1
|
Wang Y, Jin D, Ren L, Wang N, Jia Y, Zheng Z, Cai W, Fu H, Li G. Sialylation Shields Glycoproteins from Oxidative Stress: Mechanistic Insights into Sialic Acid Oxidation and Structural Stability. J Am Chem Soc 2025; 147:5828-5838. [PMID: 39908231 DOI: 10.1021/jacs.4c14454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Sialylation, a crucial yet labile protein modification, is increasingly recognized for its role in modulating protein structure, function, and stability. While the impact of oxidative stress on protein integrity is well-established, the protective role of sialylation against such damage remains poorly understood. This study employs a microscale low-temperature plasma device to generate a controlled, deep radical oxidation environment mimicking cellular oxidative stress. By subjecting free sialic acids (Neu5Ac and Neu5Gc) to time-resolved deep radical exposure, high-resolution mass spectrometry, and high-fidelity density functional theory calculations, we establish an unprecedented oxidation pathway, revealing unique stepwise side chain oxidation prior to ring opening. Comprehensive radical oxidation maps comprising over 100 oxidative intermediates provide a molecular basis for the higher propensity of Neu5Gc over Neu5Ac in resisting radical oxidation. Further, using human transferrin as a model glycoprotein, we demonstrate the protective role of sialylation against oxidative unfolding. Through a combination of site mapping, enzymatic treatments, and all-ion unfolding ion mobility-mass spectrometry, we identify specific protein sialylation patterns and structural motifs that are crucial for maintaining structural stability under oxidative stress. Our findings provide unprecedented insights into the intricate interplay between sialylation and oxidative stress, highlighting the importance of sialylation in stabilizing protein conformations under various oxidative stresses.
Collapse
Affiliation(s)
- Yamei Wang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Dongbei Jin
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lifang Ren
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ning Wang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yifei Jia
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhen Zheng
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Wensheng Cai
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Haohao Fu
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gongyu Li
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
2
|
Stoof J, Kalmoua Z, Sobota A, Brakenhoff RH, Stigter M, Pham TV, Piersma SR, Henneman A, Lagerweij T, de Goeij-de Haas R, van Moorselaar RJA, Jimenez CR, Bijnsdorp IV. Non-thermal plasma as promising anti-cancer therapy against bladder cancer by inducing DNA damage and cell cycle arrest. Sci Rep 2025; 15:2334. [PMID: 39824909 PMCID: PMC11742390 DOI: 10.1038/s41598-025-85568-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025] Open
Abstract
Bladder cancer often recurs, necessitating innovative treatments to reduce recurrence. We investigated non-thermal plasma's potential as a novel anti-cancer therapy, focusing on plasma-activated solution (PAS), created by exposing saline to non-thermal plasma. Our study aims to elucidate the biological effects of PAS on bladder cancer cell lines in vitro, as well as the combination with mitomycin C (MMC), using clinically relevant settings. PAS treatment exerts a potent cytotoxic effect through the production of intracellular reactive oxygen species, resulting in DNA damage and subsequent induction of G1 cell cycle arrest/senescence. This is induced via upregulation of cell cycle checkpoint signalling and DNA damage repair pathways using LC-M/MS-based phospho-proteomics. Importantly, combining PAS with MMC reveals a synergistic effect (Combination Index of 0.59-0.67), suggesting the potential of utilizing PAS in combination therapies. Our findings demonstrate PAS's mode of action and suggest its potential as a promising treatment for bladder cancer, warranting further clinical studies.
Collapse
Affiliation(s)
- Jojanneke Stoof
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, de Boelelaan 1117, 1018 HV, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, Urology, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, OncoProteomics Laboratory, Medical Oncology, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Target and Therapy Discovery, Amsterdam, The Netherlands
| | - Zakaria Kalmoua
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, de Boelelaan 1117, 1018 HV, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, Urology, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, OncoProteomics Laboratory, Medical Oncology, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Target and Therapy Discovery, Amsterdam, The Netherlands
| | - Ana Sobota
- Department of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Ruud H Brakenhoff
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, de Boelelaan 1117, 1018 HV, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Target and Therapy Discovery, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, Otolaryngology/Head and Neck Surgery, Amsterdam, The Netherlands
| | - Marijke Stigter
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, de Boelelaan 1117, 1018 HV, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Target and Therapy Discovery, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, Otolaryngology/Head and Neck Surgery, Amsterdam, The Netherlands
| | - Thang V Pham
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, de Boelelaan 1117, 1018 HV, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, OncoProteomics Laboratory, Medical Oncology, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Target and Therapy Discovery, Amsterdam, The Netherlands
| | - Sander R Piersma
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, de Boelelaan 1117, 1018 HV, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, Urology, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, OncoProteomics Laboratory, Medical Oncology, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Target and Therapy Discovery, Amsterdam, The Netherlands
| | - Alex Henneman
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, de Boelelaan 1117, 1018 HV, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, OncoProteomics Laboratory, Medical Oncology, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Target and Therapy Discovery, Amsterdam, The Netherlands
| | - Tonny Lagerweij
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, de Boelelaan 1117, 1018 HV, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Target and Therapy Discovery, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, Neurosurgery, Amsterdam, The Netherlands
| | - Richard de Goeij-de Haas
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, de Boelelaan 1117, 1018 HV, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, OncoProteomics Laboratory, Medical Oncology, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Target and Therapy Discovery, Amsterdam, The Netherlands
| | - R Jeroen A van Moorselaar
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, de Boelelaan 1117, 1018 HV, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, Urology, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Target and Therapy Discovery, Amsterdam, The Netherlands
| | - Connie R Jimenez
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, de Boelelaan 1117, 1018 HV, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, OncoProteomics Laboratory, Medical Oncology, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Target and Therapy Discovery, Amsterdam, The Netherlands
| | - Irene V Bijnsdorp
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, de Boelelaan 1117, 1018 HV, Amsterdam, The Netherlands.
- Amsterdam UMC, Location VUmc, Urology, Amsterdam, The Netherlands.
- Amsterdam UMC, Location VUmc, OncoProteomics Laboratory, Medical Oncology, Amsterdam, The Netherlands.
- Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Target and Therapy Discovery, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Hao YY, Xiao WQ, Zhang HN, Yu NN, Park G, Han YH, Kwon T, Sun HN. Peroxiredoxin 1 modulates oxidative stress resistance and cell apoptosis through stemness in liver cancer under non-thermal plasma treatment. Biochem Biophys Res Commun 2024; 738:150522. [PMID: 39154551 DOI: 10.1016/j.bbrc.2024.150522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
The role of peroxiredoxin 1 (PRDX1), a crucial enzyme that reduces reactive oxygen and nitrogen species levels in HepG2 human hepatocellular carcinoma (HCC) cells, in the regulation of HCC cell stemness under oxidative stress and the underlying mechanisms remain largely unexplored. Here, we investigated the therapeutic potential of non-thermal plasma in targeting cancer stem cells (CSCs) in HCC, focusing on the mechanisms of resistance to oxidative stress and the role of PRDX1. By simulating oxidative stress conditions using the plasma-activated medium, we found that a reduction in PRDX1 levels resulted in a considerable increase in HepG2 cell apoptosis, suggesting that PRDX1 plays a key role in oxidative stress defense mechanisms in CSCs. Furthermore, we found that HepG2 cells had higher spheroid formation capability and increased levels of stem cell markers (CD133, c-Myc, and OCT-4), indicating strong stemness. Interestingly, PRDX1 expression was notably higher in HepG2 cells than in other HCC cell types such as Hep3B and Huh7 cells, whereas the expression levels of other PRDX family proteins (PRDX 2-6) were relatively consistent. The inhibition of PRDX1 expression and peroxidase activity by conoidin A resulted in markedly reduced stemness traits and increased cell death rate. Furthermore, in a xenograft mouse model, PRDX1 downregulation considerably inhibited the formation of solid tumors after plasma-activated medium (PAM) treatment. These findings underscore the critical role of PRDX 1 in regulating stemness and apoptosis in HCC cells under oxidative stress, highlighting PRDX1 as a promising therapeutic target for NTP-based treatment in HCC.
Collapse
Affiliation(s)
- Ying-Ying Hao
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China
| | - Wan-Qiu Xiao
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China
| | - Hui-Na Zhang
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China
| | - Nan-Nan Yu
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China; Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Gyungsoon Park
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Ying-Hao Han
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk, 56216, Republic of Korea; Department of Applied Biological Engineering, KRIBB School of Biotechnology, Korea National University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Hu-Nan Sun
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China.
| |
Collapse
|
4
|
Coimbra JLP, Campolina-Silva G, Lair DF, Guimarães-Ervilha LO, Souza ACF, Oliveira CA, Costa GMJ, Machado-Neves M. Subchronic intake of arsenic at environmentally relevant concentrations causes histological lesions and oxidative stress in the prostate of adult Wistar rats. Reprod Toxicol 2024; 128:108647. [PMID: 38909693 DOI: 10.1016/j.reprotox.2024.108647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/30/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
The prostate gland is one of the main sites of hyperplasia and cancer in elderly men. Numerous factors have been demonstrated to disrupt prostate homeostasis, including exposure to environmental pollutants. Arsenic is a metalloid found ubiquitously in soil, air, and water, which favors human poisoning through the involuntary intake of contaminated drinking water and food and has harmful effects by increasing the oxidative stress response. This study aimed to investigate the effects of prolonged exposure to arsenic at environmentally relevant concentrations on the prostate biology of adult Wistar rats. Thirty 80-day-old male rats were divided into three experimental groups. Rats from the control group received filtered water, whereas animals from the arsenic groups ingested 1 mg L-1 and 10 mg L-1 of arsenic, in the form of sodium arsenite, daily. The arsenic solutions were provided ad libitum in the drinking water for eight weeks. Our results showed that 1 mg L-1 and 10 mg L-1 of arsenic made the prostate susceptible to evolving benign and premalignant histopathological changes. While the ingestion of 1 mg L-1 of arsenic reduced SOD activity only, 10 mg L-1 diminished SOD and CAT activity in the prostate tissue, culminating in high MDA production. These doses, however, did not affect the intraprostatic levels of DHT and estradiol. In conclusion, exposure to arsenic at environmentally relevant concentrations through drinking water induces histological and oxidative stress-related changes in the prostate of adult rats, strengthening the between arsenic exposure and prostate disorders.
Collapse
Affiliation(s)
- John L P Coimbra
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Department of General Biology, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| | - Gabriel Campolina-Silva
- Department of Obstetrics, Gynecology, and Reproduction, Université Laval, Québec, QC, Canada; CHU de Quebec Research Center, Université Laval, Québec, QC, Canada
| | - Daniel F Lair
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Ana C F Souza
- Department of Animal Biology, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cleida A Oliveira
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Guilherme M J Costa
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | |
Collapse
|
5
|
Ochiai Y, Suzuki-Karasaki M, Ando T, Suzuki-Karasaki M, Nakayama H, Suzuki-Karasaki Y. Nitric oxide-dependent cell death in glioblastoma and squamous cell carcinoma via prodeath mitochondrial clustering. Eur J Cell Biol 2024; 103:151422. [PMID: 38795505 DOI: 10.1016/j.ejcb.2024.151422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024] Open
Abstract
Besides the fission-fusion dynamics, the cellular distribution of mitochondria has recently emerged as a critical biological parameter in regulating mitochondrial function and cell survival. We previously found that mitochondrial clustering on the nuclear periphery, or monopolar perinuclear mitochondrial clustering (MPMC), accompanies the anticancer activity of air plasma-activated medium (APAM) against glioblastoma and human squamous cell carcinoma, which is closely associated with oxidant-dependent tubulin remodeling and mitochondrial fragmentation. Accordingly, this study investigated the regulatory roles of nitric oxide (NO) in the anticancer activity of APAM. Time-lapse analysis revealed a time-dependent increase in NO accompanied by MPMC. In contrast, APAM caused minimal increases in MPMC and NO levels in nontransformed cells. NO, hydroxyl radicals, and lipid peroxide levels increased near the damaged nuclear periphery, possibly within mitochondria. NO scavenging prevented tubulin remodeling, MPMC, perinuclear oxidant production, nuclear damage, and cell death. Conversely, synthetic NO donors augmented all the prodeath events and acted synergistically with APAM. Salinomycin, an emerging drug against multidrug-resistant cancers, had similar NO-dependent effects. These results suggest that APAM and salinomycin induce NO-dependent cell death, where MPMC and oxidative mitochondria play critical roles. Our findings encourage further investigations on MPMC as a potential target for NO-driven anticancer agents against drug-resistant cancers.
