellular levels of dNTPs can influence various viral infections. This review provides a concise summary of the interactions between different viruses and the genes involved in dNTP metabolism.
Collapse
Affiliation(s)
- Shih-Yen Lo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
- Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| | - Meng-Jiun Lai
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
| | - Chee-Hing Yang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
- Department of Microbiology and Immunology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Hui-Chun Li
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| |
Collapse
|
2
|
Mirra D, Esposito R, Spaziano G, Sportiello L, Panico F, Squillante A, Falciani M, Cerqua I, Gallelli L, Cione E, D’Agostino B. MicroRNA Monitoring in Human Alveolar Macrophages from Patients with Smoking-Related Lung Diseases: A Preliminary Study. Biomedicines 2024; 12:1050. [PMID: 38791013 PMCID: PMC11118114 DOI: 10.3390/biomedicines12051050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/18/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive lung disease that is commonly considered to be a potent driver of non-small cell lung cancer (NSCLC) development and related mortality. A growing body of evidence supports a role of the immune system, mainly played by alveolar macrophages (AMs), in key axes regulating the development of COPD or NSCLC phenotypes in response to harmful agents. MicroRNAs (miRNAs) are small non-coding RNAs that influence most biological processes and interfere with several regulatory pathways. The purpose of this study was to assess miRNA expression patterns in patients with COPD, NSCLC, and ever- or never-smoker controls to explore their involvement in smoking-related diseases. Bronchoalveolar lavage (BAL) specimens were collected from a prospective cohort of 43 sex-matched subjects to determine the expressions of hsa-miR-223-5p, 16-5p, 20a-5p, -17-5p, 34a-5p and 106a-5p by RT-PCR. In addition, a bioinformatic analysis of miRNA target genes linked to cancer was performed. Distinct and common miRNA expression levels were identified in each pathological group, suggesting their possible role as an index of NSCLC or COPD microenvironment. Moreover, we identified miRNA targets linked to carcinogenesis using in silico analysis. In conclusion, this study identified miRNA signatures in AMs, allowing us to understand the molecular mechanisms underlying smoking-related conditions and potentially providing new insights for diagnosis or pharmacological treatment.
Collapse
Affiliation(s)
- Davida Mirra
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (D.M.); (R.E.); (B.D.)
| | - Renata Esposito
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (D.M.); (R.E.); (B.D.)
| | - Giuseppe Spaziano
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (D.M.); (R.E.); (B.D.)
| | - Liberata Sportiello
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, 80138 Naples, Italy;
- Department of Experimental Medicine-Section of Pharmacology “L. Donatelli”, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Francesca Panico
- Department of Health Sciences, University of “Magna Graecia”, 88100 Catanzaro, Italy; (F.P.); (L.G.)
| | | | - Maddalena Falciani
- Pulmonary and Critical Care Medicine, Ospedale Scarlato, 84018 Scafati, Italy;
| | - Ida Cerqua
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131 Naples, Italy;
| | - Luca Gallelli
- Department of Health Sciences, University of “Magna Graecia”, 88100 Catanzaro, Italy; (F.P.); (L.G.)
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Bruno D’Agostino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (D.M.); (R.E.); (B.D.)
| |
Collapse
|
3
|
Zacharias NM, Segarra L, Akagi K, Fowlkes NW, Chen H, Alaniz A, de la Cerda C, Pesquera P, Xi Y, Wang J, Chahoud J, Lu X, Rao P, Martinez-Ferrer M, Pettaway CA. Transcriptomic, Proteomic, and Genomic Mutational Fraction Differences Based on HPV Status Observed in Patient-Derived Xenograft Models of Penile Squamous Cell Carcinoma. Cancers (Basel) 2024; 16:1066. [PMID: 38473423 PMCID: PMC10930474 DOI: 10.3390/cancers16051066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Metastatic penile squamous cell carcinoma (PSCC) has only a 50% response rate to first-line combination chemotherapies and there are currently no targeted-therapy approaches. Therefore, we have an urgent need in advanced-PSCC treatment to find novel therapies. Approximately half of all PSCC cases are positive for high-risk human papillomavirus (HR-HPV). Our objective was to generate HPV-positive (HPV+) and HPV-negative (HPV-) patient-derived xenograft (PDX) models and to determine the biological differences between HPV+ and HPV- disease. We generated four HPV+ and three HPV- PSCC PDX animal models by directly implanting resected patient tumor tissue into immunocompromised mice. PDX tumor tissue was found to be similar to patient tumor tissue (donor tissue) by histology and short tandem repeat fingerprinting. DNA mutations were mostly preserved in PDX tissues and similar APOBEC (apolipoprotein B mRNA editing catalytic polypeptide) mutational fractions in donor tissue and PDX tissues were noted. A higher APOBEC mutational fraction was found in HPV+ versus HPV- PDX tissues (p = 0.044), and significant transcriptomic and proteomic expression differences based on HPV status included p16 (CDKN2A), RRM2, and CDC25C. These models will allow for the direct testing of targeted therapies in PSCC and determine their response in correlation to HPV status.
Collapse
Affiliation(s)
- Niki M. Zacharias
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (L.S.); (P.P.)
- MD Anderson UTHealth Graduate School, Houston, TX 77030, USA
| | - Luis Segarra
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (L.S.); (P.P.)
- MD Anderson UTHealth Graduate School, Houston, TX 77030, USA
| | - Keiko Akagi
- Department of Thoracic Head & Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Natalie Wall Fowlkes
- Department of Veterinary Medicine & Surgery, MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Huiqin Chen
- Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Angelita Alaniz
- Center for Health Promotion and Prevention Research, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Carolyn de la Cerda
- Department of Surgical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Pedro Pesquera
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (L.S.); (P.P.)
| | - Yuanxin Xi
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.X.); (J.W.)
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.X.); (J.W.)
| | - Jad Chahoud
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA;
| | - Xin Lu
- Department of Biological Sciences, University of Notre Dame, Norte Dame, IN 46556, USA;
| | - Priya Rao
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Magaly Martinez-Ferrer
- Department of Pharmaceutical Sciences, University of Puerto Rico Medical Sciences Campus & Cancer Biology, UPR Comprehensive Cancer Center, San Juan, PR 00936, USA;
| | - Curtis A. Pettaway
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (L.S.); (P.P.)
| |
Collapse
|
4
|
Wei T, Liu J, Ma S, Wang M, Yuan Q, Huang A, Wu Z, Shang D, Yin P. A Nucleotide Metabolism-Related Gene Signature for Risk Stratification and Prognosis Prediction in Hepatocellular Carcinoma Based on an Integrated Transcriptomics and Metabolomics Approach. Metabolites 2023; 13:1116. [PMID: 37999212 PMCID: PMC10673507 DOI: 10.3390/metabo13111116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 11/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide. The in-depth study of genes and metabolites related to nucleotide metabolism will provide new ideas for predicting the prognosis of HCC patients. This study integrated the transcriptome data of different cancer types to explore the characteristics and significance of nucleotide metabolism-related genes (NMGRs) in different cancer types. Then, we constructed a new HCC classifier and prognosis model based on HCC samples from TCGA and GEO, and detected the gene expression level in the model through molecular biology experiments. Finally, nucleotide metabolism-related products in serum of HCC patients were examined using untargeted metabolomics. A total of 97 NMRGs were obtained based on bioinformatics techniques. In addition, a clinical model that could accurately predict the prognostic outcome of HCC was constructed, which contained 11 NMRGs. The results of PCR experiments showed that the expression levels of these genes were basically consistent with the predicted trends. Meanwhile, the results of untargeted metabolomics also proved that there was a significant nucleotide metabolism disorder in the development of HCC. Our results provide a promising insight into nucleotide metabolism in HCC, as well as a tailored prognostic and chemotherapy sensitivity prediction tool for patients.
Collapse
Affiliation(s)
- Tianfu Wei
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China; (T.W.)
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Jifeng Liu
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China; (T.W.)
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Shurong Ma
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China; (T.W.)
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Mimi Wang
- Institute of Integrative Medicine, Dalian Medical University, Dalian 116000, China
| | - Qihang Yuan
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China; (T.W.)
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Anliang Huang
- Institute of Integrative Medicine, Dalian Medical University, Dalian 116000, China
| | - Zeming Wu
- iPhenome Biotechnology (Yun Pu Kang) Inc., Dalian 116000, China
| | - Dong Shang
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China; (T.W.)
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
- Institute of Integrative Medicine, Dalian Medical University, Dalian 116000, China
| | - Peiyuan Yin
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China; (T.W.)
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
- Institute of Integrative Medicine, Dalian Medical University, Dalian 116000, China
| |
Collapse
|
5
|
Abstract
High-risk human papillomaviruses (HPVs) are associated with several human cancers. HPVs are small, DNA viruses that rely on host cell machinery for viral replication. The HPV life cycle takes place in the stratified epithelium, which is composed of different cell states, including terminally differentiating cells that are no longer active in the cell cycle. HPVs have evolved mechanisms to persist and replicate in the stratified epithelium by hijacking and modulating cellular pathways, including the DNA damage response (DDR). HPVs activate and exploit DDR pathways to promote viral replication, which in turn increases the susceptibility of the host cell to genomic instability and carcinogenesis. Here, we review recent advances in our understanding of the regulation of the host cell DDR by high-risk HPVs during the viral life cycle and discuss the potential cellular consequences of modulating DDR pathways.
Collapse
Affiliation(s)
- Caleb J Studstill
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA;
| | - Cary A Moody
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA;
| |
Collapse
|
6
|
Tang S, Leng M, Tan C, Zhu L, Pang Y, Zhang X, Chang YF, Lin W. Critical role for ribonucleoside-diphosphate reductase subunit M2 in ALV-J-induced activation of Wnt/β-catenin signaling via interaction with P27. J Virol 2023; 97:e0026723. [PMID: 37582207 PMCID: PMC10506463 DOI: 10.1128/jvi.00267-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/20/2023] [Indexed: 08/17/2023] Open
Abstract
Avian leukemia virus subgroup J (ALV-J) causes various diseases associated with tumor formation and decreased fertility and induced immunosuppressive disease, resulting in significant economic losses in the poultry industry globally. Virus usually exploits the host cellular machinery for their replication. Although there are increasing evidences for the cellular proteins involving viral replication, the interaction between ALV-J and host proteins leading to the pivotal steps of viral life cycle are still unclear. Here, we reported that ribonucleoside-diphosphate reductase subunit M2 (RRM2) plays a critical role during ALV-J infection by interacting with capsid protein P27 and activating Wnt/β-catenin signaling. We found that the expression of RRM2 is effectively increased during ALV-J infection, and that RRM2 facilitates ALV-J replication by interacting with viral capsid protein P27. Furthermore, ALV-J P27 activated Wnt/β-catenin signaling by promoting β-catenin entry into the nucleus, and RRM2 activated Wnt/β-catenin signaling by enhancing its phosphorylation at Ser18 during ALV-J infection. These data suggest that the upregulation of RRM2 expression by ALV-J infection favors viral replication in host cells via activating Wnt/β-catenin signaling. IMPORTANCE Our results revealed a novel mechanism by which RRM2 facilitates ALV-J growth. That is, the upregulation of RRM2 expression by ALV-J infection favors viral replication by interacting with capsid protein P27 and activating Wnt/β-catenin pathway in host cells. Furthermore, the phosphorylation of serine at position 18 of RRM2 was verified to be the important factor regulating the activation of Wnt/β-catenin signaling. This study provides insights for further studies of the molecular mechanism of ALV-J infection.
Collapse
Affiliation(s)
- Shuang Tang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Mei Leng
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Chen Tan
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Lin Zhu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yanling Pang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xinheng Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Wencheng Lin
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Briscik M, Dillies MA, Déjean S. Improvement of variables interpretability in kernel PCA. BMC Bioinformatics 2023; 24:282. [PMID: 37438763 DOI: 10.1186/s12859-023-05404-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Kernel methods have been proven to be a powerful tool for the integration and analysis of high-throughput technologies generated data. Kernels offer a nonlinear version of any linear algorithm solely based on dot products. The kernelized version of principal component analysis is a valid nonlinear alternative to tackle the nonlinearity of biological sample spaces. This paper proposes a novel methodology to obtain a data-driven feature importance based on the kernel PCA representation of the data. RESULTS The proposed method, kernel PCA Interpretable Gradient (KPCA-IG), provides a data-driven feature importance that is computationally fast and based solely on linear algebra calculations. It has been compared with existing methods on three benchmark datasets. The accuracy obtained using KPCA-IG selected features is equal to or greater than the other methods' average. Also, the computational complexity required demonstrates the high efficiency of the method. An exhaustive literature search has been conducted on the selected genes from a publicly available Hepatocellular carcinoma dataset to validate the retained features from a biological point of view. The results once again remark on the appropriateness of the computed ranking. CONCLUSIONS The black-box nature of kernel PCA needs new methods to interpret the original features. Our proposed methodology KPCA-IG proved to be a valid alternative to select influential variables in high-dimensional high-throughput datasets, potentially unravelling new biological and medical biomarkers.
