1
|
Tan H, Guo M, Chen J, Wang J, Yu G. HetFCM: functional co-module discovery by heterogeneous network co-clustering. Nucleic Acids Res 2024; 52:e16. [PMID: 38088228 PMCID: PMC10853805 DOI: 10.1093/nar/gkad1174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/23/2023] [Indexed: 02/10/2024] Open
Abstract
Functional molecular module (i.e., gene-miRNA co-modules and gene-miRNA-lncRNA triple-layer modules) analysis can dissect complex regulations underlying etiology or phenotypes. However, current module detection methods lack an appropriate usage and effective model of multi-omics data and cross-layer regulations of heterogeneous molecules, causing the loss of critical genetic information and corrupting the detection performance. In this study, we propose a heterogeneous network co-clustering framework (HetFCM) to detect functional co-modules. HetFCM introduces an attributed heterogeneous network to jointly model interplays and multi-type attributes of different molecules, and applies multiple variational graph autoencoders on the network to generate cross-layer association matrices, then it performs adaptive weighted co-clustering on association matrices and attribute data to identify co-modules of heterogeneous molecules. Empirical study on Human and Maize datasets reveals that HetFCM can find out co-modules characterized with denser topology and more significant functions, which are associated with human breast cancer (subtypes) and maize phenotypes (i.e., lipid storage, drought tolerance and oil content). HetFCM is a useful tool to detect co-modules and can be applied to multi-layer functional modules, yielding novel insights for analyzing molecular mechanisms. We also developed a user-friendly module detection and analysis tool and shared it at http://www.sdu-idea.cn/FMDTool.
Collapse
Affiliation(s)
- Haojiang Tan
- School of Software, Shandong University, Jinan 250101, Shandong, China
- Joint SDU-NTU Centre for Artificial Intelligence Research, Shandong University, Jinan 250101, Shandong, China
| | - Maozu Guo
- College of Electrical and Information Engineering, Beijing Uni. of Civil Eng. and Arch., Beijing 100044, China
| | - Jian Chen
- College of Agronomy & Biotechnolog, China Agricultural University, Beijing 100193, China
| | - Jun Wang
- Joint SDU-NTU Centre for Artificial Intelligence Research, Shandong University, Jinan 250101, Shandong, China
| | - Guoxian Yu
- School of Software, Shandong University, Jinan 250101, Shandong, China
- Joint SDU-NTU Centre for Artificial Intelligence Research, Shandong University, Jinan 250101, Shandong, China
| |
Collapse
|
2
|
Padroni L, De Marco L, Dansero L, Fiano V, Milani L, Vasapolli P, Manfredi L, Caini S, Agnoli C, Ricceri F, Sacerdote C. An Epidemiological Systematic Review with Meta-Analysis on Biomarker Role of Circulating MicroRNAs in Breast Cancer Incidence. Int J Mol Sci 2023; 24:3910. [PMID: 36835336 PMCID: PMC9967215 DOI: 10.3390/ijms24043910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Breast cancer (BC) is a multifactorial disease caused by an interaction between genetic predisposition and environmental exposures. MicroRNAs are a group of small non-coding RNA molecules, which seem to have a role either as tumor suppressor genes or oncogenes and seem to be related to cancer risk factors. We conducted a systematic review and meta-analysis to identify circulating microRNAs related to BC diagnosis, paying special attention to methodological problems in this research field. A meta-analysis was performed for microRNAs analyzed in at least three independent studies where sufficient data to make analysis were presented. Seventy-five studies were included in the systematic review. A meta-analysis was performed for microRNAs analyzed in at least three independent studies where sufficient data to make analysis were presented. Seven studies were included in the MIR21 and MIR155 meta-analysis, while four studies were included in the MIR10b metanalysis. The pooled sensitivity and specificity of MIR21 for BC diagnosis were 0.86 (95%CI 0.76-0.93) and 0.84 (95%CI 0.71-0.92), 0.83 (95%CI 0.72-0.91) and 0.90 (95%CI 0.69-0.97) for MIR155, and 0.56 (95%CI 0.32-0.71) and 0.95 (95%CI 0.88-0.98) for MIR10b, respectively. Several other microRNAs were found to be dysregulated, distinguishing BC patients from healthy controls. However, there was little consistency between included studies, making it difficult to identify specific microRNAs useful for diagnosis.
Collapse
Affiliation(s)
- Lisa Padroni
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital and Center for Cancer Prevention (CPO), Via Santena 7, 10126 Turin, Italy
| | - Laura De Marco
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital and Center for Cancer Prevention (CPO), Via Santena 7, 10126 Turin, Italy
| | - Lucia Dansero
- Centre for Biostatistics, Epidemiology and Public Health (C-BEPH), Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Valentina Fiano
- Unit of Cancer Epidemiology, Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Lorenzo Milani
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital and Center for Cancer Prevention (CPO), Via Santena 7, 10126 Turin, Italy
| | - Paolo Vasapolli
- Unit of Cancer Epidemiology, Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Luca Manfredi
- Centre for Biostatistics, Epidemiology and Public Health (C-BEPH), Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Saverio Caini
- Institute for Cancer Research, Prevention and Clinical Network (ISPRO), 50139 Florence, Italy
| | - Claudia Agnoli
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Fulvio Ricceri
- Centre for Biostatistics, Epidemiology and Public Health (C-BEPH), Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
- Unit of Epidemiology, Regional Health Service ASL TO3, 10095 Grugliasco, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital and Center for Cancer Prevention (CPO), Via Santena 7, 10126 Turin, Italy
| |
Collapse
|
3
|
Zhou S, Li L, Zhang M, Qin Y, Li B. The function of brother of the regulator of imprinted sites in cancer development. Cancer Gene Ther 2023; 30:236-244. [PMID: 36376421 DOI: 10.1038/s41417-022-00556-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 11/15/2022]
Abstract
As Douglas Hanahan and Robert Weinberg compiled, there are nine hallmarks of cancer that are conducive to cancer cell development and survival. Previous studies showed that brother of the regulator of imprinted sites (BORIS) might promote cancer progression through these aspects. The competition between BORIS and CCCTC-binding factor (CTCF), which is crucial in the formation of chromatin loops, affects the normal function of CTCF and leads to neoplasia and deformity. In addition, BORIS belongs to the cancer-testis antigen families, which are potential targets in cancer diagnosis and treatment. Herein, we discuss the function and mechanisms of BORIS, especially in cancer development.
Collapse
Affiliation(s)
- Siqi Zhou
- Department of Liver Surgery, West China Hospital, Sichuan University Medical School, 37 Guo Xue Road, Chengdu, 610041, Sichuan Province, China
| | - Lian Li
- Department of Liver Surgery, West China Hospital, Sichuan University Medical School, 37 Guo Xue Road, Chengdu, 610041, Sichuan Province, China
| | - Ming Zhang
- Department of Liver Surgery, West China Hospital, Sichuan University Medical School, 37 Guo Xue Road, Chengdu, 610041, Sichuan Province, China
| | - Yang Qin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China.
| | - Bo Li
- Department of Liver Surgery, West China Hospital, Sichuan University Medical School, 37 Guo Xue Road, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
4
|
Liquid Biopsy in Diagnosis and Prognosis of Non-Metastatic Prostate Cancer. Biomedicines 2022; 10:biomedicines10123115. [PMID: 36551871 PMCID: PMC9776104 DOI: 10.3390/biomedicines10123115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/10/2022] Open
Abstract
Currently, sensitive and specific methods for the detection and prognosis of early stage PCa are lacking. To establish the diagnosis and further identify an appropriate treatment strategy, prostate specific antigen (PSA) blood test followed by tissue biopsy have to be performed. The combination of tests is justified by the lack of a highly sensitive, specific, and safe single test. Tissue biopsy is specific but invasive and may have severe side effects, and therefore is inappropriate for screening of the disease. At the same time, the PSA blood test, which is conventionally used for PCa screening, has low specificity and may be elevated in the case of noncancerous prostate tumors and inflammatory conditions, including benign prostatic hyperplasia and prostatitis. Thus, diverse techniques of liquid biopsy have been investigated to supplement or replace the existing tests of prostate cancer early diagnosis and prognostics. Here, we provide a review on the advances in diagnosis and prognostics of non-metastatic prostate cancer by means of various biomarkers extracted via liquid biopsy, including circulating tumor cells, exosomal miRNAs, and circulating DNAs.
Collapse
|
5
|
Punzón-Jiménez P, Lago V, Domingo S, Simón C, Mas A. Molecular Management of High-Grade Serous Ovarian Carcinoma. Int J Mol Sci 2022; 23:13777. [PMID: 36430255 PMCID: PMC9692799 DOI: 10.3390/ijms232213777] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) represents the most common form of epithelial ovarian carcinoma. The absence of specific symptoms leads to late-stage diagnosis, making HGSOC one of the gynecological cancers with the worst prognosis. The cellular origin of HGSOC and the role of reproductive hormones, genetic traits (such as alterations in P53 and DNA-repair mechanisms), chromosomal instability, or dysregulation of crucial signaling pathways have been considered when evaluating prognosis and response to therapy in HGSOC patients. However, the detection of HGSOC is still based on traditional methods such as carbohydrate antigen 125 (CA125) detection and ultrasound, and the combined use of these methods has yet to support significant reductions in overall mortality rates. The current paradigm for HGSOC management has moved towards early diagnosis via the non-invasive detection of molecular markers through liquid biopsies. This review presents an integrated view of the relevant cellular and molecular aspects involved in the etiopathogenesis of HGSOC and brings together studies that consider new horizons for the possible early detection of this gynecological cancer.
Collapse
Affiliation(s)
- Paula Punzón-Jiménez
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
| | - Victor Lago
- Department of Gynecologic Oncology, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Department of Obstetrics and Gynecology, CEU Cardenal Herrera University, 46115 Valencia, Spain
| | - Santiago Domingo
- Department of Gynecologic Oncology, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Universidad de Valencia, 46010 Valencia, Spain
| | - Carlos Simón
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Universidad de Valencia, 46010 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA 02215, USA
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aymara Mas
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
| |
Collapse
|
6
|
Lirussi L, Ayyildiz D, Liu Y, Montaldo NP, Carracedo S, Aure MR, Jobert L, Tekpli X, Touma J, Sauer T, Dalla E, Kristensen VN, Geisler J, Piazza S, Tell G, Nilsen H. A regulatory network comprising let-7 miRNA and SMUG1 is associated with good prognosis in ER+ breast tumours. Nucleic Acids Res 2022; 50:10449-10468. [PMID: 36156150 PMCID: PMC9561369 DOI: 10.1093/nar/gkac807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/31/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Single-strand selective uracil-DNA glycosylase 1 (SMUG1) initiates base excision repair (BER) of uracil and oxidized pyrimidines. SMUG1 status has been associated with cancer risk and therapeutic response in breast carcinomas and other cancer types. However, SMUG1 is a multifunctional protein involved, not only, in BER but also in RNA quality control, and its function in cancer cells is unclear. Here we identify several novel SMUG1 interaction partners that functions in many biological processes relevant for cancer development and treatment response. Based on this, we hypothesized that the dominating function of SMUG1 in cancer might be ascribed to functions other than BER. We define a bad prognosis signature for SMUG1 by mapping out the SMUG1 interaction network and found that high expression of genes in the bad prognosis network correlated with lower survival probability in ER+ breast cancer. Interestingly, we identified hsa-let-7b-5p microRNA as an upstream regulator of the SMUG1 interactome. Expression of SMUG1 and hsa-let-7b-5p were negatively correlated in breast cancer and we found an inhibitory auto-regulatory loop between SMUG1 and hsa-let-7b-5p in the MCF7 breast cancer cells. We conclude that SMUG1 functions in a gene regulatory network that influence the survival and treatment response in several cancers.
