1
|
Pucci C, De Pasquale D, Degl'Innocenti A, Montorsi M, Desii A, Pero M, Martinelli C, Bartolucci M, Petretto A, Ciofani G. Chlorin e6-Loaded Nanostructured Lipid Carriers Targeted by Angiopep-2: Advancing Photodynamic Therapy in Glioblastoma. Adv Healthc Mater 2024:e2402823. [PMID: 39344523 DOI: 10.1002/adhm.202402823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/10/2024] [Indexed: 10/01/2024]
Abstract
Glioblastoma (GBM) is a highly aggressive brain tumor known for its resistance to standard treatments. Despite surgery being a primary option, it often leads to incomplete removal and high recurrence rates. Photodynamic therapy (PDT) holds promise as an adjunctive treatment, but safety concerns and the need for high-power lasers have limited its widespread use. This research addresses these challenges by introducing a novel PDT approach, using chlorin e6 (Ce6) enclosed in nanostructured lipid carriers (Ang-Ce6-NLCs) and targeted to GBM with the angiopep-2 peptide. Remarkably, a single 5-min irradiation session with LEDs at 660 nm and low power density (10 mW cm- 2) proves effective against GBM, while reducing safety risks associated with high-power lasers. Encapsulation improves Ce6 stability and performance in physiological environments, while angiopep-2 targeting enhances delivery to GBM cells, maximizing treatment efficacy and minimizing off-target effects. The findings demonstrate that Ang-Ce6-NLCs-mediated PDT brings about a significant reduction in GBM cell viability, increases oxidative stress, reduces tumor migration, and enhances apoptosis. Overall, such treatment holds potential as a safe and efficient intraoperative removal of GBM infiltrating cells that cannot be reached by surgery, using low-power LED light to minimize harm to surrounding healthy tissue while maximizing tumor treatment.
Collapse
Affiliation(s)
- Carlotta Pucci
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Daniele De Pasquale
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Andrea Degl'Innocenti
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Margherita Montorsi
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Andrea Desii
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Marta Pero
- Politecnico di Torino, DIMEAS, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
| | - Chiara Martinelli
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Martina Bartolucci
- IRCCS Istituto Giannina Gaslini, Core Facilities-Clinical Proteomics and Metabolomics, Via Gerolamo Gaslini 5, Genova, 16147, Italy
| | - Andrea Petretto
- IRCCS Istituto Giannina Gaslini, Core Facilities-Clinical Proteomics and Metabolomics, Via Gerolamo Gaslini 5, Genova, 16147, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| |
Collapse
|
2
|
Furst LM, Roussel EM, Leung RF, George AM, Best SA, Whittle JR, Firestein R, Faux MC, Eisenstat DD. The Landscape of Pediatric High-Grade Gliomas: The Virtues and Pitfalls of Pre-Clinical Models. BIOLOGY 2024; 13:424. [PMID: 38927304 PMCID: PMC11200883 DOI: 10.3390/biology13060424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
Pediatric high-grade gliomas (pHGG) are malignant and usually fatal central nervous system (CNS) WHO Grade 4 tumors. The majority of pHGG consist of diffuse midline gliomas (DMG), H3.3 or H3.1 K27 altered, or diffuse hemispheric gliomas (DHG) (H3.3 G34-mutant). Due to diffuse tumor infiltration of eloquent brain areas, especially for DMG, surgery has often been limited and chemotherapy has not been effective, leaving fractionated radiation to the involved field as the current standard of care. pHGG has only been classified as molecularly distinct from adult HGG since 2012 through Next-Generation sequencing approaches, which have shown pHGG to be epigenetically regulated and specific tumor sub-types to be representative of dysregulated differentiating cells. To translate discovery research into novel therapies, improved pre-clinical models that more adequately represent the tumor biology of pHGG are required. This review will summarize the molecular characteristics of different pHGG sub-types, with a specific focus on histone K27M mutations and the dysregulated gene expression profiles arising from these mutations. Current and emerging pre-clinical models for pHGG will be discussed, including commonly used patient-derived cell lines and in vivo modeling techniques, encompassing patient-derived xenograft murine models and genetically engineered mouse models (GEMMs). Lastly, emerging techniques to model CNS tumors within a human brain environment using brain organoids through co-culture will be explored. As models that more reliably represent pHGG continue to be developed, targetable biological and genetic vulnerabilities in the disease will be more rapidly identified, leading to better treatments and improved clinical outcomes.