Collapse
Affiliation(s)
- Yushi Ochiai
- Department of Research and Development, Plasma ChemiBio Laboratory, Nasushiobara, Tochigi Japan
| | - Manami Suzuki-Karasaki
- Department of Research and Development, Plasma ChemiBio Laboratory, Nasushiobara, Tochigi Japan; Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takashi Ando
- Department of Research and Development, Plasma ChemiBio Laboratory, Nasushiobara, Tochigi Japan
| | - Miki Suzuki-Karasaki
- Department of Research and Development, Plasma ChemiBio Laboratory, Nasushiobara, Tochigi Japan
| | - Hideki Nakayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | | |
Collapse
|
6
|
Liu H, Liang X, Teng M, Li Z, Peng Y, Wang P, Chen H, Cheng H, Liu G. Cold Atmospheric Plasma: An Emerging Immunomodulatory Therapy. ADVANCED THERAPEUTICS 2024; 7. [DOI: 10.1002/adtp.202300399] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Indexed: 01/16/2025]
Abstract
AbstractCold atmospheric plasma (CAP) is a novel technology that generates a unique combination of reactive oxygen and nitrogen species (ROS/RNS), electric fields, and UV radiation. CAP has shown promise in regulating the immune system and has potential clinical applications in wound healing, cancer treatment, and infection control. This review provides an overview of the immunological regulation activity of CAP, highlighting its substantial impact on cytokines production, immune cell phagocytosis, and immune cell proliferation. CAP has also been demonstrated to have potent therapeutic effect in anti‐inflammation, wound repair, viral and bacterial infections. Furthermore, CAP has been investigated as an adjuvant therapy for tumor treatment, eliciting a robust antitumor immune response and remarkable synergistic effects in diverse combination therapies. Further research is needed to fully understand the mechanisms underlying the effects of CAP on the immune system and to optimize its clinical application.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Infectious Disease Vaccine Development Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Xiaoliu Liang
- State Key Laboratory of Infectious Disease Vaccine Development Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Minglei Teng
- State Key Laboratory of Infectious Disease Vaccine Development Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Zhenjie Li
- State Key Laboratory of Infectious Disease Vaccine Development Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Yisheng Peng
- State Key Laboratory of Infectious Disease Vaccine Development Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Peiyu Wang
- State Key Laboratory of Infectious Disease Vaccine Development Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Hu Chen
- State Key Laboratory of Infectious Disease Vaccine Development Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Hongwei Cheng
- State Key Laboratory of Infectious Disease Vaccine Development Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 China
- University of Macau Macau SAR 999078 China
| | - Gang Liu
- State Key Laboratory of Infectious Disease Vaccine Development Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 China
| |
Collapse
|
7
|
Sheikhlary S, Lopez DH, Moghimi S, Sun B. Recent Findings on Therapeutic Cancer Vaccines: An Updated Review. Biomolecules 2024; 14:503. [PMID: 38672519 PMCID: PMC11048403 DOI: 10.3390/biom14040503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer remains one of the global leading causes of death and various vaccines have been developed over the years against it, including cell-based, nucleic acid-based, and viral-based cancer vaccines. Although many vaccines have been effective in in vivo and clinical studies and some have been FDA-approved, there are major limitations to overcome: (1) developing one universal vaccine for a specific cancer is difficult, as tumors with different antigens are different for different individuals, (2) the tumor antigens may be similar to the body's own antigens, and (3) there is the possibility of cancer recurrence. Therefore, developing personalized cancer vaccines with the ability to distinguish between the tumor and the body's antigens is indispensable. This paper provides a comprehensive review of different types of cancer vaccines and highlights important factors necessary for developing efficient cancer vaccines. Moreover, the application of other technologies in cancer therapy is discussed. Finally, several insights and conclusions are presented, such as the possibility of using cold plasma and cancer stem cells in developing future cancer vaccines, to tackle the major limitations in the cancer vaccine developmental process.
Collapse
Affiliation(s)
- Sara Sheikhlary
- Department of Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | - David Humberto Lopez
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| | - Sophia Moghimi
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| | - Bo Sun
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| |
Collapse
|
8
|
He Y, Lu F, Jiang C, Gong F, Wu Z, Ostrikov K. Cold atmospheric plasma stabilizes mismatch repair for effective, uniform treatment of diverse colorectal cancer cell types. Sci Rep 2024; 14:3599. [PMID: 38351129 PMCID: PMC10864286 DOI: 10.1038/s41598-024-54020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/07/2024] [Indexed: 02/16/2024] Open
Abstract
Mismatch Repair (MMR) mechanisms play a pivotal role in rectifying DNA replication errors and maintaining the stability of DNA microsatellite structure. Colorectal cancer (CRC) can be characterized into microsatellite stability (MSS) and microsatellite instability (MSI) subtypes based on the functionality of MMR. MSI CRC notably exhibits enhanced chemotherapy resistance, attributable to diminished MMR-related protein expression. Cold atmospheric plasma (CAP) has emerged as a promising treatment modality, demonstrating efficacy in inducing apoptosis in various cancer cells. However, the therapeutic impact of CAP on MSI colorectal cancer, and the underlying mechanisms remain elusive. In this study, we investigated the effects of CAP on MSI (MC38, HCT116, and LOVO) and MSS (CT26 and HT29) CRC cell lines. We are probing into the products of CAP treatment. Our findings indicate that CAP treatment induces comparable effects on apoptosis, reactive oxygen species (ROS), and reactive nitrogen species (RNS), as well as the expression of apoptosis-related proteins in both MSI and MSS cells. Mechanistically, CAP treatment led to an elevation in the expression of mismatch repair proteins (MLH1 and MSH2), particularly in MSI cells, which notably have been proven to facilitate the activation of apoptosis-related proteins. Collectively, our study reveals that CAP enhances apoptotic signaling and induces apoptosis in MSI colorectal cancer cells by upregulating the expression of MMR-related proteins, thereby reinforcing MMR stabilization.
Collapse
Affiliation(s)
- Yuanyuan He
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, China
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Fu Lu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, China
| | - Chenmin Jiang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Fanwu Gong
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Zhengwei Wu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, China.
| | - Kostya Ostrikov
- School of Chemistry and Physics and QUT Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| |
Collapse
|
9
|
Bekeschus S. Medical gas plasma technology: Roadmap on cancer treatment and immunotherapy. Redox Biol 2023; 65:102798. [PMID: 37556976 PMCID: PMC10433236 DOI: 10.1016/j.redox.2023.102798] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 08/11/2023] Open
Abstract
Despite continuous therapeutic progress, cancer remains an often fatal disease. In the early 2010s, first evidence in rodent models suggested promising antitumor action of gas plasma technology. Medical gas plasma is a partially ionized gas depositing multiple physico-chemical effectors onto tissues, especially reactive oxygen and nitrogen species (ROS/RNS). Today, an evergrowing body of experimental evidence suggests multifaceted roles of medical gas plasma-derived therapeutic ROS/RNS in targeting cancer alone or in combination with oncological treatment schemes such as ionizing radiation, chemotherapy, and immunotherapy. Intriguingly, gas plasma technology was recently unraveled to have an immunological dimension by inducing immunogenic cell death, which could ultimately promote existing cancer immunotherapies via in situ or autologous tumor vaccine schemes. Together with first clinical evidence reporting beneficial effects in cancer patients following gas plasma therapy, it is time to summarize the main concepts along with the chances and limitations of medical gas plasma onco-therapy from a biological, immunological, clinical, and technological point of view.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany.
| |
Collapse
|
10
|
Dai X, Wu J, Lu L, Chen Y. Current Status and Future Trends of Cold Atmospheric Plasma as an Oncotherapy. Biomol Ther (Seoul) 2023; 31:496-514. [PMID: 37641880 PMCID: PMC10468422 DOI: 10.4062/biomolther.2023.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 08/31/2023] Open
Abstract
Cold atmospheric plasma (CAP), a redox modulation tool, is capable of inhibiting a wide spectrum of cancers and has thus been proposed as an emerging onco-therapy. However, with incremental successes consecutively reported on the anticancer efficacy of CAP, no consensus has been made on the types of tumours sensitive to CAP due to the different intrinsic characteristics of the cells and the heterogeneous design of CAP devices and their parameter configurations. These factors have substantially hindered the clinical use of CAP as an oncotherapy. It is thus imperative to clarify the tumour types responsive to CAP, the experimental models available for CAP-associated investigations, CAP administration strategies and the mechanisms by which CAP exerts its anticancer effects with the aim of identifying important yet less studied areas to accelerate the process of translating CAP into clinical use and fostering the field of plasma oncology.
Collapse
Affiliation(s)
- Xiaofeng Dai
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Jiale Wu
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Lianghui Lu
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuyu Chen
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
11
|
Holanda AGA, Cesário BC, Silva VM, Francelino LEC, Nascimento BHM, Damasceno KFA, Ishikawa U, Farias NBS, Junior RFA, Barboza CAG, Junior CA, Antunes JMAP, Moura CEB, Queiroz GF. Use of Cold Atmospheric Plasma in the Treatment of Squamous Cell Carcinoma: in vitro Effects and Clinical Application in Feline Tumors: A Pilot Study. Top Companion Anim Med 2023; 53-54:100773. [PMID: 36990177 DOI: 10.1016/j.tcam.2023.100773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/19/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Cold atmospheric plasma (CAP) has shown promising results against squamous cell carcinoma (SCC) in both in vivo and in vitro assays, mainly in humans and mice. Its applicability for treatment of feline tumors, however, remains unknown. This study aimed to evaluate the anticancer effects of CAP on a head and neck squamous cell carcinoma (HNSCC) cell lineage and against a clinical case of cutaneous SCC in a cat. Control and treatment groups employing the HNSCC cell line (SCC-25) were used, the latter exposed to CAP for 60 seconds, 90 seconds, or 120 seconds. The cells were subjected to the MTT assay nitric oxidation assay and thermographic in vitro analyses. The clinical application was performed in one cat with cutaneous SCC (3 sites). The lesions were treated and evaluated by thermographic, histopathological, and immunohistochemical examinations (caspase-3 and TNF-alpha). Treatment of the SCC-25 cells for 90 seconds and 120 seconds resulted in a significant nitrite concentration increase. Decreased cell viability was observed after 24 hours and 48 hours, regardless of exposure time. However, the cell viability reduction observed at 72 hours was significant only in the 120 seconds treatment. In vitro, the temperature decreased for all treatment times, while the plasma induced a slight increase in mean temperature (0.7°C) in the in vivo assay. Two of the 3 clinical tumors responded to the treatment: one with a complete response and the other, partial, while the third (lower lip SCC) remained stable. Both remaining tumors displayed apoptotic areas and increased expression of caspase-3 and TNF-alpha. Adverse effects were mild and limited to erythema and crusting. The CAP exhibited an in vitro anticancer effect on the HNSCC cell line, demonstrated by a dose-dependent cell viability reduction. In vivo, the therapy appears safe and effective against feline cutaneous SCC. The treatment did not result in a clinical response for 1 of 3 lesions (proliferative lower lip tumor), however, a biological effect was still demonstrated by the higher expression of apoptosis indicators.
Collapse
Affiliation(s)
- André G A Holanda
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil.
| | - Bruna C Cesário
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| | - Victória M Silva
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| | - Luiz E C Francelino
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| | - Bruno H M Nascimento
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| | - Kássia F A Damasceno
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| | - Uta Ishikawa
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Naisandra B S Farias
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Raimundo F A Junior
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Carlos A G Barboza
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Clodomiro A Junior
- Department of Natural Sciences, Mathematics and Statistics, Federal Rural University of the Semi-Arid, RN, Brazil
| | - João M A P Antunes
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| | - Carlos E B Moura
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| | - Genilson F Queiroz
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| |
Collapse
|
12
|
Gonzales LISA, Qiao JW, Buffier AW, Rogers LJ, Suchowerska N, McKenzie DR, Kwan AH. An omics approach to delineating the molecular mechanisms that underlie the biological effects of physical plasma. BIOPHYSICS REVIEWS 2023; 4:011312. [PMID: 38510160 PMCID: PMC10903421 DOI: 10.1063/5.0089831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 02/24/2023] [Indexed: 03/22/2024]
Abstract
The use of physical plasma to treat cancer is an emerging field, and interest in its applications in oncology is increasing rapidly. Physical plasma can be used directly by aiming the plasma jet onto cells or tissue, or indirectly, where a plasma-treated solution is applied. A key scientific question is the mechanism by which physical plasma achieves selective killing of cancer over normal cells. Many studies have focused on specific pathways and mechanisms, such as apoptosis and oxidative stress, and the role of redox biology. However, over the past two decades, there has been a rise in omics, the systematic analysis of entire collections of molecules in a biological entity, enabling the discovery of the so-called "unknown unknowns." For example, transcriptomics, epigenomics, proteomics, and metabolomics have helped to uncover molecular mechanisms behind the action of physical plasma, revealing critical pathways beyond those traditionally associated with cancer treatments. This review showcases a selection of omics and then summarizes the insights gained from these studies toward understanding the biological pathways and molecular mechanisms implicated in physical plasma treatment. Omics studies have revealed how reactive species generated by plasma treatment preferentially affect several critical cellular pathways in cancer cells, resulting in epigenetic, transcriptional, and post-translational changes that promote cell death. Finally, this review considers the outlook for omics in uncovering both synergies and antagonisms with other common cancer therapies, as well as in overcoming challenges in the clinical translation of physical plasma.
Collapse
Affiliation(s)
- Lou I. S. A. Gonzales
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Jessica W. Qiao
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Aston W. Buffier
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | | | | | | | - Ann H. Kwan
- Author to whom correspondence should be addressed:
| |
Collapse
|
13
|
Extracellular Heat Shock Protein 27 Is Released by Plasma-Treated Ovarian Cancer Cells and Affects THP-1 Monocyte Activity. PLASMA 2022. [DOI: 10.3390/plasma5040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Heat shock protein 27 (Hsp27) is a cytoprotective molecule and is inducible via oxidative stress. Anti-cancer therapies, such as the recently investigated gas plasma, subject tumor cells to a plethora of reactive oxygen species (ROS). In ovarian tumor microenvironments (TME), immune cells such as monocytes and macrophages can be found in large numbers and are often associated with cancer progression. Therefore, we quantified extracellular Hsp27 of OVCAR-3 and SK-OV-3 cells after gas plasma exposure in vitro. We found Hsp27 to be significantly increased. Following this, we investigated the effects of Hsp27 on THP-1 monocytes. Live cell imaging of Hsp27-treated THP-1 cells showed decelerated cell numbers and a reduction in cell cluster sizes. In addition, reduced metabolic activity and proliferation were identified using flow cytometry. Mitochondrial ROS production decreased. Using multicolor flow cytometry, the expression profile of eight out of twelve investigated cell surface markers was significantly modulated in Hsp27-treated THP-1 cells. A significantly decreased release of IL18 accommodated this. Taken together, our results suggest an immunomodulatory effect of Hsp27 on THP-1 monocytes. These data call for further investigations on Hsp27’s impact on the interplay of ovarian cancer cells and monocytes/macrophages under oxidative stress conditions.