Collapse
Affiliation(s)
- Lisa Lirussi
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, N-0318 Oslo, Norway.,Section of Clinical Molecular Biology, Akershus University Hospital (AHUS), 1478 Lørenskog, Norway
| | - Dilara Ayyildiz
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, p.le M. Kolbe 4, 33100 Udine, Italy
| | - Yan Liu
- Section of Clinical Molecular Biology, Akershus University Hospital (AHUS), 1478 Lørenskog, Norway
| | - Nicola P Montaldo
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, N-0318 Oslo, Norway
| | - Sergio Carracedo
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, N-0318 Oslo, Norway.,Section of Clinical Molecular Biology, Akershus University Hospital (AHUS), 1478 Lørenskog, Norway
| | - Miriam R Aure
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, 0450 Oslo, Norway
| | - Laure Jobert
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, N-0318 Oslo, Norway
| | - Xavier Tekpli
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, 0450 Oslo, Norway
| | - Joel Touma
- Department of Breast and Endocrine Surgery, Akershus University Hospital (AHUS), 1478 Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Campus AHUS, 1478 Lørenskog, Norway
| | - Torill Sauer
- Institute of Clinical Medicine, University of Oslo, Campus AHUS, 1478 Lørenskog, Norway.,Department of Pathology, Akershus University Hospital, 1478 Lørenskog, Norway
| | - Emiliano Dalla
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, p.le M. Kolbe 4, 33100 Udine, Italy
| | - Vessela N Kristensen
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, 0450 Oslo, Norway.,Department of Pathology, Akershus University Hospital, 1478 Lørenskog, Norway
| | - Jürgen Geisler
- Institute of Clinical Medicine, University of Oslo, Campus AHUS, 1478 Lørenskog, Norway.,Department of Oncology, Akershus University Hospital (AHUS), 1478 Lørenskog, Norway
| | - Silvano Piazza
- Bioinformatics Core Facility, Centre for Integrative Biology (CIBIO), University of Trento, via Sommarive 18, 38123, Povo (Trento), Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, p.le M. Kolbe 4, 33100 Udine, Italy
| | - Hilde Nilsen
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, N-0318 Oslo, Norway.,Section of Clinical Molecular Biology, Akershus University Hospital (AHUS), 1478 Lørenskog, Norway.,Department of Microbiology, Oslo University Hospital, N-0424 Oslo, Norway
| |
Collapse
|
7
|
Ahmed EA, Rajendran P, Scherthan H. The microRNA-202 as a Diagnostic Biomarker and a Potential Tumor Suppressor. Int J Mol Sci 2022; 23:ijms23115870. [PMID: 35682549 PMCID: PMC9180238 DOI: 10.3390/ijms23115870] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
MicroRNA-202 (miR-202) is a member of the highly conserved let-7 family that was discovered in Caenorhabditis elegans and recently reported to be involved in cell differentiation and tumor biology. In humans, miR-202 was initially identified in the testis where it was suggested to play a role in spermatogenesis. Subsequent research showed that miR-202 is one of the micro-RNAs that are dysregulated in different types of cancer. During the last decade, a large number of investigations has fortified a role for miR-202 in cancer. However, its functions can be double-edged, depending on context they may be tumor suppressive or oncogenic. In this review, we highlight miR-202 as a potential diagnostic biomarker and as a suppressor of tumorigenesis and metastasis in several types of tumors. We link miR-202 expression levels in tumor types to its involved upstream and downstream signaling molecules and highlight its potential roles in carcinogenesis. Three well-known upstream long non-coding-RNAs (lncRNAs); MALAT1, NORAD, and NEAT1 target miR-202 and inhibit its tumor suppressive function thus fueling cancer progression. Studies on the downstream targets of miR-202 revealed PTEN, AKT, and various oncogenes such as metadherin (MTDH), MYCN, Forkhead box protein R2 (FOXR2) and Kirsten rat sarcoma virus (KRAS). Interestingly, an upregulated level of miR-202 was shown by most of the studies that estimated its expression level in blood or serum of cancer patients, especially in breast cancer. Reduced expression levels of miR-202 in tumor tissues were found to be associated with progression of different types of cancer. It seems likely that miR-202 is embedded in a complex regulatory network related to the nature and the sensitivity of the tumor type and therapeutic (pre)treatments. Its variable roles in tumorigenesis are mediated in part thought its oncogene effectors. However, the currently available data suggest that the involved signaling pathways determine the anti- or pro-tumorigenic outcomes of miR-202’s dysregulation and its value as a diagnostic biomarker.
Collapse
Affiliation(s)
- Emad A. Ahmed
- Biological Sciences Department, College of Science, King Faisal University, Hofuf 31982, Saudi Arabia;
- Laboratory of Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, Assiut 71515, Egypt
- Correspondence: ; Tel.: +96-6568331887
| | - Peramaiyan Rajendran
- Biological Sciences Department, College of Science, King Faisal University, Hofuf 31982, Saudi Arabia;
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Harry Scherthan
- Institut für Radiobiologie der Bundeswehr in Verb. mit der Universität Ulm, 80937 Munich, Germany;
| |
Collapse
|
8
|
Mahdevar E, Kefayat A, Safavi A, Behnia A, Hejazi SH, Javid A, Ghahremani F. Immunoprotective effect of an in silico designed multiepitope cancer vaccine with BORIS cancer-testis antigen target in a murine mammary carcinoma model. Sci Rep 2021; 11:23121. [PMID: 34848739 PMCID: PMC8632969 DOI: 10.1038/s41598-021-01770-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022] Open
Abstract
In our previous study, immunoinformatic tools were used to design a novel multiepitope cancer vaccine based on the most immunodominant regions of BORIS cancer-testis antigen. The final vaccine construct was an immunogenic, non-allergenic, and stable protein consisted of multiple cytotoxic T lymphocytes epitopes, IFN-γ inducing epitopes, and B cell epitopes according to bioinformatic analyzes. Herein, the DNA sequence of the final vaccine construct was placed into the pcDNA3.1 vector as a DNA vaccine (pcDNA3.1-VAC). Also, the recombinant multiepitope peptide vaccine (MPV) was produced by a transfected BL21 E. coli strain using a recombinant pET-28a vector and then, purified and screened by Fast protein liquid chromatography technique (FPLC) and Western blot, respectively. The anti-tumor effects of prophylactic co-immunization with these DNA and protein cancer vaccines were evaluated in the metastatic non-immunogenic 4T1 mammary carcinoma in BALB/c mice. Co-immunization with the pcDNA3.1-VAC and MPV significantly (P < 0.001) increased the serum levels of the MPV-specific IgG total, IgG2a, and IgG1. The splenocytes of co-immunized mice exhibited a significantly higher efficacy to produce interleukin-4 and interferon-γ and proliferation in response to MPV in comparison with the control. The prophylactic co-immunization regime caused significant breast tumors' growth inhibition, tumors' weight decrease, inhibition of metastasis formation, and enlarging tumor-bearing mice survival time, without any considerable side effects. Taking together, this cancer vaccine can evoke strong immune response against breast tumor and inhibits its growth and metastasis.
Collapse
MESH Headings
- Animals
- Cancer Vaccines/chemistry
- Cancer Vaccines/immunology
- Cell Line
- Cell Line, Tumor
- Cell Proliferation
- Chromatography, Liquid
- Computational Biology
- Computer Simulation
- DNA-Binding Proteins/biosynthesis
- Disease Models, Animal
- Epitopes
- Female
- Immunity, Humoral
- Interferon-gamma/chemistry
- Mammary Neoplasms, Animal/immunology
- Mammary Neoplasms, Animal/prevention & control
- Mammary Neoplasms, Animal/therapy
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/prevention & control
- Mammary Neoplasms, Experimental/therapy
- Mice
- Mice, Inbred BALB C
- Neoplasm Metastasis
- T-Lymphocytes, Cytotoxic/immunology
- Vaccines, Subunit
Collapse
Affiliation(s)
- Elham Mahdevar
- Department of Biological Sciences, Faculty of Science and Engineering, Science and Arts University, Yazd, Iran
| | - Amirhosein Kefayat
- Department of Oncology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ashkan Safavi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Amirhossein Behnia
- Department of Biology, Faculty of the Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Seyed Hossein Hejazi
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amaneh Javid
- Department of Biological Sciences, Faculty of Science and Engineering, Science and Arts University, Yazd, Iran
| | - Fatemeh Ghahremani
- Department of Medical Physics and Radiotherapy, School of Paramedicine, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
9
|
Circulating miRNAs as Novel Non-Invasive Biomarkers to Aid the Early Diagnosis of Suspicious Breast Lesions for Which Biopsy Is Recommended. Cancers (Basel) 2021; 13:cancers13164028. [PMID: 34439180 PMCID: PMC8391908 DOI: 10.3390/cancers13164028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary In population-based screens, tissue biopsy remains the standard practice for women with imaging that suggests breast cancer. We examined circulating microRNAs as minimally invasive diagnostic biomarkers to discriminate malignant from benign breast lesions. A retrospective cohort of plasma samples divided into training and testing sets and a prospective cohort of women with suspicious imaging findings who underwent tissue biopsy were investigated through a global microRNA profile by OpenArray. Seven signatures, involving 5 specific miRNAs (miR-625, miR-423-5p, miR-370-3p, miR-181c, and miR-301b), were identified and validated in the testing set. Among the 7 signatures, the discriminatory performances of 5 of them were confirmed in the prospective cohort. Abstract In population-based screens, tissue biopsy remains the standard practice for women with imaging that suggests breast cancer. We examined circulating microRNAs as minimally invasive diagnostic biomarkers to discriminate malignant from benign breast lesions. miRNAs were analyzed by OpenArray in a retrospective cohort of plasma samples including 100 patients with malignant (T), 89 benign disease (B), and 99 healthy donors (HD) divided into training and testing sets and a prospective cohort (BABE) of 289 women with suspicious imaging findings who underwent tissue biopsy. miRNAs associated with disease status were identified by univariate analysis and then combined into signatures by multivariate logistic regression models. By combining 16 miRNAs differentially expressed in the T vs. HD comparison, 26 signatures were also able to significantly discriminate T from B disease. Seven of them, involving 5 specific miRNAs (miR-625, miR-423-5p, miR-370-3p, miR-181c, and miR-301b), were statistically validated in the testing set. Among the 7 signatures, the discriminatory performances of 5 were confirmed in the prospective BABE Cohort. This study identified 5 circulating miRNAs that, properly combined, distinguish malignant from benign breast disease in women with a high likelihood of malignancy.
Collapse
|
10
|
Monastirioti A, Papadaki C, Rounis K, Kalapanida D, Mavroudis D, Agelaki S. A Prognostic Role for Circulating microRNAs Involved in Macrophage Polarization in Advanced Non-Small Cell Lung Cancer. Cells 2021; 10:cells10081988. [PMID: 34440757 PMCID: PMC8391493 DOI: 10.3390/cells10081988] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Circulating microRNAs (miRNAs) are key regulators of the crosstalk between tumor cells and immune response. In the present study, miRNAs (let-7c, miR-26a, miR-30d, miR-98, miR-195, miR-202) reported to be involved in the polarization of macrophages were examined for associations with the outcomes of non-small cell lung cancer (NSCLC) patients (N = 125) treated with first-line platinum-based chemotherapy. RT-qPCR was used to analyze miRNA expression levels in the plasma of patients prior to treatment. In our results, disease progression was correlated with high miR-202 expression (HR: 2.335; p = 0.040). Additionally, high miR-202 expression was characterized as an independent prognostic factor for shorter progression-free survival (PFS, HR: 1.564; p = 0.021) and overall survival (OS, HR: 1.558; p = 0.024). Moreover, high miR-202 independently predicted shorter OS (HR: 1.989; p = 0.008) in the non-squamous (non-SqCC) subgroup, and high miR-26a was correlated with shorter OS in the squamous (SqCC) subgroup (10.07 vs. 13.53 months, p = 0.033). The results of the present study propose that the expression levels of circulating miRNAs involved in macrophage polarization are correlated with survival measures in NSCLC patients, and their role as potential biomarkers merits further investigation.
Collapse
Affiliation(s)
- Alexia Monastirioti
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Vassilika Vouton, 71003 Heraklion, Crete, Greece; (A.M.); (C.P.); (D.M.)
| | - Chara Papadaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Vassilika Vouton, 71003 Heraklion, Crete, Greece; (A.M.); (C.P.); (D.M.)
| | - Konstantinos Rounis
- Department of Medical Oncology, University General Hospital of Heraklion, Vassilika Vouton, 71110 Heraklion, Crete, Greece; (K.R.); (D.K.)
| | - Despoina Kalapanida
- Department of Medical Oncology, University General Hospital of Heraklion, Vassilika Vouton, 71110 Heraklion, Crete, Greece; (K.R.); (D.K.)
| | - Dimitrios Mavroudis
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Vassilika Vouton, 71003 Heraklion, Crete, Greece; (A.M.); (C.P.); (D.M.)
- Department of Medical Oncology, University General Hospital of Heraklion, Vassilika Vouton, 71110 Heraklion, Crete, Greece; (K.R.); (D.K.)
| | - Sofia Agelaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Vassilika Vouton, 71003 Heraklion, Crete, Greece; (A.M.); (C.P.); (D.M.)
- Department of Medical Oncology, University General Hospital of Heraklion, Vassilika Vouton, 71110 Heraklion, Crete, Greece; (K.R.); (D.K.)