Collapse
Affiliation(s)
- Liam M. Furst
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia; (L.M.F.); (E.M.R.); (R.F.L.); (M.C.F.)
- Stem Cell Medicine, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia;
| | - Enola M. Roussel
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia; (L.M.F.); (E.M.R.); (R.F.L.); (M.C.F.)
- Stem Cell Medicine, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia;
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia;
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Ryan F. Leung
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia; (L.M.F.); (E.M.R.); (R.F.L.); (M.C.F.)
- Stem Cell Medicine, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia;
| | - Ankita M. George
- Stem Cell Medicine, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia;
| | - Sarah A. Best
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3010, Australia;
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - James R. Whittle
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia;
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3010, Australia;
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ron Firestein
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia;
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Maree C. Faux
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia; (L.M.F.); (E.M.R.); (R.F.L.); (M.C.F.)
- Stem Cell Medicine, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia;
- Department of Surgery, University of Melbourne, Parkville, VIC 3010, Australia
| | - David D. Eisenstat
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia; (L.M.F.); (E.M.R.); (R.F.L.); (M.C.F.)
- Stem Cell Medicine, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia;
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
- Children’s Cancer Centre, The Royal Children’s Hospital Melbourne, 50 Flemington Road, Parkville, VIC 3052, Australia
| |
Collapse
|
3
|
Thompson E, Prior S, Brüning-Richardson A. Traditional Plant-Derived Compounds Inhibit Cell Migration and Induce Novel Cytoskeletal Effects in Glioblastoma Cells. J Xenobiot 2024; 14:613-633. [PMID: 38804289 PMCID: PMC11130960 DOI: 10.3390/jox14020036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/29/2024] Open
Abstract
Glioblastomas (GBMs) are aggressive and invasive cancers of the brain, associated with high rates of tumour recurrence and poor patient outcomes despite initial treatment. Targeting cell migration is therefore of interest in highly invasive cancers such as GBMs, to prevent tumour dissemination and regrowth. One current aim of GBM research focuses on assessing the anti-migratory properties of novel or repurposed inhibitors, including plant-based drugs which display anti-cancer properties. We investigated the potential anti-migratory activity of plant-based products with known cytotoxic effects in cancers, using a range of two-dimensional (2D) and three-dimensional (3D) migration and invasion assays as well as immunofluorescence microscopy to determine the specific anti-migratory and phenotypic effects of three plant-derived compounds, Turmeric, Indigo and Magnolia bark, on established glioma cell lines. Migrastatic activity was observed in all three drugs, with Turmeric exerting the most inhibitory effect on GBM cell migration into scratches and from the spheroid edge at all the timepoints investigated (p < 0.001). We also observed novel cytoskeletal phenotypes affecting actin and the focal adhesion dynamics. As our in vitro results determined that Turmeric, Indigo and Magnolia are promising migrastatic drugs, we suggest additional experimentation at the whole organism level to further validate these novel findings.
Collapse
Affiliation(s)
| | - Sally Prior
- Correspondence: (S.P.); (A.B.-R.); Tel.: +44-01484-472518 (A.B.-R.)