Collapse
Affiliation(s)
- Mitja Briscik
- Institut de Mathématiques de Toulouse, UMR5219, CNRS, UPS, Université de Toulouse, Cedex 9, 31062, Toulouse, France.
| | - Marie-Agnès Dillies
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015, Paris, France
| | - Sébastien Déjean
- Institut de Mathématiques de Toulouse, UMR5219, CNRS, UPS, Université de Toulouse, Cedex 9, 31062, Toulouse, France
| |
Collapse
|
8
|
Zhang Y, Li H, Li X, Li Z, You Q, Yi H, Su Y, Zheng X, Chen Y, Chen J. Associations of human papillomavirus genotypes and cervical vascular abnormality in a cohort of women underwent colposcopy, a retrospective study of 6716 patients. Front Oncol 2023; 13:1105482. [PMID: 37091162 PMCID: PMC10113430 DOI: 10.3389/fonc.2023.1105482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
AimsAbnormal vessel patterns are specific signs in patients with early cervical abnormality and cervical cancer(CC) by colposcopy, but the impact of human papillomavirus (HPV) infections on abnormal vessel patterns remains unknown.MethodsA total of 6716 female patients with HPV infections or cytological abnormalities who underwent a colposcopy following abnormal CC screening results were included in the study. The final pathological diagnosis was confirmed to be the most severe pathological grade across cervical biopsy, endocervical canal curettage (ECC) and conization. Univariate and multivariate logistic regression analyses were used to investigate the association between HPV infections and abnormal vessel patterns, adjusting for age, gravidity and parity.ResultsThere were 6124 normal vascular cases by colposcopy and 592 cases with cervical vascular abnormality. The prevalence of HPV infections was 4284 (70%) in normal patients, and the prevalence of HPV infections was 479 (80%) in cervical vascular abnormality patients. HPV high-risk type 16 infection alone increased the risk of cervical heteromorphic blood vessels (aOR=3.66, 95%CI: 2.54~5.27). HPV 16 and 33 alone (other than the commonly recognized subtype of 18) or coinfection of these two genotypes could increase the risk of cervical punctate vascular and cervical vascular mosaic features and abnormal cervical blood vessels. An increased risk of abnormal cervical lesions was observed for HPV 16 and 33 alone or combined in coinfection compared to the negative group. The risk of cervical vascular abnormality was increased 10-fold by coinfection with HPV 16 and 33 (aOR=10.67, 95% CI: 4.54~25.09, P<0.001). HPV 16, 33 alone or combined in coinfection were associated with an increased risk of lesions more advanced than high-grade squamous intraepithelial lesion (HSIL) when compared to the negative group. The risk of lesions more advanced than HSIL was up to 26-fold higher in the coinfection with HPV 16 and 33 group than in the negative group (aOR=26.23, 95%CI: 11.23~61.27, P<0.001).ConclusionHPV16 and 33 are the most dangerous HPV genotypes correlated with abnormal vascular patterns. Combined HPV16 and HPV33 infection increases the risk of abnormal vascular patterns. Combined HPV16 and HPV33 infection increases the risk of developing HSIL+.
Collapse
Affiliation(s)
- Yulong Zhang
- Department of Gynecology, Fujian Maternity and Child Health Hospital College of Clinical Medical for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Haibo Li
- Division of Birth Cohort Study, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Xiaowen Li
- Department of Gynecology, Fujian Maternity and Child Health Hospital College of Clinical Medical for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Zhelong Li
- Department of Gynecology, Fujian Maternity and Child Health Hospital College of Clinical Medical for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Qianru You
- Department of Gynecology, Fujian Maternity and Child Health Hospital College of Clinical Medical for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Huan Yi
- Department of Gynecology, Fujian Maternity and Child Health Hospital College of Clinical Medical for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- *Correspondence: Huan Yi, ; Yanzhao Su, ; Xiangqin Zheng,
| | - Yanzhao Su
- Department of Gynecology, Fujian Maternity and Child Health Hospital College of Clinical Medical for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- *Correspondence: Huan Yi, ; Yanzhao Su, ; Xiangqin Zheng,
| | - Xiangqin Zheng
- Department of Gynecology, Fujian Maternity and Child Health Hospital College of Clinical Medical for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- *Correspondence: Huan Yi, ; Yanzhao Su, ; Xiangqin Zheng,
| | - Yusha Chen
- Cervical Disease Diagnosis and Treatment Health Center, Fujian Maternity and Child Health Hospital College of Clinical Medical for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Jiancui Chen
- Cervical Disease Diagnosis and Treatment Health Center, Fujian Maternity and Child Health Hospital College of Clinical Medical for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| |
Collapse
|
9
|
Kulsh J. Biochemistry-Not Oncogenes-May Demystify and Defeat Cancer. Oncol Ther 2023:10.1007/s40487-023-00221-y. [PMID: 36781712 DOI: 10.1007/s40487-023-00221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/24/2023] [Indexed: 02/15/2023] Open
Abstract
The presence of mutated genes strongly correlates with the incidence of cancer. Decades of research, however, has not yielded any specific causative gene or set of genes for the vast majority of cancers. The Cancer Genome Atlas program was supposed to provide clarity, but it only gave much more data without any accompanying insight into how the disease begins and progresses. It may be time to notice that epidemiological studies consistently show that the environment, not genes, has the principal role in causing cancer. Since carcinogenic chemicals in our food, drink, air, and water are the primary culprits, we need to look at the biochemistry of cancer, with a focus on enzymes that invariably facilitate transformations in a cell. In particular, attention should be paid to the rate-limiting enzyme in DNA synthesis, ribonucleotide reductase (RnR), whose activity is tightly linked to tumor growth. Besides circumstantial evidence that cancer is induced at this enzyme's vulnerable free-radical-containing active site by various carcinogens, its role in initiating retinoblastoma and human papillomavirus (HPV)-related cervical cancers has been well documented in recent years. Blocking the activity of malignant RnR is a certain way to arrest cancer.
Collapse
Affiliation(s)
- Jay Kulsh
- Independent Scientist, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Kitab B, Tsukiyama-Kohara K. Regulatory Role of Ribonucleotide Reductase Subunit M2 in Hepatocyte Growth and Pathogenesis of Hepatitis C Virus. Int J Mol Sci 2023; 24:ijms24032619. [PMID: 36768940 PMCID: PMC9916403 DOI: 10.3390/ijms24032619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Hepatitis C virus (HCV) frequently causes chronic infection in the human liver, which may progress to advanced hepatic fibrosis, cirrhosis, and hepatocellular carcinoma. HCV primarily infects highly differentiated quiescent hepatocytes and can modulate cell cycle-regulatory genes and proliferation pathways, which ultimately contribute to persistent infection and pathogenesis. On the other hand, several studies have shown differential regulation of HCV RNA and viral protein expression levels, depending on the proliferation state of hepatocytes and the phase of the cell cycle. HCV typically requires factors provided by host cells for efficient and persistent viral replication. Previously, we found that HCV infection upregulates the expression of ribonucleotide reductase subunit M2 (RRM2) in quiescent hepatocytes. RRM2 is a rate-limiting protein that catalyzes de novo synthesis of deoxyribonucleotide triphosphates, and its expression is highly regulated during various phases of the cell cycle. RRM2 functions as a pro-viral factor essential for HCV RNA synthesis, but its functional role in HCV-induced liver diseases remains unknown. Here, we present a comprehensive review of the role of the hepatocyte cell cycle, in correlation with RRM2 expression, in the regulation of HCV replication. We also discuss the potential relevance of this protein in the pathogenesis of HCV, particularly in the development of hepatocellular carcinoma.
Collapse
|
11
|
He J, Wei Q, Jiang R, Luan T, He S, Lu R, Xu H, Ran J, Li J, Chen D. The Core-Targeted RRM2 Gene of Berberine Hydrochloride Promotes Breast Cancer Cell Migration and Invasion via the Epithelial-Mesenchymal Transition. Pharmaceuticals (Basel) 2022; 16:ph16010042. [PMID: 36678539 PMCID: PMC9861674 DOI: 10.3390/ph16010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
Berberine hydrochloride (BBR) could inhibit the proliferation, migration, and invasion of various cancer cells. As the only enzyme for the de novo synthesis of ribonucleotides, RRM2 is closely related to the development of tumorigenesis. However, not much is currently known about the functional roles of RRM2 in breast cancer (BRCA), and whether BBR regulates the migration and invasion of BRCA cells by regulating the expression of RRM2 remains to be determined. We study the effects of BBR on BRCA cell proliferation in vitro and tumorigenesis in vivo by using colony formation assays, EdU assays, and xenograft models. Transcriptome sequencing, the random forest algorithm, and KEGG analysis were utilized to explore the therapeutic target genes and relative pathways. The expression of RRM2 in BRCA patients was analyzed with The Cancer Genome Atlas (TCGA) dataset, the GEPIA website tool, the Gene Expression Omnibus (GEO) database, and the UALCAN database. The survival probability of BRCA patients could be predicted by survival curve and nomogram analysis. Molecular docking was used to explore the affinity between BBR and potential targets. Gain- and loss-of-function methods were employed to explore the biological process in RRM2 participants. We comprehensively investigated the pharmacological characteristics of BBR on BRCA cell lines and discovered that BBR could inhibit the proliferation of BRCA cells in vitro and in vivo. Combining transcriptome sequencing and KEGG analysis, we found that BBR mainly affected the biological behavior of BRCA cells via HIF-1α and AMPK signal pathways. Additionally, by using bioinformatics and molecular docking, we demonstrated that RRM2 plays an oncogenic role in BRCA samples and that it acts as the hub gene of BBR on BRCA cells. Knockdown and overexpression studies indicated that RRM2 promoted BRCA cell migration as well as invasion in vitro by affecting the epithelial-to-mesenchymal transition (EMT). Our study demonstrated the significance of BBR regulating HIF-1α and AMPK signaling pathways in BRCA cells. Moreover, we revealed the carcinogenic role and potential mechanism of RRM2 as a core regulatory factor of BBR in BRCA in controlling BRCA invasion, migration, and EMT, suggesting that RRM2 may be a therapeutic target and prognostic biomarker for BRCA therapy.
Collapse
Affiliation(s)
- Jiaming He
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Qiang Wei
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Rong Jiang
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Tiankuo Luan
- Neuroscience Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Shuang He
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Ruijin Lu
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hang Xu
- Neuroscience Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jianhua Ran
- Neuroscience Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jing Li
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Correspondence: (J.L.); (D.C.)
| | - Dilong Chen
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges Medical College, Chongqing 404120, China
- Correspondence: (J.L.); (D.C.)
| |
Collapse
|
12
|
Cao X, Xue F, Chen H, Shen L, Yuan X, Yu Y, Zong Y, Zhong L, Huang F. MiR-202-3p inhibits the proliferation and metastasis of lung adenocarcinoma cells by targeting RRM2. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1374. [PMID: 36660663 PMCID: PMC9843311 DOI: 10.21037/atm-22-6089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
Background Lung adenocarcinoma (LUAD) is the most common type of lung cancer, and its pathogenesis is still unclear. The present study aimed to investigate the role of miR-202-3p and its downstream target gene, ribonucleotide reductase regulatory subunit M2 (RRM2), in the occurrence and development of LUAD and elucidate the correlation between RRM2 and the clinicopathological stage and prognosis of LUAD. Methods The expression of miR-202-3p was analyzed using the CancerMIRNome database and quantitative polymerase chain reaction (qPCR). The effects of miR-202-3p and RRM2 on the proliferation, migration, and invasion of A549 cells were analyzed. A dual luciferase reporter assay was used to verify the targeting of miR-202-3p and RRM2. Additionally, the correlation between RRM2 expression and clinicopathology was analyzed. Results (I) MiR-202-3p was lowly expressed in LUAD and the LUAD cell lines. qPCR confirmed that microRNA (miRNA) transfection was effective and sufficient for subsequent experiments. (II) MiR-202-3p inhibited the proliferation, invasion, and migration of LUAD cells. (III) There was a targeting relationship between miR-202-3p and RRM2, and miR-202-3p affected the expression of the RRM2 protein. RRM2 was highly expressed in lung cancer tissue. (IV) RRM2 was associated with the clinicopathological staging of lung cancer. The prognosis of patients with low RRM2 expression was better, and the prognostic sensitivity of RRM2 to lung cancer was high. RRM2 may exert its effects via the Notch pathway. (V) Si-RRM2 inhibited the expression of the RRM2 protein. RRM2 promoted the proliferation, migration, and invasion of LUAD cells. A miR-202-3p inhibitor restored the inhibitory effect of si-RRM2 on LUAD cells. Conclusions MiR-202-3p was lowly expressed in lung cancer tissue. MiR-202-3p overexpression inhibited the proliferation and metastasis of lung cancer cells. RRM2 was highly expressed in lung cancer tissue and promoted the proliferation and metastasis of lung cancer cells. MiR-202-3p targeted and inhibited RRM2, thereby reducing the proliferation and metastasis of LUAD cells. LUAD patients with low RRM2 expression had a better prognosis, and the expression level of RRM2 was correlated with the clinical characteristics of lung cancer patients.
Collapse
Affiliation(s)
- Xiaowen Cao
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Fangsu Xue
- Department of Respiration, Binhai County People’s Hospital, Yancheng, China
| | - Haoyu Chen
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Lu Shen
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaosa Yuan
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yunchi Yu
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Ying Zong
- Medical College of Nantong University, Nantong, China
| | - Lou Zhong
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Fang Huang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
13
|
Deng B, Xiang J, Liang Z, Luo L. Identification and validation of a ferroptosis-related gene to predict survival outcomes and the immune microenvironment in lung adenocarcinoma. Cancer Cell Int 2022; 22:292. [PMID: 36153508 PMCID: PMC9508770 DOI: 10.1186/s12935-022-02699-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/31/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Lung adenocarcinoma (LUAD) is a leading cause of cancer-related death worldwide. Ferroptosis, a form of cell death characterized by iron-dependent lipid peroxidation. However, the involvement of ferroptosis in the regulation of immune cell infiltration and its immunotherapeutic efficacy in LUAD remain unclear.
Methods
The Cancer Genome Atlas (TCGA) LUAD cohort was used to assess the survival prognosis of FRGs and construct a seven-gene risk signature. Correlation tests, difference tests, and a cluster analysis were performed to explore the role of FRGs in the immune microenvironment and their immunotherapeutic efficacy in LUAD. The effects of FRGs on LUAD cells were assessed by Western blot, iron assay, and lipid peroxidation assay.