- Correspondence: ; Tel.: +30-281-0392438
| |
Collapse
|
11
|
Raigon Ponferrada A, Guerrero Orriach JL, Molina Ruiz JC, Romero Molina S, Gómez Luque A, Cruz Mañas J. Breast Cancer and Anaesthesia: Genetic Influence. Int J Mol Sci 2021; 22:7653. [PMID: 34299272 PMCID: PMC8307639 DOI: 10.3390/ijms22147653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022] Open
Abstract
Breast cancer is the leading cause of mortality in women. It is a heterogeneous disease with a high degree of inter-subject variability even in patients with the same type of tumor, with individualized medicine having acquired significant relevance in this field. The clinical and morphological heterogeneity of the different types of breast tumors has led to a diversity of staging and classification systems. Thus, these tumors show wide variability in genetic expression and prognostic biomarkers. Surgical treatment is essential in the management of these patients. However, the perioperative period has been found to significantly influence survival and cancer recurrence. There is growing interest in the pro-tumoral effect of different anaesthetic and analgesic agents used intraoperatively and their relationship with metastatic progression. There is cumulative evidence of the influence of anaesthetic techniques on the physiopathological mechanisms of survival and growth of the residual neoplastic cells released during surgery. Prospective randomized clinical trials are needed to obtain quality evidence on the relationship between cancer and anaesthesia. This document summarizes the evidence currently available about the effects of the anaesthetic agents and techniques used in primary cancer surgery and long-term oncologic outcomes, and the biomolecular mechanisms involved in their interaction.
Collapse
Affiliation(s)
- Aida Raigon Ponferrada
- Institute of Biomedical Research in Malaga (IBIMA), 29010 Malaga, Spain; (A.R.P.); (A.G.L.)
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain; (J.C.M.R.); (S.R.M.); (J.C.M.)
| | - Jose Luis Guerrero Orriach
- Institute of Biomedical Research in Malaga (IBIMA), 29010 Malaga, Spain; (A.R.P.); (A.G.L.)
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain; (J.C.M.R.); (S.R.M.); (J.C.M.)
- Department of Pharmacology and Pediatrics, School of Medicine, University of Malaga, 29010 Malaga, Spain
| | - Juan Carlos Molina Ruiz
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain; (J.C.M.R.); (S.R.M.); (J.C.M.)
| | - Salvador Romero Molina
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain; (J.C.M.R.); (S.R.M.); (J.C.M.)
| | - Aurelio Gómez Luque
- Institute of Biomedical Research in Malaga (IBIMA), 29010 Malaga, Spain; (A.R.P.); (A.G.L.)
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain; (J.C.M.R.); (S.R.M.); (J.C.M.)
- Department of Pharmacology and Pediatrics, School of Medicine, University of Malaga, 29010 Malaga, Spain
| | - Jose Cruz Mañas
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain; (J.C.M.R.); (S.R.M.); (J.C.M.)
| |
Collapse
|
12
|
Yang CS, Kim IH, Chae HD, Kim DD, Jeon CH. Detection of Circulating Gastrointestinal Cancer Cells in Conditionally Reprogrammed Cell Culture. In Vivo 2021; 35:1515-1520. [PMID: 33910829 DOI: 10.21873/invivo.12404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIM The aim of this study was to detect circulating tumor cells (CTC) in the peripheral blood of gastrointestinal cancer patients using conditionally reprogrammed cell (CRC) culture. MATERIALS AND METHODS We confirmed the sensitivity of the CRC culture method. Five ml of blood were obtained from 81 cancer patients (56 colorectal and 25 gastric). The collected mononuclear cells were cultured for 4 weeks in the CRC condition. Finally, cultured cells were characterized by RT-PCR for the expression of hTERT and MAGE A1-6 mRNA. RESULTS The CRC method had a CTC detection limit of 6 cells for gastric cancer cells. After culture of 81 blood specimens, 38 formed visible cells, including 5 colonies. Among the 38 cells, 13 were hTERT positive and 4 were MAGE A1-6 positive. The final CTC detection rate was 16.0%. CONCLUSION The CRC culture may potentially be used to evaluate the metastatic cancer cells in the circulation.
Collapse
Affiliation(s)
- Chun-Seok Yang
- Department of General Surgery, Medical School, Daegu Catholic University Medical Center, Daegu, Republic of Korea
| | - In-Hwan Kim
- Department of General Surgery, Medical School, Daegu Catholic University Medical Center, Daegu, Republic of Korea
| | - Hyun-Dong Chae
- Department of General Surgery, Medical School, Daegu Catholic University Medical Center, Daegu, Republic of Korea
| | - Dae-Dong Kim
- Department of General Surgery, Medical School, Yonsei University, Seoul, Republic of Korea
| | - Chang-Ho Jeon
- Department of Laboratory Medicine, Medical School, Daegu Catholic University Medical Center, Daegu, Republic of Korea
| |
Collapse
|
13
|
Dou D, Li XK, Xia QS, Chen YY, Li YL, Wang C, Qi ZR, Tan HY. Circulating miRNA-202-3p is a potential novel biomarker for diagnosis of type 1 gastric neuroendocrine neoplasms. BMC Gastroenterol 2021; 21:188. [PMID: 33892648 PMCID: PMC8066967 DOI: 10.1186/s12876-021-01769-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 04/06/2021] [Indexed: 11/24/2022] Open
Abstract
Background Currently, there are no circulating diagnostic biomarkers for gastric neuroendocrine neoplasms (g-NENs). In previous studies, we found that miRNA-202-3p is overexpressed in the tumour tissue of type 1 g-NEN. We speculated that miRNA-202-3p is also likely to be highly expressed in circulating blood. Methods A total of 27 patients with type 1 g-NEN and 27 age- and sex-matched control participants were enrolled in this study. The miRNA-202-3p levels in serum obtained from the participants were measured by qRT‐PCR. The expression level of miRNA-202-3p in the samples was calculated by comparison with a standard curve. Results The clinical characteristics of the patients were similar to those of the patient samples in previous reports. Expression of miRNA-202-3p was significantly higher in the patient group (3.84 × 107 copies/nl) than in the control group (0.635 × 107 copies/nl). The area under the ROC curve (AUC) was 0.878 (95% CI: 0.788–0.968), and the optimal cut-off point was approximately 1.12 × 107 copies/nl. The sensitivity and specificity were 88.9% and 77.8%, respectively. Conclusion This study suggests that miRNA-202-3p is potentially useful as a biomarker of type 1 g-NEN; further investigation and verification should be performed in future research.
Collapse
Affiliation(s)
- Dou Dou
- Beijing University of Chinese Medicine, Beijing, China.,Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China
| | - Xiao-Kou Li
- Beijing University of Chinese Medicine, Beijing, China.,Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China
| | - Qi-Sheng Xia
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Ying-Ying Chen
- Beijing University of Chinese Medicine, Beijing, China.,Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China
| | - Yuan-Liang Li
- Beijing University of Chinese Medicine, Beijing, China.,Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China
| | - Chao Wang
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China
| | - Zhi-Rong Qi
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China
| | - Huang-Ying Tan
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
14
|
Mahdevar E, Safavi A, Abiri A, Kefayat A, Hejazi SH, Miresmaeili SM, Iranpur Mobarakeh V. Exploring the cancer-testis antigen BORIS to design a novel multi-epitope vaccine against breast cancer based on immunoinformatics approaches. J Biomol Struct Dyn 2021; 40:6363-6380. [PMID: 33599191 DOI: 10.1080/07391102.2021.1883111] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recently, cancer immunotherapy has gained lots of attention to replace the current chemoradiation approaches and multi-epitope cancer vaccines are manifesting as the next generation of cancer immunotherapy. Therefore, in this study, we used multiple immunoinformatics approaches along with other computational approaches to design a novel multi-epitope vaccine against breast cancer. The most immunogenic regions of the BORIS cancer-testis antigen were selected according to the binding affinity to MHC-I and II molecules as well as containing multiple cytotoxic T lymphocyte (CTL) epitopes by multiple immunoinformatics servers. The selected regions were linked together by GPGPG linker. Also, a T helper epitope (PADRE) and the TLR-4/MD-2 agonist (L7/L12 ribosomal protein from mycobacterium) were incorporated by A(EAAAK)3A linker to form the final vaccine construct. Then, its physicochemical properties, cleavage sites, TAP transport efficiency, B cell epitopes, IFN-γ inducing epitopes and population coverage were predicted. The final vaccine construct was reverse translated, codon-optimized and inserted into pcDNA3.1 to form the DNA vaccine. The final vaccine construct was a stable, immunogenic and non-allergenic protein that contained numerous CTL epitopes, IFN-γ inducing epitopes and several linear and conformational B cell epitopes. Also, the final vaccine construct formed stable and significant interactions with TLR-4/MD-2 complex according to molecular docking and dynamics simulations. Moreover, its world population coverage for HLA-I and HLA-II were about 93% and 96%, respectively. Taking together, these preliminary results can be used as an appropriate platform for further experimental investigations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Elham Mahdevar
- Department of Biology, Faculty of Science and Engineering, Science and Arts University, Yazd, Iran
| | - Ashkan Safavi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ardavan Abiri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Amirhosein Kefayat
- Department of Oncology, Cancer Prevention Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Hossein Hejazi
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Mohsen Miresmaeili
- Department of Biology, Faculty of Science and Engineering, Science and Arts University, Yazd, Iran
| | | |
Collapse
|
15
|
Nair MG, Somashekaraiah VM, Ramamurthy V, Prabhu JS, Sridhar TS. miRNAs: Critical mediators of breast cancer metastatic programming. Exp Cell Res 2021; 401:112518. [PMID: 33607102 DOI: 10.1016/j.yexcr.2021.112518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022]
Abstract
MicroRNA mediated aberrant gene regulation has been implicated in several diseases including cancer. Recent research has highlighted the role of epigenetic modulation of the complex process of breast cancer metastasis by miRNAs. miRNAs play a crucial role in the process of metastatic evolution by facilitating alterations in the phenotype of tumor cells and the tumor microenvironment that promote this process. They act as critical determinants of the multi-step progression starting from carcinogenesis all the way to organotropism. In this review, we focus on the current understanding of the compelling role of miRNAs in breast cancer metastasis.
Collapse
Affiliation(s)
- Madhumathy G Nair
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India.
| | | | - Vishakha Ramamurthy
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | - T S Sridhar
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| |
Collapse
|
16
|
Drag MH, Kilpeläinen TO. Cell-free DNA and RNA-measurement and applications in clinical diagnostics with focus on metabolic disorders. Physiol Genomics 2020; 53:33-46. [PMID: 33346689 DOI: 10.1152/physiolgenomics.00086.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Circulating cell-free DNA (cfDNA) and RNA (cfRNA) hold enormous potential as a new class of biomarkers for the development of noninvasive liquid biopsies in many diseases and conditions. In recent years, cfDNA and cfRNA have been studied intensely as tools for noninvasive prenatal testing, solid organ transplantation, cancer screening, and monitoring of tumors. In obesity, higher cfDNA concentration indicates accelerated cellular turnover of adipocytes during expansion of adipose mass and may be directly involved in the development of adipose tissue insulin resistance by inducing inflammation. Furthermore, cfDNA and cfRNA have promising diagnostic value in a range of obesity-related metabolic disorders, such as nonalcoholic fatty liver disease, type 2 diabetes, and diabetic complications. Here, we review the current and future applications of cfDNA and cfRNA within clinical diagnostics, discuss technical and analytical challenges in the field, and summarize the opportunities of using cfDNA and cfRNA in the diagnostics and prognostics of obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Markus H Drag
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Gupta I, Rizeq B, Vranic S, Moustafa AEA, Al Farsi H. Circulating miRNAs in HER2-Positive and Triple Negative Breast Cancers: Potential Biomarkers and Therapeutic Targets. Int J Mol Sci 2020; 21:E6750. [PMID: 32942528 PMCID: PMC7554858 DOI: 10.3390/ijms21186750] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/02/2020] [Accepted: 09/06/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is one of the most prevalent diseases among women worldwide and is highly associated with cancer-related mortality. Of the four major molecular subtypes, HER2-positive and triple-negative breast cancer (TNBC) comprise more than 30% of all breast cancers. While the HER2-positive subtype lacks estrogen and progesterone receptors and overexpresses HER2, the TNBC subtype lacks estrogen, progesterone and HER2 receptors. Although advances in molecular biology and genetics have substantially ameliorated breast cancer disease management, targeted therapies for the treatment of estrogen-receptor negative breast cancer patients are still restricted, particularly for TNBC. On the other hand, it has been demonstrated that microRNAs, miRNAs or small non-coding RNAs that regulate gene expression are involved in diverse biological processes, including carcinogenesis. Moreover, circulating miRNAs in serum/plasma are among the most promising diagnostic/therapeutic tools as they are stable and relatively easy to quantify. Various circulating miRNAs have been identified in several human cancers including specific breast cancer subtypes. This review aims to discuss the role of circulating miRNAs as potential diagnostic and prognostic biomarkers as well as therapeutic targets for estrogen-receptor negative breast cancers, HER2+ and triple negative.