| | | |
Collapse
|
4
|
Ehteda A, Khan A, Rajakumar G, Vanniasinghe AS, Gopalakrishnan A, Liu J, Tsoli M, Ziegler DS. Microtubule-Targeting Combined with HDAC Inhibition Is a Novel Therapeutic Strategy for Diffuse Intrinsic Pontine Gliomas. Mol Cancer Ther 2023; 22:1413-1421. [PMID: 37683275 PMCID: PMC10690044 DOI: 10.1158/1535-7163.mct-23-0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/30/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Diffuse intrinsic pontine gliomas (DIPG) are an incurable childhood brain cancer for which novel treatments are needed. DIPGs are characterized by a mutation in the H3 histone (H3K27M), resulting in loss of H3K27 methylation and global gene dysregulation. TRX-E-009-1 is a novel anticancer agent with preclinical activity demonstrated against a range of cancers. We examined the antitumor activity of TRX-E-009-1 against DIPG neurosphere cultures and observed tumor-specific activity with IC50s ranging from 20 to 100 nmol/L, whereas no activity was observed against normal human astrocyte cells. TRX-E-009-1 exerted its anti-proliferative effect through the induction of apoptotic pathways, with marked increases in cleaved caspase 3 and cleaved PARP levels, while also restoring histone H3K27me3 methylation. Co-administration of TRX-E-009-1 and the histone deacetylase (HDAC) inhibitor SAHA extended survival in DIPG orthotopic animal models. This antitumor effect was further enhanced with irradiation. Our findings indicate that TRX-E-009-1, combined with HDAC inhibition, represents a novel, potent therapy for children with DIPG.
Collapse
Affiliation(s)
- Anahid Ehteda
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Aaminah Khan
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Gayathiri Rajakumar
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Anne S. Vanniasinghe
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Anjana Gopalakrishnan
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Jie Liu
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Maria Tsoli
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
| | - David S. Ziegler
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, High St, Randwick, Australia
| |
Collapse
|
5
|
Cowan JM, Juric M, Petrie RJ. Culturing and Imaging Glioma Stem Cells in 3D Collagen Matrices. Curr Protoc 2023; 3:e643. [PMID: 36598361 PMCID: PMC9830581 DOI: 10.1002/cpz1.643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Methods to maintain human glioma stem cells as neurosphere cultures and image their dynamic behavior in 3D collagen matrices are described. Additional approaches to monitor glioma stem cell differentiation into mesenchymal-type cells, along with example data are included. Together, these approaches enable glioma stem cell differentiation to be controlled while maintaining the cells in culture, as well as allowing cell dynamics to be captured and analyzed. These methods should be helpful for those seeking to understand the molecular mechanisms driving the invasion of glioma cells through three-dimensional environments. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Culturing human glioma stem cells as neurospheres Basic Protocol 2: Inducing GSC adherence and monitoring their differentiation into mesenchymal cells Support Protocol 1: Preparing fibronectin-coated dishes for cell microscopy Basic Protocol 3: Embedding GSCs in a 3D collagen matrix to study their invasive behavior Support Protocol 2: Phase-contrast imaging with a tiled matrix to study cell migration in a 3D gel.
Collapse
Affiliation(s)
- James M. Cowan
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Matey Juric
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Ryan J. Petrie
- Department of Biology, Drexel University, Philadelphia, PA 19104
| |
Collapse
|
6
|
So J, Mabe NW, Englinger B, Chow KH, Moyer SM, Yerrum S, Trissal MC, Marques JG, Kwon JJ, Shim B, Pal S, Panditharatna E, Quinn T, Schaefer DA, Jeong D, Mayhew DL, Hwang J, Beroukhim R, Ligon KL, Stegmaier K, Filbin MG, Hahn WC. VRK1 as a synthetic lethal target in VRK2 promoter-methylated cancers of the nervous system. JCI Insight 2022; 7:e158755. [PMID: 36040810 PMCID: PMC9675470 DOI: 10.1172/jci.insight.158755] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Collateral lethality occurs when loss of a gene/protein renders cancer cells dependent on its remaining paralog. Combining genome-scale CRISPR/Cas9 loss-of-function screens with RNA sequencing in over 900 cancer cell lines, we found that cancers of nervous system lineage, including adult and pediatric gliomas and neuroblastomas, required the nuclear kinase vaccinia-related kinase 1 (VRK1) for their survival in vivo. VRK1 dependency was inversely correlated with expression of its paralog VRK2. VRK2 knockout sensitized cells to VRK1 loss, and conversely, VRK2 overexpression increased cell fitness in the setting of VRK1 loss. DNA methylation of the VRK2 promoter was associated with low VRK2 expression in human neuroblastomas and adult and pediatric gliomas. Mechanistically, depletion of VRK1 reduced barrier-to-autointegration factor phosphorylation during mitosis, resulting in DNA damage and apoptosis. Together, these studies identify VRK1 as a synthetic lethal target in VRK2 promoter-methylated adult and pediatric gliomas and neuroblastomas.