Results
The seven-gene risk signatures of patients with LUAD were established and validated. FRG clustering based on 70 differentially expressed FRGs was associated with the immune microenvironment and indicated potential immune subtypes of LUAD. The seven-gene risk signature was an independent prognostic factor for LUAD and was used to divide the LUAD cohort into a high-risk and a low-risk group. Immunocyte infiltration levels, immune checkpoints, and immunotherapy response rates were significantly different between the two groups. Patients with high risk scores had lower overall levels of immunocyte infiltration but higher immunotherapy response rates. The key gene ribonucleotide reductase subunit M2 (RRM2) was associated with LUAD prognosis, which may be related to its ability to regulate the infiltration levels of activated mast cells and activated CD4 memory T cells. In addition, RRM2 was involved in ferroptosis, and its expression was up regulated in lung cancer tissues and the LUAD cell lines. Silencing RRM2 can inhibit the proliferation and induce ferroptosis of H1975 cells suggesting that silencing RRM2 could promote ferroptosis in H1975 cells.
Conclusion
Our results revealed RRM2 as a promising biomarker and therapeutic target associated with tumor immune infiltration in patients with LUAD.
Collapse
|
14
|
Samy A, Maher MA, Abdelsalam NA, Badr E. SARS-CoV-2 potential drugs, drug targets, and biomarkers: a viral-host interaction network-based analysis. Sci Rep 2022; 12:11934. [PMID: 35831333 PMCID: PMC9279364 DOI: 10.1038/s41598-022-15898-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/30/2022] [Indexed: 12/13/2022] Open
Abstract
COVID-19 is a global pandemic impacting the daily living of millions. As variants of the virus evolve, a complete comprehension of the disease and drug targets becomes a decisive duty. The Omicron variant, for example, has a notably high transmission rate verified in 155 countries. We performed integrative transcriptomic and network analyses to identify drug targets and diagnostic biomarkers and repurpose FDA-approved drugs for SARS-CoV-2. Upon the enrichment of 464 differentially expressed genes, pathways regulating the host cell cycle were significant. Regulatory and interaction networks featured hsa-mir-93-5p and hsa-mir-17-5p as blood biomarkers while hsa-mir-15b-5p as an antiviral agent. MYB, RRM2, ERG, CENPF, CIT, and TOP2A are potential drug targets for treatment. HMOX1 is suggested as a prognostic biomarker. Enhancing HMOX1 expression by neem plant extract might be a therapeutic alternative. We constructed a drug-gene network for FDA-approved drugs to be repurposed against the infection. The key drugs retrieved were members of anthracyclines, mitotic inhibitors, anti-tumor antibiotics, and CDK1 inhibitors. Additionally, hydroxyquinone and digitoxin are potent TOP2A inhibitors. Hydroxyurea, cytarabine, gemcitabine, sotalol, and amiodarone can also be redirected against COVID-19. The analysis enforced the repositioning of fluorouracil and doxorubicin, especially that they have multiple drug targets, hence less probability of resistance.
Collapse
Affiliation(s)
- Asmaa Samy
- University of Science and Technology, Zewail City, Giza, 12578, Egypt
| | - Mohamed A Maher
- University of Science and Technology, Zewail City, Giza, 12578, Egypt
| | - Nehal Adel Abdelsalam
- University of Science and Technology, Zewail City, Giza, 12578, Egypt.,Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Eman Badr
- University of Science and Technology, Zewail City, Giza, 12578, Egypt. .,Faculty of Computers and Artificial Intelligence, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
15
|
Jayarathna DK, Rentería ME, Batra J, Gandhi NS. A supervised machine learning approach identifies gene-regulating factor-mediated competing endogenous RNA networks in hormone-dependent cancers. J Cell Biochem 2022; 123:1394-1408. [PMID: 35757968 PMCID: PMC9542250 DOI: 10.1002/jcb.30300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022]
Abstract
Competing endogenous RNAs (ceRNAs) have become an emerging topic in cancer research due to their role in gene regulatory networks. To date, traditional ceRNA bioinformatic studies have investigated microRNAs as the only factor regulating gene expression. Growing evidence suggests that genomic (e.g., copy number alteration [CNA]), transcriptomic (e.g., transcription factors [TFs]), and epigenomic (e.g., DNA methylation [DM]) factors can influence ceRNA regulatory networks. Herein, we used the Least absolute shrinkage and selection operator regression, a machine learning approach, to integrate DM, CNA, and TFs data with RNA expression to infer ceRNA networks in cancer risk. The gene‐regulating factors‐mediated ceRNA networks were identified in four hormone‐dependent (HD) cancer types: prostate, breast, colorectal, and endometrial. The shared ceRNAs across HD cancer types were further investigated using survival analysis, functional enrichment analysis, and protein–protein interaction network analysis. We found two (BUB1 and EXO1) and one (RRM2) survival‐significant ceRNA(s) shared across breast‐colorectal‐endometrial and prostate–colorectal–endometrial combinations, respectively. Both BUB1 and BUB1B genes were identified as shared ceRNAs across more than two HD cancers of interest. These genes play a critical role in cell division, spindle‐assembly checkpoint signalling, and correct chromosome alignment. Furthermore, shared ceRNAs across multiple HD cancers have been involved in essential cancer pathways such as cell cycle, p53 signalling, and chromosome segregation. Identifying ceRNAs' roles across multiple related cancers will improve our understanding of their shared disease biology. Moreover, it contributes to the knowledge of RNA‐mediated cancer pathogenesis.
Collapse
Affiliation(s)
- Dulari K Jayarathna
- Centre for Genomics and Personalized Health, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, Australia.,Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Miguel E Rentería
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jyotsna Batra
- Centre for Genomics and Personalized Health, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.,Australian Prostate Cancer Research Centre-Queensland, Woolloongabba, QLD, Australia
| | - Neha S Gandhi
- Centre for Genomics and Personalized Health, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, Australia.,Cancer and Ageing Research Program, Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|
16
|
Liu Q, Song C, Li J, Liu M, Fu L, Jiang J, Zeng Z, Zhu H. E2F2 enhances the chemoresistance of pancreatic cancer to gemcitabine by regulating the cell cycle and upregulating the expression of RRM2. Med Oncol 2022; 39:124. [PMID: 35716217 DOI: 10.1007/s12032-022-01715-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/25/2022] [Indexed: 11/27/2022]
Abstract
Both pro-oncogenic and anti-oncogenic effects of E2F2 have been revealed in different malignancies. However, the precise role of E2F2 in pancreatic cancer, in particular in relation to therapeutic intervention with gemcitabine, remains unclear. In this study, the effect of E2F2 on the proliferation and cell cycle modulation of pancreatic cancer cells, and whether E2F2 plays a role in the treatment of pancreatic cancer cells by gemcitabine, were investigated. The expression of E2F2 in pancreatic cancer was assessed by various methods including bioinformatics prediction, Western blotting, and real-time PCR. The effect of E2F2 on the proliferation and cell cycling of pancreatic cancer cells was analyzed by tissue culture and flow cytometry. In addition, the effect of E2F2 on the intervention of pancreatic cancer by gemcitabine was investigated using both in vitro and in vivo approaches. The expression of E2F2 was found to be significantly increased in pancreatic cancer tissues and cell lines. The pathogenic capacity of E2F2 lied in the fact that this transcription factor promoted the transformation of pancreatic cancer cell cycle from G1-phase to S-phase, thus enhancing the proliferation of pancreatic cancer cells. Furthermore, the expression of E2F2 was increased in pancreatic cancer cells in the presence of gemcitabine, and the augmented expression of E2F2 upregulated the gemcitabine resistance-related gene RRM2 and its downstream signaling molecule deoxycytidine kinase (DCK). The resistance of pancreatic cancer cells to gemcitabine was confirmed using both in vitro and in vivo models. In this study, E2F2 has been demonstrated for the first time to play a pro-oncogenic role in pancreatic cancer by promoting the transition of the cell cycle from G1-phase to S-phase and, therefore, enhancing the proliferation of pancreatic cancer cells. E2F2 has also been demonstrated to enhance the chemotherapy resistance of pancreatic cancer cells to gemcitabine by upregulating the expression of RRM2 and DCK that is downstream of RRM2.
Collapse
Affiliation(s)
- Qianfan Liu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, Guizhou, People's Republic of China.,Department of General Surgery, Northern Jiangsu People's Hospital, Yangzhou, 225000, Jiangsu Province, People's Republic of China
| | - Chunzhuo Song
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, Guizhou, People's Republic of China.,Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Junjun Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, Guizhou, People's Republic of China
| | - Meng Liu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, Guizhou, People's Republic of China
| | - Liyue Fu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, Guizhou, People's Republic of China
| | - Jiuliang Jiang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, Guizhou, People's Republic of China
| | - Zhirui Zeng
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research On Common Chronic Diseases, Guiyang, 550001, Guizhou, People's Republic of China
| | - Haitao Zhu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, Guizhou, People's Republic of China.
| |
Collapse
|
17
|
Park S, Kim OH, Lee K, Park IB, Kim NH, Moon S, Im J, Sharma SP, Oh BC, Nam S, Lee DH. Plasma and urinary extracellular vesicle microRNAs and their related pathways in diabetic kidney disease. Genomics 2022; 114:110407. [PMID: 35716820 DOI: 10.1016/j.ygeno.2022.110407] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/22/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022]
Abstract
To explore extracellular vesicle microRNAs (EV miRNAs) and their target mRNAs in relation to diabetic kidney disease (DKD), we performed paired plasma and urinary EV small RNA sequencing (n = 18) in patients with type 2 diabetes and DKD (n = 5) and healthy subjects (n = 4) and metabolic network analyses using our own miRNA and public mRNA datasets. We found 13 common differentially expressed EV miRNAs in both fluids and 17 target mRNAs, including RRM2, NT5E, and UGDH. Because succinate dehydrogenase B was suggested to interact with proteins encoded by these three genes, we measured urinary succinate and adenosine in a validation study (n = 194). These two urinary metabolite concentrations were associated with DKD progression. In addition, renal expressions of NT5E and UGDH proteins were increased in db/db mice with DKD compared to control mice. In conclusion, we profiled DKD-related EV miRNAs in plasma and urine samples and found their relevant target pathways.
Collapse
Affiliation(s)
- Sungjin Park
- Department of Genome Medicine and Science, AI Convergence Center for Medical Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Ok-Hee Kim
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Kiyoung Lee
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea; Department of Internal Medicine, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Ie Byung Park
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea; Department of Internal Medicine, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Nan Hee Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seongryeol Moon
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon, Republic of Korea
| | - Jaebeen Im
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon, Republic of Korea
| | - Satya Priya Sharma
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Byung-Chul Oh
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Seungyoon Nam
- Department of Genome Medicine and Science, AI Convergence Center for Medical Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea; Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon, Republic of Korea.
| | - Dae Ho Lee
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea; Department of Internal Medicine, Gachon University College of Medicine, Incheon, Republic of Korea; Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon, Republic of Korea.
| |
Collapse
|
18
|
Shan J, Wang Z, Mo Q, Long J, Fan Y, Cheng L, Zhang T, Liu X, Wang X. Ribonucleotide reductase M2 subunit silencing suppresses tumorigenesis in pancreatic cancer via inactivation of PI3K/AKT/mTOR pathway. Pancreatology 2022; 22:401-413. [PMID: 35300916 DOI: 10.1016/j.pan.2022.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES Ribonucleotide Reductase M2 subunit (RRM2) is elevated in pancreatic cancer and involved in DNA synthesis and cell proliferation. But its specific mechanism including genetic differences and upstream regulatory pathways remains unclear. METHODS We analyzed RRM2 expression of 178 pancreatic cancer patients in Gene Expression Profiling Interactive Analysis (GEPIA) database. Besides, more pancreatic cancer specimens were collected and detected RRM2 expression by immunohistochemistry. RRM2 knockdown by shRNA was applied for functional and mechanism analysis in vitro. Xenograft tumor growth was significantly slower by RRM2 silencing in vivo. RESULTS It showed that high RRM2 expression had a poorer overall survival and disease free survival. RRM2 expression was higher in tumor grade 2 and 3 than grade 1. Immunohistochemistry data validated that high RRM2 expression predicted worse survival. RRM2 knockdown significantly reduced cell proliferation, inhibited colony formation and suppressed cell cycle progress. Further mechanism assay showed silencing RRM2 lead to inactivation of PI3K/AKT/mTOR pathway and inhibition of mutant p53, which induce S phase arrest and/or apoptosis. In panc-1 cells, S-phase arrest mediated by mutant p53 inhibition, p21 increase and cell cycle related proteins change. While in miapaca-2 cells, induction of apoptosis and S-phase arrest mediated by CDK1 played a coordinated role. CONCLUSION Taken together, high RRM2 expression was associated with worse prognosis. Importantly, RRM2 knockdown deactivated PI3K/AKT/mTOR pathway, resulting in cell cycle arrest and/or apoptosis. This study shed light on the molecular mechanism of RRM2 in pancreatic tumor progression and is expected to provide a new theoretical basis for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Jinlan Shan
- Department of Surgery, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Cancer Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhen Wang
- Department of Breast Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiuping Mo
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
| | - Jingpei Long
- Department of Surgery, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yangfan Fan
- Department of Surgery, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lu Cheng
- Department of Pathology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tao Zhang
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Xiyong Liu
- Sino-America Cancer Foundation, California Cancer Institute, Temple City, CA91780, USA; Tumor Biomarker Development, California Cancer Institute, Temple City, CA,91780, USA
| | - Xiaochen Wang
- Department of Breast Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
19
|
Shi SC, Zhang Y, Wang T. High RRM2 expression has poor prognosis in specific types of breast cancer. PLoS One 2022; 17:e0265195. [PMID: 35290409 PMCID: PMC8923511 DOI: 10.1371/journal.pone.0265195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/24/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND RRM2 plays an important role in different malignant tumors, but there are few studies in breast cancer. Public databases were used to analyze the expression of RRM2 in breast cancer and its prognostic value. MATERIALS AND METHODS A total of 2,509 breast cancer samples were downloaded from the METABRIC database. The relationship between RRM2 expression and clinical pathology was evaluated. Using the BCIP database and real-time-PCR, and western blotting, RRM2 mRNA and protein expression of RRM2 in breast cancer tissues and cell lines were evaluated. Univariate and multivariate analysis defined independent prognostic factors that affected the overall survival of patients with breast cancer. The Kaplan-Meier method was used to study the relationship between the high expression of RRM2 and overall survival and distant metastasis-free survival (DMFS) of breast cancer patients. Finally, We performed Gene Set Enrichment Analysis (GSEA) and obtained the relevant pathways associated with high expression of RRM2 potentially influencing breast cancer progression. RESULTS RRM2 expression was significantly correlated with age, tumor size, grade, menopausal status, molecular typing, ER, PR, and Her-2 of patients with breast cancer(P<0.05). Univariate and multivariate regression analysis showed that RRM2, the number of positive lymph nodes, ER, Her-2, tumor size, and tumor stage can be used as independent prognostic factors for overall survival of patients with breast cancer. Kaplan-Meier analysis showed that in patients with Luminal A and Normal like breast cancers and Stage1 and stage2 breast cancers, patients with high expression of RRM2 had worse overall survival and DMFS. The analysis of the GSEA pathway showed that RRM2 is mainly enriched in the ERBB signaling pathway and other pathways. CONCLUSION The high expression of RRM2 has a worse prognosis in patients with breast cancer with specific features. It can be used as a biomarker for the prognosis of breast cancer.