Collapse
|
14
|
Tsoukou E, Bourke P, Boehm D. Efficacy of plasma activated saline in a co-culture infection control model. Sci Rep 2022; 12:20230. [PMID: 36418898 PMCID: PMC9684424 DOI: 10.1038/s41598-022-20165-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
Plasma activated liquids have demonstrated antimicrobial effects and receive increasing attention due to the potential to strengthen the armoury of novel approaches against antibiotic resistant bacteria. However, the antibacterial activity and cytotoxic effects of these solutions need to be understood and balanced before exposure to humans. In this study, the antibacterial effects of plasma activated saline (PAS) were tested against Gram negative and positive bacteria, and HaCaT keratinocytes were used for cytotoxicity studies. For the first time, a co-culture model between these bacteria and eukaryotic cells under the influence of PAS has been described. Exposure of saline to plasma resulted in high concentrations of nitrate, hydrogen peroxide and a reduction of pH. PAS caused high antibacterial effects in the co-culture model, accompanied by high cytotoxic effects to the monolayer of mammalian cells. We present evidence and provide a deeper understanding for the hypothesis that upon treatment with PAS, chemical species generated in the liquid mediate high antimicrobial effects in the co-culture setup as well as mitochondrial depolarization and glutathione depletion in HaCaT cells and cell lysis due to acidic pH. In conclusion, PAS retains strong antibacterial effects in a co-culture model, which may have unintended negative biological effects on mammalian cells.
Collapse
Affiliation(s)
- Evanthia Tsoukou
- Environmental Sustainability and Health Institute, Technological University Dublin, Dublin 7, Ireland
- School of Food Science and Environmental Health, Technological University Dublin, Dublin 7, Ireland
| | - Paula Bourke
- Environmental Sustainability and Health Institute, Technological University Dublin, Dublin 7, Ireland
- Plasma Research Group, School of Biosystems and Food Engineering, University College Dublin, Dublin 4, Ireland
- Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Daniela Boehm
- Environmental Sustainability and Health Institute, Technological University Dublin, Dublin 7, Ireland.
- School of Food Science and Environmental Health, Technological University Dublin, Dublin 7, Ireland.
| |
Collapse
|
15
|
Kim SJ, Seong MJ, Mun JJ, Bae JH, Joh HM, Chung TH. Differential Sensitivity of Melanoma Cells and Their Non-Cancerous Counterpart to Cold Atmospheric Plasma-Induced Reactive Oxygen and Nitrogen Species. Int J Mol Sci 2022; 23:ijms232214092. [PMID: 36430569 PMCID: PMC9698967 DOI: 10.3390/ijms232214092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Despite continuous progress in therapy, melanoma is one of the most aggressive and malignant human tumors, often relapsing and metastasizing to almost all organs. Cold atmospheric plasma (CAP) is a novel anticancer tool that utilizes abundant reactive oxygen and nitrogen species (RONS) being deposited on the target cells and tissues. CAP-induced differential effects between non-cancerous and cancer cells were comparatively examined. Melanoma and non-cancerous skin fibroblast cells (counterparts; both cell types were isolated from the same patient) were used for plasma-cell interactions. The production of intracellular RONS, such as nitric oxide (NO), hydroxyl radical (•OH), and hydrogen peroxide (H2O2), increased remarkably only in melanoma cancer cells. It was observed that cancer cells morphed from spread to round cell shapes after plasma exposure, suggesting that they were more affected than non-cancerous cells in the same plasma condition. Immediately after both cell types were treated with plasma, there were no differences in the amount of extracellular H2O2 production, while Hanks' balanced salt solution-containing cancer cells had lower concentrations of H2O2 than that of non-cancerous cells at 1 h after treatment. The melanoma cells seemed to respond to CAP treatment with a greater rise in RONS and a higher consumption rate of H2O2 than homologous non-cancerous cells. These results suggest that differential sensitivities of non-cancerous skin and melanoma cells to CAP-induced RONS can enable the applicability of CAP in anticancer therapy.
Collapse
|
16
|
De Backer J, Lin A, Berghe WV, Bogaerts A, Hoogewijs D. Cytoglobin inhibits non-thermal plasma-induced apoptosis in melanoma cells through regulation of the NRF2-mediated antioxidant response. Redox Biol 2022; 55:102399. [PMID: 35850009 PMCID: PMC9294208 DOI: 10.1016/j.redox.2022.102399] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/05/2022] [Indexed: 12/30/2022] Open
Abstract
Melanoma arises from pigment-producing cells called melanocytes located in the basal layers of the epidermis of the skin. Cytoglobin (CYGB) is a ubiquitously expressed hexacoordinated globin that is highly enriched in melanocytes and frequently downregulated during melanomagenesis. Previously, we showed that non-thermal plasma (NTP)-produced reactive oxygen and nitrogen species (RONS) lead to the formation of an intramolecular disulfide bridge that would allow CYGB to function as a redox-sensitive protein. Here, we investigate the cytotoxic effect of indirect NTP treatment in two melanoma cell lines with divergent endogenous CYGB expression levels, and we explore the role of CYGB in determining treatment outcome. Our findings are consistent with previous studies supporting that NTP cytotoxicity is mediated through the production of RONS and leads to apoptotic cell death in melanoma cells. Furthermore, we show that NTP-treated solutions elicit an antioxidant response through the activation of nuclear factor erythroid 2-related factor 2 (NRF2). The knockdown and overexpression of CYGB respectively sensitizes and protects melanoma cells from RONS-induced apoptotic cell death. The presence of CYGB enhances heme-oxygenase 1 (HO-1) and NRF2 protein expression levels, whereas the absence impairs their expression. Moreover, analysis of the CYGB-dependent transcriptome demonstrates the tumor suppressor long non-coding RNA maternally expressed 3 (MEG3) as a hitherto undescribed link between CYGB and NRF2. Thus, the presence of CYGB, at least in melanoma cells, seems to play a central role in determining the therapeutic outcome of RONS-inducing anticancer therapies, like NTP-treated solutions, possessing both tumor-suppressive and oncogenic features. Hence, CYGB expression could be of interest either as a biomarker or as a candidate for future targeted therapies in melanoma.
Collapse
Affiliation(s)
- Joey De Backer
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES) Research Group, Department of Biomedical Sciences, University of Antwerp, Belgium; Section of Medicine, Department of Endocrinology, Metabolism and Cardiovascular System, University of Fribourg, Switzerland.
| | - Abraham Lin
- Plasma Lab for Applications in Sustainability and Medicine-Antwerp (PLASMANT) Research Group, Department of Chemistry, University of Antwerp, Belgium; Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Belgium
| | - Wim Vanden Berghe
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES) Research Group, Department of Biomedical Sciences, University of Antwerp, Belgium
| | - Annemie Bogaerts
- Plasma Lab for Applications in Sustainability and Medicine-Antwerp (PLASMANT) Research Group, Department of Chemistry, University of Antwerp, Belgium
| | - David Hoogewijs
- Section of Medicine, Department of Endocrinology, Metabolism and Cardiovascular System, University of Fribourg, Switzerland
| |
Collapse
|
17
|
Mateu-Sanz M, Ginebra MP, Tornín J, Canal C. Cold atmospheric plasma enhances doxorubicin selectivity in metastasic bone cancer. Free Radic Biol Med 2022; 189:32-41. [PMID: 35843475 DOI: 10.1016/j.freeradbiomed.2022.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/20/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022]
Abstract
High-dose systemic chemotherapy constitutes a main strategy in the management of bone metastases, employing drugs like doxorubicin (DOX), related with severe side effects. To solve this issue, Cold Atmospheric Plasmas (CAP) have been proposed as potential non-invasive anti-cancer agents capable of improving the efficacy of traditional drugs. Here, we investigate the cytotoxic effects of Plasma Conditioned Medium (PCM) in combination with DOX in prostate cancer cells from bone metastases (PC-3) as well as in non-malignant bone-cells. PCM was able to enhance the cytotoxic potential of DOX both in monolayer and in a 3D bioengineered model mimicking the bone matrix. The combined treatment of PCM + DOX resulted in a profound downregulation of the redox defenses (CAT1, SOD2, GPX1) and drug resistance genes (MRP1, MDR1, BCRP1), resulting in an enhanced uptake of DOX coupled to an overload of intracellular ROS. Besides, PCM improved the cytotoxic potential of DOX interfering on the migratory and clonogenic potential of PC-3 cells. Importantly, non-malignant bone cells were unaffected by the combination of PCM + DOX. Overall, these new findings may represent a new therapeutic approach for the management of bone metastatic prostate cancer in the future.
Collapse
Affiliation(s)
- Miguel Mateu-Sanz
- Biomaterials, Biomechanics and Tissue Engineering Group, Materials Science and Engineering Department, and Research Center for Biomedical Engineering, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019, Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034, Barcelona, Spain
| | - María-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Materials Science and Engineering Department, and Research Center for Biomedical Engineering, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019, Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034, Barcelona, Spain
| | - Juan Tornín
- Biomaterials, Biomechanics and Tissue Engineering Group, Materials Science and Engineering Department, and Research Center for Biomedical Engineering, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019, Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034, Barcelona, Spain; Sarcomas and Experimental Therapeutics Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain.
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Materials Science and Engineering Department, and Research Center for Biomedical Engineering, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019, Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034, Barcelona, Spain.
| |
Collapse
|
18
|
Bekeschus S, Saadati F, Emmert S. The potential of gas plasma technology for targeting breast cancer. Clin Transl Med 2022; 12:e1022. [PMID: 35994412 PMCID: PMC9394754 DOI: 10.1002/ctm2.1022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 08/04/2022] [Indexed: 11/12/2022] Open
Abstract
Despite therapeutic improvements in recent years, breast cancer remains an often fatal disease. In addition, breast cancer ulceration may occur during late stages, further complicating therapeutic or palliative interventions. In the past decade, a novel technology received significant attention in the medical field: gas plasma. This topical treatment relies on the partial ionization of gases that simultaneously produce a plethora of reactive oxygen and nitrogen species (ROS/RNS). Such local ROS/RNS overload inactivates tumour cells in a non-necrotic manner and was recently identified to induce immunogenic cancer cell death (ICD). ICD promotes dendritic cell maturation and amplifies antitumour immunity capable of targeting breast cancer metastases. Gas plasma technology was also shown to provide additive toxicity in combination with radio and chemotherapy and re-sensitized drug-resistant breast cancer cells. This work outlines the assets of gas plasma technology as a novel tool for targeting breast cancer by summarizing the action of plasma devices, the roles of ROS, signalling pathways, modes of cell death, combination therapies and immunological consequences of gas plasma exposure in breast cancer cells in vitro, in vivo, and in patient-derived microtissues ex vivo.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)GreifswaldGermany
| | - Fariba Saadati
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)GreifswaldGermany
- Clinic and Policlinic for Dermatology and VenereologyRostock University Medical CenterRostockGermany
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology and VenereologyRostock University Medical CenterRostockGermany
| |
Collapse
|
19
|
Applications of Plasma Produced with Electrical Discharges in Gases for Agriculture and Biomedicine. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The use of thermal and non-thermal atmospheric pressure plasma to solve problems related to agriculture and biomedicine is the focus of this paper. Plasma in thermal equilibrium is used where heat is required. In agriculture, it is used to treat soil and land contaminated by the products of biomass, plastics, post-hospital and pharmaceutical waste combustion, and also by ecological phenomena that have recently been observed, such as droughts, floods and storms, leading to environmental pollution. In biomedical applications, thermal plasma is used in so-called indirect living tissue treatment. The sources of thermal plasma are arcs, plasma torches and microwave plasma reactors. In turn, atmospheric pressure cold (non-thermal) plasma is applied in agriculture and biomedicine where heat adversely affects technological processes. The thermodynamic imbalance of cold plasma makes it suitable for organic syntheses due its low power requirements and the possibility of conducting chemical reactions in gas at relatively low and close to ambient temperatures. It is also suitable in the treatment of living tissues and sterilisation of medical instruments made of materials that are non-resistant to high temperatures. Non-thermal and non-equilibrium discharges at atmospheric pressure that include dielectric barrier discharges (DBDs) and atmospheric pressure plasma jets (APPJs), as well as gliding arc (GAD), can be the source of cold plasma. This paper presents an overview of agriculture and soil protection problems and biomedical and health protection problems that can be solved with the aid of plasma produced with electrical discharges. In particular, agricultural processes related to water, sewage purification with ozone and with advanced oxidation processes, as well as those related to contaminated soil treatment and pest control, are presented. Among the biomedical applications of cold plasma, its antibacterial activity, wound healing, cancer treatment and dental problems are briefly discussed.
Collapse
|
20
|
Choi EH, Kaushik NK, Hong YJ, Lim JS, Choi JS, Han I. Plasma bioscience for medicine, agriculture and hygiene applications. THE JOURNAL OF THE KOREAN PHYSICAL SOCIETY 2022; 80:817-851. [PMID: 35261432 PMCID: PMC8895076 DOI: 10.1007/s40042-022-00442-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/19/2021] [Indexed: 06/14/2023]
Abstract
Nonthermal biocompatible plasma (NBP) sources operating in atmospheric pressure environments and their characteristics can be used for plasma bioscience, medicine, and hygiene applications, especially for COVID-19 and citizen. This review surveyed the various NBP sources, including a plasma jet, micro-DBD (dielectric barrier discharge) and nanosecond discharged plasma. The electron temperatures and the plasma densities, which are produced using dielectric barrier discharged electrode systems, can be characterized as 0.7 ~ 1.8 eV and (3-5) × 1014-15 cm-3, respectively. Herein, we introduce a general schematic view of the plasma ultraviolet photolysis of water molecules for reactive oxygen and nitrogen species (RONS) generation inside biological cells or living tissues, which would be synergistically important with RONS diffusive propagation into cells or tissues. Of the RONS, the hydroxyl radical [OH] and hydrogen peroxide H2O2 species would mainly result in apoptotic cell death with other RONS in plasma bioscience and medicines. The diseased biological protein, cancer, and mutated cells could be treated by using a NBP or plasma activated water (PAW) resulting in their apoptosis for a new paradigm of plasma medicine.