Collapse
Affiliation(s)
- Jonathan So
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Nathaniel W Mabe
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Bernhard Englinger
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, Massachusetts, USA
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Kin-Hoe Chow
- Department of Oncologic Pathology and
- Center for Patient Derived Models, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Sydney M Moyer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Smitha Yerrum
- Department of Oncologic Pathology and
- Center for Patient Derived Models, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria C Trissal
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Joana G Marques
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Jason J Kwon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Brian Shim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Sangita Pal
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Eshini Panditharatna
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas Quinn
- Department of Oncologic Pathology and
- Center for Patient Derived Models, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel A Schaefer
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Daeun Jeong
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, Massachusetts, USA
| | - David L Mayhew
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Radiation Oncology, Tufts Medical Center, Boston, Massachusetts, USA
| | - Justin Hwang
- Department of Medicine and
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
| | - Rameen Beroukhim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Keith L Ligon
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Oncologic Pathology and
| | - Kimberly Stegmaier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Mariella G Filbin
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, Massachusetts, USA
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
7
|
Kim JY, Park HH, Yong TS, Jeon SH. Lithium chloride inhibits the migration and invasion of osteosarcoma cells by blocking nuclear translocation of phospho-Erk. Biochem Biophys Res Commun 2021; 581:74-80. [PMID: 34656851 DOI: 10.1016/j.bbrc.2021.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022]
Abstract
Lithium chloride (LiCl) is an important mood-stabilizing therapeutic agent for bipolar disorders, which has also been shown to inhibit cancer cell metastasis. Investigations of LiCl-induced signaling have focused mainly on extracellular signal regulated kinase 1/2 (ERK1/2) and glycogen synthase kinase 3 (GSK-3). However, little is known about the differences in cellular activities resulting from specific signaling via each of these pathways. In this study, we investigated the difference in responses between the Wnt/β-catenin and ERK pathways by LiCl or epidermal growth factor (EGF) treatment of osteosarcoma cells. In particular, we analyzed the mechanisms responsible for differences in cell mobility and cell proliferation when pERK or β-catenin is activated. In osteosarcoma cells treated with LiCl or EGF, active β-catenin and p-ERK protein levels were significantly increased compared to those in the control group. However, in wound healing and transwell invasion assays, U2OS and SaOS2 cell migration was significantly reduced by LiCl treatment but increased by EGF treatment. In addition, the proliferation of U2OS cells was reduced by LiCl treatment but increased by EGF treatment. Using immunofluorescence microscopy, we observed nuclear accumulation of phosphorylated ERK (pERK) with EGF treatment, but pERK was restricted to the perinuclear area with LiCl treatment. These results were confirmed using immunoblot assays after subcellular fractionation. Together, these data suggest that LiCl interferes with the translocation of pERK from the cytoplasm to the nucleus.