Collapse
Affiliation(s)
- Shen-chao Shi
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Zhang
- Department of Endocrinology, Hubei No. 3 People’s Hospital of Jianghan University, Wuhan, China
| | - Tao Wang
- Department of Thyroid and Breast Surgery, Hubei No. 3 People’s Hospital of Jianghan University, Wuhan, China
| |
Collapse
|
20
|
RRM2 Alleviates Doxorubicin-Induced Cardiotoxicity through the AKT/mTOR Signaling Pathway. Biomolecules 2022; 12:biom12020299. [PMID: 35204799 PMCID: PMC8869767 DOI: 10.3390/biom12020299] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Doxorubicin (DOX) is an effective chemotherapeutic agent that plays an unparalleled role in cancer treatment. However, its serious dose-dependent cardiotoxicity, which eventually contributes to irreversible heart failure, has greatly limited the widespread clinical application of DOX. A previous study has demonstrated that the ribonucleotide reductase M2 subunit (RRM2) exerts salutary effects on promoting proliferation and inhibiting apoptosis and autophagy. However, the specific function of RRM2 in DOX-induced cardiotoxicity is yet to be determined. This study aimed to elucidate the role and potential mechanism of RRM2 on DOX-induced cardiotoxicity by investigating neonatal primary cardiomyocytes and mice treated with DOX. Subsequently, the results indicated that RRM2 expression was significantly reduced in mice hearts and primary cardiomyocytes. Apoptosis and autophagy-related proteins, such as cleaved-Caspase3 (C-Caspase3), LC3B, and beclin1, were distinctly upregulated. Additionally, RRM2 deficiency led to increased autophagy and apoptosis in cells. RRM2 overexpression, on the contrary, alleviated DOX-induced cardiotoxicity in vivo and in vitro. Consistently, DIDOX, an inhibitor of RRM2, attenuated the protective effect of RRM2. Mechanistically, we found that AKT/mTOR inhibitors could reverse the function of RRM2 overexpression on DOX-induced autophagy and apoptosis, which means that RRM2 could have regulated DOX-induced cardiotoxicity through the AKT/mTOR signaling pathway. In conclusion, our experiment established that RRM2 could be a potential treatment in reversing DOX-induced cardiac dysfunction.
Collapse
|
21
|
Long MJC, Ly P, Aye Y. Still no Rest for the Reductases: Ribonucleotide Reductase (RNR) Structure and Function: An Update. Subcell Biochem 2022; 99:155-197. [PMID: 36151376 DOI: 10.1007/978-3-031-00793-4_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein we present a multidisciplinary discussion of ribonucleotide reductase (RNR), the essential enzyme uniquely responsible for conversion of ribonucleotides to deoxyribonucleotides. This chapter primarily presents an overview of this multifaceted and complex enzyme, covering RNR's role in enzymology, biochemistry, medicinal chemistry, and cell biology. It further focuses on RNR from mammals, whose interesting and often conflicting roles in health and disease are coming more into focus. We present pitfalls that we think have not always been dealt with by researchers in each area and further seek to unite some of the field-specific observations surrounding this enzyme. Our work is thus not intended to cover any one topic in extreme detail, but rather give what we consider to be the necessary broad grounding to understand this critical enzyme holistically. Although this is an approach we have advocated in many different areas of scientific research, there is arguably no other single enzyme that embodies the need for such broad study than RNR. Thus, we submit that RNR itself is a paradigm of interdisciplinary research that is of interest from the perspective of the generalist and the specialist alike. We hope that the discussions herein will thus be helpful to not only those wanting to tackle RNR-specific problems, but also those working on similar interdisciplinary projects centering around other enzymes.
Collapse
Affiliation(s)
- Marcus J C Long
- University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Biochemistry, UNIL, Epalinges, Switzerland
| | - Phillippe Ly
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- EPFL SB ISIC LEAGO, Lausanne, Switzerland
| | - Yimon Aye
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
- EPFL SB ISIC LEAGO, Lausanne, Switzerland.
| |
Collapse
|
22
|
Tyagi A, Haq S, Ramakrishna S. Redox regulation of DUBs and its therapeutic implications in cancer. Redox Biol 2021; 48:102194. [PMID: 34814083 PMCID: PMC8608616 DOI: 10.1016/j.redox.2021.102194] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/19/2021] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) act as a double-edged sword in cancer, where low levels of ROS are beneficial but excessive accumulation leads to cancer progression. Elevated levels of ROS in cancer are counteracted by the antioxidant defense system. An imbalance between ROS generation and the antioxidant system alters gene expression and cellular signaling, leading to cancer progression or death. Post-translational modifications, such as ubiquitination, phosphorylation, and SUMOylation, play a critical role in the maintenance of ROS homeostasis by controlling ROS production and clearance. Recent evidence suggests that deubiquitinating enzymes (DUBs)-mediated ubiquitin removal from substrates is regulated by ROS. ROS-mediated oxidation of the catalytic cysteine (Cys) of DUBs, leading to their reversible inactivation, has emerged as a key mechanism regulating DUB-controlled cellular events. A better understanding of the mechanism by which DUBs are susceptible to ROS and exploring the ways to utilize ROS to pharmacologically modulate DUB-mediated signaling pathways might provide new insight for anticancer therapeutics. This review assesses the recent findings regarding ROS-mediated signaling in cancers, emphasizes DUB regulation by oxidation, highlights the relevant recent findings, and proposes directions of future research based on the ROS-induced modifications of DUB activity.
Collapse
Affiliation(s)
- Apoorvi Tyagi
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Saba Haq
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea; College of Medicine, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
23
|
Molecular Markers to Predict Prognosis and Treatment Response in Uterine Cervical Cancer. Cancers (Basel) 2021; 13:cancers13225748. [PMID: 34830902 PMCID: PMC8616420 DOI: 10.3390/cancers13225748] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 02/07/2023] Open
Abstract
Uterine cervical cancer is one of the leading causes of cancer-related mortality in women worldwide. Each year, over half a million new cases are estimated, resulting in more than 300,000 deaths. While less-invasive, fertility-preserving surgical procedures can be offered to women in early stages, treatment for locally advanced disease may include radical hysterectomy, primary chemoradiotherapy (CRT) or a combination of these modalities. Concurrent platinum-based chemoradiotherapy regimens remain the first-line treatments for locally advanced cervical cancer. Despite achievements such as the introduction of angiogenesis inhibitors, and more recently immunotherapies, the overall survival of women with persistent, recurrent or metastatic disease has not been extended significantly in the last decades. Furthermore, a broad spectrum of molecular markers to predict therapy response and survival and to identify patients with high- and low-risk constellations is missing. Implementation of these markers, however, may help to further improve treatment and to develop new targeted therapies. This review aims to provide comprehensive insights into the complex mechanisms of cervical cancer pathogenesis within the context of molecular markers for predicting treatment response and prognosis.
Collapse
|
24
|
Potential lncRNA Biomarkers for HBV-Related Hepatocellular Carcinoma Diagnosis Revealed by Analysis on Coexpression Network. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9972011. [PMID: 34692847 PMCID: PMC8536424 DOI: 10.1155/2021/9972011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022]
Abstract
Background Increasing evidence demonstrated that long noncoding RNA (lncRNA) could affect inflammatory tumor immune microenvironment by modulating gene expression and could be used as a biomarker for HBC-related hepatocellular carcinoma (HCC) but still needs further research. The aim of the present study was to determine an lncRNA signature for the diagnosis of HBV-related HCC. Methods HBV-related HCC expression profiles (GSE55092, GSE19665, and GSE84402) were abstracted from the GEO (Gene Expression Omnibus) data resource, and R package limma and RobustRankAggreg were employed to identify common differentially expressed genes (DEGs). Using machine learning, optimal diagnostic lncRNA molecular markers for HBV-related HCC were identified. The expression of candidate lncRNAs was cross-validated in GSE121248, and an ROC (receiver operating characteristic) curve of lncRNA biomarkers was carried out. Additionally, a coexpression network and functional annotation was built, after which a PPI (protein-protein interaction) network along with module analysis were conducted with the Cytoscape open source software. Result A total of 38 DElncRNAs and 543 DEmRNAs were identified with a fold change larger than 2.0 and a P value < 0.05. By machine learning, AL356056.2, AL445524.1, TRIM52-AS1, AC093642.1, EHMT2-AS1, AC003991.1, AC008040.1, LINC00844, and LINC01018 were screened out as optional diagnostic lncRNA biosignatures for HBV-related HCC. The AUC (areas under the curve) of the SVM (support vector machine) model and random forest model were 0.957 and 0.904, respectively, and the specificity and sensitivity were 95.7 and 100% and 94.3 and 86.5%, respectively. The results of functional enrichment analysis showed that the integrated coexpressed DEmRNAs shared common cascades in the p53 signaling pathway, retinol metabolism, PI3K-Akt signaling cascade, and chemical carcinogenesis. The integrated DEmRNA PPI network complex was found to be comprised of 87 nodes, and two vital modules with a high degree were selected with the MCODE app. Conclusion The present study identified nine potential diagnostic biomarkers for HBV-related HCC, all of which could potentially modulated gene expression related to inflammatory conditions in the tumor immune microenvironment. The functional annotation of the target DEmRNAs yielded novel evidence in evaluating the precise functions of lncRNA in HBV-related HCC.
Collapse
|
25
|
Basukala O, Banks L. The Not-So-Good, the Bad and the Ugly: HPV E5, E6 and E7 Oncoproteins in the Orchestration of Carcinogenesis. Viruses 2021; 13:1892. [PMID: 34696321 PMCID: PMC8541208 DOI: 10.3390/v13101892] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Infection with HPV starts with the access of the viral particles to basal cells in the epidermis, potentially via microtraumas to the skin. The basal cells are able to keep away these pathogens in normal circumstances through a robust immune response from the host, as HPV infections are, in general, cleared within 2 to 3 weeks. However, the rare instances of persistent infection and/or in cases where the host immune system is compromised are major risk factors for the development of lesions potentially leading to malignancy. Evolutionarily, obligatory pathogens such as HPVs would not be expected to risk exposing the host to lethal cancer, as this would entail challenging their own life cycle, but infection with these viruses is highly correlated with cancer and malignancy-as in cancer of the cervix, which is almost always associated with these viruses. Despite this key associative cause and the availability of very effective vaccines against these viruses, therapeutic interventions against HPV-induced cancers are still a challenge, indicating the need for focused translational research. In this review, we will consider the key roles that the viral proteins play in driving the host cells to carcinogenesis, mainly focusing on events orchestrated by early proteins E5, E6 and E7-the not-so-good, the bad and the ugly-and discuss and summarize the major events that lead to these viruses mechanistically corrupting cellular homeostasis, giving rise to cancer and malignancy.
Collapse
Affiliation(s)
| | - Lawrence Banks
- Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy;
| |
Collapse
|
26
|
Liu Q, Guo L, Qi H, Lou M, Wang R, Hai B, Xu K, Zhu L, Ding Y, Li C, Xie L, Shen J, Xiang X, Shao J. A MYBL2 complex for RRM2 transactivation and the synthetic effect of MYBL2 knockdown with WEE1 inhibition against colorectal cancer. Cell Death Dis 2021; 12:683. [PMID: 34234118 PMCID: PMC8263627 DOI: 10.1038/s41419-021-03969-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022]
Abstract
Ribonucleotide reductase (RR) is a unique enzyme for the reduction of NDPs to dNDPs, the building blocks for DNA synthesis and thus essential for cell proliferation. Pan-cancer profiling studies showed that RRM2, the small subunit M2 of RR, is abnormally overexpressed in multiple types of cancers; however, the underlying regulatory mechanisms in cancers are still unclear. In this study, through searching in cancer-omics databases and immunohistochemistry validation with clinical samples, we showed that the expression of MYBL2, a key oncogenic transcriptional factor, was significantly upregulated correlatively with RRM2 in colorectal cancer (CRC). Ectopic expression and knockdown experiments indicated that MYBL2 was essential for CRC cell proliferation, DNA synthesis, and cell cycle progression in an RRM2-dependent manner. Mechanistically, MYBL2 directly bound to the promoter of RRM2 gene and promoted its transcription during S-phase together with TAF15 and MuvB components. Notably, knockdown of MYBL2 sensitized CRC cells to treatment with MK-1775, a clinical trial drug for inhibition of WEE1, which is involved in a degradation pathway of RRM2. Finally, mouse xenograft experiments showed that the combined suppression of MYBL2 and WEE1 synergistically inhibited CRC growth with a low systemic toxicity in vivo. Therefore, we propose a new regulatory mechanism for RRM2 transcription for CRC proliferation, in which MYBL2 functions by constituting a dynamic S-phase transcription complex following the G1/early S-phase E2Fs complex. Doubly targeting the transcription and degradation machines of RRM2 could produce a synthetic inhibitory effect on RRM2 level with a novel potential for CRC treatment.