Collapse
Affiliation(s)
- Eun Ha Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center and Applied Plasma Medicine Center, Kwangwoon University, Seoul, 01897 Korea
| | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center and Applied Plasma Medicine Center, Kwangwoon University, Seoul, 01897 Korea
| | - Young June Hong
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center and Applied Plasma Medicine Center, Kwangwoon University, Seoul, 01897 Korea
| | - Jun Sup Lim
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center and Applied Plasma Medicine Center, Kwangwoon University, Seoul, 01897 Korea
| | - Jin Sung Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center and Applied Plasma Medicine Center, Kwangwoon University, Seoul, 01897 Korea
| | - Ihn Han
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center and Applied Plasma Medicine Center, Kwangwoon University, Seoul, 01897 Korea
| |
Collapse
|
21
|
Ibrahim AIM, Batlle E, Sneha S, Jiménez R, Pequerul R, Parés X, Rüngeler T, Jha V, Tuccinardi T, Sadiq M, Frame F, Maitland NJ, Farrés J, Pors K. Expansion of the 4-(Diethylamino)benzaldehyde Scaffold to Explore the Impact on Aldehyde Dehydrogenase Activity and Antiproliferative Activity in Prostate Cancer. J Med Chem 2022; 65:3833-3848. [PMID: 35212533 PMCID: PMC9007462 DOI: 10.1021/acs.jmedchem.1c01367] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Aldehyde dehydrogenases (ALDHs) are
overexpressed in various tumor
types including prostate cancer and considered a potential target
for therapeutic intervention. 4-(Diethylamino)benzaldehyde (DEAB)
has been extensively reported as a pan-inhibitor of ALDH isoforms,
and here, we report on the synthesis, ALDH isoform selectivity, and
cellular potencies in prostate cancer cells of 40 DEAB analogues;
three analogues (14, 15, and 16) showed potent inhibitory activity against ALDH1A3, and two analogues
(18 and 19) showed potent inhibitory activity
against ALDH3A1. Significantly, 16 analogues displayed increased cytotoxicity
(IC50 = 10–200 μM) compared with DEAB (>200
μM) against three different prostate cancer cell lines. Analogues 14 and 18 were more potent than DEAB against
patient-derived primary prostate tumor epithelial cells, as single
agents or in combination treatment with docetaxel. In conclusion,
our study supports the use of DEAB as an ALDH inhibitor but also reveals
closely related analogues with increased selectivity and potency.
Collapse
Affiliation(s)
- Ali I M Ibrahim
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Yorkshire BD7 1DP, U.K.,Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Elisabet Batlle
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Yorkshire BD7 1DP, U.K.,Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona E-08193, Spain
| | - Smarakan Sneha
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Yorkshire BD7 1DP, U.K
| | - Rafael Jiménez
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona E-08193, Spain
| | - Raquel Pequerul
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona E-08193, Spain
| | - Xavier Parés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona E-08193, Spain
| | - Till Rüngeler
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona E-08193, Spain
| | - Vibhu Jha
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Maria Sadiq
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Yorkshire BD7 1DP, U.K.,Cancer Research Unit, Department of Biology, University of York, Heslington, Yorkshire YO10 5DD, U.K
| | - Fiona Frame
- Cancer Research Unit, Department of Biology, University of York, Heslington, Yorkshire YO10 5DD, U.K
| | - Norman J Maitland
- Cancer Research Unit, Department of Biology, University of York, Heslington, Yorkshire YO10 5DD, U.K
| | - Jaume Farrés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona E-08193, Spain
| | - Klaus Pors
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Yorkshire BD7 1DP, U.K
| |
Collapse
|
22
|
Air Plasma-Activated Medium Evokes a Death-Associated Perinuclear Mitochondrial Clustering. Int J Mol Sci 2022; 23:ijms23031124. [PMID: 35163042 PMCID: PMC8835529 DOI: 10.3390/ijms23031124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/01/2022] Open
Abstract
Intractable cancers such as osteosarcoma (OS) and oral cancer (OC) are highly refractory, recurrent, and metastatic once developed, and their prognosis is still disappointing. Tumor-targeted therapy, which eliminates cancers effectively and safely, is the current clinical choice. Since aggressive tumors are substantially resistant to multidisciplinary therapies that target apoptosis, tumor-specific activation of another cell death modality is a promising avenue for meeting this goal. Here, we report that a cold atmospheric air plasma-activated medium (APAM) can kill OS and OC by causing a unique mitochondrial clustering. This event was named monopolar perinuclear mitochondrial clustering (MPMC) based on its characteristic unipolar mitochondrial perinuclear accumulation. The APAM caused apoptotic and nonapoptotic cell death. The APAM increased mitochondrial ROS (mROS) and cell death, and the antioxidants such as N-acetylcysteine (NAC) prevented them. MPMC occurred following mitochondrial fragmentation, which coincided with nuclear damages. MPMC was accompanied by mitochondrial lipid peroxide (mLPO) accumulation and prevented by NAC, Ferrostatin-1, and Nocodazole. In contrast, the APAM induced minimal cell death, mROS generation, mLPO accumulation, and MPMC in fibroblasts. These results suggest that MPMC occurs in a tumor-specific manner via mitochondrial oxidative stress and microtubule-driven mitochondrial motility. MPMC induction might serve as a promising target for exerting tumor-specific cytotoxicity.
Collapse
|
23
|
Cui H, Jiang M, Zhou W, Gao M, He R, Huang Y, Chu PK, Yu XF. Carrier-Free Cellular Transport of CRISPR/Cas9 Ribonucleoprotein for Genome Editing by Cold Atmospheric Plasma. BIOLOGY 2021; 10:biology10101038. [PMID: 34681136 PMCID: PMC8533602 DOI: 10.3390/biology10101038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/16/2022]
Abstract
Simple Summary CRISPR/Cas9 system as a potential gene editing platform has been widely applied in biological engineering and disease therapies. To achieve precise gene targeting, active CRISPR/Cas9 components must be efficiently transported to targeted cells. As a simple and effective strategy, Cold Atmospheric Plasma (CAP) treatment has been demonstrated for the transmembrane delivery of various exogenous materials. In comparison with carrier-dependent delivery methods, this carrier-free platform provides a promising alternative to circumvent the obstacles of biosafety and complicated preparation processes. In this work, a CAP-based CRISPR/Cas9 carrier-free delivery platform has been established and corresponding mechanism related to efficient transportation has been explored. Briefly, the efficient production of bioactive species in culture media after CAP treatment alters cell membrane potential and permeability, which facilitates cytosolic delivery of active CRISPR/Cas9 components via passive diffusion and ATP-dependent endocytosis pathways, resulting in efficient genome editing and gene silencing. This carrier-free strategy using CAP-based transportation may also be extended to other active biomolecules in drug delivery and gene therapy. Abstract A carrier-free CRISPR/Cas9 ribonucleoprotein delivery strategy for genome editing mediated by a cold atmospheric plasma (CAP) is described. The CAP is promising in many biomedical applications due to efficient production of bioactive ionized species. The MCF-7 cancer cells after CAP exposure exhibit increased extracellular reactive oxygen and nitrogen species (RONS) and altered membrane potential and permeability. Hence, transmembrane transport of Ca2+ into the cells increases and accelerates ATP hydrolysis, resulting in enhanced ATP-dependent endocytosis. Afterwards, the increased Ca2+ and ATP contents promote the release of cargo into cytoplasm due to the enhanced endosomal escape. The increased membrane permeability also facilitates passive diffusion of foreign species across the membrane into the cytosol. After CAP exposure, the MCF-7 cells incubated with Cas9 ribonucleoprotein (Cas9-sgRNA complex, Cas9sg) with a size of about 15 nm show 88.9% uptake efficiency and 65.9% nuclear import efficiency via passive diffusion and ATP-dependent endocytosis pathways. The efficient transportation of active Cas9sg after the CAP treatment leads to 21.7% and 30.2% indel efficiencies in HEK293T and MCF-7 cells, respectively. This CAP-mediated transportation process provides a simple and robust alternative for the delivery of active CRISPR/Cas9 ribonucleoprotein. Additionally, the technique can be extended to other macro-biomolecules and nanomaterials to cater to different biomedical applications.
Collapse
Affiliation(s)
- Haodong Cui
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.C.); (M.J.); (M.G.); (Y.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Jiang
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.C.); (M.J.); (M.G.); (Y.H.)
| | - Wenhua Zhou
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.C.); (M.J.); (M.G.); (Y.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (W.Z.); (R.H.); (X.-F.Y.)
| | - Ming Gao
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.C.); (M.J.); (M.G.); (Y.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui He
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.C.); (M.J.); (M.G.); (Y.H.)
- Correspondence: (W.Z.); (R.H.); (X.-F.Y.)
| | - Yifan Huang
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.C.); (M.J.); (M.G.); (Y.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Paul K. Chu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China;
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Xue-Feng Yu
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.C.); (M.J.); (M.G.); (Y.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (W.Z.); (R.H.); (X.-F.Y.)
| |
Collapse
|
24
|
Zhang H, Xu S, Zhang J, Wang Z, Liu D, Guo L, Cheng C, Cheng Y, Xu D, Kong MG, Rong M, Chu PK. Plasma-activated thermosensitive biogel as an exogenous ROS carrier for post-surgical treatment of cancer. Biomaterials 2021; 276:121057. [PMID: 34399120 DOI: 10.1016/j.biomaterials.2021.121057] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/14/2021] [Accepted: 08/04/2021] [Indexed: 12/13/2022]
Abstract
Post-surgical residual tumor cells are the primary cause of relapse and progression of cancer but unfortunately, there are limited therapeutic options. In this work, a fillable plasma-activated biogel is produced on a thermosensitive biogel [(Poly-DL-lactide)-(poly-ethylene glycol)-(poly-DL-lactide), PLEL] with the aid of a discharge plasma for local post-operative treatment of cancer. In vivo data show that the plasma-activated PLEL biogel (PAPB) eliminates residual tumor tissues after removal surgery and also inhibits in situ recurrence while showing no evident systemic toxicity. Moreover, the PAPB possesses excellent storage capability, allows for slow release of plasma-generated reactive oxygen species (ROS), and exhibits good ROS-mediated anticancer effects in vitro. Our results reveal that the novel plasma-activated biogel is an effective therapeutic agent for local post-operative treatment of cancer.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Shengduo Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Jishen Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Zifeng Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Dingxin Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China.
| | - Li Guo
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Cheng Cheng
- Institute of Plasma Physics, Chinese Academy of Sciences, P. O. Box 1126, Hefei, Anhui, 230031, PR China; Department of Physics, Department of Materials Science and Engineering, And Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yilong Cheng
- Department of Applied Physics, School of Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Dehui Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Michael G Kong
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China; Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, 23529, USA
| | - Mingzhe Rong
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, And Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
25
|
Silva-Teixeira R, Laranjo M, Lopes B, Almeida-Ferreira C, Gonçalves AC, Rodrigues T, Matafome P, Sarmento-Ribeiro AB, Caramelo F, Botelho MF. Plasma activated media and direct exposition can selectively ablate retinoblastoma cells. Free Radic Biol Med 2021; 171:302-313. [PMID: 34022401 DOI: 10.1016/j.freeradbiomed.2021.05.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/06/2021] [Accepted: 05/16/2021] [Indexed: 01/23/2023]
Abstract
A new therapy based on atmospheric plasma, the fourth state of matter, has raised the medical community's attention by circumventing many undesirable effects of old anticancer treatments. This work aimed to evaluate the effect, selectivity, and mechanisms of action of cold atmospheric plasma (CAP) in human retinoblastoma cells. An electronic device was designed to generate CAP in the open air, 2 mm above seeded cell cultures. Three approaches were performed: direct use of CAP, plasma-activated media (PAM), and conditioned media (CM). Timely-resolved output voltage measurement, emission spectroscopy, and quantification of reactive species (RS) of PAM were performed. To evaluate cytotoxicity and selectivity, similarly treated Y79, fibroblasts HFF1, and retinal RPE-D407 cells were assessed. After 60 s of direct CAP treatment, the metabolic activity of retinoblastoma cells decreased more than 50%, mainly due to apoptosis, while HFF1 and RPE-D407 remained viable. Similar results were obtained with indirect treatment (PAM and CM). Cell survival was reduced, and cells accumulated in S and G2/M phases; however, no DNA strand breaks were detected. Regarding RS, plasma increased extracellular and intracellular concentrations of peroxides and nitric oxide, despite glutathione activation and lack of success in reverting cytotoxicity with some RS inhibitors. RS increase comes in two timely distant waves, the first one originating from the plasma itself with secondary solubilization and passive diffusion, the second wave deriving from the mitochondrion. The addition of low doses of carboplatin to CAP-treated cells resulted in a significant increase in cytotoxicity compared with either regimen alone. Additionally, maximal antiangiogenic effects were obtained with 60 s of plasma exposure. Direct and indirect treatment with CAP might be a selective therapy with the potential to target tumour cells and supporting the microenvironment.