Collapse
Affiliation(s)
- Ishita Gupta
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (I.G.); (B.R.); (S.V.)
- Biomedical Research Centre, Qatar University, Doha P.O. Box 2713, Qatar
| | - Balsam Rizeq
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (I.G.); (B.R.); (S.V.)
- Biomedical Research Centre, Qatar University, Doha P.O. Box 2713, Qatar
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (I.G.); (B.R.); (S.V.)
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (I.G.); (B.R.); (S.V.)
- Biomedical Research Centre, Qatar University, Doha P.O. Box 2713, Qatar
| | - Halema Al Farsi
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (I.G.); (B.R.); (S.V.)
| |
Collapse
|
18
|
Liquid biopsy for breast cancer using extracellular vesicles and cell-free microRNAs as biomarkers. Transl Res 2020; 223:40-60. [PMID: 32413499 DOI: 10.1016/j.trsl.2020.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 03/31/2020] [Accepted: 04/07/2020] [Indexed: 12/24/2022]
Abstract
Improvement of breast cancer (BC) patient's outcome is directly related to early detection. However, there is still a lack of reliable biomarkers for diagnosis, prognosis and, treatment follow up in BC, leading researchers to study the potential of liquid biopsy based on circulating microRNAs (c-miRNAs). These c-miRNAs can be cell-free or associated with extracellular vesicles (EVs), and have great advantages such as stability in biofluids, noninvasive accessibility compared to current techniques (core-biopsy and surgery), and expression associated with pathogenic conditions. Recently, a new promising field of EV-derived miRNAs (EV-miRNAs) as cancer biomarkers has emerged, receiving special attention due to their selective vesicle sorting which makes them accurate for disease detection. In this review, we discuss new findings about c-miRNA and their potential as biomarkers for BC diagnosis, prognosis, and therapy. Additionally, we address the impact of limitations associated with the standardization of analysis techniques and methods on the implementation of these biomarkers in the clinical setting.
Collapse
|
19
|
Xie X, Ji Q, Han X, Zhang L, Li J. Knockdown of long non-coding RNA TTTY15 protects cardiomyocytes from hypoxia-induced injury by regulating let-7b/MAPK6 axis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:1951-1961. [PMID: 32922590 PMCID: PMC7476952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/19/2020] [Indexed: 06/11/2023]
Abstract
Acute myocardial infarction (AMI) is a serious threat to human health. Long non-coding RNAs (lncRNAs) are known to be involved in the progression of AMI. The objective of this paper was to explore the functional effect of lncRNA testis-specific transcript Y-linked 15 (TTTY15) on hypoxia-induced cardiomyocyte injury. Human cardiomyocytes AC16 were cultured under hypoxic conditions to induce cardiomyocyte injury. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to check the expression of TTTY15, microRNA let-7b, and Mitogen-activated protein kinase 6 (MAPK6). Western blot was implemented for protein detection. Cell viability and apoptosis were examined by Cell counting kit-8 (CCK-8) assay and flow cytometry, respectively. The target association among TTTY15, let-7b, and MAPK6 was validated by dual-luciferase reporter assay, pull-down assay and RNA immunoprecipitation (RIP) assay. We found that the abundances of TTTY15 and MAPK6 were elevated, while let-7b level declined in hypoxia-induced AC16 cells. Knockdown of TTTY15 increased cell viability, and inhibited apoptosis of hypoxia-induced AC16 cells. TTTY15 bound to and inversely regulated let-7b. Likewise, MAPK6 was a target of let-7b and was negatively regulated by let-7b. Silencing of TTTY15 ameliorated the impact of let-7b downregulation or MAPK6 upregulation on hypoxia-induced cardiomyocyte injury. TTTY15 modulated MAPK6 enrichment by sponging let-7b. In conclusion, knockdown of TTTY15 suppressed hypoxia-induced cardiomyocyte injury through the let-7b/MAPK6 axis.
Collapse
Affiliation(s)
- Xiaofei Xie
- Department of Cardiology, Anhui Chest HospitalHefei, China
| | - Qinjiong Ji
- Department of Cardiology, Anhui Chest HospitalHefei, China
| | - Xiaoliang Han
- Department of Cardiology, Anhui Chest HospitalHefei, China
| | - Ling Zhang
- Department of Cardiology, Anhui Chest HospitalHefei, China
| | - Jingjing Li
- Department of Endocrinology, The 901th Hospital of Joint Logistics Support Force of PLAHefei, Anhui, China
| |
Collapse
|
20
|
Kim J, Park S, Hwang D, Kim SI, Lee H. Diagnostic Value of Circulating miR-202 in Early-Stage Breast Cancer in South Korea. ACTA ACUST UNITED AC 2020; 56:medicina56070340. [PMID: 32659906 PMCID: PMC7404566 DOI: 10.3390/medicina56070340] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023]
Abstract
Background and objectives: Breast cancer is the most common cancer among women worldwide. Early stage diagnosis is important for predicting increases in treatment success rates and decreases in patient mortality. Recently, circulating biomarkers such as circulating tumor cells, circulating tumor DNA, exosomes, and circulating microRNAs have been examined as blood-based markers for the diagnosis of breast cancer. Although miR-202 has been studied for its function or expression in breast cancer, its potential diagnostic value in a clinical setting remains elusive and miR-202 has not been investigated in South Korea. In this study, we aimed to evaluate the diagnostic utility of miR-202 in plasma samples of breast cancer patients in South Korea. Materials and Methods: We investigated miR-202 expression in the plasma of 30 breast cancer patients during diagnosis along with 30 healthy controls in South Korea by quantitative reverse transcription PCR. Results: The results showed that circulating miR-202 levels were significantly elevated in the breast cancer patients compared with those in healthy controls (p < 0.001). The sensitivity and specificity of circulating miR-202 were 90.0% and 93.0%, respectively. Additionally, circulating miR-202 showed high positivity at early stage. The positive rate of miR-202 was as follows: 100% (10/10) for stage I, 90% (9/10) for stage II, and 80% (8/10) for stage III. miR-202 was also a predictor of a 9.6-fold high risk for breast cancer (p < 0.001). Conclusions: Additional alternative molecular biomarkers for diagnosis and management of pre-cancer patients are needed. Circulating miR-202 might be potential diagnostic tool for detecting early stage breast cancer.
Collapse
Affiliation(s)
- Jungho Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Korea;
| | - Sunyoung Park
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Gangwon, Korea; (S.P.); (D.H.)
- School of Mechanical Engineering, Yonsei University, Seoul 03772, Korea
| | - Dasom Hwang
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Gangwon, Korea; (S.P.); (D.H.)
| | - Seung Il Kim
- Department of Surgery, College of Medicine, Yonsei University, Seoul 03772, Korea
- Correspondence: (S.I.K.); (H.L.); Tel.: +82-2-2228-2100 (S.I.K.); +82-33-760-2740 (H.L.)
| | - Hyeyoung Lee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Gangwon, Korea; (S.P.); (D.H.)
- Correspondence: (S.I.K.); (H.L.); Tel.: +82-2-2228-2100 (S.I.K.); +82-33-760-2740 (H.L.)
| |
Collapse
|
21
|
Emergence of Circulating MicroRNAs in Breast Cancer as Diagnostic and Therapeutic Efficacy Biomarkers. Mol Diagn Ther 2020; 24:153-173. [DOI: 10.1007/s40291-020-00447-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
Synthetic tumor-specific antigenic peptides with a strong affinity to HLA-A2 elicit anti-breast cancer immune response through activating CD8 + T cells. Eur J Med Chem 2020; 189:112051. [PMID: 31968280 DOI: 10.1016/j.ejmech.2020.112051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/30/2019] [Accepted: 01/08/2020] [Indexed: 12/16/2022]
Abstract
Researches on tumor-associated antigen have become a hot target in immunotherapy, but it stagnated in the pre-clinical/clinical stages. Here, we developed a series of MAGE-A1-restricted antigenic peptides, which exhibited prominent inhibiting effect on specific breast cancer. Peptides were synthesized by Fmoc solid phase method and analyzed by online servers. The stability and affinity to HLA-A2 was assessed by inverted fluorescence and flow cytometry qualitatively and quantitatively. In vitro effect on dendritic cells (DCs) maturation was observed by morphology and surface markers. The secretion of IFN-γ in the supernatant was detected by co-incubation of DCs loaded with as-synthesized peptides and CD8+ T lymphocytes. The specific immune response was evaluated against 4 cell lines, and the response in MCF-7 xenografted BALB/c nude mice were further assessed. Most of the derived peptides, especially I-6, showed great HLA-A2 binding ability. Compared with cytokines, I-6 significantly induced DCs maturation and promoted CD8+ T lymphocytes activation. Additionally, it is more specific for the lethality of MAGE & HLA-A2 double positive cells compared with others. We successfully developed I-6 with a high affinity to HLA-A2 which could induce strong specific immune response. It could be a potential candidate for breast cancer immunotherapy, which deserves further studies.
Collapse
|
23
|
Beheshti A, Stevenson K, Vanderburg C, Ravi D, McDonald JT, Christie AL, Shigemori K, Jester H, Weinstock DM, Evens AM. Identification of Circulating Serum Multi-MicroRNA Signatures in Human DLBCL Models. Sci Rep 2019; 9:17161. [PMID: 31748664 PMCID: PMC6868195 DOI: 10.1038/s41598-019-52985-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022] Open
Abstract
There remains a need to identify new sensitive diagnostic and predictive blood-based platforms in lymphoma. We previously discovered a novel circulating microRNA (miRNA) signature in a Smurf2-deficient mouse model that spontaneously develops diffuse large B-cell lymphoma (DLBCL). Herein, we investigated this 10-miRNA signature (miR-15a, let-7c, let-7b, miR-27a, miR-10b, miR-18a, miR-497, miR-130a, miR24, and miR-155) in human lymphoma cell lines, mice engrafted with patient-derived xenografts (PDXs), and DLBCL patient serum samples leveraging systems biology analyses and droplet digital PCR (ddPCR) technology. Overall, 90% of the miRNAs were enriched in PDX DLBCL models and human lymphoma cell lines. Circulating miRNAs from the serum of 86 DLBCL patients were significantly increased compared with healthy controls and had similar patterns to the murine models. Strikingly, miRNAs were identified up to 27-fold higher levels in the serum of PDX-bearing mice and human patients compared with lymphoma cell lysates, suggesting a concentration of these factors over time within sera. Using cut-points from recursive partitioning analysis, we derived a 5-miRNA signature (let-7b, let-7c, miR-18a, miR-24, and miR-15a) with a classification rate of 91% for serum from patients with DLBCL versus normal controls. In addition, higher levels of circulating let-7b miRNA were associated with more advanced stage disease (i.e., III-IV vs. I-II) in DLBCL patients and higher levels of miR-27a and miR-24 were associated with MYC rearrangement. Taken together, circulating multi-miRNAs were readily detectable in pre-clinical cell line and human lymphoma models as well as in DLBCL patients where they appeared to distinguish clinico-pathologic subtypes and disease features.