Collapse
Affiliation(s)
- Qian Liu
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lijuan Guo
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongyan Qi
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Lou
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Wang
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Boning Hai
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kailun Xu
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Lijun Zhu
- Key Laboratory of Pancreatic Disease of Zhejiang Province, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongfeng Ding
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Pancreatic Disease of Zhejiang Province, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Li
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingdan Xie
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Shen
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueping Xiang
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang University Cancer Center, Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jimin Shao
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang University Cancer Center, Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
27
|
Lindemann A, Patel AA, Tang L, Tanaka N, Gleber-Netto FO, Bartels MD, Wang L, McGrail DJ, Lin SY, Frank SJ, Frederick MJ, Myers JN, Osman AA. Combined Inhibition of Rad51 and Wee1 Enhances Cell Killing in HNSCC Through Induction of Apoptosis Associated With Excessive DNA Damage and Replication Stress. Mol Cancer Ther 2021; 20:1257-1269. [PMID: 33947685 DOI: 10.1158/1535-7163.mct-20-0252] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/20/2020] [Accepted: 04/28/2021] [Indexed: 12/22/2022]
Abstract
Despite advances in surgery, chemotherapy, and radiation, there are limited treatment options for advanced head and neck squamous cell carcinoma (HNSCC) and survival remains very poor. Therefore, effective therapies are desperately needed. Recently, selective exploitation of DNA damage and replication stress responses has become a novel approach for cancer treatment. Wee1 kinase and Rad51 recombinase are two proteins involved in regulating replication stress and homologous recombination repair in cancer cells. In this study, we investigated the combined effect of Rad51 inhibitor (B02) and Wee1 inhibitor (AZD1775) in vitro and in vivo in various HNSCC cell lines. Clonogenic survival assays demonstrated that B02 synergized with AZD1775 in vitro in all HNSCC cell lines tested. The synergy between these drugs was associated with forced CDK1 activation and reduced Chk1 phosphorylation leading to induction of excessive DNA damage and replication stress, culminating in aberrant mitosis and apoptosis. Our results showed that elevated Rad51 mRNA expression correlated with worse survival in HNSCC patients with HPV-positive tumors. The combination of B02 and AZD1775 significantly inhibited tumor growth in vivo in mice bearing HPV-positive HNSCC tumors as compared to HPV-negative HNSCC. This differential sensitivity appears to be linked to HPV-positive tumors having more in vivo endogenous replication stress owing to transformation by E6 and E7 oncogenes. Furthermore, addition of B02 radiosensitized the HPV-negative HNSCC tumors in vitro and in vivo In conclusion, our data implicate that a novel rational combination with Rad51 and Wee1 inhibitors holds promise as synthetic lethal therapy, particularly in high-risk HPV-positive HNSCC.
Collapse
Affiliation(s)
- Antje Lindemann
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ameeta A Patel
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lin Tang
- Department of Cellular and Molecular Medicine, The University of Arizona Health Sciences, College of Medicine, Tucson, Arizona
| | - Noriaki Tanaka
- Department of Dentistry and Oral Surgery, Osaka Police Hospital, Osaka, Japan
| | - Frederico O Gleber-Netto
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mason D Bartels
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Li Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel J McGrail
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shiaw-Yih Lin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Steven J Frank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mitchell J Frederick
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Abdullah A Osman
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
28
|
Wang Z, Embaye KS, Yang Q, Qin L, Zhang C, Liu L, Zhan X, Zhang F, Wang X, Qin S. A Novel Metabolism-Related Signature as a Candidate Prognostic Biomarker for Hepatocellular Carcinoma. J Hepatocell Carcinoma 2021; 8:119-132. [PMID: 33758763 PMCID: PMC7981163 DOI: 10.2147/jhc.s294108] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Given that metabolic reprogramming has been recognized as an essential hallmark of cancer cells, this study sought to investigate the potential prognostic values of metabolism-related genes (MRGs) for the diagnosis and treatment of hepatocellular carcinoma (HCC). METHODS In total, 2752 metabolism-related gene sequencing data of HCC samples with clinical information were obtained from the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). One hundred and seventy-eight the differentially expressed MRGs were identified from the ICGC cohort and TCGA cohort. Then, univariate Cox regression analysis was performed to identify these genes that were related to overall survival (OS). A novel metabolism-related prognostic signature was developed using the least absolute shrinkage and selection operator (Lasso) and multivariate Cox regression analyses in the ICGC dataset. The Broad Institute's Connectivity Map (CMap) was used in predicting which compounds on the basis of the prognostic MRGs. Furthermore, the signature was validated in the TCGA dataset. Finally, the expression levels of hub genes were validated in HCC cell lines by Western blotting (WB) and quantitative real-time PCR (qRT-PCR). RESULTS We found that 17 MRGs were most significantly associated with OS in HCC. Then, the Lasso and multivariate Cox regression analyses were applied to construct the novel metabolism-relevant prognostic signature, which consisted of six MRGs. The prognostic value of this prognostic model was further successfully validated in the TCGA dataset. Further analysis indicated that this particular signature could be an independent prognostic indicator after adjusting to other clinical factors. Six MRGs (FLVCR1, MOGAT2, SLC5A11, RRM2, COX7B2, and SCN4A) showed high prognostic performance in predicting HCC outcomes. Candidate drugs that aimed at hub ERGs were identified. Finally, hub genes were chosen for validation and the protein, mRNA expression of FLVCR1, SLC5A11, and RRM2 were significantly increased in human HCC cell lines compared to normal human hepatic cell lines, which were in agreement with the results of differential expression analysis. CONCLUSION Our data provided evidence that the metabolism-related signature could serve as a reliable prognostic and predictive tool for OS in patients with HCC.
Collapse
Affiliation(s)
- Zhihao Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Kidane Siele Embaye
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Qing Yang
- Department of Pharmacy, Hiser Medical Center of Qingdao, Qingdao, 266033, People’s Republic of China
| | - Lingzhi Qin
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Chao Zhang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Liwei Liu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Xiaoqian Zhan
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Fengdi Zhang
- Department of Pathology, Wuhan Third Hospital, Wuhan, 430030, People’s Republic of China
| | - Xi Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Shenghui Qin
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| |
Collapse
|
29
|
Modeling and Molecular Dynamics of the 3D Structure of the HPV16 E7 Protein and Its Variants. Int J Mol Sci 2021; 22:ijms22031400. [PMID: 33573298 PMCID: PMC7866783 DOI: 10.3390/ijms22031400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2021] [Accepted: 01/26/2021] [Indexed: 01/21/2023] Open
Abstract
The oncogenic potential of high-risk human papillomavirus (HPV) is predicated on the production of the E6 and E7 oncoproteins, which are responsible for disrupting the control of the cell cycle. Epidemiological studies have proposed that the presence of the N29S and H51N variants of the HPV16 E7 protein is significantly associated with cervical cancer. It has been suggested that changes in the amino acid sequence of E7 variants may affect the oncoprotein 3D structure; however, this remains uncertain. An analysis of the structural differences of the HPV16 E7 protein and its variants (N29S and H51N) was performed through homology modeling and structural refinement by molecular dynamics simulation. We propose, for the first time, a 3D structure of the E7 reference protein and two of Its variants (N29S and H51N), and conclude that the mutations induced by the variants in N29S and H51N have a significant influence on the 3D structure of the E7 protein of HPV16, which could be related to the oncogenic capacity of this protein.
Collapse
|
30
|
Zheng Q, Chen X, Han R, Zhu J, Wang H, Chen L, Song Y, Chen L, Cheng H, Jin N. HPV58 E7 Protein Expression Profile in Cervical Cancer and CIN with Immunohistochemistry. J Cancer 2021; 12:1722-1728. [PMID: 33613760 PMCID: PMC7890325 DOI: 10.7150/jca.50816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 12/15/2020] [Indexed: 12/25/2022] Open
Abstract
Background: The persistent infection of high-risk human papillomavirus (HR-HPV) is one of the most common causes of cervical cancer worldwide, and HPV type 58 (HPV58) is the third most common HPV type in eastern Asia. The E7 oncoprotein is constitutively expressed in HPV58-associated cervical cancer cells and plays a key role during tumorigenesis. This study aimed to assess the HPV58 E7 protein expression in the tissues of cervical cancer and cervical intraepithelial neoplasia (CIN). Methods: A total of 67 HPV58-positive cervical samples were collected, including 25 cervical cancer samples and 42 CIN samples. All the tissues were examined by HPV58 E7, p16INK4a and Ki67 immunohistochemistry (IHC). At last, we analyzed their association with clinical and pathological variables. Results: HPV58 E7 expression was detected in 96% of the HPV58 DNA-positive cervical cancer tissues and 85.7% of HPV58-positive CIN tissues. 65 samples of cervical cancer and CIN tissues had p16-positive staining, while 59 samples were Ki-67 positive. Conclusions: HPV58 E7 protein is highly expressed in both cervical cancer and CIN tissues. HPV58 E7 IHC could be sensitive and specific for evaluating HPV-driven cervical cancer and pre-cancerous lesions, in combination with p16 and Ki-67 IHC.
Collapse
Affiliation(s)
- Qiaoli Zheng
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xianzhen Chen
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Rui Han
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jiang Zhu
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hui Wang
- Department of Pathology, The First People's Hospital of Fuyang, Hangzhou, Zhejiang Province, China
| | - Lingjing Chen
- Department of Dermatology, Hangzhou Children's Hospital, Hangzhou, Zhejiang Province, China
| | - Yinjing Song
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Luxia Chen
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hao Cheng
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Na Jin
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
31
|
Wang N, Wu D, Long Q, Yan Y, Chen X, Zhao Z, Yan H, Zhang X, Xu M, Deng W, Liu X. Dysregulated YY1/PRMT5 axis promotes the progression and metastasis of laryngeal cancer by targeting Hippo pathway. J Cell Mol Med 2020. [PMCID: PMC7812261 DOI: 10.1111/jcmm.16156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Metastases lead to high mortality in laryngeal cancer, but the regulation of its underlying mechanisms remains elusive. We identified Protein arginine methyltransferase 5 (PRMT5) was significantly up‐regulated in laryngeal cancer tissues, which predicts poor patient prognosis. Functional assays demonstrated that PRMT5 overexpression promoted the invasive capacity and lymph node metastasis in vitro and in vivo. Mechanistic experiments suggested that LATS2 was a downstream target of PRMT5. PRMT5 inhibition increased the expression of LATS2 and YAP phosphorylation in laryngeal cancer cells, thereby promoting laryngeal cancer metastasis. Furthermore, informatics and experimental data confirmed that PRMT5 gene was transcriptionally activated by YY1. Collectively, our results unravelled the important role of PRMT5 in laryngeal cancer tumorigenesis and metastasis. The dysregulation YY1/PRMT5/LATS2/YAP axis may contribute to laryngeal cancer progression; thus, PRMT5 may be a potential therapeutic strategy for patients with laryngeal cancer.
Collapse
Affiliation(s)
- Nan Wang
- School of Life Sciences Jiaying University Meizhou China
| | - Di Wu
- Sun Yat‐sen University Cancer Center State Key Laboratory of Oncology in South China Collaborative Innovation Center of Cancer Medicine Guangzhou China
| | - Qian Long
- Sun Yat‐sen University Cancer Center State Key Laboratory of Oncology in South China Collaborative Innovation Center of Cancer Medicine Guangzhou China
| | - Yue Yan
- Sun Yat‐sen University Cancer Center State Key Laboratory of Oncology in South China Collaborative Innovation Center of Cancer Medicine Guangzhou China
| | - Xiaoqi Chen
- Sun Yat‐sen University Cancer Center State Key Laboratory of Oncology in South China Collaborative Innovation Center of Cancer Medicine Guangzhou China
| | - Zheng Zhao
- Sun Yat‐sen University Cancer Center State Key Laboratory of Oncology in South China Collaborative Innovation Center of Cancer Medicine Guangzhou China
| | - Honghong Yan
- Sun Yat‐sen University Cancer Center State Key Laboratory of Oncology in South China Collaborative Innovation Center of Cancer Medicine Guangzhou China
| | - Xinrui Zhang
- Sun Yat‐sen University Cancer Center State Key Laboratory of Oncology in South China Collaborative Innovation Center of Cancer Medicine Guangzhou China
| | - Meilan Xu
- School of Life Sciences Jiaying University Meizhou China
| | - Wuguo Deng
- Sun Yat‐sen University Cancer Center State Key Laboratory of Oncology in South China Collaborative Innovation Center of Cancer Medicine Guangzhou China
| | - Xuekui Liu
- Sun Yat‐sen University Cancer Center State Key Laboratory of Oncology in South China Collaborative Innovation Center of Cancer Medicine Guangzhou China
| |
Collapse
|
32
|
Han J, Hu J, Sun F, Bian H, Tang B, Fang X. MicroRNA-20a-5p suppresses tumor angiogenesis of non-small cell lung cancer through RRM2-mediated PI3K/Akt signaling pathway. Mol Cell Biochem 2020; 476:689-698. [PMID: 33125611 DOI: 10.1007/s11010-020-03936-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/09/2020] [Indexed: 01/07/2023]
Abstract
The current therapeutic strategies for non-small cell lung cancer (NSCLC) are limited and unsatisfactory. MicroRNAs (miRNAs) participate in tumor angiogenesis in NSCLC. The aim of this study was to investigate the role of miR-20a-5p (miR-20a) in human NSCLC metastasis. In the current study, bioinformatics analysis and RT-PCR were performed to examine the expression level of miR-20a in tissues of NSCLC patients and NSCLC cell lines, respectively. Western blot was performed to test the protein levels. Cell proliferation, migration and angiogenesis capacity were tested by 5-ethynyl-29-deoxyuridine (EdU) assay, transwell assay and tube formation assay, respectively. Dual-luciferase reporter assay (DLR) was used to confirm the interaction between miR-20a and paired ribonucleotide reductase regulatory subunit M2 (RRM2). We found that the expression of RRM2 was upregulated, while the expression of miR-20a was downregulated in cancer tissues compared with adjacent tissues in NSCLC patients. We also detected the expression level of RRM2 and miR-20a in NSCLC cell lines, showing A549 cell line exhibited the lowest expression level of miR-20a and highest expression level of RRM2. Overexpressed miR-20a not only dramatically suppressed NSCLC cells proliferation, endothelial cells migration and tube formation in vitro, but also inhibited tumor growth and angiogenesis in vivo. It was demonstrated that miR-20a suppressed NSCLC growth by inhibiting RRM2-mediated PI3K/Akt signaling pathway. These findings indicate that the novel identified miR-20a could function as a tumor suppressor in NSCLC through modulating the RRM2-mediated PI3K/Akt axis, and it could be a valid molecular target for NSCLC treatment.