Collapse
Affiliation(s)
- Rafael Silva-Teixeira
- University of Coimbra, Faculty of Medicine, Institute of Biophysics, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal; Department of Cardiology, Hospital Center of Vila Nova de Gaia / Espinho, EPE, Rua Conceição Fernandes, 4434-502, Vila Nova de Gaia, Portugal; University of Coimbra, Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal.
| | - Mafalda Laranjo
- University of Coimbra, Faculty of Medicine, Institute of Biophysics, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal; University of Coimbra, Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal; Clinical and Academic Centre of Coimbra, Coimbra, Portugal.
| | - Beatriz Lopes
- University of Coimbra, Faculty of Medicine, Institute of Biophysics, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal.
| | - Catarina Almeida-Ferreira
- University of Coimbra, Faculty of Medicine, Institute of Biophysics, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal.
| | - Ana Cristina Gonçalves
- University of Coimbra, Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal; Clinical and Academic Centre of Coimbra, Coimbra, Portugal; University of Coimbra, Faculty of Medicine, Laboratory of Oncobiology and Hematology, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal.
| | - Tiago Rodrigues
- University of Coimbra, Faculty of Medicine, Institute of Physiology, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal.
| | - Paulo Matafome
- University of Coimbra, Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal; Clinical and Academic Centre of Coimbra, Coimbra, Portugal; University of Coimbra, Faculty of Medicine, Institute of Physiology, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal.
| | - Ana Bela Sarmento-Ribeiro
- University of Coimbra, Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal; Clinical and Academic Centre of Coimbra, Coimbra, Portugal; University of Coimbra, Faculty of Medicine, Laboratory of Oncobiology and Hematology, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal.
| | - Francisco Caramelo
- University of Coimbra, Faculty of Medicine, Institute of Biophysics, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal; University of Coimbra, Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal; Clinical and Academic Centre of Coimbra, Coimbra, Portugal.
| | - Maria Filomena Botelho
- University of Coimbra, Faculty of Medicine, Institute of Biophysics, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal; University of Coimbra, Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal; Clinical and Academic Centre of Coimbra, Coimbra, Portugal.
| |
Collapse
|
26
|
Selective Apoptotic Effect of Plasma Activated Liquids on Human Cancer Cell Lines. Molecules 2021; 26:molecules26144254. [PMID: 34299530 PMCID: PMC8304656 DOI: 10.3390/molecules26144254] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/17/2022] Open
Abstract
Plasma medicine is a new field focusing on biomedical and clinical applications of cold gas plasmas, including their anticancer effects. Cold plasmas can be applied directly or indirectly as plasma-activated liquids (PAL). The effects of plasma-activated cell growth medium (PAM) and plasma-activated phosphate buffered saline (PAPBS) were tested, using a plasma pen generating streamer corona discharge in ambient air, on different cancer cell lines (melanoma A375, glioblastoma LN229 and pancreatic cancer MiaPaCa-2) and normal cells (human dermal fibroblasts HDFa). The viability reduction and apoptosis induction were detected in all cancer cells after incubation in PAL. In melanoma cells we focused on detailed insights to the apoptotic pathways. The anticancer effects depend on the plasma treatment time or PAL concentration. The first 30 min of incubation in PAL were enough to start processes leading to cell death. In fibroblasts, no apoptosis induction was observed, and only PAPBS, activated for a longer time, slightly decreased their viability. Effects of PAM and PAPBS on cancer cells showed selectivity compared to normal fibroblasts, depending on correctly chosen activation time and PAL concentration, which is very promising for potential clinical applications. This selectivity effect of PAL is conceivably induced by plasma-generated hydrogen peroxide.
Collapse
|
27
|
Bengtson C, Bogaerts A. The Quest to Quantify Selective and Synergistic Effects of Plasma for Cancer Treatment: Insights from Mathematical Modeling. Int J Mol Sci 2021; 22:ijms22095033. [PMID: 34068601 PMCID: PMC8126141 DOI: 10.3390/ijms22095033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/30/2022] Open
Abstract
Cold atmospheric plasma (CAP) and plasma-treated liquids (PTLs) have recently become a promising option for cancer treatment, but the underlying mechanisms of the anti-cancer effect are still to a large extent unknown. Although hydrogen peroxide (H2O2) has been recognized as the major anti-cancer agent of PTL and may enable selectivity in a certain concentration regime, the co-existence of nitrite can create a synergistic effect. We develop a mathematical model to describe the key species and features of the cellular response toward PTL. From the numerical solutions, we define a number of dependent variables, which represent feasible measures to quantify cell susceptibility in terms of the H2O2 membrane diffusion rate constant and the intracellular catalase concentration. For each of these dependent variables, we investigate the regimes of selective versus non-selective, and of synergistic versus non-synergistic effect to evaluate their potential role as a measure of cell susceptibility. Our results suggest that the maximal intracellular H2O2 concentration, which in the selective regime is almost four times greater for the most susceptible cells compared to the most resistant cells, could be used to quantify the cell susceptibility toward exogenous H2O2. We believe our theoretical approach brings novelty to the field of plasma oncology, and more broadly, to the field of redox biology, by proposing new ways to quantify the selective and synergistic anti-cancer effect of PTL in terms of inherent cell features.
Collapse
|
28
|
Clemen R, Freund E, Mrochen D, Miebach L, Schmidt A, Rauch BH, Lackmann J, Martens U, Wende K, Lalk M, Delcea M, Bröker BM, Bekeschus S. Gas Plasma Technology Augments Ovalbumin Immunogenicity and OT-II T Cell Activation Conferring Tumor Protection in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003395. [PMID: 34026437 PMCID: PMC8132054 DOI: 10.1002/advs.202003395] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/22/2021] [Indexed: 05/04/2023]
Abstract
Reactive oxygen species (ROS/RNS) are produced during inflammation and elicit protein modifications, but the immunological consequences are largely unknown. Gas plasma technology capable of generating an unmatched variety of ROS/RNS is deployed to mimic inflammation and study the significance of ROS/RNS modifications using the model protein chicken ovalbumin (Ova vs oxOva). Dynamic light scattering and circular dichroism spectroscopy reveal structural modifications in oxOva compared to Ova. T cells from Ova-specific OT-II but not from C57BL/6 or SKH-1 wild type mice presents enhanced activation after Ova addition. OxOva exacerbates this activation when administered ex vivo or in vivo, along with an increased interferon-gamma production, a known anti-melanoma agent. OxOva vaccination of wild type mice followed by inoculation of syngeneic B16F10 Ova-expressing melanoma cells shows enhanced T cell number and activation, decreased tumor burden, and elevated numbers of antigen-presenting cells when compared to their Ova-vaccinated counterparts. Analysis of oxOva using mass spectrometry identifies three hot spots regions rich in oxidative modifications that are associated with the increased T cell activation. Using Ova as a model protein, the findings suggest an immunomodulating role of multi-ROS/RNS modifications that may spur novel research lines in inflammation research and for vaccination strategies in oncology.
Collapse
Affiliation(s)
- Ramona Clemen
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
| | - Eric Freund
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
- Department of GeneralVisceralThoracicand Vascular SurgeryUniversity Medicine GreifswaldSauerbruchstr. DZ7Greifswald17475Germany
| | - Daniel Mrochen
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
- Department of ImmunologyUniversity Medicine GreifswaldSauerbruchstr. DZ7Greifswald17475Germany
| | - Lea Miebach
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
- Department of GeneralVisceralThoracicand Vascular SurgeryUniversity Medicine GreifswaldSauerbruchstr. DZ7Greifswald17475Germany
| | - Anke Schmidt
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
| | - Bernhard H. Rauch
- Institute of Pharmacology (C_Dat)University Medicine GreifswaldFelix‐Hausdorff‐Str. 1Greifswald17489Germany
| | - Jan‐Wilm Lackmann
- CECAD proteomics facilityUniversity of CologneJoseph‐Stelzmann‐Str. 26Cologne50931Germany
| | - Ulrike Martens
- ZIK HIKEUniversity of GreifswaldFleischmannstr. 42–44Greifswald17489Germany
- Institute of BiochemistryUniversity of GreifswaldFelix‐Hausdorff‐Str. 4Greifswald17489Germany
| | - Kristian Wende
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
| | - Michael Lalk
- Institute of BiochemistryUniversity of GreifswaldFelix‐Hausdorff‐Str. 4Greifswald17489Germany
| | - Mihaela Delcea
- ZIK HIKEUniversity of GreifswaldFleischmannstr. 42–44Greifswald17489Germany
- Institute of BiochemistryUniversity of GreifswaldFelix‐Hausdorff‐Str. 4Greifswald17489Germany
| | - Barbara M. Bröker
- Department of ImmunologyUniversity Medicine GreifswaldSauerbruchstr. DZ7Greifswald17475Germany
| | - Sander Bekeschus
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
| |
Collapse
|
29
|
El‐Kalliny AS, Abd‐Elmaksoud S, El‐Liethy MA, Abu Hashish HM, Abdel‐Wahed MS, Hefny MM, Hamza IA. Efficacy of Cold Atmospheric Plasma Treatment on Chemical and Microbial Pollutants in Water. ChemistrySelect 2021. [DOI: 10.1002/slct.202004716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Amer S. El‐Kalliny
- Water Pollution Research Department National Research Centre 33 El Buhouth St. Dokki 12622 Giza Egypt
| | - Sherif Abd‐Elmaksoud
- Water Pollution Research Department National Research Centre 33 El Buhouth St. Dokki 12622 Giza Egypt
| | - Mohamed A. El‐Liethy
- Water Pollution Research Department National Research Centre 33 El Buhouth St. Dokki 12622 Giza Egypt
| | - Hassan M. Abu Hashish
- Mechanical Engineering Department Engineering Research Division National Research Centre 33 El Buhouth St. Dokki 12622 Giza Egypt
| | - Mahmoud S. Abdel‐Wahed
- Water Pollution Research Department National Research Centre 33 El Buhouth St. Dokki 12622 Giza Egypt
| | - Mohamed M. Hefny
- Engineering Mathematics and Physics Department Faculty of Engineering and Technology Future University in Egypt Cairo Egypt
| | - Ibrahim A. Hamza
- Water Pollution Research Department National Research Centre 33 El Buhouth St. Dokki 12622 Giza Egypt
| |
Collapse
|
30
|
Tomić S, Petrović A, Puač N, Škoro N, Bekić M, Petrović ZL, Čolić M. Plasma-Activated Medium Potentiates the Immunogenicity of Tumor Cell Lysates for Dendritic Cell-Based Cancer Vaccines. Cancers (Basel) 2021; 13:1626. [PMID: 33915703 PMCID: PMC8037863 DOI: 10.3390/cancers13071626] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 02/03/2023] Open
Abstract
Autologous dendritic cells (DCs)-based vaccines are considered quite promising for cancer immunotherapy due to their exquisite potential to induce tumor antigen-specific cytotoxic T cells. However, a lack of efficient protocols for inducing immunogenic tumor antigens limits the efficacy of DC-based cancer vaccines. Here, we found that a plasma-activated medium (PAM) induces immunogenic cell death (ICD) in tumor cells but not in an immortalized L929 cell line or human peripheral blood mononuclear cells. PAM induced an accumulation of reactive oxygen species (ROS), autophagy, apoptosis, and necrosis in a concentration-dependent manner. The tumor lysates prepared after PAM treatment displayed increased immunogenicity in a model of human monocyte-derived DCs, compared to the lysates prepared by a standard freezing/thawing method. Mature DCs loaded with PAM lysates showed an increased maturation potential, as estimated by their increased expression of CD83, CD86, CD40, IL-12/IL-10 production, and attenuated PDL1 and ILT-4 expression, compared to the DCs treated with control tumor lysates. Moreover, in co-culture with allogeneic T cells, DCs loaded with PAM-lysates increased the proportion of cytotoxic IFN-γ+ granzyme A+ CD8+ T cells and IL-17A-producing T cells and preserved the Th1 response. In contrast, control tumor lysates-treated DCs increased the frequency of Th2 (CD4+IL-4+), CD4, and CD8 regulatory T cell subtypes, none of which was observed with DCs loaded with PAM-lysates. Cumulatively, these results suggest that the novel method for preparing immunogenic tumor lysates with PAM could be suitable for improved DC-based immunotherapy of cancer patients.
Collapse
Affiliation(s)
- Sergej Tomić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia; (M.B.); (M.Č.)
| | - Anđelija Petrović
- Institute of Physics, University of Belgrade, 11080 Belgrade, Serbia; (A.P.); (N.Š.)
| | - Nevena Puač
- Institute of Physics, University of Belgrade, 11080 Belgrade, Serbia; (A.P.); (N.Š.)
| | - Nikola Škoro
- Institute of Physics, University of Belgrade, 11080 Belgrade, Serbia; (A.P.); (N.Š.)
| | - Marina Bekić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia; (M.B.); (M.Č.)
| | - Zoran Lj. Petrović
- Serbian Academy for Sciences and Arts, 11000 Belgrade, Serbia;
- School of Engineering, Ulster University, Jordanstown, Co. Antrim BT37 0QB, UK
| | - Miodrag Čolić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia; (M.B.); (M.Č.)
- Serbian Academy for Sciences and Arts, 11000 Belgrade, Serbia;
- Medical Faculty Foca, University of East Sarajevo, 73 300 Foča, Bosnia and Herzegovina
| |
Collapse
|
31
|
Intracellular Responses Triggered by Cold Atmospheric Plasma and Plasma-Activated Media in Cancer Cells. Molecules 2021; 26:molecules26051336. [PMID: 33801451 PMCID: PMC7958621 DOI: 10.3390/molecules26051336] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cold atmospheric plasma (CAP), an ionized gas operating at room temperature, has been increasingly studied with respect to its potential use in medicine, where its beneficial effects on tumor reduction in oncology have been demonstrated. This review discusses the cellular changes appearing in cell membranes, cytoplasm, various organelles, and DNA content upon cells’ direct or indirect exposure to CAP or CAP-activated media/solutions (PAM), respectively. In addition, the CAP/PAM impact on the main cellular processes of proliferation, migration, protein degradation and various forms of cell death is addressed, especially in light of CAP use in the oncology field of plasma medicine.