Collapse
Affiliation(s)
- Afshin Beheshti
- WYLE, NASA Ames Research Center, Moffett Field, CA, USA. .,Division of Blood Disorders, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA. .,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Kristen Stevenson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Charles Vanderburg
- Harvard Medical School, Boston, MA, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dashnamoorthy Ravi
- Division of Blood Disorders, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - J Tyson McDonald
- Cancer Research Center and Department of Physics, Hampton University, Virginia, USA
| | - Amanda L Christie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kay Shigemori
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hallie Jester
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Andrew M Evens
- Division of Blood Disorders, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
24
|
Peng Z, Duan F, Yin J, Feng Y, Yang Z, Shang J. Prognostic values of microRNA-130 family expression in patients with cancer: a meta-analysis and database test. J Transl Med 2019; 17:347. [PMID: 31640738 PMCID: PMC6805372 DOI: 10.1186/s12967-019-2093-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/11/2019] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Emerging evidence shows that microRNA-130 (miRNA-130) family may be useful as prognostic biomarkers in cancer. However, there is no confirmation in an independent validation study. The aim of this study was to summarize the prognostic value of miRNA-130 family (miRNA-130a and miRNA-130b) for survival in patients with cancer. METHODS The pooled hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated to estimate the association strength between miRNA-130 family expression and prognosis. Kaplan-Meier plotters were used to verify the miRNA-130b expression and overall survival (OS). RESULTS A total of 2141 patients with OS and 1159 patients with disease-free survival (DFS)/progression-free survival (PFS) were analyzed in evidence synthesis. For the miRNA-130a, the overall pooled effect size (HR) was HR 1.58 (95% CI: 1.21-2.06, P < 0.001). Tissue and serum expression of miRNA-130a was significantly associated with the OS (HR = 1.54, 95% CI: 1.11-2.14, P = 0.009; HR = 1.65, 95% CI: 1.14-2.38, P = 0.008), and in gastric cancer (HR = 1.81, 95% CI: 1.34-2.45, P < 0.001). For the miRNA-13b, a statistical correlation was observed between high miRNA-130b expression and poor OS in patients with cancer (HR = 1.95, 95% CI: 1.47-2.59, P < 0.001), especially in tissue sample (HR = 2.01, 95% CI: 1.39-2.91, P < 0.001), Asian (HR = 2.55, 95% Cl: 1.77-3.69, P < 0.001) and hepatocellular carcinoma (HR = 1.87, 95% CI: 1.23-2.85, P = 0.004). The expression of miRNA-130b was significantly correlated with DFS/PFS (HR = 1.53, 95% CI: 1.31-1.77, P < 0.001), in tissue (HR = 1.98, 95% CI: 1.50-2.62, P < 0.001) and serum (HR = 1.37, 95% CI: 1.15-1.64, P < 0.001), especially in HCC (HR = 1.98, 95% CI: 1.50, 2.62, P < 0.001). In database test, a significant correlation between high miRNA-130b expression and poor OS for HCC patients was observed (HR = 1.55, 95% CI: 1.01, 2.35, P = 0.0045). CONCLUSION The high expression of miRNA-130 family might predict poor prognosis in cancer patients. Prospectively, combining miRNA-130a and miRNA-130b may be considered as powerful prognostic predictor for clinical application.
Collapse
Affiliation(s)
- Zhen Peng
- Department of Infectious Disease, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China.
| | - Fujiao Duan
- Medical Research Office, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| | - Jingjing Yin
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yajing Feng
- Department of Nosocomial Infection Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhongyu Yang
- College of Art and Science, The Ohio State University, Columbus, OH, USA
| | - Jia Shang
- Department of Infectious Disease, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| |
Collapse
|
25
|
Chirshev E, Oberg KC, Ioffe YJ, Unternaehrer JJ. Let-7 as biomarker, prognostic indicator, and therapy for precision medicine in cancer. Clin Transl Med 2019; 8:24. [PMID: 31468250 PMCID: PMC6715759 DOI: 10.1186/s40169-019-0240-y] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/16/2019] [Indexed: 12/23/2022] Open
Abstract
Abnormal regulation and expression of microRNAs (miRNAs) has been documented in various diseases including cancer. The miRNA let-7 (MIRLET7) family controls developmental timing and differentiation. Let-7 loss contributes to carcinogenesis via an increase in its target oncogenes and stemness factors. Let-7 targets include genes regulating the cell cycle, cell signaling, and maintenance of differentiation. It is categorized as a tumor suppressor because it reduces cancer aggressiveness, chemoresistance, and radioresistance. However, in rare situations let-7 acts as an oncogene, increasing cancer migration, invasion, chemoresistance, and expression of genes associated with progression and metastasis. Here, we review let-7 function as tumor suppressor and oncogene, considering let-7 as a potential diagnostic and prognostic marker, and a therapeutic target for cancer treatment. We explain the complex regulation and function of different let-7 family members, pointing to abnormal processes involved in carcinogenesis. Let-7 is a promising option to complement conventional cancer therapy, but requires a tumor specific delivery method to avoid toxicity. While let-7 therapy is not yet established, we make the case that assessing its tumor presence is crucial when choosing therapy. Clinical data demonstrate that let-7 can be used as a biomarker for rational precision medicine decisions, resulting in improved patient survival.
Collapse
Affiliation(s)
- Evgeny Chirshev
- Division of Anatomy, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Kerby C Oberg
- Division of Anatomy and Pediatric Pathology, Loma Linda University, Loma Linda, CA, USA
| | - Yevgeniya J Ioffe
- Gynecology and Obstetrics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Juli J Unternaehrer
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, 11085 Campus Street, Mortensen Hall 219, Loma Linda, CA, 92354, USA.
| |
Collapse
|
26
|
A Predictor of Early Disease Recurrence in Patients With Breast Cancer Using a Cell-free RNA and Protein Liquid Biopsy. Clin Breast Cancer 2019; 20:108-116. [PMID: 31607655 DOI: 10.1016/j.clbc.2019.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/05/2019] [Accepted: 07/13/2019] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Circulating biomarkers have been increasingly used in the clinical management of breast cancer. The present study evaluated whether RNAs and a protein present in the plasma of patients with breast cancer might have utility as prognostic biomarkers complementary to existing clinical tests. PATIENTS AND METHODS We performed microarray profiling of small noncoding RNAs in plasma samples from 30 patients with breast cancer and 10 control individuals. Two small noncoding RNAs, including microRNA (miR)-923, were selected and quantified in plasma samples from an evaluation cohort of 253 patients with breast cancer, using droplet digital polymerase chain reaction. We also measured cancer antigen (CA) 15-3 protein levels in these samples. Cox regression survival analysis was used to determine which markers were associated with patient prognosis. RESULTS As independent markers of prognosis, the plasma levels of miR-923 and CA 15-3 at the time of surgery for breast cancer were significantly associated with prognosis, irrespective of treatment (Cox proportional hazards, P = 3.9 × 10-3 and 1.9 × 10-9, respectively). After building a multivariable model with standard clinical and pathological features, the addition of miR-923 and CA 15-3 information into the model resulted in a significantly better predictor of disease recurrence in patients, irrespective of treatment, compared with the use of clinicopathological data alone (area under the curve at 3 years, 0.858 vs. 0.770 with clinicopathological markers only; P = .017). CONCLUSION We propose that the plasma levels of miR-923 and CA 15-3, combined with standard clinicopathological predictors, could be used as a preoperative, noninvasive estimate of patient prognosis to identify which women might need more aggressive treatment or closer surveillance after surgery for breast cancer.
Collapse
|
27
|
Jia B, Zhao X, Wang Y, Wang J, Wang Y, Yang Y. Prognostic roles of MAGE family members in breast cancer based on KM-Plotter Data. Oncol Lett 2019; 18:3501-3516. [PMID: 31516568 PMCID: PMC6733005 DOI: 10.3892/ol.2019.10722] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 06/19/2019] [Indexed: 12/17/2022] Open
Abstract
Breast cancer is the second leading cause of cancer-associated mortality among women worldwide, and the prevalence and mortality rates associated with this disease are high in Western countries. The melanoma-associated antigen (MAGE) family proteins are well-known tumor-specific antigens; this family includes >60 proteins that serve an important part in cell cycle withdrawal, neuronal differentiation and apoptosis. The aim of the present study was to identify a biomarker within the MAGE family that is specific for breast cancer. In the present study, the prognostic role of MAGE mRNA expression was investigated in patients with breast cancer using the Kaplan-Meier plotter database. The prognostic value of MAGE members in the different intrinsic subtypes of breast cancer was further investigated, as well as the clinicopathological features of the disease. The results of the present study indicated that patients with breast cancer that had high mRNA expression levels of MAGEA5, MAGEA8, MAGEB4 and MAGEB6 had an improved relapse-free survival, whereas those with high mRNA expression levels of MAGEB18 and MAGED4 did not. These results suggested that MAGEA5, MAGEA8, MAGEB4 and MAGEB6 may have roles as tumor suppressors in the occurrence and development of breast cancer, whereas MAGEB18 and MAGED4 may possess carcinogenic potential. MAGED2, MAGED3 and MAGEF1 had different effects depending on the type of breast cancer. In particular, high MAGEC3 mRNA expression was associated with worse RFS in lymph node-positive breast cancer, but with improved RFS in lymph node-negative breast cancer. In patients with wild-type TP53 and patients with different pathological grades of breast cancer, MAGEE2, MAGEH1 and MAGEL2 were more worthy of attention as potential prognostic factors. The results of the present study may help to elucidate the role of MAGE family members in the development of breast cancer, and may promote further research that identifies MAGE-targeting reagents for the treatment of breast cancer.
Collapse
Affiliation(s)
- Binghan Jia
- Department of R&D Technology Center, Beijing Zhicheng Biomedical Technology Co., Ltd., Beijing 100730, P.R. China
| | - Xiaoling Zhao
- Department of R&D Technology Center, Beijing Zhicheng Biomedical Technology Co., Ltd., Beijing 100730, P.R. China
| | - Yao Wang
- Department of R&D Technology Center, Beijing Zhicheng Biomedical Technology Co., Ltd., Beijing 100730, P.R. China
| | - Jinlong Wang
- Department of R&D Technology Center, Beijing Zhicheng Biomedical Technology Co., Ltd., Beijing 100730, P.R. China
| | - Yingying Wang
- Department of R&D Technology Center, Beijing Zhicheng Biomedical Technology Co., Ltd., Beijing 100730, P.R. China
| | - Yuemei Yang
- Department of R&D Technology Center, Beijing Zhicheng Biomedical Technology Co., Ltd., Beijing 100730, P.R. China
| |
Collapse
|
28
|
Chen M, Mithraprabhu S, Ramachandran M, Choi K, Khong T, Spencer A. Utility of Circulating Cell-Free RNA Analysis for the Characterization of Global Transcriptome Profiles of Multiple Myeloma Patients. Cancers (Basel) 2019; 11:cancers11060887. [PMID: 31242667 PMCID: PMC6628062 DOI: 10.3390/cancers11060887] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/12/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022] Open
Abstract
In this study, we evaluated the utility of extracellular RNA (exRNA) derived from the plasma of multiple myeloma (MM) patients for whole transcriptome characterization. exRNA from 10 healthy controls (HC), five newly diagnosed (NDMM), and 12 relapsed and refractory (RRMM) MM patients were analyzed and compared. We showed that ~45% of the exRNA genes were protein-coding genes and ~85% of the identified genes were covered >70%. Compared to HC, we identified 632 differentially expressed genes (DEGs) in MM patients, of which 26 were common to NDMM and RRMM. We further identified 54 and 191 genes specific to NDMM and RRMM, respectively, and these included potential biomarkers such as LINC00863, MIR6754, CHRNE, ITPKA, and RGS18 in NDMM, and LINC00462, PPBP, RPL5, IER3, and MIR425 in RRMM, that were subsequently validated using droplet digital PCR. Moreover, single nucleotide polymorphisms and small indels were identified in the exRNA, including mucin family genes that demonstrated different rates of mutations between NDMM and RRMM. This is the first whole transcriptome study of exRNA in hematological malignancy and has provided the basis for the utilization of exRNA to enhance our understanding of the MM biology and to identify potential biomarkers relevant to the diagnosis and prognosis of MM patients.
Collapse
Affiliation(s)
- Maoshan Chen
- Myeloma Research Group, Australian Centre for Blood Diseases (ACBD), Clinical Central School, Monash University, Melbourne 3004, Australia.
| | - Sridurga Mithraprabhu
- Myeloma Research Group, Australian Centre for Blood Diseases (ACBD), Clinical Central School, Monash University, Melbourne 3004, Australia.
- Malignant Haematology and Stem Cell Transplantation, Alfred Hospital, Melbourne 3004, Australia.
| | - Malarmathy Ramachandran
- Myeloma Research Group, Australian Centre for Blood Diseases (ACBD), Clinical Central School, Monash University, Melbourne 3004, Australia.
- Malignant Haematology and Stem Cell Transplantation, Alfred Hospital, Melbourne 3004, Australia.
| | - Kawa Choi
- Myeloma Research Group, Australian Centre for Blood Diseases (ACBD), Clinical Central School, Monash University, Melbourne 3004, Australia.
- Malignant Haematology and Stem Cell Transplantation, Alfred Hospital, Melbourne 3004, Australia.
| | - Tiffany Khong
- Myeloma Research Group, Australian Centre for Blood Diseases (ACBD), Clinical Central School, Monash University, Melbourne 3004, Australia.