Collapse
Affiliation(s)
- Ju Yeong Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Hun Hee Park
- Department of Clinical Laboratory Science, Ansan University, Gyeonggi-do, 15328, South Korea
| | - Tai-Soon Yong
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| | - Soung-Hoo Jeon
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| |
Collapse
|
8
|
Brüning-Richardson A, Shaw GC, Tams D, Brend T, Sanganee H, Barry ST, Hamm G, Goodwin RJA, Swales JG, King H, Steele L, Morton R, Widyadari A, Ward TA, Esteves F, Boissinot M, Mavria G, Droop A, Lawler SE, Short SC. GSK-3 Inhibition Is Cytotoxic in Glioma Stem Cells through Centrosome Destabilization and Enhances the Effect of Radiotherapy in Orthotopic Models. Cancers (Basel) 2021; 13:5939. [PMID: 34885051 PMCID: PMC8657225 DOI: 10.3390/cancers13235939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Previous data on glycogen synthase kinase 3 (GSK-3) inhibition in cancer models support a cytotoxic effect with selectivity for tumor cells compared to normal tissue but the effect of these inhibitors in glioma has not been widely studied. Here, we investigate their potential as cytotoxics in glioma. METHODS We assessed the effect of pharmacologic GSK-3 inhibition on established (U87, U251) and patient-derived (GBM1, GBM4) glioblastoma (GBM) cell lines using cytotoxicity assays as well as undertaking a detailed investigation of the effect on cell cycle, mitosis, and centrosome biology. We also assessed drug uptake and efficacy of GSK-3 inhibition alone and in combination with radiation in xenograft models. RESULTS Using the selective GSK-3 inhibitor AZD2858, we demonstrated single agent cytotoxicity in two patient-derived glioma cell lines (GBM1, GBM4) and two established cell lines (U251 and U87) with IC50 in the low micromolar range promoting centrosome disruption, failed mitosis, and S-phase arrest. Glioma xenografts exposed to AZD2858 also showed growth delay compared to untreated controls. Combined treatment with radiation increased the cytotoxic effect of clinical radiation doses in vitro and in orthotopic glioma xenografts. CONCLUSIONS These data suggest that GSK-3 inhibition promotes cell death in glioma through disrupting centrosome function and promoting mitotic failure and that AZD2858 is an effective adjuvant to radiation at clinical doses.
Collapse
Affiliation(s)
- Anke Brüning-Richardson
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (G.C.S.); (D.T.); (T.B.); (H.K.); (L.S.); (R.M.); (A.W.); (T.A.W.); (F.E.); (M.B.); (G.M.)
| | - Gary C. Shaw
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (G.C.S.); (D.T.); (T.B.); (H.K.); (L.S.); (R.M.); (A.W.); (T.A.W.); (F.E.); (M.B.); (G.M.)
| | - Daniel Tams
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (G.C.S.); (D.T.); (T.B.); (H.K.); (L.S.); (R.M.); (A.W.); (T.A.W.); (F.E.); (M.B.); (G.M.)
| | - Tim Brend
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (G.C.S.); (D.T.); (T.B.); (H.K.); (L.S.); (R.M.); (A.W.); (T.A.W.); (F.E.); (M.B.); (G.M.)
| | - Hitesh Sanganee
- Discovery Sciences BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 8PA, UK;
| | - Simon T. Barry
- Bioscience, Early Oncology, Oncology R&D, AstraZeneca, Cambridge CB2 8PA, UK;
| | - Gregory Hamm
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 8PA, UK; (G.H.); (R.J.A.G.); (J.G.S.)
| | - Richard J. A. Goodwin
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 8PA, UK; (G.H.); (R.J.A.G.); (J.G.S.)
| | - John G. Swales
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 8PA, UK; (G.H.); (R.J.A.G.); (J.G.S.)
| | - Henry King
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (G.C.S.); (D.T.); (T.B.); (H.K.); (L.S.); (R.M.); (A.W.); (T.A.W.); (F.E.); (M.B.); (G.M.)
| | - Lynette Steele
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (G.C.S.); (D.T.); (T.B.); (H.K.); (L.S.); (R.M.); (A.W.); (T.A.W.); (F.E.); (M.B.); (G.M.)
| | - Ruth Morton
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (G.C.S.); (D.T.); (T.B.); (H.K.); (L.S.); (R.M.); (A.W.); (T.A.W.); (F.E.); (M.B.); (G.M.)
| | - Anastasia Widyadari
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (G.C.S.); (D.T.); (T.B.); (H.K.); (L.S.); (R.M.); (A.W.); (T.A.W.); (F.E.); (M.B.); (G.M.)