Collapse
|
32
|
Sklias K, Santos Sousa J, Girard PM. Role of Short- and Long-Lived Reactive Species on the Selectivity and Anti-Cancer Action of Plasma Treatment In Vitro. Cancers (Basel) 2021; 13:cancers13040615. [PMID: 33557129 PMCID: PMC7913865 DOI: 10.3390/cancers13040615] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary One fundamental feature that has emerged from in vitro application of cold plasmas in cancer treatment is the key role of the liquid phase covering the cells. In the present work, we investigated the effect of direct and indirect plasma treatments on two cancer and three normal cell lines to assess the benefits of one treatment over the other in terms of death of tumor versus healthy cells. Our results demonstrate that indirect plasma treatment is as efficient at killing tumor cells as an appropriate combination of H2O2, NO2− and acidic pH in ad hoc solutions, while sparing normal cells. However, direct plasma treatment is far more efficient at killing normal than tumor cells, and we provide evidence that short- and long-lived reactive species contribute synergistically to kill normal cells, while having an additive effect regarding tumor cell death. Collectively, our results call the use of plasma-activated liquid in cancer treatment into question. Abstract (1) Plasma-activated liquids (PAL) have been extensively studied for their anti-cancer properties. Two treatment modalities can be applied to the cells, direct and indirect plasma treatments, which differ by the environment to which the cells are exposed. For direct plasma treatment, the cells covered by a liquid are present during the plasma treatment time (phase I, plasma ON) and the incubation time (phase II, plasma OFF), while for indirect plasma treatment, phase I is cell-free and cells are only exposed to PAL during phase II. The scope of this work was to study these two treatment modalities to bring new insights into the potential use of PAL for cancer treatment. (2) We used two models of head and neck cancer cells, CAL27 and FaDu, and three models of normal cells (1Br3, NHK, and RPE-hTERT). PBS was used as the liquid of interest, and the concentration of plasma-induced H2O2, NO2− and NO3−, as well as pH change, were measured. Cells were exposed to direct plasma treatment, indirect plasma treatment or reconstituted buffer (PBS adjusted with plasma-induced concentrations of H2O2, NO2−, NO3− and pH). Metabolic cell activity, cell viability, lipid peroxidation, intracellular ROS production and caspase 3/7 induction were quantified. (3) If we showed that direct plasma treatment is slightly more efficient than indirect plasma treatment and reconstituted buffer at inducing lipid peroxidation, intracellular increase of ROS and cancer cell death in tumor cells, our data also revealed that reconstituted buffer is equivalent to indirect plasma treatment. In contrast, normal cells are quite insensitive to these two last treatment modalities. However, they are extremely sensitive to direct plasma treatment. Indeed, we found that phase I and phase II act in synergy to trigger cell death in normal cells and are additive concerning tumor cell death. Our data also highlight the presence in plasma-treated PBS of yet unidentified short-lived reactive species that contribute to cell death. (4) In this study, we provide strong evidence that, in vitro, the concentration of RONS (H2O2, NO2− and NO3−) in combination with the acidic pH are the main drivers of plasma-induced PBS toxicity in tumor cells but not in normal cells, which makes ad hoc reconstituted solutions powerful anti-tumor treatments. In marked contrast, direct plasma treatment is deleterious for normal cells in vitro and should be avoided. Based on our results, we discuss the limitations to the use of PAL for cancer treatments.
Collapse
Affiliation(s)
- Kyriakos Sklias
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Gaz et des Plasmas, 91405 Orsay, France;
| | - João Santos Sousa
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Gaz et des Plasmas, 91405 Orsay, France;
- Correspondence: (J.S.S.); (P.-M.G.); Tel.: +33-(0)1-69-15-54-12 (J.S.S.); +33-(0)1-69-86-31-31 (P.-M.G.)
| | - Pierre-Marie Girard
- Institut Curie, PSL Research University, CNRS, INSERM, UMR 3347, 91405 Orsay, France
- Université Paris-Saclay, CNRS, UMR 3347, 91405 Orsay, France
- Correspondence: (J.S.S.); (P.-M.G.); Tel.: +33-(0)1-69-15-54-12 (J.S.S.); +33-(0)1-69-86-31-31 (P.-M.G.)
| |
Collapse
|
33
|
Tavares-da-Silva E, Pereira E, Pires AS, Neves AR, Braz-Guilherme C, Marques IA, Abrantes AM, Gonçalves AC, Caramelo F, Silva-Teixeira R, Mendes F, Figueiredo A, Botelho MF. Cold Atmospheric Plasma, a Novel Approach against Bladder Cancer, with Higher Sensitivity for the High-Grade Cell Line. BIOLOGY 2021; 10:biology10010041. [PMID: 33435434 PMCID: PMC7828061 DOI: 10.3390/biology10010041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/02/2021] [Accepted: 01/07/2021] [Indexed: 12/24/2022]
Abstract
Simple Summary Bladder cancer has a high incidence and mortality. Besides this, currently available therapies for this type of cancer have low efficacy and show considerable adverse effects, urging the need of new therapeutic approaches. Cold Atmospheric Plasma treatment presents itself as a promising alternative, having demonstrated antitumor effects against several types of cancer. The present work arises from a multidisciplinary team, namely, medical doctors and researchers, in an attempt to find new therapeutic strategies to fight bladder cancer. Therefore, our main objective is to evaluate Cold Atmospheric Plasma effects against bladder cancer, as well as the mechanisms by which it exerts its effects. The results obtained demonstrate that Cold Atmospheric Plasma treatment has a promising antitumor effect on bladder cancer, with higher sensitivity for the high-grade cell line. This new approach using Cold Atmospheric Plasma for the treatment of bladder cancer presents enormous clinical benefits, since it is able to selectively treat the tumor tissue, sparing the normal urothelium, with an additional glaring positive economic impact, since it entails a decrease in the cost of therapy in comparison with conventional therapeutic options. Abstract Antitumor therapies based on Cold Atmospheric Plasma (CAP) are an emerging medical field. In this work, we evaluated CAP effects on bladder cancer. Two bladder cancer cell lines were used, HT-1376 (stage III) and TCCSUP (stage IV). Cell proliferation assays were performed evaluating metabolic activity (MTT assay) and protein content (SRB assay). Cell viability, cell cycle, and mitochondrial membrane potential (Δψm) were assessed using flow cytometry. Reactive oxygen and nitrogen species (RONS) and reduced glutathione (GSH) were evaluated by fluorescence. The assays were carried out with different CAP exposure times. For both cell lines, we obtained a significant reduction in metabolic activity and protein content. There was a decrease in cell viability, as well as a cell cycle arrest in S phase. The Δψm was significantly reduced. There was an increase in superoxide and nitric oxide and a decrease in peroxide contents, while GSH content did not change. These results were dependent on the exposure time, with small differences for both cell lines, but overall, they were more pronounced in the TCCSUP cell line. CAP showed to have a promising antitumor effect on bladder cancer, with higher sensitivity for the high-grade cell line.
Collapse
Affiliation(s)
- Edgar Tavares-da-Silva
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal;
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.S.P.); (I.A.M.); (A.M.A.); (A.C.G.); (F.M.); (M.F.B.)
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- Centro Hospitalar e Universitário de Coimbra (CHUC), Department of Urology and Renal Transplantation, 3004-561 Coimbra, Portugal
- Correspondence: (E.T.-d.-S.); (E.P.)
| | - Eurico Pereira
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, 3000-548 Coimbra, Portugal
- Correspondence: (E.T.-d.-S.); (E.P.)
| | - Ana S. Pires
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.S.P.); (I.A.M.); (A.M.A.); (A.C.G.); (F.M.); (M.F.B.)
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Ana R. Neves
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, 3000-548 Coimbra, Portugal
- Project Development Office, Department of Mathematics and Computer Science, Eindhoven University of Technology (TU/e), PO Box 513 5600 MB Eindhoven, The Netherlands
| | - Catarina Braz-Guilherme
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, 3000-548 Coimbra, Portugal
- University of Porto, Faculty of Medicine, 4200-319 Porto, Portugal
| | - Inês A. Marques
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.S.P.); (I.A.M.); (A.M.A.); (A.C.G.); (F.M.); (M.F.B.)
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, 3000-548 Coimbra, Portugal
- University of Coimbra, Faculty of Pharmacy, 3000-548 Coimbra, Portugal
| | - Ana M. Abrantes
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.S.P.); (I.A.M.); (A.M.A.); (A.C.G.); (F.M.); (M.F.B.)
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Ana C. Gonçalves
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.S.P.); (I.A.M.); (A.M.A.); (A.C.G.); (F.M.); (M.F.B.)
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Laboratory of Oncobiology and Hematology and University Clinic of Hematology of Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Francisco Caramelo
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Laboratory of Biostatistics and Medical Informatics of Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Rafael Silva-Teixeira
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Fernando Mendes
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.S.P.); (I.A.M.); (A.M.A.); (A.C.G.); (F.M.); (M.F.B.)
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, 3000-548 Coimbra, Portugal
- Politécnico de Coimbra, ESTeSC, DCBL, Rua 5 de Outubro-SM Bispo, Apartado 7006, 3046-854 Coimbra, Portugal
| | - Arnaldo Figueiredo
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal;
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.S.P.); (I.A.M.); (A.M.A.); (A.C.G.); (F.M.); (M.F.B.)
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- Centro Hospitalar e Universitário de Coimbra (CHUC), Department of Urology and Renal Transplantation, 3004-561 Coimbra, Portugal
| | - Maria Filomena Botelho
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.S.P.); (I.A.M.); (A.M.A.); (A.C.G.); (F.M.); (M.F.B.)
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, 3000-548 Coimbra, Portugal
| |
Collapse
|
34
|
Dai X, Bazaka K, Thompson EW, Ostrikov K(K. Cold Atmospheric Plasma: A Promising Controller of Cancer Cell States. Cancers (Basel) 2020; 12:cancers12113360. [PMID: 33202842 PMCID: PMC7696697 DOI: 10.3390/cancers12113360] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/18/2020] [Accepted: 10/30/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Cancer treatment is complicated by the distinct phenotypic attractor states in which cancer cells exist within individual tumors, and inherent plasticity of cells in transiting between these states facilitates the acquisition of drug-resistant and more stem cell-like phenotypes in cancer cells. Controlling these crucial transition switches is therefore critical for the long-term success of any cancer therapy. This paper highlights the most promising avenues for controlling cancer state transition events by cold atmospheric plasma (CAP) to enable the development of efficient tools for cancer prevention and management. The key switches in carcinogenesis can be used to halt or reverse cancer progression, and understanding how CAP can modulate these processes is critical for the development of CAP-based strategies for cancer prevention, detection and effective treatment. Abstract Rich in reactive oxygen and nitrogen species, cold atmospheric plasma has been shown to effectively control events critical to cancer progression; selectively inducing apoptosis, reducing tumor volume and vasculature, and halting metastasis by taking advantage of, e.g., synergies between hydrogen peroxide and nitrites. This paper discusses the efficacy, safety and administration of cold atmospheric plasma treatment as a potential tool against cancers, with a focus on the mechanisms by which cold atmospheric plasma may affect critical transitional switches that govern tumorigenesis: the life/death control, tumor angiogenesis and epithelial–mesenchymal transition, and drug sensitivity spectrum. We introduce the possibility of modeling cell transitions between the normal and cancerous states using cold atmospheric plasma as a novel research avenue to enhance our understanding of plasma-aided control of oncogenesis.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- Wuhan Ammunition Life-Tech Company, Ltd., Wuhan 430200, China
- Hospital of Xi’an Jiaotong University, Xi’an 710061, China
- Correspondence: ; Tel.: +86-181-6887-0169
| | - Kateryna Bazaka
- Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, ACT 2600, Australia;
| | - Erik W. Thompson
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; (E.W.T.); (K.O.)
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Kostya (Ken) Ostrikov
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; (E.W.T.); (K.O.)
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
35
|
Zubor P, Wang Y, Liskova A, Samec M, Koklesova L, Dankova Z, Dørum A, Kajo K, Dvorska D, Lucansky V, Malicherova B, Kasubova I, Bujnak J, Mlyncek M, Dussan CA, Kubatka P, Büsselberg D, Golubnitschaja O. Cold Atmospheric Pressure Plasma (CAP) as a New Tool for the Management of Vulva Cancer and Vulvar Premalignant Lesions in Gynaecological Oncology. Int J Mol Sci 2020; 21:ijms21217988. [PMID: 33121141 PMCID: PMC7663780 DOI: 10.3390/ijms21217988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022] Open
Abstract
Vulvar cancer (VC) is a specific form of malignancy accounting for 5–6% of all gynaecologic malignancies. Although VC occurs most commonly in women after 60 years of age, disease incidence has risen progressively in premenopausal women in recent decades. VC demonstrates particular features requiring well-adapted therapeutic approaches to avoid potential treatment-related complications. Significant improvements in disease-free survival and overall survival rates for patients diagnosed with post-stage I disease have been achieved by implementing a combination therapy consisting of radical surgical resection, systemic chemotherapy and/or radiotherapy. Achieving local control remains challenging. However, mostly due to specific anatomical conditions, the need for comprehensive surgical reconstruction and frequent post-operative healing complications. Novel therapeutic tools better adapted to VC particularities are essential for improving individual outcomes. To this end, cold atmospheric plasma (CAP) treatment is a promising option for VC, and is particularly appropriate for the local treatment of dysplastic lesions, early intraepithelial cancer, and invasive tumours. In addition, CAP also helps reduce inflammatory complications and improve wound healing. The application of CAP may realise either directly or indirectly utilising nanoparticle technologies. CAP has demonstrated remarkable treatment benefits for several malignant conditions, and has created new medical fields, such as “plasma medicine” and “plasma oncology”. This article highlights the benefits of CAP for the treatment of VC, VC pre-stages, and postsurgical wound complications. There has not yet been a published report of CAP on vulvar cancer cells, and so this review summarises the progress made in gynaecological oncology and in other cancers, and promotes an important, understudied area for future research. The paradigm shift from reactive to predictive, preventive and personalised medical approaches in overall VC management is also considered.
Collapse
Affiliation(s)
- Pavol Zubor
- Department of Gynaecological Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (Y.W.); (A.D.)