- Malignant Haematology and Stem Cell Transplantation, Alfred Hospital, Melbourne 3004, Australia.
| | - Andrew Spencer
- Myeloma Research Group, Australian Centre for Blood Diseases (ACBD), Clinical Central School, Monash University, Melbourne 3004, Australia.
| |
Collapse
|
29
|
Xu F, Li H, Hu C. MiR‐202 inhibits cell proliferation, invasion, and migration in breast cancer by targeting ROCK1 gene. J Cell Biochem 2019; 120:16008-16018. [PMID: 31106468 DOI: 10.1002/jcb.28879] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/19/2019] [Accepted: 02/28/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Fangfang Xu
- Department of Pathology Jining No.1 People's Hospital Jining China
| | - Hui Li
- Department of Oncology Affiliated Hospital of Jining Medical University Jining China
| | - Chengjiu Hu
- Department of Pathology Jining No.1 People's Hospital Jining China
| |
Collapse
|
30
|
MicroRNA Expression Changes in Women with Breast Cancer Stratified by DNA Repair Capacity Levels. JOURNAL OF ONCOLOGY 2019; 2019:7820275. [PMID: 31191653 PMCID: PMC6525916 DOI: 10.1155/2019/7820275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/15/2019] [Accepted: 04/17/2019] [Indexed: 12/20/2022]
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer in women worldwide and is the leading cause of death among Hispanic women. Previous studies have shown that women with a low DNA repair capacity (DRC), measured through the nucleotide excision repair (NER) pathway, have an increased BC risk. Moreover, we previously reported an association between DRC levels and the expression of the microRNA (miRNA) let-7b in BC patients. MiRNAs can induce genomic instability by affecting the cell's DNA damage response while influencing the cancer pathobiology. The aim of this pilot study is to identify plasma miRNAs related to variations in DRC levels in BC cases. Hypothesis. Our hypothesis consists in testing whether DRC levels can be correlated with miRNA expression levels. Methods. Plasma samples were selected from 56 (27 cases and 29 controls) women recruited as part of our BC cohort. DRC values were measured in lymphocytes using the host-cell reactivation assay. The samples were divided into two categories: low (≤3.8%) and high (>3.8%) DRC levels. MiRNAs were extracted to perform an expression profile analysis. Results. Forty miRNAs were identified to be BC-related (p<0.05, MW), while 18 miRNAs were found to be differentially expressed among BC cases and controls with high and low DRC levels (p<0.05, KW). Among these candidates are miR-299-5p, miR-29b-3p, miR-302c-3p, miR-373-3p, miR-636, miR-331-5p, and miR-597-5p. Correlation analyses revealed that 4 miRNAs were negatively correlated within BC cases with low DRC (p<0.05, Spearman's correlation). Results from multivariate analyses revealed that the clinicopathological characteristics may not have a direct effect on specific miRNA expression. Conclusion. This pilot study provides evidence of four miRNAs that are negatively regulated in BC cases with low DRC levels. Additional studies are needed in order to have a complete framework regarding the overall DRC levels, miRNA expression profiles, and tumor characteristics.
Collapse
|
31
|
Monitoring tumour burden and therapeutic response through analysis of circulating tumour DNA and extracellular RNA in multiple myeloma patients. Leukemia 2019; 33:2022-2033. [PMID: 30992504 DOI: 10.1038/s41375-019-0469-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/17/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022]
Abstract
Monitoring tumour burden and therapeutic response through analyses of circulating cell-free tumour DNA (ctDNA) and extracellular RNA (exRNA) in multiple myeloma (MM) patients were performed in a Phase Ib trial of 24 relapsed/refractory patients receiving oral azacitidine in combination with lenalidomide and dexamethasone. Mutational characterisation of paired BM and PL samples at study entry identified that patients with a higher number of mutations or a higher mutational fractional abundance in PL had significantly shorter overall survival (OS) (p = 0.005 and p = 0.018, respectively). A decrease in ctDNA levels at day 5 of cycle 1 of treatment (C1D5) correlated with superior progression-free survival (PFS) (p = 0.017). Evaluation of exRNA transcripts of candidate biomarkers indicated that high CRBN levels coupled with low levels of SPARC at baseline were associated with shorter OS (p = 0.000003). IKZF1 fold-change <0.05 at C1D5 was associated with shorter PFS (p = 0.0051) and OS (p = 0.0001). Furthermore, patients with high baseline CRBN coupled with low fold-change at C1D5 were at the highest risk of progression (p = 0.0001). In conclusion, this exploratory analysis has provided the first demonstration in MM of ctDNA for predicting disease outcome and of the utility of exRNA as a biomarker of therapeutic response.
Collapse
|
32
|
Liu T, Guo J, Zhang X. MiR-202-5p/ PTEN mediates doxorubicin-resistance of breast cancer cells via PI3K/Akt signaling pathway. Cancer Biol Ther 2019; 20:989-998. [PMID: 30983514 DOI: 10.1080/15384047.2019.1591674] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
We intended to explore the effect of miR-202-5p and phosphatase and tensin homolog (PTEN) on doxorubicin (DOX) resistance of breast cancer cells. The result of quantitative reverse transcription-polymerase chain reaction (qRT-PCR) reveals that miR-202-5p was highly expressed in drug-resistant breast cancer tissues, while PTEN was expressed less. MiR-202-5p directly targeted PTEN. Further, it was found that the overexpression of miR-202-5p promoted the DOX resistance and proliferation as well as decreased apoptosis of MCF-7 cells. The lower expression of miR-202-5p inhibited DOX resistance and proliferation as well as increased the apoptosis of MCF-7/DOX cells. In vivo experiments showed that mice with downregulated miR-202-5p had smaller tumor volume and lower Ki67 level. The overexpression of PTEN declined the proliferation of MCF7 cells, while miR-202-5p's overexpression could offset the function of overexpression of PTEN. The knockdown of PTEN promoted MCF7/DOX cell proliferation that could be counteracted by miR-202-5p silence. Moreover, we also revealed that downregulated miR-202-5p expression inhibited PI3k/Akt signaling pathway-related protein by regulating expression of PTEN.
Collapse
Affiliation(s)
- Tao Liu
- a Department of Breast Surgery , Linyi People's Hospital , Linyi , Shandong , China
| | - Jichao Guo
- b Department of General Surgery , Lanshan District People's Hospital , Linyi , Shandong , China
| | - Xiaoxia Zhang
- a Department of Breast Surgery , Linyi People's Hospital , Linyi , Shandong , China
| |
Collapse
|
33
|
McAnena P, Lowery A, Kerin MJ. Role of micro-RNAs in breast cancer surgery. Br J Surg 2018; 105:e19-e30. [PMID: 29341144 DOI: 10.1002/bjs.10790] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND The management of breast cancer has changed dramatically in the molecular era. Micro-RNAs can contribute to multiple facets of cancer surgery. METHODS This narrative review, based on years of research on the role of micro-RNAs, focused on the potential of these small, robust RNAs to influence all aspects of breast cancer surgery. RESULTS Micro-RNAs have a potential role as biomarkers in the diagnosis, prognosis and evaluation of response to therapy in breast cancer. They may also contribute to future therapeutic strategies. CONCLUSION The molecular era has changed understanding of cancer. Micro-RNAs have the potential for use in personalized cancer strategies.
Collapse
Affiliation(s)
- P McAnena
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland, Galway, Ireland
| | - A Lowery
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland, Galway, Ireland
| | - M J Kerin
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland, Galway, Ireland
| |
Collapse
|
34
|
Rohanizadegan M. Analysis of circulating tumor DNA in breast cancer as a diagnostic and prognostic biomarker. Cancer Genet 2018; 228-229:159-168. [PMID: 29572011 PMCID: PMC6108954 DOI: 10.1016/j.cancergen.2018.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 01/15/2018] [Accepted: 02/16/2018] [Indexed: 12/17/2022]
Abstract
Despite all the advances in diagnosis and treatment of breast cancer, a large number of patients suffer from late diagnosis or recurrence of their disease. Current available imaging modalities do not reveal micrometastasis and tumor biopsy is an invasive method to detect early stage or recurrent cancer, signifying the need for an inexpensive, non-invasive diagnostic modality. Cell-free tumor DNA (ctDNA) has been tried for early detection and targeted therapy of breast cancer, but its diagnostic and prognostic utility is still under investigation. This review summarizes the existing evidence on the use of ctDNA specifically in breast cancer, including detection methods, diagnostic accuracy, role in genetics and epigenetics evaluation of the tumor, and comparison with other biomarkers. Current evidence suggests that increasing levels of ctDNA in breast cancer can be of significant diagnostic value for early detection of breast cancer although the sensitivity and specificity of the methods is still suboptimal. Additionally, ctDNA allows for characterizing the tumor in a non-invasive way and monitor the response to therapy, although discordance of ctDNA results with direct biopsy (i.e. due to tumor heterogeneity) is still considered a notable limitation.
Collapse
Affiliation(s)
- Mersedeh Rohanizadegan
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Khordadmehr M, Shahbazi R, Ezzati H, Jigari-Asl F, Sadreddini S, Baradaran B. Key microRNAs in the biology of breast cancer; emerging evidence in the last decade. J Cell Physiol 2018; 234:8316-8326. [PMID: 30422324 DOI: 10.1002/jcp.27716] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022]
Abstract
microRNAs (miRNAs) are a family of small noncoding RNAs that play a pivotal role in the regulation of main biological and physiological processes, including cell cycle regulation, proliferation, differentiation, apoptosis, stem cell maintenance, and organ development. Dysregulation of these tiny molecules has been related to different human diseases, such as cancer. It has been estimated that more than 50% of these noncoding RNA sequences are placed on fragile sites or cancer-associated genomic regions. After the discovery of the first specific miRNA signatures in breast cancer, many studies focused on the involvement of these small RNAs in the pathophysiology of breast tumors and their possible clinical implications as reliable prognostic biomarkers or as a new therapeutic approach. Therefore, the present review will focus on the recent findings on the involvement of miRNAs in the biology of breast cancer associated with their clinical implications.
Collapse
Affiliation(s)
- Monireh Khordadmehr
- Department of Pathology, Faculty of Veterinary, Medicine, University of Tabriz, Tabriz, East Azerbaijan, Iran
| | - Roya Shahbazi
- Department of Pathology, Faculty of Veterinary, Medicine, University of Tabriz, Tabriz, East Azerbaijan, Iran
| | - Hamed Ezzati
- Department of Pathology, Faculty of Veterinary, Medicine, University of Tabriz, Tabriz, East Azerbaijan, Iran
| | - Farinaz Jigari-Asl
- Department of Pathology, Faculty of Veterinary, Medicine, University of Tabriz, Tabriz, East Azerbaijan, Iran
| | - Sanam Sadreddini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
36
|
Franczak C, Filhine-Tressarieu P, Broséus J, Gilson P, Merlin JL, Harlé A. Clinical Interest of Circulating Tumor DNA in Oncology. Arch Med Res 2018; 49:297-305. [PMID: 30414710 DOI: 10.1016/j.arcmed.2018.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/25/2018] [Indexed: 12/18/2022]
Abstract
Genetic alterations in tumors, as predictor of response to targeted-therapies or as prognostic markers, are clinically relevant to determine adequate therapeutic management. Tumor biopsy is currently the golden standard for somatic alterations assessment, but this approach is invasive and does not consider tumor heterogeneity. In various body fluids like plasma, somatic mutations have been identified. Circulating tumor DNA (ctDNA) holds promises in tumor burden monitoring or malignancies early detection. Since allele frequencies of circulating somatic mutations are low, highly sensitive novel assays have been developed to allow the investigation of the tumor genome, leading to the emergence of the "liquid biopsy" concept. Despite these technological advances, other assays for identifying intratumor and intermetastases heterogeneity need to be developed. Before being applied to clinic, ctDNA analyses need to be harmonized and validated with well-powered, well-designed studies. One of the primary prerequisite to incorporation of ctDNA analysis in the follow-up strategy of malignancies is the checking of the concordance with golden standard detection methods, imaging, circulating proteins and biopsy. This review focuses on the clinical interest of ctDNA in solid tumors and hematological malignancies.