Collapse
Affiliation(s)
- Junlei Han
- Respiratory and Critical Illness Ward 1, Henan Chest Hospital, No. 1, Weiwu Road, Zhengzhou, 450000, Henan, China
| | - Jianping Hu
- Respiratory and Critical Illness Ward 1, Henan Chest Hospital, No. 1, Weiwu Road, Zhengzhou, 450000, Henan, China.
| | - Fang Sun
- Respiratory and Critical Illness Ward 1, Henan Chest Hospital, No. 1, Weiwu Road, Zhengzhou, 450000, Henan, China
| | - Hongzhi Bian
- Respiratory and Critical Illness Ward 1, Henan Chest Hospital, No. 1, Weiwu Road, Zhengzhou, 450000, Henan, China
| | - Bingxiang Tang
- Respiratory and Critical Illness Ward 1, Henan Chest Hospital, No. 1, Weiwu Road, Zhengzhou, 450000, Henan, China
| | - Xiang Fang
- Respiratory and Critical Illness Ward 1, Henan Chest Hospital, No. 1, Weiwu Road, Zhengzhou, 450000, Henan, China
| |
Collapse
|
33
|
Ochsner SA, Pillich RT, McKenna NJ. Consensus transcriptional regulatory networks of coronavirus-infected human cells. Sci Data 2020; 7:314. [PMID: 32963239 PMCID: PMC7509801 DOI: 10.1038/s41597-020-00628-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/05/2020] [Indexed: 02/08/2023] Open
Abstract
Establishing consensus around the transcriptional interface between coronavirus (CoV) infection and human cellular signaling pathways can catalyze the development of novel anti-CoV therapeutics. Here, we used publicly archived transcriptomic datasets to compute consensus regulatory signatures, or consensomes, that rank human genes based on their rates of differential expression in MERS-CoV (MERS), SARS-CoV-1 (SARS1) and SARS-CoV-2 (SARS2)-infected cells. Validating the CoV consensomes, we show that high confidence transcriptional targets (HCTs) of MERS, SARS1 and SARS2 infection intersect with HCTs of signaling pathway nodes with known roles in CoV infection. Among a series of novel use cases, we gather evidence for hypotheses that SARS2 infection efficiently represses E2F family HCTs encoding key drivers of DNA replication and the cell cycle; that progesterone receptor signaling antagonizes SARS2-induced inflammatory signaling in the airway epithelium; and that SARS2 HCTs are enriched for genes involved in epithelial to mesenchymal transition. The CoV infection consensomes and HCT intersection analyses are freely accessible through the Signaling Pathways Project knowledgebase, and as Cytoscape-style networks in the Network Data Exchange repository.
Collapse
Affiliation(s)
- Scott A Ochsner
- The Signaling Pathways Project and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rudolf T Pillich
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Neil J McKenna
- The Signaling Pathways Project and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
34
|
Tang Q, Wu L, Xu M, Yan D, Shao J, Yan S. Osalmid, a Novel Identified RRM2 Inhibitor, Enhances Radiosensitivity of Esophageal Cancer. Int J Radiat Oncol Biol Phys 2020; 108:1368-1379. [PMID: 32763454 DOI: 10.1016/j.ijrobp.2020.07.2322] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 07/20/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE Esophageal cancer (EC) is an aggressive malignancy and is often resistant to currently available therapies. Inhibition of ribonucleotide reductase small subunit M2 (RRM2) in tumors is speculated to mediate chemosensitization. Previous studies have reported that Osalmid could act as an RRM2 inhibitor. We explored whether RRM2 was involved in radioresistance and the antitumor effects of Osalmid in EC. METHODS AND MATERIALS RRM2 expression was detected by immunohistochemistry in EC tissues. The effects of Osalmid on cell proliferation, apoptosis, and cell cycle were assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphhenyl tetrazolium, colony formation, and flow cytometry assays. DNA damage, cell apoptosis, and senescence induced by Osalmid or ionizing radiation (IR) alone, or both, were detected with immunofluorescence, flow cytometry, Western blot, and β-galactosidase staining. A xenograft mouse model of EC was used to investigate the potential synergistic effects of Osalmid and IR in vivo. RESULTS The expression of RRM2 in treatment-resistant EC tissues is much higher than in treatment-sensitive EC, and strong staining of RRM2 was correlated with shorter overall survival. We observed direct cytotoxicity of Osalmid in EC cells. Osalmid also produced inhibition of the ERK1/2 signal transduction pathway and substantially enhanced IR-induced DNA damage, apoptosis, and senescence. Furthermore, treatment with Osalmid and IR significantly suppressed tumor growth in xenograft EC models without additional toxicity to the hematologic system and internal organs. CONCLUSIONS Our study revealed that RRM2 played a vital role in radioresistance in EC, and Osalmid synergized with IR to exert its antitumor effects both in vitro and in vivo.
Collapse
Affiliation(s)
- Qiuying Tang
- Department of Radiation Oncology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Department of Pathology & Pathophysiology of Zhejiang University, School of Medicine, Hangzhou, China
| | - Lingyun Wu
- Department of Radiation Oncology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Department of Pathology & Pathophysiology of Zhejiang University, School of Medicine, Hangzhou, China
| | - Mengyou Xu
- Department of Radiation Oncology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Department of Pathology & Pathophysiology of Zhejiang University, School of Medicine, Hangzhou, China
| | - Danfang Yan
- Department of Radiation Oncology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Department of Pathology & Pathophysiology of Zhejiang University, School of Medicine, Hangzhou, China
| | - Jimin Shao
- Department of Radiation Oncology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Department of Pathology & Pathophysiology of Zhejiang University, School of Medicine, Hangzhou, China.
| | - Senxiang Yan
- Department of Radiation Oncology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Department of Pathology & Pathophysiology of Zhejiang University, School of Medicine, Hangzhou, China.
| |
Collapse
|
35
|
Ochsner SA, Pillich RT, McKenna NJ. Consensus transcriptional regulatory networks of coronavirus-infected human cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.04.24.059527. [PMID: 32511379 PMCID: PMC7263508 DOI: 10.1101/2020.04.24.059527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Establishing consensus around the transcriptional interface between coronavirus (CoV) infection and human cellular signaling pathways can catalyze the development of novel anti-CoV therapeutics. Here, we used publicly archived transcriptomic datasets to compute consensus regulatory signatures, or consensomes, that rank human genes based on their rates of differential expression in MERS-CoV (MERS), SARS-CoV-1 (SARS1) and SARS-CoV-2 (SARS2)-infected cells. Validating the CoV consensomes, we show that high confidence transcriptional targets (HCTs) of CoV infection intersect with HCTs of signaling pathway nodes with known roles in CoV infection. Among a series of novel use cases, we gather evidence for hypotheses that SARS2 infection efficiently represses E2F family target genes encoding key drivers of DNA replication and the cell cycle; that progesterone receptor signaling antagonizes SARS2-induced inflammatory signaling in the airway epithelium; and that SARS2 HCTs are enriched for genes involved in epithelial to mesenchymal transition. The CoV infection consensomes and HCT intersection analyses are freely accessible through the Signaling Pathways Project knowledgebase, and as Cytoscape-style networks in the Network Data Exchange repository.
Collapse
Affiliation(s)
- Scott A Ochsner
- The Signaling Pathways Project and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Rudolf T Pillich
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Neil J McKenna
- The Signaling Pathways Project and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
36
|
Zhang S, Yan L, Cui C, Wang Z, Wu J, Lv A, Zhao M, Dong B, Zhang W, Guan X, Tian X, Hao C. Downregulation of RRM2 Attenuates Retroperitoneal Liposarcoma Progression via the Akt/mTOR/4EBP1 Pathway: Clinical, Biological, and Therapeutic Significance. Onco Targets Ther 2020; 13:6523-6537. [PMID: 32753891 PMCID: PMC7342604 DOI: 10.2147/ott.s246613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Background Retroperitoneal liposarcoma (RLPS) is a rare tumor with high recurrence rate. Ribonucleotide reductase small subunit M2 (RRM2) protein is essential for DNA synthesis and replication. Our previous study has demonstrated that RRM2 downregulation inhibited the proliferation of RLPS cells, but further association between RRM2 and RLPS and relevant mechanisms remains to be explored. Methods RRM2 expression was evaluated in RLPS tumor tissues and cell lines by using real-time PCR and immunohistochemical analysis. The effect of RRM2 downregulation on cell proliferation, apoptosis, cell cycle, cell migration and invasion was tested by lentivirus. The effect of RRM2 inhibition on tumor growth in vivo was assessed by using patient-derived tumor xenograft (PDX) of RLPS and RRM2 inhibitor. The underlying mechanisms of RRM2 in RLPS were explored by protein microarray and Western blotting. Results The results showed that RRM2 mRNA expression was higher in RLPS tissues than in normal fatty tissues (P<0.001). RRM2 expression was higher in the dedifferentiated, myxoid/round cell, and pleomorphic subtypes (P=0.027), and it was also higher in the high-grade RLPS tissues compared to that in the low-grade RLPS tissues (P=0.004). There was no correlation between RRM2 expression and overall survival (OS) or disease-free survival (DFS) in this group of RLPS patients (P>0.05). RRM2 downregulation inhibited cell proliferation, promoted cell apoptosis, facilitated cell cycle from G1 phase to S phase and inhibited cell migration and invasion. Inhibition of RRM2 suppressed tumor growth in NOD/SCID mice. Protein microarray and Western blot verification showed that activity of Akt/mammalian target of rapamycin/eukaryotic translation initiation factor 4E binding protein 1 (Akt/mTOR/4EBP1) pathway was downregulated along with RRM2 downregulation. Conclusion RRM2 was overexpressed in RLPS tissues, and downregulation of RRM2 could inhibit RLPS progression. In addition, suppression of RRM2 is expected to be a promising treatment for RLPS patients.
Collapse
Affiliation(s)
- Sha Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, People's Republic of China
| | - Liang Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, People's Republic of China
| | - Can Cui
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China
| | - Zhen Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, People's Republic of China
| | - Jianhui Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, People's Republic of China
| | - Ang Lv
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, People's Republic of China
| | - Min Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Bin Dong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Central Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Wenlong Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Laboratory Animal, Peking University Cancer Hospital & Institute, Beijing 100142, People's Republic of China
| | - Xiaoya Guan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, People's Republic of China
| | - Xiuyun Tian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, People's Republic of China
| | - Chunyi Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, People's Republic of China
| |
Collapse
|
37
|
Huang SP, Jiang YF, Yang LJ, Yang J, Liang MT, Zhou HF, Luo J, Yang DP, Mo WJ, Chen G, Shi L, Gan TQ. Downregulation of miR-125b-5p and Its Prospective Molecular Mechanism in Lung Squamous Cell Carcinoma. Cancer Biother Radiopharm 2020; 37:125-140. [PMID: 32614608 DOI: 10.1089/cbr.2020.3657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: To explore the clinical significance of miR-125b-5p and its potential mechanisms in lung squamous cell carcinoma (LUSC). Materials and Methods: An integrated analysis of data from in-house quantitative real-time polymerase chain reaction (qRT-PCR), microRNA-sequencing, and microarray assays to appraise the expression level of miR-125b-5p in LUSC tissues compared to adjacent noncancerous controls. The authors identified the candidate targets of miR-125b-5p and conducted functional analysis using computational biology strategies from gene ontology, the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, disease ontology (DO), and protein-protein interaction (PPI) network analyses to investigate the prospective mechanisms. Results: According to qRT-PCR results, the expression level of miR-125b-5p was markedly decreased in LUSC tissues compared to noncancerous control tissues. Receiver operating characteristic and summary receiver operating characteristic analyses showed that miR-125b-5p had good specificity and sensitivity for distinguishing LUSC tissue from noncancerous lung tissue. The standard mean difference revealed that men and women with lower expression levels of miR-125b-5p may have a higher risk for LUSC. KEGG analysis and DO analysis intimated that target genes were evidently enriched in pyrimidine metabolism and pancreatic carcinoma. The PPI network of the top assembled KEGG pathway indicated that RRM2, UMPS, UCK2, and CTPS1 were regarded as crucial target genes for miR-125b-5p, and RRM2 was eventually deemed a key target. Conclusions: The authors' findings implicate a low expression level of miR-125b-5p in LUSC. A tumor-suppressive role of miR-125b-5p is proposed, based on its effects on LUSC tumor growth, clinical stage progression, and lymph node metastasis.