- OBGY Health & Care, Ltd., 010 01 Zilina, Slovakia
- Correspondence: or
| | - Yun Wang
- Department of Gynaecological Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (Y.W.); (A.D.)
| | - Alena Liskova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Marek Samec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Lenka Koklesova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Zuzana Dankova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Anne Dørum
- Department of Gynaecological Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (Y.W.); (A.D.)
| | - Karol Kajo
- Department of Pathology, St. Elizabeth Cancer Institute Hospital, 81250 Bratislava, Slovakia;
| | - Dana Dvorska
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Vincent Lucansky
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Bibiana Malicherova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Ivana Kasubova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Jan Bujnak
- Department of Obstetrics and Gynaecology, Kukuras Michalovce Hospital, 07101 Michalovce, Slovakia;
| | - Milos Mlyncek
- Department of Obstetrics and Gynaecology, Faculty Hospital Nitra, Constantine the Philosopher University, 949 01 Nitra, Slovakia;
| | - Carlos Alberto Dussan
- Department of Surgery, Orthopaedics and Oncology, University Hospital Linköping, 581 85 Linköping, Sweden;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144 Doha, Qatar;
| | - Olga Golubnitschaja
- Predictive, Preventive Personalised (3P) Medicine, Department of Radiation Oncology, Rheinische Friedrich-Wilhelms-Universität Bonn, 53105 Bonn, Germany;
| |
Collapse
|
36
|
Riedel F, Golda J, Held J, Davies HL, van der Woude MW, Bredin J, Niemi K, Gans T, Schulz-von der Gathen V, O'Connell D. Reproducibility of 'COST reference microplasma jets'. PLASMA SOURCES SCIENCE & TECHNOLOGY 2020; 29:095018. [PMID: 34149205 PMCID: PMC8208597 DOI: 10.1088/1361-6595/abad01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/28/2020] [Accepted: 08/06/2020] [Indexed: 06/12/2023]
Abstract
Atmospheric pressure plasmas have been ground-breaking for plasma science and technologies, due to their significant application potential in many fields, including medicinal, biological, and environmental applications. This is predominantly due to their efficient production and delivery of chemically reactive species under ambient conditions. One of the challenges in progressing the field is comparing plasma sources and results across the community and the literature. To address this a reference plasma source was established during the 'biomedical applications of atmospheric pressure plasmas' EU COST Action MP1101. It is crucial that reference sources are reproducible. Here, we present the reproducibility and variance across multiple sources through examining various characteristics, including: absolute atomic oxygen densities, absolute ozone densities, electrical characteristics, optical emission spectroscopy, temperature measurements, and bactericidal activity. The measurements demonstrate that the tested COST jets are mainly reproducible within the intrinsic uncertainty of each measurement technique.
Collapse
Affiliation(s)
- F Riedel
- York Plasma Institute, Department of Physics, University of York, York YO10 5DD, United Kingdom
| | - J Golda
- Institute of Experimental and Applied Physics, Kiel University, 24098 Kiel, Germany
- Experimental Physics II, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - J Held
- Experimental Physics II, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - H L Davies
- York Plasma Institute, Department of Physics, University of York, York YO10 5DD, United Kingdom
- York Biomedical Research Institute, Hull York Medical School, University of York, York YO10 5DD, United Kingdom
| | - M W van der Woude
- York Biomedical Research Institute, Hull York Medical School, University of York, York YO10 5DD, United Kingdom
| | - J Bredin
- York Plasma Institute, Department of Physics, University of York, York YO10 5DD, United Kingdom
| | - K Niemi
- York Plasma Institute, Department of Physics, University of York, York YO10 5DD, United Kingdom
| | - T Gans
- York Plasma Institute, Department of Physics, University of York, York YO10 5DD, United Kingdom
| | | | - D O'Connell
- York Plasma Institute, Department of Physics, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
37
|
Boisvert JS, Lafontaine J, Glory A, Coulombe S, Wong P. Comparison of Three Radio-Frequency Discharge Modes on the Treatment of Breast Cancer Cells in Vitro. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020. [DOI: 10.1109/trpms.2020.2994870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Harley JC, Suchowerska N, McKenzie DR. Cancer treatment with gas plasma and with gas plasma-activated liquid: positives, potentials and problems of clinical translation. Biophys Rev 2020; 12:989-1006. [PMID: 32757133 PMCID: PMC7429664 DOI: 10.1007/s12551-020-00743-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Gas plasmas, created in atmospheric pressure conditions, both thermal (hot) and non-thermal (cold) are emerging as useful tools in medicine. During surgery, hot gas plasmas are useful to reduce thermal damage and seal blood vessels. Gas plasma pens use cold gas plasma to produce reactive chemical species with selective action against cancers, which can be readily exposed in surgery or treated from outside of the body. Solutions activated by cold gas plasma have potential as a novel treatment modality for treatment of less readily accessible tumours, or those with high metastatic potential. This review summarises the preclinical and clinical trial evidence currently available, as well as the challenges for translation of direct gas plasma and gas plasma-activated solution treatment into regular practice.
Collapse
Affiliation(s)
- Juliette C Harley
- VectorLAB, Chris O'Brien Lifehouse, Camperdown, NSW, 2050, Australia.
- The University of Sydney, School of Physics, Camperdown, NSW, 2006, Australia.
| | - Natalka Suchowerska
- VectorLAB, Chris O'Brien Lifehouse, Camperdown, NSW, 2050, Australia
- The University of Sydney, School of Physics, Camperdown, NSW, 2006, Australia
| | - David R McKenzie
- VectorLAB, Chris O'Brien Lifehouse, Camperdown, NSW, 2050, Australia
- The University of Sydney, School of Physics, Camperdown, NSW, 2006, Australia
| |
Collapse
|
39
|
The Hyaluronan Pericellular Coat and Cold Atmospheric Plasma Treatment of Cells. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10155024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In different tumors, high amounts of hyaluronan (HA) are correlated with tumor progression. Therefore, new tumor therapy strategies are targeting HA production and degradation. In plasma medicine research, antiproliferative and apoptosis-inducing effects on tumor cells were observed using cold atmospheric plasma (CAP) or plasma-activated media (PAM). Until now, the influence of PAM on the HA pericellular coat has not been the focus of research. PAM was generated by argon-plasma treatment of Dulbecco’s modified Eagle’s Medium via the kINPen®09 plasma jet. The HA expression on PAM-treated HaCaT cells was determined by flow cytometry and confocal laser scanning microscopy. Changes in the adhesion behavior of vital cells in PAM were observed by impedance measurement using the xCELLigence system. We found that PAM treatment impaired the HA pericellular coat of HaCaT cells. The time-dependent adhesion was impressively diminished. However, a disturbed HA coat alone was not the reason for the inhibition of cell adhesion because cells enzymatically treated with HAdase did not lose their adhesion capacity completely. Here, we showed for the first time that the plasma-activated medium (PAM) was able to influence the HA pericellular coat.
Collapse
|
40
|
Yan D, Wang Q, Malyavko A, Zolotukhin DB, Adhikari M, Sherman JH, Keidar M. The anti-glioblastoma effect of cold atmospheric plasma treatment: physical pathway v.s. chemical pathway. Sci Rep 2020; 10:11788. [PMID: 32678153 PMCID: PMC7366727 DOI: 10.1038/s41598-020-68585-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022] Open
Abstract
Cold atmospheric plasma (CAP), a near room temperature ionized gas, has shown potential application in many branches of medicine, particularly in cancer treatment. In previous studies, the biological effect of CAP on cancer cells and other mammalian cells has been based solely on the chemical factors in CAP, particularly the reactive species. Therefore, plasma medicine has been regarded as a reactive species-based medicine, and the physical factors in CAP such as the thermal effect, ultraviolet irradiation, and electromagnetic effect have been regarded as ignorable factors. In this study, we investigated the effect of a physical CAP treatment on glioblastoma cells. For the first time, we demonstrated that the physical factors in CAP could reinstate the positive selectivity on CAP-treated astrocytes. The positive selectivity was a result of necrosis, a new cell death in glioblastoma cells characterized by the leak of bulk water from the cell membrane. The physically-based CAP treatment overcomed a large limitation of the traditional chemically based CAP treatment, which had complete dependence on the sensitivity of cells to reactive species. The physically-based CAP treatment is a potential non-invasive anti-tumor tool, which may have wide application for tumors located in deeper tissues.
Collapse
Affiliation(s)
- Dayun Yan
- Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC, 20052, USA.
| | - Qihui Wang
- Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC, 20052, USA
| | - Alisa Malyavko
- School of Medicine and Health Science, George Washington University, Washington, DC, 20052, USA
| | - Denis B Zolotukhin
- Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC, 20052, USA
| | - Manish Adhikari
- Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC, 20052, USA
| | - Jonathan H Sherman
- Neurosurgery, School of Medicine and Health Science, George Washington University, Washington, DC, 20052, USA
| | - Michael Keidar
- Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC, 20052, USA.
| |
Collapse
|
41
|
Lee J, Moon H, Ku B, Lee K, Hwang CY, Baek SJ. Anticancer Effects of Cold Atmospheric Plasma in Canine Osteosarcoma Cells. Int J Mol Sci 2020; 21:E4556. [PMID: 32604902 PMCID: PMC7349329 DOI: 10.3390/ijms21124556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/13/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is known to be one of the frequently occurring cancers in dogs. Its prognosis is usually very poor, with a high incidence of lung metastasis. Although radiation therapy has become a major therapeutic choice for canine osteosarcoma, the high costs and unexpected side effects prevent some patients from considering this treatment. Cold atmospheric plasma (CAP) is an ionized gas with high energy at low temperatures, and it produces reactive oxygen species that mediate many signaling pathways. Although many researchers have used CAP as an anticancer therapeutic approach in humans, its importance has been neglected in veterinary medicine. In this study, D-17 and DSN canine osteosarcoma cell lines were treated with CAP to observe its anticancer activity. By high-content screening and flow cytometry, CAP-treated cells showed growth arrest and apoptosis induction. Moreover, the osteosarcoma cells exhibited reduced migration and invasion activity when treated with CAP. Overall, CAP exerted an anticancer effect on canine osteosarcoma cell lines. CAP may have the potential to be used as a novel modality for treating cancer in veterinary medicine.
Collapse
Affiliation(s)
- Jaehak Lee
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (J.L.); (H.M.); (C.-Y.H.)
| | - Hyunjin Moon
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (J.L.); (H.M.); (C.-Y.H.)
| | - Bonghye Ku
- R&D Center, PSM Inc. Jungwon-gu, Seongnam-si, Gyeonggi-do 13207, Korea; (B.K.); (K.L.)
| | - Keunho Lee
- R&D Center, PSM Inc. Jungwon-gu, Seongnam-si, Gyeonggi-do 13207, Korea; (B.K.); (K.L.)
| | - Cheol-Yong Hwang
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (J.L.); (H.M.); (C.-Y.H.)
| | - Seung Joon Baek
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (J.L.); (H.M.); (C.-Y.H.)
| |
Collapse
|
42
|
Large-Scale Image Analysis for Investigating Spatio-Temporal Changes in Nuclear DNA Damage Caused by Nitrogen Atmospheric Pressure Plasma Jets. Int J Mol Sci 2020; 21:ijms21114127. [PMID: 32531879 PMCID: PMC7312173 DOI: 10.3390/ijms21114127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
The effective clinical application of atmospheric pressure plasma jet (APPJ) treatments requires a well-founded methodology that can describe the interactions between the plasma jet and a treated sample and the temporal and spatial changes that result from the treatment. In this study, we developed a large-scale image analysis method to identify the cell-cycle stage and quantify damage to nuclear DNA in single cells. The method was then tested and used to examine spatio-temporal distributions of nuclear DNA damage in two cell lines from the same anatomic location, namely the oral cavity, after treatment with a nitrogen APPJ. One cell line was malignant, and the other, nonmalignant. The results showed that DNA damage in cancer cells was maximized at the plasma jet treatment region, where the APPJ directly contacted the sample, and declined radially outward. As incubation continued, DNA damage in cancer cells decreased slightly over the first 4 h before rapidly decreasing by approximately 60% at 8 h post-treatment. In nonmalignant cells, no damage was observed within 1 h after treatment, but damage was detected 2 h after treatment. Notably, the damage was 5-fold less than that detected in irradiated cancer cells. Moreover, examining damage with respect to the cell cycle showed that S phase cells were more susceptible to DNA damage than either G1 or G2 phase cells. The proposed methodology for large-scale image analysis is not limited to APPJ post-treatment applications and can be utilized to evaluate biological samples affected by any type of radiation, and, more so, the cell-cycle classification can be used on any cell type with any nuclear DNA staining.
Collapse
|
43
|
Kurita H, Haruta N, Uchihashi Y, Seto T, Takashima K. Strand breaks and chemical modification of intracellular DNA induced by cold atmospheric pressure plasma irradiation. PLoS One 2020; 15:e0232724. [PMID: 32374749 PMCID: PMC7202611 DOI: 10.1371/journal.pone.0232724] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/20/2020] [Indexed: 02/03/2023] Open
Abstract
DNA damage in the A549 human lung cancer cell line treated with cold plasma irradiation was investigated. We confirmed that cold atmospheric plasma generated reactive oxygen and nitrogen species (RONS) in a liquid, and the intracellular RONS level was increased in plasma-irradiated cells. However, a notable decrease in cell viability was not observed 24 hours after plasma irradiation. Because RONS induce oxidative damage in cells, strand breaks and chemical modification of DNA in the cancer cells were investigated. We found that 8-oxoguanine (8-oxoG) formation as well as DNA strand breaks, which have been thoroughly investigated, were induced by plasma irradiation. In addition, up-regulation of 8-oxoG repair enzyme was observed after plasma irradiation.