| | - Thomas A. Ward
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (G.C.S.); (D.T.); (T.B.); (H.K.); (L.S.); (R.M.); (A.W.); (T.A.W.); (F.E.); (M.B.); (G.M.)
| | - Filomena Esteves
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (G.C.S.); (D.T.); (T.B.); (H.K.); (L.S.); (R.M.); (A.W.); (T.A.W.); (F.E.); (M.B.); (G.M.)
| | - Marjorie Boissinot
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (G.C.S.); (D.T.); (T.B.); (H.K.); (L.S.); (R.M.); (A.W.); (T.A.W.); (F.E.); (M.B.); (G.M.)
| | - Georgia Mavria
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (G.C.S.); (D.T.); (T.B.); (H.K.); (L.S.); (R.M.); (A.W.); (T.A.W.); (F.E.); (M.B.); (G.M.)
| | - Alastair Droop
- Leeds MRC Medical Bioinformatics Centre, University of Leeds, Leeds LS9 7TF, UK;
| | - Sean E. Lawler
- Pathology & Laboratory Medicine, Brown University Cancer Center, Brown University, Providence, RI 02903, USA;
| | - Susan C. Short
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (G.C.S.); (D.T.); (T.B.); (H.K.); (L.S.); (R.M.); (A.W.); (T.A.W.); (F.E.); (M.B.); (G.M.)
| |
Collapse
|
9
|
Neuroblastoma and DIPG Organoid Coculture System for Personalized Assessment of Novel Anticancer Immunotherapies. J Pers Med 2021; 11:jpm11090869. [PMID: 34575646 PMCID: PMC8466534 DOI: 10.3390/jpm11090869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer immunotherapy has transformed the landscape of adult cancer treatment and holds a great promise to treat paediatric malignancies. However, in vitro test coculture systems to evaluate the efficacy of immunotherapies on representative paediatric tumour models are lacking. Here, we describe a detailed procedure for the establishment of an ex vivo test coculture system of paediatric tumour organoids and immune cells that enables assessment of different immunotherapy approaches in paediatric tumour organoids. We provide a step-by-step protocol for an efficient generation of patient-derived diffuse intrinsic pontine glioma (DIPG) and neuroblastoma organoids stably expressing eGFP-ffLuc transgenes using defined serum-free medium. In contrast to the chromium-release assay, the new platform allows for visualization, monitoring and robust quantification of tumour organoid cell cytotoxicity using a non-radioactive assay in real-time. To evaluate the utility of this system for drug testing in the paediatric immuno-oncology field, we tested our in vitro assay using a clinically used immunotherapy strategy for children with high-risk neuroblastoma, dinutuximab (anti-GD2 monoclonal antibody), on GD2 proficient and deficient patient-derived neuroblastoma organoids. We demonstrated the feasibility and sensitivity of our ex vivo coculture system using human immune cells and paediatric tumour organoids as ex vivo tumour models. Our study provides a novel platform for personalized testing of potential anticancer immunotherapies for aggressive paediatric cancers such as neuroblastoma and DIPG.
Collapse
|
10
|
Wang H, Wang Z, Wei C, Wang J, Xu Y, Bai G, Yao Q, Zhang L, Chen Y. Anticancer potential of indirubins in medicinal chemistry: Biological activity, structural modification, and structure-activity relationship. Eur J Med Chem 2021; 223:113652. [PMID: 34161865 DOI: 10.1016/j.ejmech.2021.113652] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/13/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Indirubin is the crucial ingredient of Danggui Longhui Wan and Qing-Dai, traditional Chinese medicine herbal formulas used for the therapy of chronic myelocytic leukemia in China for hundreds of years. Although the monomeric indirubin has been used in China for the treatment human chronic myelocytic leukemia. However, due to low water solubility, poor pharmacokinetic properties and low therapeutic effects are the major obstacle, and had significantly limited its clinical application. Consequently, the attractive anticancer profile of indirubin has enthused numerous researchers to discover novel indirubin derivatives with improved pharmacodynamic activity as well as good pharmacokinetic property. In this paper, we comprehensively review the recent progress of anticancer potential of indirubins, structural modification and structure-activity relationship, which may provide useful direction for the further development of novel indirubins with improved pharmacological profiles for the treatment of various types of cancer.