Collapse
Affiliation(s)
- Shu-Ping Huang
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Yi-Fan Jiang
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Lin-Jie Yang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Jie Yang
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, People's Republic of China
| | - Mei-Ting Liang
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Hua-Fu Zhou
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Jiao Luo
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Da-Ping Yang
- Department of Pathology, Guigang People's Hospital of Guangxi/The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, People's Republic of China
| | - Wei-Jia Mo
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Lin Shi
- Department of Pathology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Ting-Qing Gan
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
38
|
Feng H, Wang Q, Xiao W, Zhang B, Jin Y, Lu H. LncRNA TTN-AS1 Regulates miR-524-5p and RRM2 to Promote Breast Cancer Progression. Onco Targets Ther 2020; 13:4799-4811. [PMID: 32547107 PMCID: PMC7261692 DOI: 10.2147/ott.s243482] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Background Recent studies suggest many long non-coding RNAs (lncRNAs) are crucial oncogenes or tumor suppressors. This study intended to investigate the biological function and mechanism of lncRNA TTN antisense RNA 1 (TTN-AS1) in the progression of breast cancer (BC). Materials and Methods BC tissue samples were collected. The expression of TTN-AS1 in BC tissues and adjacent tissues was detected by qRT-PCR, and the relationship between pathological indicators and TTN-AS1 expression was analyzed by chi-square test. BC cell lines T47D and BT549 were utilized as cell models. CCK-8 assay and BrdU assay were used to detect the effect of TTN-AS1 on BC cell proliferation. Transwell assay was used to detect the effects of TTN-AS1 on cell migration and invasion. In addition, dual-luciferase reporter gene assay was used to confirm the targeting relationship between miR-524-5p and TTN-AS1. Western blot was used to detect the function of TTN-AS1 on regulating ribonucleotide reductase subunit 2 (RRM2) and survivin. Additionally, subcutaneous xenotransplanted tumor model and tail vein injection model were constructed in vivo. Results The expression of TTN-AS1 in BC tissues was significantly higher than that in normal tissues, and its high expression was correlated with adverse pathological indicators. Overexpression of TTN-AS1 significantly promoted the proliferation, migration and invasion of BC cells. TTN-AS1 knockdown suppressed the malignant phenotypes of BC cells. TTN-AS1 overexpression significantly impeded the expression of miR-524-5p, but increased the expression of RRM2. Conclusion TTN-AS1 exerts oncogenic function in BC by repressing miR-524-5p and increasing the expression of RRM2.
Collapse
Affiliation(s)
- Hui Feng
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, People's Republic of China
| | - Qi Wang
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, People's Republic of China
| | - Wenjing Xiao
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, People's Republic of China
| | - Biyuan Zhang
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, People's Republic of China
| | - Yonglong Jin
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, People's Republic of China
| | - Haijun Lu
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, People's Republic of China
| |
Collapse
|
39
|
Yu L, Wei M, Li F. Longitudinal Analysis of Gene Expression Changes During Cervical Carcinogenesis Reveals Potential Therapeutic Targets. Evol Bioinform Online 2020; 16:1176934320920574. [PMID: 32489245 PMCID: PMC7241206 DOI: 10.1177/1176934320920574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 03/24/2020] [Indexed: 01/06/2023] Open
Abstract
Despite advances in the treatment of cervical cancer (CC), the prognosis of patients with CC remains to be improved. This study aimed to explore candidate gene targets for CC. CC datasets were downloaded from the Gene Expression Omnibus database. Genes with similar expression trends in varying steps of CC development were clustered using Short Time-series Expression Miner (STEM) software. Gene functions were then analyzed using the Gene Ontology (GO) database and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Protein interactions among genes of interest were predicted, followed by drug-target genes and prognosis-associated genes. The expressions of the predicted genes were determined using real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting. Red and green profiles with upward and downward gene expressions, respectively, were screened using STEM software. Genes with increased expression were significantly enriched in DNA replication, cell-cycle-related biological processes, and the p53 signaling pathway. Based on the predicted results of the Drug-Gene Interaction database, 17 drug-gene interaction pairs, including 3 red profile genes (TOP2A, RRM2, and POLA1) and 16 drugs, were obtained. The Cancer Genome Atlas data analysis showed that high POLA1 expression was significantly correlated with prolonged survival, indicating that POLA1 is protective against CC. RT-qPCR and Western blotting showed that the expressions of TOP2A, RRM2, and POLA1 gradually increased in the multistep process of CC. TOP2A, RRM2, and POLA1 may be targets for the treatment of CC. However, many studies are needed to validate our findings.
Collapse
Affiliation(s)
- Lijun Yu
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Meiyan Wei
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Fengyan Li
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
40
|
Identification of common candidate genes and pathways for progression of ovarian, cervical and endometrial cancers. Meta Gene 2020. [DOI: 10.1016/j.mgene.2019.100634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
41
|
Pal A, Kundu R. Human Papillomavirus E6 and E7: The Cervical Cancer Hallmarks and Targets for Therapy. Front Microbiol 2020; 10:3116. [PMID: 32038557 PMCID: PMC6985034 DOI: 10.3389/fmicb.2019.03116] [Citation(s) in RCA: 262] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/24/2019] [Indexed: 01/14/2023] Open
Abstract
Human papillomavirus (HPV)-induced cervical cancer is a major health issue among women from the poorly/under-developed sectors of the world. It accounts for a high-mortality rate because of its late diagnosis and poor prognosis. Initial establishment and subsequent progression of this form of cancer are completely dependent on two major oncogenes E6 and E7, which are expressed constitutively leading to tumorigenesis. Thus, manipulation of these genes represents the most successful form of cervical cancer therapy. In the present article, information on structural, functional, and clinical dimensions of E6 and E7 activity has been reviewed. The genome organization and protein structure of E6 and E7 have been discussed followed by their mechanism to establish the six major cancer hallmarks in cervical tissues for tumor propagation. The later section of this review article deals with the different modes of therapeutics, which functions by deregulating E6 and E7 activity. Since E6 and E7 are the biomarkers of a cervical cancer cell and are the ones driving the cancer progression, therapeutic approaches targeting E6 and E7 have been proved to be highly efficient in terms of focused removal of abnormally propagating malignant cells. Therapeutics including different forms of vaccines to advanced genome editing techniques, which suppress E6 and E7 activity, have been found to successfully bring down the population of cervical cancer cells infected with HPV. T-cell mediated immunotherapy is another upcoming successful form of treatment to eradicate HPV-infected tumorigenic cells. Additionally, therapeutics using natural compounds from plants or other natural repositories, i.e., phytotherapeutic approaches have also been reviewed here, which prove their anticancer potential through E6 and E7 inhibitory effects. Thus, E6 and E7 repression through any of these methods is a significant approach toward cervical cancer therapy, described in details in this review along with an insight into the signaling pathways and molecular mechanistic of E6 and E7 action.
Collapse
Affiliation(s)
| | - Rita Kundu
- Cell Biology Laboratory, Department of Botany, Centre of Advanced Studies, University of Calcutta, Kolkata, India
| |
Collapse
|
42
|
Li G, Xie C, Wang Q, Wan D, Zhang Y, Wu X, Yin Y. Uridine/UMP metabolism and their function on the gut in segregated early weaned piglets. Food Funct 2020; 10:4081-4089. [PMID: 31231750 DOI: 10.1039/c9fo00360f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Uridine monophosphate (UMP) is a major nucleotide analogue in mammalian milk and uridine (UR) is its gastro-intestinal metabolite in vivo. This study aims to investigate the functional effects of UMP and UR on the gut in vitro and in vivo. Twenty-one piglets were randomly allotted into three groups, the control group, UMP group and UR group, and orally administered UMP or UR for 10 days. Results showed that UMP and UR supplements improved the ADG of piglets, and decreased the diarrhea rate. UR increased the jejunum villus length/crypt depth ratio, Claudin-3 and E-cadherin expression, and the pyrimidine nucleotide metabolic enzymes including CMPK1, RRM2, UPRT, CTPS1 and CTPS2 in the duodenal mucosa. Both the UMP and UR decreased the expression of CAD and RRM2 at the jejunal mucosa. Moreover, UMP and UR increased the apoptosis ratio of intestinal epithelial cells in in vivo and in vitro experiments. Taken together, oral administration of UR and UMP could improve the small intestinal morphology, promote epithelial cell apoptosis and renewal of intestinal villus tips, and benefit intestinal development and health thus improving the growth performance and reducing the risk of diarrhea in early-weaned piglets.
Collapse
Affiliation(s)
- Guanya Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China. and Hunan Co-Innovation Center of Safety Animal Production; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Chunyan Xie
- Hunan Co-Innovation Center of Safety Animal Production; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Qinhua Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China. and Hunan Co-Innovation Center of Safety Animal Production; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Dan Wan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China.
| | - Yan Zhang
- Meiya Haian pharmaceutical Co., Ltd, Hai'an 226600, China
| | - Xin Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China. and Hunan Co-Innovation Center of Safety Animal Production; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China and Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China. and Hunan Co-Innovation Center of Safety Animal Production; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
43
|
Qiu HZ, Huang J, Xiang CC, Li R, Zuo ED, Zhang Y, Shan L, Cheng X. Screening and Discovery of New Potential Biomarkers and Small Molecule Drugs for Cervical Cancer: A Bioinformatics Analysis. Technol Cancer Res Treat 2020; 19:1533033820980112. [PMID: 33302814 PMCID: PMC7734488 DOI: 10.1177/1533033820980112] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/09/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Cervical cancer (CC) is the second most common type of malignant tumor survival rate is low in advanced stage, metastatic, and recurrent CC patients. This study aimed at identifying potential genes and drugs for CC diagnosis and targeting therapies. METHODS Three GEO mRNA microarray datasets of CC tissues and non-cancerous tissues were analyzed for differentially expressed genes (DEGs) by limma package. GO (Gene Ontologies) and KEGG (Kyoto Encyclopedia of Genes and Genomes) were used to explore the relationships between the DEGs. Protein-protein interaction (PPI) of these genes was established by the STRING database. MCODE was used for screening significant modules in the PPI networks to select hub genes. Biochemical mechanisms of the hub genes were investigated with Metascape. GEPIA database was used for validating the core genes. According to these DEGs, molecular candidates for CC were recognized from the CMAP database. RESULTS We identified 309 overlapping DEGs in the 2 tissue-types. Pathway analysis revealed that the DEGs were involved in cell cycle, DNA replication, and p53 signaling. PPI networks between overlapping DEGs showed 68 high-connectivity DEGs that were chosen as hub genes. The GEPIA database showed that the expression levels of RRM2, CDC45, GINS2, HELLS, KNTC1, MCM2, MYBL2, PCNA, RAD54 L, RFC4, RFC5, TK1, TOP2A, and TYMS in CC tissues were significantly different from those in the healthy tissues and were significantly relevant to the OS of CC. We found 10 small molecules from the CMAP database that could change the trend of gene expression in CC tissues, including piperlongumine and chrysin. CONCLUSIONS The 14 DEGs identified in this study could serve as novel prognosis biomarkers for the detection and forecasting of CC. Small molecule drugs like piperlongumine and chrysin could be potential therapeutic drugs for CC treatment.
Collapse
Affiliation(s)
- Hui-Zhu Qiu
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (The First People’s Hospital of Taicang), Jiangsu, China
| | - Ji Huang
- Department of Pharmacy, Soochow University Affiliated Taicang Hospital (The First People’s Hospital of Taicang), Jiangsu, China
| | - Cheng-Cheng Xiang
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (The First People’s Hospital of Taicang), Jiangsu, China
| | - Rong Li
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (The First People’s Hospital of Taicang), Jiangsu, China
| | - Er-Dong Zuo
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (The First People’s Hospital of Taicang), Jiangsu, China
| | - Yuan Zhang
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (The First People’s Hospital of Taicang), Jiangsu, China
| | - Li Shan
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (The First People’s Hospital of Taicang), Jiangsu, China
| | - Xu Cheng
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (The First People’s Hospital of Taicang), Jiangsu, China
| |
Collapse
|
44
|
Sharma A, Kumar P, Ambasta RK. Cancer Fighting SiRNA-RRM2 Loaded Nanorobots. Pharm Nanotechnol 2020; 8:79-90. [PMID: 32003677 DOI: 10.2174/2211738508666200128120142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/10/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Silencing of several genes is critical for cancer therapy. These genes may be apoptotic gene, cell proliferation gene, DNA synthesis gene, etc. The two subunits of Ribonucleotide Reductase (RR), RRM1 and RRM2, are critical for DNA synthesis. Hence, targeting the blockage of DNA synthesis at tumor site can be a smart mode of cancer therapy. Specific targeting of blockage of RRM2 is done effectively by SiRNA. The drawbacks of siRNA delivery in the body include the poor uptake by all kinds of cells, questionable stability under physiological condition, non-target effect and ability to trigger the immune response. These obstacles may be overcome by target delivery of siRNA at the tumor site. This review presents a holistic overview regarding the role of RRM2 in controlling cancer progression. The nanoparticles are more effective due to specific characteristics like cell membrane penetration capacity, less toxicity, etc. RRM2 have been found to be elevated in different types of cancer and identified as the prognostic and predictive marker of the disease. Reductase RRM1 and RRM2 regulate the protein and gene expression of E2F, which is critical for protein expression and progression of cell cycle and cancer. The knockdown of RRM2 leads to apoptosis via Bcl2 in cancer. Both Bcl2 and E2F are critical in the progression of cancer, hence a gene that can affect both in regulating DNA replication is essential for cancer therapy. AIM The aim of the review is to identify the related gene whose silencing may inhibit cancer progression. CONCLUSION In this review, we illuminate the critical link between RRM-E2F, RRM-Bcl2, RRM-HDAC for the therapy of cancer. Altogether, this review presents an overview of all types of SiRNA targeted for cancer therapy with special emphasis on RRM2 for controlling the tumor progression.
Collapse
Affiliation(s)
- Arjun Sharma
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, TN, India
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, United States
| | - Pravir Kumar
- Functional Genomics Lab, Department of Biotechnology, Delhi Technological University, DTU, Delhi, India
| | - Rashmi K Ambasta
- Functional Genomics Lab, Department of Biotechnology, Delhi Technological University, DTU, Delhi, India
- CSIR Scientific Pool Officer, Department of Biotechnology, Delhi Technological University, Delhi, India
| |
Collapse
|
45
|
Wang J, Yi Y, Chen Y, Xiong Y, Zhang W. Potential mechanism of RRM2 for promoting Cervical Cancer based on weighted gene co-expression network analysis. Int J Med Sci 2020; 17:2362-2372. [PMID: 32922202 PMCID: PMC7484645 DOI: 10.7150/ijms.47356] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022] Open
Abstract
Cervical cancer is the most common gynecologic malignant tumor, with a high incidence in 50-55-year-olds. This study aims to investigate the potential molecular mechanism of RRM2 for promoting the development of cervical cancer based on The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). RRM2 was found to be significant upregulated in cervical tissue (P<0.05) by extracting the expression of RRM2 from TCGA, GSE63514, GSE7410, GSE7803 and GSE9750. Survival analysis indicated that the overall survival was significantly worse in the patients with high-expression of RRM2 (P<0.05). The top 1000 positively/negatively correlated genes with RRM2 by Pearson Correlation test were extracted. The gene co-expression network by Weighted Gene Co-Expression Network Analysis (WGCNA) with these genes and the clinical characteristics (lymphocyte infiltration, monocyte infiltration, necrosis, neutrophil infiltration, the number of normal/stromal/tumor cells and the number of tumor nuclei) was constructed. By screening the hub nodes from the co-expression network, results suggested that RRM2 may co-express with relevant genes to regulate the number of stromal/tumor cells and the process of lymphocyte infiltration to promote the progression of cervical cancer. RRM2 is likely to become a novel potential diagnostic and prognostic biomarker of cervical cancer and provide evidence to support the study of mechanisms for cervical cancer.