Collapse
Affiliation(s)
- Claire Franczak
- Institut de Cancérologie de Lorraine, Service de Biopathologie, Vandœuvre-lès-Nancy, France
| | | | - Julien Broséus
- Inserm U954, Faculté de Médecine de Nancy, Université de Lorraine, Vandœuvre-lès-Nancy, France; Service d'Hématologie Biologique, Pôle Laboratoires, Centre Hospitalier Régional et Universitaire de Nancy, Vandœuvre-lès-Nancy, France
| | - Pauline Gilson
- Université de Lorraine, CNRS UMR 7039 CRAN, Institut de Cancérologie de Lorraine, Service de Biopathologie, Nancy, France
| | - Jean-Louis Merlin
- Université de Lorraine, CNRS UMR 7039 CRAN, Institut de Cancérologie de Lorraine, Service de Biopathologie, Nancy, France
| | - Alexandre Harlé
- Université de Lorraine, CNRS UMR 7039 CRAN, Institut de Cancérologie de Lorraine, Service de Biopathologie, Nancy, France.
| |
Collapse
|
37
|
Yoo KW, Li N, Makani V, Singh RN, Atala A, Lu B. Large-Scale Preparation of Extracellular Vesicles Enriched with Specific microRNA. Tissue Eng Part C Methods 2018; 24:637-644. [PMID: 30306827 PMCID: PMC6916128 DOI: 10.1089/ten.tec.2018.0249] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022] Open
Abstract
IMPACT STATEMENT This article describes a method for producing microRNA (miRNA)-enriched extracellular vesicles in large quantities. It enables in vivo delivery of specific miRNA for therapeutic applications.
Collapse
Affiliation(s)
- Kyung Whan Yoo
- Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Ning Li
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Vishruti Makani
- Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Ravi N. Singh
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Anthony Atala
- Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Baisong Lu
- Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| |
Collapse
|
38
|
Soltanian S, Dehghani H. BORIS: a key regulator of cancer stemness. Cancer Cell Int 2018; 18:154. [PMID: 30323717 PMCID: PMC6173857 DOI: 10.1186/s12935-018-0650-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/27/2018] [Indexed: 02/07/2023] Open
Abstract
BORIS (CTCFL) is a DNA binding protein which is involved in tumorigenesis. Although, there are different opinions on the level of gene expression and function of BORIS in normal and cancer tissues, the results of many studies have classified BORIS as a protein belonging to cancer/testis (CT) genes, which are identified as a group of genes that are expressed normally in testis, and abnormally in various types of cancers. In testis, BORIS induces the expression of some male germ cell/testis specific genes, and plays crucial roles during spermatogenesis and production of sperm. In tumorigenesis, the role of BORIS in the expression induction of some CT genes and oncogenes, as well as increasing proliferation/viability of cancer cells has been demonstrated in many researches. In addition to cancer cells, some believe that BORIS is also expressed in normal conditions and plays a universal function in cell division and regulation of genes. The following is a comprehensive review on contradictory views on the expression pattern and biological function of BORIS in normal, as well as cancer cells/tissues, and presents some evidence that support the expression of BORIS in cancer stem cells (CSCs) and advanced stage/poorer differentiation grade of cancers. Boris is involved in the regulation of CSC cellular and molecular features such as self-renewal, chemo-resistance, tumorigenicity, sphere-forming ability, and migration capacity. Finally, the role of BORIS in regulating two important signaling pathways including Wnt/β-catenin and Notch in CSCs, and its ability in recruiting transcription factors or chromatin-remodeling proteins to induce tumorigenesis is discussed.
Collapse
Affiliation(s)
- Sara Soltanian
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hesam Dehghani
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 91775-1793 Iran
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Stem Cells and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
39
|
Nicolini A, Ferrari P, Duffy MJ. Prognostic and predictive biomarkers in breast cancer: Past, present and future. Semin Cancer Biol 2018; 52:56-73. [DOI: 10.1016/j.semcancer.2017.08.010] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/14/2017] [Accepted: 08/24/2017] [Indexed: 12/19/2022]
|
40
|
Duan F, Yang Y, Liu W, Zhao J, Song X, Li L, Li F. Quantifying the prognostic significance of microRNA-17/17-5P in cancers: a meta-analysis based on published studies. Cancer Manag Res 2018; 10:2055-2069. [PMID: 30140158 PMCID: PMC6054760 DOI: 10.2147/cmar.s163415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective The aim of this study was to investigate the prognostic value of mircoRNA-17 and mircoRNA-17-5P (miR-17/17-5P) in patients with cancer. Materials and methods We conducted a comprehensive search on published literature following the guidelines of the meta-analysis of observational studies in epidemiology group for design, implementation, and reporting. The methodological qualities for included studies were assessed using the quality in prognosis studies. The pooled hazard ratios (HRs) with 95% CIs for overall survival (OS) and progression-free survival/recurrence-free survival/disease-free survival (PFS/RFS/DFS) were calculated to appraise the associations between miR-17/17-5P expression and cancer prognosis. Results A total of 21 studies involving 2099 subjects were analyzed in evidence synthesis. The results showed that high expression of miR-17 was associated with poor OS (HR=2.14; 95% CI: 1.69-2.71, P<0.001) in patients with cancer, especially in Caucasian (HR=2.23; 95% CI: 1.58-3.14, P<0.001) and digestive tract cancer (HR=1.29, 95% CI: 1.03-1.63, P=0.03), and miR-17 expression was significantly correlated with PFS/RFS in cancer patients (HR=1.69, 95% CI: 1.29-2.22, P<0.001). miR-17-5P overexpression was significantly linked with poor OS in cancer patients (HR=1.66; 95% CI: 1.31-2.09, P=0.00), especially in Asian (HR=1.81; 95% CI: 1.37-2.40, P<0.001), digestive tract cancer (HR=1.80; 95% CI: 1.29-2.50, P<0.001), and serum sample (HR=1.76; 95% CI: 1.29-2.41, P<0.001). miR-17-5P expression was significantly associated with DFS in cancer patients (HR=1.58, 95% CI: 1.07-2.35, P=0.02). Conclusion High expression of miR-17 and miR-17-5P are significantly associated with poor survival in patients with cancer. This indicated that miR-17/17-5P may be a novel prognostic indicator in cancer.
Collapse
Affiliation(s)
- Fujiao Duan
- Medical Research Office, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, China,
| | - Yang Yang
- Department of Nosocomial Infection Management, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Weigang Liu
- Medical Record Statistics Office, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056002, China
| | - Jie Zhao
- Center of Telemedicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Xiaoqin Song
- Center of Telemedicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Lifeng Li
- Center of Telemedicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Fuqin Li
- Department of Nosocomial Infection Management, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
41
|
Gao S, Cao C, Dai Q, Chen J, Tu J. miR-202 acts as a potential tumor suppressor in breast cancer. Oncol Lett 2018; 16:1155-1162. [PMID: 29963190 DOI: 10.3892/ol.2018.8726] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/26/2018] [Indexed: 12/17/2022] Open
Abstract
Breast cancer affects ~10% of women worldwide and is responsible for ~12% of all cancer-associated mortalities. Breast cancer is more prone to metastasis compared with other types of cancer. Up to 5% of patients with breast cancer present with incurable metastasis and an additional 10-15% of patients develop metastases within 3 years of their initial diagnosis. MicroRNAs (miRNAs) are short RNAs, 21-25 nucleotides in length, that have been shown to significantly affect gene expression. In total >2,000 miRNAs have been identified and specific miRNAs have been revealed to be associated with cancer. In the present study, we observed that the majority of breast cancer specimens collected expressed low levels of miR-202 compared with adjacent tissues and normal cell lines. Mechanistic investigations identified KRAS as a potential target gene of miR-202 and it was demonstrated that miR-202 exerted its tumor-suppressive effects by regulating the expression of KRAS in breast cancer cells. Functional assays revealed that miR-202 significantly reduced cell proliferation, migration and invasion in vitro. In summary, these results indicate the function of miR-202 in breast cancer progression and suggest that its use within breast cancer therapy is promising.
Collapse
Affiliation(s)
- Shanshan Gao
- Department of Laboratory Medicine, Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China.,Central Laboratory, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian 364000, P.R. China
| | - Chunfang Cao
- Central Laboratory, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian 364000, P.R. China
| | - Qingfu Dai
- Central Laboratory, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian 364000, P.R. China
| | - Jian Chen
- Central Laboratory, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian 364000, P.R. China
| | - Jiancheng Tu
- Department of Laboratory Medicine, Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
42
|
Lagendijk M, Sadaatmand S, Koppert LB, Tilanus-Linthorst MMA, de Weerd V, Ramírez-Moreno R, Smid M, Sieuwerts AM, Martens JWM. MicroRNA expression in pre-treatment plasma of patients with benign breast diseases and breast cancer. Oncotarget 2018; 9:24335-24346. [PMID: 29849944 PMCID: PMC5966243 DOI: 10.18632/oncotarget.25262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
Background MicroRNAs (miRs) are small RNA molecules, influencing messenger RNA (mRNA) expression and translation, and are readily detectable in blood. Some have been reported as potential breast cancer biomarkers. This study aimed to identify and validate miRs indicative of breast cancer. Results Based on the discovery and literature, 18 potentially informative miRs were quantified in the validation cohort. Irrespective of patient and tumour characteristics, hsa-miR-652-5p was significantly upregulated in the malignant compared to benign patients (1.26 fold, P = 0.005) and therefore validated as potential biomarker. In the validation cohort literature-based hsa-let-7b levels were higher in malignant patients as well (1.53 fold, P = 0.011). Two miRs differentiated benign wildtype from benign BRCA1 mutation carriers and an additional 8 miRs differentiated metastastic (n = 8) from non-metastatic (n = 41) cases in the validation cohort. Methods Pre-treatment plasma samples were collected of patients with benign breast disease and breast cancer and divided over a discovery (n = 31) and validation (n = 84) cohort. From the discovery cohort miRs differentially expressed between benign and malignant cases were identified using a 2,000-miR microarray. Literature-based miRs differentiating benign from malignant disease were added. Using RT-qPCR, their expression was investigated in a validation cohort consisting of pre-treatment benign, malignant and metastatic samples. Additionally, benign and malignant cases were compared to benign and malignant cases of BRCA1-mutation carriers. Conclusions Plasma microRNA levels differed between patients with and without breast cancer, between benign disease from wildtype and BRCA1-mutation carriers and between breast cancer with and without metastases. Hsa-miR-652-5p was validated as a potential biomarker for breast cancer.
Collapse
Affiliation(s)
- Mirelle Lagendijk
- Department of Surgical Oncology, Erasmus MC Cancer Institute, EA 3075, Rotterdam, The Netherlands
| | - Sepideh Sadaatmand
- Department of Surgical Oncology, Erasmus MC Cancer Institute, EA 3075, Rotterdam, The Netherlands
| | - Linetta B Koppert
- Department of Surgical Oncology, Erasmus MC Cancer Institute, EA 3075, Rotterdam, The Netherlands
| | | | - Vanja de Weerd
- Department of Medical Oncology, Erasmus MC Cancer Institute, EA 3075, Rotterdam, The Netherlands
| | - Raquel Ramírez-Moreno
- Department of Medical Oncology, Erasmus MC Cancer Institute, EA 3075, Rotterdam, The Netherlands
| | - Marcel Smid
- Department of Medical Oncology, Erasmus MC Cancer Institute, EA 3075, Rotterdam, The Netherlands
| | - Anieta M Sieuwerts
- Department of Medical Oncology, Erasmus MC Cancer Institute, EA 3075, Rotterdam, The Netherlands.,Cancer Genomics Centre Netherlands, Erasmus University MC, CN 3015, Rotterdam, The Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, EA 3075, Rotterdam, The Netherlands.,Cancer Genomics Centre Netherlands, Erasmus University MC, CN 3015, Rotterdam, The Netherlands
| |
Collapse
|
43
|
Lu PW, Li L, Wang F, Gu YT. Effects of long non-coding RNA HOST2 on cell migration and invasion by regulating MicroRNA let-7b in breast cancer. J Cell Biochem 2018; 119:4570-4580. [PMID: 29236319 DOI: 10.1002/jcb.26606] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/04/2017] [Indexed: 12/21/2022]
Abstract
The study intends to investigate the effects of long non-coding RNA HOST2 (lncRNA HOST2) on cell migration and invasion by regulating microRNA let-7b (let-7b) in breast cancer. Breast cancer and adjacent normal tissues were collected from 98 patients with breast cancer. Breast cancer MCF-7 cells were divided into the blank, negative control (NC), pcDNA3-Mock, siHOST2, let-7b inhibitor, pcDNA3-HOST2, let-7b mimic, pcDNA3-HOST2 + let-7b mimic, and siHOST2 + let-7b inhibitor groups. RT-qPCR was used to detect the mRNA expressions of HOST2, let-7b, and c-Myc. Western blotting was conducted to measure the c-Myc expression. Scratch test and Transwell assay were applied to detect the cell motility, migration, and invasion. Xenograft tumor in nude mice was performed to evaluate the effect of different transfection on the tumor growth. Compared with adjacent normal tissues, HOST2 expression was higher but let-7b expression lower in breast cancer tissues. HOST2 expression in breast cancer cells was remarkably increased compared with that in the normal breast epithelial MCF-10A cells. In MCF-7 cells, in comparison with the blank and NC groups, expressions of HOST2 and c-Myc were reduced, but let-7b expression was remarkably elevated in the siHOST2 and let-7b mimic groups; the let-7b inhibitor group exhibited higher expressions of HOST2 and c-Myc but lower let-7b expression. Overexpression of HOST2 could promote cell motility, migration and invasion, thus enhancing the growth of breast cancer tumor. By inhibiting HOST2, opposite trends were found. LncRNA HOST2 promotes cell migration and invasion by inhibiting let-7b in breast cancer patients.