Collapse
Affiliation(s)
- Hirofumi Kurita
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Japan
| | - Natsuki Haruta
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Japan
| | - Yoshito Uchihashi
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Japan
| | - Takahito Seto
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Japan
| | - Kazunori Takashima
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Japan
| |
Collapse
|
44
|
Miller HL, Contera S, Wollman AJM, Hirst A, Dunn KE, Schröter S, O'Connell D, Leake MC. Biophysical characterisation of DNA origami nanostructures reveals inaccessibility to intercalation binding sites. NANOTECHNOLOGY 2020; 31:235605. [PMID: 32125281 DOI: 10.1088/1361-6528/ab7a2b] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Intercalation of drug molecules into synthetic DNA nanostructures formed through self-assembled origami has been postulated as a valuable future method for targeted drug delivery. This is due to the excellent biocompatibility of synthetic DNA nanostructures, and high potential for flexible programmability including facile drug release into or near to target cells. Such favourable properties may enable high initial loading and efficient release for a predictable number of drug molecules per nanostructure carrier, important for efficient delivery of safe and effective drug doses to minimise non-specific release away from target cells. However, basic questions remain as to how intercalation-mediated loading depends on the DNA carrier structure. Here we use the interaction of dyes YOYO-1 and acridine orange with a tightly-packed 2D DNA origami tile as a simple model system to investigate intercalation-mediated loading. We employed multiple biophysical techniques including single-molecule fluorescence microscopy, atomic force microscopy, gel electrophoresis and controllable damage using low temperature plasma on synthetic DNA origami samples. Our results indicate that not all potential DNA binding sites are accessible for dye intercalation, which has implications for future DNA nanostructures designed for targeted drug delivery.
Collapse
Affiliation(s)
- Helen L Miller
- Department of Physics, University of York, Heslington, York, YO10 5DD, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Selective treatments of prostate tumor cells with a cold atmospheric plasma jet. CLINICAL PLASMA MEDICINE 2020. [DOI: 10.1016/j.cpme.2020.100098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Semmler ML, Bekeschus S, Schäfer M, Bernhardt T, Fischer T, Witzke K, Seebauer C, Rebl H, Grambow E, Vollmar B, Nebe JB, Metelmann HR, von Woedtke T, Emmert S, Boeckmann L. Molecular Mechanisms of the Efficacy of Cold Atmospheric Pressure Plasma (CAP) in Cancer Treatment. Cancers (Basel) 2020; 12:cancers12020269. [PMID: 31979114 PMCID: PMC7072164 DOI: 10.3390/cancers12020269] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/30/2022] Open
Abstract
Recently, the potential use of cold atmospheric pressure plasma (CAP) in cancer treatment has gained increasing interest. Especially the enhanced selective killing of tumor cells compared to normal cells has prompted researchers to elucidate the molecular mechanisms for the efficacy of CAP in cancer treatment. This review summarizes the current understanding of how CAP triggers intracellular pathways that induce growth inhibition or cell death. We discuss what factors may contribute to the potential selectivity of CAP towards cancer cells compared to their non-malignant counterparts. Furthermore, the potential of CAP to trigger an immune response is briefly discussed. Finally, this overview demonstrates how these concepts bear first fruits in clinical applications applying CAP treatment in head and neck squamous cell cancer as well as actinic keratosis. Although significant progress towards understanding the underlying mechanisms regarding the efficacy of CAP in cancer treatment has been made, much still needs to be done with respect to different treatment conditions and comparison of malignant and non-malignant cells of the same cell type and same donor. Furthermore, clinical pilot studies and the assessment of systemic effects will be of tremendous importance towards bringing this innovative technology into clinical practice.
Collapse
Affiliation(s)
- Marie Luise Semmler
- Clinic and Polyclinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany; (M.L.S.); (M.S.); (T.B.); (T.F.); (S.E.)
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz-Institute for Plasma Science and Technology (INP Greifswald), 17489 Greifswald, Germany; (S.B.); (T.v.W.)
| | - Mirijam Schäfer
- Clinic and Polyclinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany; (M.L.S.); (M.S.); (T.B.); (T.F.); (S.E.)
| | - Thoralf Bernhardt
- Clinic and Polyclinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany; (M.L.S.); (M.S.); (T.B.); (T.F.); (S.E.)
| | - Tobias Fischer
- Clinic and Polyclinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany; (M.L.S.); (M.S.); (T.B.); (T.F.); (S.E.)
| | - Katharina Witzke
- Oral & Maxillofacial Surgery/Plastic Surgery, University Medicine Greifswald, 17489 Greifswald, Germany; (K.W.); (C.S.)
| | - Christian Seebauer
- Oral & Maxillofacial Surgery/Plastic Surgery, University Medicine Greifswald, 17489 Greifswald, Germany; (K.W.); (C.S.)
| | - Henrike Rebl
- Department of Cell Biology, University Medical Center Rostock, 18057 Rostock, Germany; (H.R.); (J.B.N.)
| | - Eberhard Grambow
- Institute for Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany; (E.G.); (B.V.)
| | - Brigitte Vollmar
- Institute for Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany; (E.G.); (B.V.)
| | - J. Barbara Nebe
- Department of Cell Biology, University Medical Center Rostock, 18057 Rostock, Germany; (H.R.); (J.B.N.)
| | - Hans-Robert Metelmann
- Oral & Maxillofacial Surgery/Plastic Surgery, University Medicine Greifswald, 17489 Greifswald, Germany; (K.W.); (C.S.)
| | - Thomas von Woedtke
- ZIK plasmatis, Leibniz-Institute for Plasma Science and Technology (INP Greifswald), 17489 Greifswald, Germany; (S.B.); (T.v.W.)
| | - Steffen Emmert
- Clinic and Polyclinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany; (M.L.S.); (M.S.); (T.B.); (T.F.); (S.E.)
| | - Lars Boeckmann
- Clinic and Polyclinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany; (M.L.S.); (M.S.); (T.B.); (T.F.); (S.E.)
- Correspondence: ; Tel.: +49-381-494-9760
| |
Collapse
|
47
|
Mateu-Sanz M, Tornín J, Brulin B, Khlyustova A, Ginebra MP, Layrolle P, Canal C. Cold Plasma-Treated Ringer's Saline: A Weapon to Target Osteosarcoma. Cancers (Basel) 2020; 12:cancers12010227. [PMID: 31963398 PMCID: PMC7017095 DOI: 10.3390/cancers12010227] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma (OS) is the main primary bone cancer, presenting poor prognosis and difficult treatment. An innovative therapy may be found in cold plasmas, which show anti-cancer effects related to the generation of reactive oxygen and nitrogen species in liquids. In vitro models are based on the effects of plasma-treated culture media on cell cultures. However, effects of plasma-activated saline solutions with clinical application have not yet been explored in OS. The aim of this study is to obtain mechanistic insights on the action of plasma-activated Ringer’s saline (PAR) for OS therapy in cell and organotypic cultures. To that aim, cold atmospheric plasma jets were used to obtain PAR, which produced cytotoxic effects in human OS cells (SaOS-2, MG-63, and U2-OS), related to the increasing concentration of reactive oxygen and nitrogen species generated. Proof of selectivity was found in the sustained viability of hBM-MSCs with the same treatments. Organotypic cultures of murine OS confirmed the time-dependent cytotoxicity observed in 2D. Histological analysis showed a decrease in proliferating cells (lower Ki-67 expression). It is shown that the selectivity of PAR is highly dependent on the concentrations of reactive species, being the differential intracellular reactive oxygen species increase and DNA damage between OS cells and hBM-MSCs key mediators for cell apoptosis.
Collapse
Affiliation(s)
- Miguel Mateu-Sanz
- Biomaterials, Biomechanics and Tissue Engineering Group, Department Materials Science and Metallurgy, Technical University of Catalonia (UPC), Escola d’Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019 Barcelona, Spain; (M.M.-S.); (J.T.); (A.K.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08019 Barcelona, Spain
| | - Juan Tornín
- Biomaterials, Biomechanics and Tissue Engineering Group, Department Materials Science and Metallurgy, Technical University of Catalonia (UPC), Escola d’Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019 Barcelona, Spain; (M.M.-S.); (J.T.); (A.K.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08019 Barcelona, Spain
| | - Bénédicte Brulin
- Inserm, UMR 1238, PHY-OS, Laboratory of Bone Sarcomas and Remodeling of Calcified Tissues, Faculty of Medicine, University of Nantes, 44035 Nantes, France; (B.B.); (P.L.)
| | - Anna Khlyustova
- Biomaterials, Biomechanics and Tissue Engineering Group, Department Materials Science and Metallurgy, Technical University of Catalonia (UPC), Escola d’Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019 Barcelona, Spain; (M.M.-S.); (J.T.); (A.K.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08019 Barcelona, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department Materials Science and Metallurgy, Technical University of Catalonia (UPC), Escola d’Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019 Barcelona, Spain; (M.M.-S.); (J.T.); (A.K.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08019 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), c/Baldiri i Reixach 10-12, 08028 Barcelona, Spain
| | - Pierre Layrolle
- Inserm, UMR 1238, PHY-OS, Laboratory of Bone Sarcomas and Remodeling of Calcified Tissues, Faculty of Medicine, University of Nantes, 44035 Nantes, France; (B.B.); (P.L.)
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Department Materials Science and Metallurgy, Technical University of Catalonia (UPC), Escola d’Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019 Barcelona, Spain; (M.M.-S.); (J.T.); (A.K.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08019 Barcelona, Spain
- Correspondence:
| |
Collapse
|
48
|
Packer JR, Hirst AM, Droop AP, Adamson R, Simms MS, Mann VM, Frame FM, O'Connell D, Maitland NJ. Notch signalling is a potential resistance mechanism of progenitor cells within patient-derived prostate cultures following ROS-inducing treatments. FEBS Lett 2020; 594:209-226. [PMID: 31468514 PMCID: PMC7003772 DOI: 10.1002/1873-3468.13589] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/02/2019] [Accepted: 08/08/2019] [Indexed: 12/16/2022]
Abstract
Low Temperature Plasma (LTP) generates reactive oxygen and nitrogen species, causing cell death, similarly to radiation. Radiation resistance results in tumour recurrence, however mechanisms of LTP resistance are unknown. LTP was applied to patient-derived prostate epithelial cells and gene expression assessed. A typical global oxidative response (AP-1 and Nrf2 signalling) was induced, whereas Notch signalling was activated exclusively in progenitor cells. Notch inhibition induced expression of prostatic acid phosphatase (PAP), a marker of prostate epithelial cell differentiation, whilst reducing colony forming ability and preventing tumour formation. Therefore, if LTP is to be progressed as a novel treatment for prostate cancer, combination treatments should be considered in the context of cellular heterogeneity and existence of cell type-specific resistance mechanisms.
Collapse
Affiliation(s)
- John R. Packer
- Cancer Research UnitDepartment of BiologyUniversity of YorkUK
| | - Adam M. Hirst
- Cancer Research UnitDepartment of BiologyUniversity of YorkUK
- Department of PhysicsYork Plasma InstituteUniversity of YorkUK
| | | | - Rachel Adamson
- Cancer Research UnitDepartment of BiologyUniversity of YorkUK
| | - Matthew S. Simms
- Department of UrologyCastle Hill Hospital (Hull and East Yorkshire Hospitals NHS Trust)CottinghamUK
| | - Vincent M. Mann
- Cancer Research UnitDepartment of BiologyUniversity of YorkUK
| | - Fiona M. Frame
- Cancer Research UnitDepartment of BiologyUniversity of YorkUK
| | | | | |
Collapse
|
49
|
Ji WO, Lee MH, Kim GH, Kim EH. Quantitation of the ROS production in plasma and radiation treatments of biotargets. Sci Rep 2019; 9:19837. [PMID: 31882663 PMCID: PMC6934759 DOI: 10.1038/s41598-019-56160-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/28/2019] [Indexed: 12/23/2022] Open
Abstract
Medical treatment utilizing non-thermal plasma is based on the production of reactive oxygen species (ROS) and their interactions with biomatters. On the basis of empirical data from practices, plasma treatment has been planned with regard to the setup of a plasma generator's parameters, including gas combination, gas-flow rate, and applied voltage. In this study, we quantitated plasma treatment in terms of the plasma dose on the target matter, which can be contrasted with the radiation dose to targets under radiation exposure. We measured the OH radical production in cell culture medium and intracellular ROS production from plasma treatment in comparison with those from X-ray exposure. The clonogenic cell deaths from plasma and X-ray exposures were also compared. In plasma treatment, the clonogenic cell death was better predicted by intracellular ROS production rather than by medium OH production.
Collapse
Affiliation(s)
- Wan-Ook Ji
- Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Min-Ho Lee
- Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Gon-Ho Kim
- Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Eun-Hee Kim
- Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
50
|
Modifying the Tumour Microenvironment: Challenges and Future Perspectives for Anticancer Plasma Treatments. Cancers (Basel) 2019; 11:cancers11121920. [PMID: 31810265 PMCID: PMC6966454 DOI: 10.3390/cancers11121920] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023] Open
Abstract
Tumours are complex systems formed by cellular (malignant, immune, and endothelial cells, fibroblasts) and acellular components (extracellular matrix (ECM) constituents and secreted factors). A close interplay between these factors, collectively called the tumour microenvironment, is required to respond appropriately to external cues and to determine the treatment outcome. Cold plasma (here referred as ‘plasma’) is an emerging anticancer technology that generates a unique cocktail of reactive oxygen and nitrogen species to eliminate cancerous cells via multiple mechanisms of action. While plasma is currently regarded as a local therapy, it can also modulate the mechanisms of cell-to-cell and cell-to-ECM communication, which could facilitate the propagation of its effect in tissue and distant sites. However, it is still largely unknown how the physical interactions occurring between cells and/or the ECM in the tumour microenvironment affect the plasma therapy outcome. In this review, we discuss the effect of plasma on cell-to-cell and cell-to-ECM communication in the context of the tumour microenvironment and suggest new avenues of research to advance our knowledge in the field. Furthermore, we revise the relevant state-of-the-art in three-dimensional in vitro models that could be used to analyse cell-to-cell and cell-to-ECM communication and further strengthen our understanding of the effect of plasma in solid tumours.
Collapse
|