Collapse
Affiliation(s)
- Jingtao Wang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yuexiong Yi
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yurou Chen
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yao Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
46
|
Shen J, Yu S, Sun X, Yin M, Fei J, Zhou J. Identification of key biomarkers associated with development and prognosis in patients with ovarian carcinoma: evidence from bioinformatic analysis. J Ovarian Res 2019; 12:110. [PMID: 31729978 PMCID: PMC6857166 DOI: 10.1186/s13048-019-0578-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ovarian cancer (OC) is the deadliest cause in the gynecological malignancies. Most OC patients are diagnosed in advanced stages with less than 40% of women cured. However, the possible mechanism underlying tumorigenesis and candidate biomarkers remain to be further elucidated. RESULTS Gene expression profiles of GSE18520, GSE54388, and GSE27651 were available from Gene Expression Omnibus (GEO) database with a total of 91 OC samples and 22 normal ovarian (OV) tissues. Three hundred forty-nine differentially expressed genes (DEGs) were screened between OC tissues and OV tissues via GEO2R and online Venn software, followed by KEGG pathway and gene ontology (GO) enrichment analysis. The enriched functions and pathways of these DEGs contain male gonad development, cellular response to transforming growth factor beta stimulus, positive regulation of transcription from RNA polymerase II promoter, calcium independent cell-cell adhesion via plasma membrane cell adhesion molecules, extracellular matrix organization, pathways in cancer, cell cycle, cell adhesion molecules, PI3K-AKT signaling pathway, and progesterone mediated oocyte maturation. The protein-protein network (PPI) was established and module analysis was carried out using STRING and Cytoscape. Next, with PPI network analyzed by four topological methods in Cytohubba plugin of Cytoscape, 6 overlapping genes (DTL, DLGAP5, KIF15, NUSAP1, RRM2, and TOP2A) were eventually selected. GEPIA and Oncomine were implemented for validating the gene expression and all the six hub genes were highly expressed in OC specimens compared to normal OV tissues. Furthermore, 5 of 6 genes except for DTL were associated with worse prognosis using Kaplan Meier-plotter online tool and 3 of 6 genes were significantly related to clinical stages, including RRM2, DTL, and KIF15. Additionally, cBioPortal showed that TOP2A and RRM2 were the targets of cancer drugs in patients with OC, indicating the other four genes may also be potential drug targets. CONCLUSION Six hub genes (DTL, DLGAP5, KIF15, NUSAP1, RRM2, and TOP2A) present promising predictive value for the development and prognosis of OC and may be used as candidate targets for diagnosis and treatment of OC.
Collapse
Affiliation(s)
- Jiayu Shen
- Department of Gynecology, The second affiliated hospital of Zhejiang University School of Medicine, No88, Jiefang Road, Shangcheng District, Hangzhou, Zhengjiang, 310002, People's Republic of China
| | - Shuqian Yu
- Department of Gynecology, Tongde hospital of Zhejiang Province, No234, Gucui Road, Xihu District, Hangzhou, Zhejiang, 310012, People's Republic of China
| | - Xiwen Sun
- Department of Obstetrics, The Second Affiliated Hospital of Zhejiang University School of Medicine, No88, Jiefang Road, Shangcheng District, Hangzhou, Zhengjiang, 310002, People's Republic of China
| | - Meichen Yin
- Department of Gynecology, The second affiliated hospital of Zhejiang University School of Medicine, No88, Jiefang Road, Shangcheng District, Hangzhou, Zhengjiang, 310002, People's Republic of China
| | - Jing Fei
- Department of Gynecology, The second affiliated hospital of Zhejiang University School of Medicine, No88, Jiefang Road, Shangcheng District, Hangzhou, Zhengjiang, 310002, People's Republic of China
| | - Jianwei Zhou
- Department of Gynecology, The second affiliated hospital of Zhejiang University School of Medicine, No88, Jiefang Road, Shangcheng District, Hangzhou, Zhengjiang, 310002, People's Republic of China.
| |
Collapse
|
47
|
Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K, Varol M, Jain A, Khan MA, Sethi G. Role of Reactive Oxygen Species in Cancer Progression: Molecular Mechanisms and Recent Advancements. Biomolecules 2019; 9:735. [PMID: 31766246 PMCID: PMC6920770 DOI: 10.3390/biom9110735] [Citation(s) in RCA: 642] [Impact Index Per Article: 128.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) play a pivotal role in biological processes and continuous ROS production in normal cells is controlled by the appropriate regulation between the silver lining of low and high ROS concentration mediated effects. Interestingly, ROS also dynamically influences the tumor microenvironment and is known to initiate cancer angiogenesis, metastasis, and survival at different concentrations. At moderate concentration, ROS activates the cancer cell survival signaling cascade involving mitogen-activated protein kinase/extracellular signal-regulated protein kinases 1/2 (MAPK/ERK1/2), p38, c-Jun N-terminal kinase (JNK), and phosphoinositide-3-kinase/ protein kinase B (PI3K/Akt), which in turn activate the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), matrix metalloproteinases (MMPs), and vascular endothelial growth factor (VEGF). At high concentrations, ROS can cause cancer cell apoptosis. Hence, it critically depends upon the ROS levels, to either augment tumorigenesis or lead to apoptosis. The major issue is targeting the dual actions of ROS effectively with respect to the concentration bias, which needs to be monitored carefully to impede tumor angiogenesis and metastasis for ROS to serve as potential therapeutic targets exogenously/endogenously. Overall, additional research is required to comprehend the potential of ROS as an effective anti-tumor modality and therapeutic target for treating malignancies.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Department of Histopathology, Post Graduate Institute of Medical Education and Research (PGIMER), Punjab, Chandigarh 160012, India;
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India;
| | - Ayşegül Varol
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskişehir TR26470, Turkey;
| | - Falak Thakral
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India;
| | - Mukerrem Betul Yerer
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey;
| | | | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Kotekli Campus, Mugla Sitki Kocman University, Mugla TR48000, Turkey;
| | - Aklank Jain
- Department of Animal Sciences, Central University of Punjab, City Campus, Mansa Road, Bathinda 151001, India;
| | - Md. Asaduzzaman Khan
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China;
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| |
Collapse
|
48
|
Xu J, Zhang J, Shan F, Wen J, Wang Y. SSTR5‑AS1 functions as a ceRNA to regulate CA2 by sponging miR‑15b‑5p for the development and prognosis of HBV‑related hepatocellular carcinoma. Mol Med Rep 2019; 20:5021-5031. [PMID: 31638225 PMCID: PMC6854603 DOI: 10.3892/mmr.2019.10736] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/29/2019] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been implicated in the development and progression of cancer. However, the mechanisms of lncRNAs in hepatitis B virus (HBV) infection-induced hepatocellular carcinoma (HCC) remain unclear. The study aimed to reveal the roles of lncRNAs for HBV-HCC based on the hypothesis of competing endogenous RNA (ceRNA). The lncRNA (GSE27462), miRNA (GSE76903) and mRNA (GSE121248) expression profiles were collected from the Gene Expression Omnibus database. Differentially expressed lncRNAs (DELs), genes (DEGs) and miRNAs (DEMs) were identified using the LIMMA or EdgeR package, respectively. The ceRNA network was constructed based on interaction pairs between miRNAs and mRNAs/lncRNAs. The functions of DEGs in the ceRNA network were predicted using the DAVID database, which was overlapped with the known HCC pathways of Comparative Toxicogenomics Database (CTD) to construct the HCC-related ceRNA network. The prognosis values [overall survival, (OS); recurrence-free survival (RFS)] of genes were validated using the Cancer Genome Atlas (TCGA) data with Cox regression analysis. The present study screened 38 DELs, 127 DEMs and 721 DEGs. A ceRNA network was constructed among 17 DELs, 12 DEMs and 173 DEGs, including the FAM138B-hsa-miR-30c-CCNE2/RRM2 and SSTR5-AS1-hsa-miR-15b-5p-CA2 ceRNA axes. Function enrichment analysis revealed the genes in the ceRNA network that participated in the p53 signaling pathway [cyclin E2 (CCNE2), ribonucleotide reductase M2 subunit (RRM2)] and nitrogen metabolism [carbonic anhydrase 2 (CA2)], which were also included in the pathways of the CTD. Univariate Cox regression analysis revealed that six RNAs (2 DELs: FAM138B, SSTR5-AS1; 2 DEMs: hsa-miR-149, hsa-miR-7; 2 DEGs: CCNE2, RRM2) were significantly associated with OS; while seven RNAs (1 DEL: LINC00284; 3 DEMs: hsa-miR-7, hsa-miR-15b, hsa-miR-30c-2; and 3 DEGs: RRM2, CCNE2, CA2) were significantly associated with RFS. In conclusion, FAM138B-hsa-miR-30c-CCNE2/RRM2 and the SSTR5-AS1-hsa-miR-15b-5p-CA2 ceRNA axes may be important mechanisms for HBV-related HCC.
Collapse
Affiliation(s)
- Jing Xu
- Infectious Diseases Division, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Jing Zhang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Fenglian Shan
- Infectious Diseases Division, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Jie Wen
- Respiratory Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Yue Wang
- Infectious Diseases Division, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| |
Collapse
|
49
|
Xing Z, Luo Z, Yang H, Huang Z, Liang X. Screening and identification of key biomarkers in adrenocortical carcinoma based on bioinformatics analysis. Oncol Lett 2019; 18:4667-4676. [PMID: 31611976 PMCID: PMC6781718 DOI: 10.3892/ol.2019.10817] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 08/08/2019] [Indexed: 12/11/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare malignancy with a poor prognosis. The presently available understanding of the pathogenesis of ACC is incomplete and the treatment options for patients with ACC are limited. Gene marker identification is required for accurate and timely diagnosis of the disease. In order to identify novel candidate genes associated with the occurrence and progression of ACC, the microarray datasets, GSE12368 and GSE19750, were obtained from Gene Expression Omnibus. Differentially expressed genes (DEGs) were identified, and functional enrichment analysis was performed. A protein-protein interaction network (PPI) was constructed to identify significantly altered modules, and module analysis was performed using Search Tool for the Retrieval of Interacting Genes and Cytoscape. A total of 228 DEGs were screened, consisting of 29 up and 199 downregulated genes. The enriched functions and pathways of the DEGs primarily included 'cell division', 'regulation of transcription involved in G1/S transition of mitotic cell cycle', 'G1/S transition of mitotic cell cycle', 'p53 signaling pathway' and 'oocyte meiosis'. A total of 14 hub genes were identified, and biological process analysis revealed that these genes were significantly enriched in cell division and mitotic cell cycle. Furthermore, survival analysis revealed that AURKA, TYMS, GINS1, RACGAP1, RRM2, EZH2, ZWINT, CDK1, CCNB1, NCAPG and TPX2 may be involved in the tumorigenesis, progression or prognosis of ACC. In conclusion, the 14 hub genes identified in the present study may aid researchers in elucidating the molecular mechanisms associated with the tumorigenesis and progression of ACC, and may be powerful and promising candidate biomarkers for the diagnosis and treatment of ACC.
Collapse
Affiliation(s)
- Zengmiao Xing
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zuojie Luo
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Haiyan Yang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zhenxing Huang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xinghuan Liang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
50
|
Liu C, Li Y, Hu R, Han W, Gao S. Knockdown of ribonucleotide reductase regulatory subunit M2 increases the drug sensitivity of chronic myeloid leukemia to imatinib‑based therapy. Oncol Rep 2019; 42:571-580. [PMID: 31233186 PMCID: PMC6610035 DOI: 10.3892/or.2019.7194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/30/2019] [Indexed: 12/21/2022] Open
Abstract
Imatinib-based targeted treatment is the standard therapy for chronic myeloid leukemia (CML); however, drug resistance is an inevitable issue for imatinib-based CML treatment. Imatinib resistance can be ascribed to Bcr-Abl-dependent and independent resistance. In the present study, peripheral blood samples were collected from imatinib-sensitive (IS) and imatinib-resistant (IR) CML patients and transcriptome sequencing was carried out. From the RNA-seq data, a significantly altered IR-related gene (IRG), ribonucleotide reductase regulatory subunit M2 (RRM2) was identified. Using real-time quantitative fluorescence PCR (qF-PCR), we found that RRM2 was elevated in both IR CML patients and an IR cell line. Using reverse-transcription PCR (RT-PCR) and western blot analysis, we indicated that imatinib can increase RRM2 level in a dose-dependent manner in IR cells. We also demonstrated that RRM2 is involved in the Bcl-2/caspase cell apoptotic pathway and in the Akt cell signaling pathway, and therefore affects the cell survival following imatinib therapy. The present study, for the first time, indicates that RRM2 is responsible for drug resistance in imatinib-based therapy. Therefore, RRM2 gene can be considered as a potential therapeutic target in the clinical treatment of CML.
Collapse
Affiliation(s)
- Chunshui Liu
- Department of Hematology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yuying Li
- Department of Hematology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ruiping Hu
- Department of Hematology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wei Han
- Department of Hematology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Sujun Gao
- Department of Hematology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|