Collapse
Affiliation(s)
- Peng-Wei Lu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Lin Li
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Fang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Yuan-Ting Gu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| |
Collapse
|
44
|
Dou D, Shi YF, Liu Q, Luo J, Liu JX, Liu M, Liu YY, Li YL, Qiu XD, Tan HY. Hsa-miR-202-3p, up-regulated in type 1 gastric neuroendocrine neoplasms, may target DUSP1. World J Gastroenterol 2018; 24:573-582. [PMID: 29434446 PMCID: PMC5799858 DOI: 10.3748/wjg.v24.i5.573] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/03/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To detect abnormal microRNA (miRNA) expression in type 1 gastric neuroendocrine neoplasms (g-NENs) and find potential target genes.
METHODS Tumour tissues from patients with type 1 g-NENs were used as experimental samples, and gastric mucosal tissues from the same patients obtained during gastroscopy review after several months were used as control samples. miRNA expression was examined with Agilent human miRNA chips and validated via RT-PCR. Three types of target gene prediction software (TargetScan, PITA, and microRNAorg) were used to predict potential target genes of the differentially expressed miRNAs, and a dual-luciferase reporter assay system was used for verification.
RESULTS Six miRNAs were significantly upregulated or downregulated in the tumours compared to the control samples. Among them, miR-202-3p was extraordinarily upregulated. RT-PCR of seven sample sets confirmed that miR-202-3p was upregulated in tumour tissues. In total, 215 target genes were predicted to be associated with miR-202-3p. Among them, dual-specificity phosphatase 1 (DUSP1) was reported to be closely related to tumour occurrence and development. The dual-luciferase reporter assay showed that miR-202-3p directly regulated DUSP1 in 293T cells.
CONCLUSION miR-202-3p is upregulated in type 1 g-NEN lesions and might play important roles in the pathogenesis of type 1 g-NENs by targeting DUSP1.
Collapse
Affiliation(s)
- Dou Dou
- Department of Integrative Oncology, China-Japan Friendship Hospital; Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan-Fen Shi
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Qing Liu
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jie Luo
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Ji-Xi Liu
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Meng Liu
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Ying-Ying Liu
- Department of Integrative Oncology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471009, Henan Province, China
| | - Yuan-Liang Li
- Department of Integrative Oncology, China-Japan Friendship Hospital; Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xu-Dong Qiu
- Department of Integrative Oncology, China-Japan Friendship Hospital; Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huang-Ying Tan
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
45
|
Dillon PM, Petroni GR, Smolkin ME, Brenin DR, Chianese-Bullock KA, Smith KT, Olson WC, Fanous IS, Nail CJ, Brenin CM, Hall EH, Slingluff CL. A pilot study of the immunogenicity of a 9-peptide breast cancer vaccine plus poly-ICLC in early stage breast cancer. J Immunother Cancer 2017; 5:92. [PMID: 29157306 PMCID: PMC5697108 DOI: 10.1186/s40425-017-0295-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 10/18/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Breast cancer remains a leading cause of cancer death worldwide. There is evidence that immunotherapy may play a role in the eradication of residual disease. Peptide vaccines for immunotherapy are capable of durable immune memory, but vaccines alone have shown sparse clinical activity against breast cancer to date. Toll-like receptor (TLR) agonists and helper peptides are excellent adjuvants for vaccine immunotherapy and they are examined in this human clinical trial. METHODS A vaccine consisting of 9 MHC class I-restricted breast cancer-associated peptides (from MAGE-A1, -A3, and -A10, CEA, NY-ESO-1, and HER2 proteins) was combined with a TLR3 agonist, poly-ICLC, along with a helper peptide derived from tetanus toxoid. The vaccine was administered on days 1, 8, 15, 36, 57, 78. CD8+ T cell responses to the vaccine were assessed by both direct and stimulated interferon gamma ELIspot assays. RESULTS Twelve patients with breast cancer were treated: five had estrogen receptor positive disease and five were HER2 amplified. There were no dose-limiting toxicities. Toxicities were limited to Grade 1 and Grade 2 and included mild injection site reactions and flu-like symptoms, which occurred in most patients. The most common toxicities were injection site reaction/induration and fatigue, which were experienced by 100% and 92% of participants, respectively. In the stimulated ELIspot assays, peptide-specific CD8+ T cell responses were detected in 4 of 11 evaluable patients. Two patients had borderline immune responses to the vaccine. The two peptides derived from CEA were immunogenic. No difference in immune response was evident between patients receiving endocrine therapy and those not receiving endocrine therapy during the vaccine series. CONCLUSIONS Peptide vaccine administered in the adjuvant breast cancer setting was safe and feasible. The TLR3 adjuvant, poly-ICLC, plus helper peptide mixture provided modest immune stimulation. Further optimization is required for this multi-peptide vaccine/adjuvant combination. TRIAL REGISTRATION ClinicalTrials.gov (posted 2/15/2012): NCT01532960. Registered 2/8/2012. https://clinicaltrials.gov/show/NCT01532960.
Collapse
Affiliation(s)
| | | | | | | | | | - Kelly T Smith
- University of Virginia, Charlottesville, VA, 22908, USA
| | | | | | - Carmel J Nail
- University of Virginia, Charlottesville, VA, 22908, USA
| | | | - Emily H Hall
- University of Virginia, Charlottesville, VA, 22908, USA
| | | |
Collapse
|
46
|
Sahengbieke S, Wang J, Li X, Wang Y, Lai M, Wu J. Circulating cell-free high mobility group AT-hook 2 mRNA as a detection marker in the serum of colorectal cancer patients. J Clin Lab Anal 2017; 32:e22332. [PMID: 28948632 DOI: 10.1002/jcla.22332] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/01/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Detection of circulating cell-free mRNA serves as noninvasive tools for cancer diagnosis. As an oncofetal protein, HMGA2 (high mobility group AT-hook 2) is upregulated in colorectal cancer (CRC) tissues. However, it is not clear whether the increased levels of circulating cell-free HMGA2 mRNA functions as potential biomarkers for improved diagnosis of CRC. METHODS To assess its clinical significance in diagnosis and prediction, we evaluated serum levels of circulating HMGA2 mRNA in CRC patients and in healthy controls. In this study, 83 CRC patients and 11 normal controls were enrolled in this study. We used real-time quantitative reverse transcription-PCR to evaluate the plasma mRNA levels of HMGA2 and analyze the correlation between their expression and clinicopathologic characteristics. RESULTS We found that the levels of HMGA2 mRNA were significantly higher in CRC patients compared with healthy volunteers. The patients with right-sided CRC, colon cancer, positive nerve infiltration, positive vascular invasion, negative microsatellite instability (MSI), and increasing in serum carbohydrate antigen (CA) 199 had higher levels of plasma HMGA2 mRNA. A strong positive correlation between circulating cell-free HMGA2 mRNA and CA199 level in serum was found in our study. Furthermore, statistical analysis revealed that levels of HMGA2 mRNA in plasma and in tumors were strictly correlated. CONCLUSIONS Collectively, our data suggested that cell-free HMGA2 mRNA in plasma might function as a novel diagnostic marker for CRC.
Collapse
Affiliation(s)
- Sana Sahengbieke
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jian Wang
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiangwei Li
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuhong Wang
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Maode Lai
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingjing Wu
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
47
|
Hamam R, Hamam D, Alsaleh KA, Kassem M, Zaher W, Alfayez M, Aldahmash A, Alajez NM. Circulating microRNAs in breast cancer: novel diagnostic and prognostic biomarkers. Cell Death Dis 2017; 8:e3045. [PMID: 28880270 PMCID: PMC5636984 DOI: 10.1038/cddis.2017.440] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 06/13/2017] [Accepted: 06/20/2017] [Indexed: 12/13/2022]
Abstract
Effective management of breast cancer depends on early diagnosis and proper monitoring of patients' response to therapy. However, these goals are difficult to achieve because of the lack of sensitive and specific biomarkers for early detection and for disease monitoring. Accumulating evidence in the past several years has highlighted the potential use of peripheral blood circulating nucleic acids such as DNA, mRNA and micro (mi)RNA in breast cancer diagnosis, prognosis and for monitoring response to anticancer therapy. Among these, circulating miRNA is increasingly recognized as a promising biomarker, given the ease with which miRNAs can be isolated and their structural stability under different conditions of sample processing and isolation. In this review, we provide current state-of-the-art of miRNA biogenesis, function and discuss the advantages, limitations, as well as pitfalls of using circulating miRNAs as diagnostic, prognostic or predictive biomarkers in breast cancer management.
Collapse
Affiliation(s)
- Rimi Hamam
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Dana Hamam
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia.,McGill University Health Centre and RI-MUHC, Montreal, Canada
| | - Khalid A Alsaleh
- Medical Oncology Unit, Department of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Moustapha Kassem
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia.,KMEB, Department of Endocrinology, University of Southern Denmark, Odense, Denmark.,Institute of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Waleed Zaher
- Department of Anatomy, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia.,College of Medicine Research Center, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Musaad Alfayez
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Abdullah Aldahmash
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia.,Prince Naif Health Research Center, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Nehad M Alajez
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
48
|
Hypomethylation of BORIS is a promising prognostic biomarker in hepatocellular carcinoma. Gene 2017; 629:29-34. [DOI: 10.1016/j.gene.2017.07.077] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/21/2017] [Accepted: 07/27/2017] [Indexed: 01/31/2023]
|
49
|
miR-200b inhibits proliferation and metastasis of breast cancer by targeting fucosyltransferase IV and α1,3-fucosylated glycans. Oncogenesis 2017; 6:e358. [PMID: 28692034 PMCID: PMC5541710 DOI: 10.1038/oncsis.2017.58] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 05/03/2017] [Accepted: 06/05/2017] [Indexed: 12/16/2022] Open
Abstract
Aberrant protein fucosylation is associated with cancer malignancy. Fucosyltransferase IV (FUT4) is the key enzyme catalyzing the biosynthesis of α1,3-linkage fucosylated glycans carried by glycoproteins on the cell surface, such as the tumor-associated sugar antigen Lewis Y (LeY). An abnormal increase in the levels of FUT4 and LeY is observed in many cancers and correlated with cell proliferation and metastasis. Some microRNAs (miRNAs) are known to negatively regulate gene expression. FUT4 is an oncogenic glycogene, and thus it is important to identify the specific miRNA targeting FUT4. In current study, we first identified miR-200b as a specific miRNA that inhibited FUT4 expression. We found that miR-200b level was decreased, whereas that of FUT4 was increased in tissues and serum of breast cancer compared with that in the control by real-time PCR, western blotting and enzyme-linked immunosorbent assay. The alterations of miR-200b and FUT4 level were recovered after chemotherapy. The results also showed that miR-200b suppressed FUT4 expression and inhibited tumor growth and metastasis in MCF-7 and MDA-MB-231 breast cancer cells, as well as in the xenografted tumor tissues and metastatic lung tissues. miR-200b decreased the α1,3-fucosylation and LeY biosynthesis on epidermal growth factor receptor (EGFR), as well as inactivation of EGFR and downstream phosphoinositide-3 kinase/Akt signaling pathway. In conclusion, the study highlights that FUT4 could apply as a novel target for miR-200b that suppress the proliferation and metastasis of breast cancer cells by reducing α1,3-fucosylation and LeY biosynthesis of glycoproteins. miR-200b and FUT4 are potential diagnostic and therapeutic targets for breast cancer.
Collapse
|
50
|
Zebularine Treatment Induces MAGE-A11 Expression and Improves CTL Cytotoxicity Using a Novel Identified HLA-A2-restricted MAGE-A11 Peptide. J Immunother 2017; 40:211-220. [DOI: 10.1097/cji.0000000000000170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|