Collapse
Affiliation(s)
- Hezhen Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China
| | - Zhiyuan Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China
| | - Chunyong Wei
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China
| | - Jing Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China
| | - Yingshu Xu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China
| | - Guohui Bai
- Key Laboratory of Oral Disease of Higher Schools in Guizhou Province, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China.
| | - Qizheng Yao
- School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, PR China.
| | - Lei Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China.
| | - Yongzheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China.
| |
Collapse
|
11
|
Bailleul Q, Rakotomalala A, Ferry I, Leblond P, Meignan S, Furlan A. [The art of war as applied to pediatric gliomas: Know your enemy]. Med Sci (Paris) 2021; 37:159-166. [PMID: 33591259 DOI: 10.1051/medsci/2020279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pediatric brain cancers represent the most frequent solid tumors and the leading cause of cancer-driven mortality in children. Pediatric High Grade Gliomas display a very poor prognosis. Among these, DIPG (Diffuse Intrinsic Pontine Gliomas), localized to the brain stem, cannot benefit from a total exeresis due to this critical location and to their highly infiltrating nature. Radiotherapy remains the standard treatment against these tumors for almost five decades, and attempts to improve the prognosis of patients with chemotherapy or targeted therapies have failed. Thanks to the rise of high throughput sequencing, the knowledge of molecular alterations in pediatric gliomas strongly progressed and allowed to highlight distinct biomolecular entities and to establish more accurate diagnoses. In this review, we summarize this new information and the perspectives that it brings for clinical strategies.
Collapse
Affiliation(s)
- Quentin Bailleul
- Unité tumorigenèse et résistance aux traitements, Centre Oscar Lambret, Place de Verdun, 59045 Lille, France - Univ. Lille, CNRS, Inserm, CHU Lille, Institut de recherche contre le cancer de Lille, UMR9020 - UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Andria Rakotomalala
- Unité tumorigenèse et résistance aux traitements, Centre Oscar Lambret, Place de Verdun, 59045 Lille, France - Univ. Lille, CNRS, Inserm, CHU Lille, Institut de recherche contre le cancer de Lille, UMR9020 - UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Isabelle Ferry
- Unité tumorigenèse et résistance aux traitements, Centre Oscar Lambret, Place de Verdun, 59045 Lille, France - Univ. Lille, CNRS, Inserm, CHU Lille, Institut de recherche contre le cancer de Lille, UMR9020 - UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Pierre Leblond
- Département de cancérologie pédiatrique, Institut d'hématologie et d'oncologie pédiatrique, Lyon, France
| | - Samuel Meignan
- Unité tumorigenèse et résistance aux traitements, Centre Oscar Lambret, Place de Verdun, 59045 Lille, France - Univ. Lille, CNRS, Inserm, CHU Lille, Institut de recherche contre le cancer de Lille, UMR9020 - UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Alessandro Furlan
- Unité tumorigenèse et résistance aux traitements, Centre Oscar Lambret, Place de Verdun, 59045 Lille, France - Univ. Lille, CNRS, Inserm, CHU Lille, Institut de recherche contre le cancer de Lille, UMR9020 - UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France
| |
Collapse
|
12
|
Zanni G, Goto S, Fragopoulou AF, Gaudenzi G, Naidoo V, Di Martino E, Levy G, Dominguez CA, Dethlefsen O, Cedazo-Minguez A, Merino-Serrais P, Stamatakis A, Hermanson O, Blomgren K. Lithium treatment reverses irradiation-induced changes in rodent neural progenitors and rescues cognition. Mol Psychiatry 2021; 26:322-340. [PMID: 31723242 PMCID: PMC7815512 DOI: 10.1038/s41380-019-0584-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/13/2019] [Accepted: 10/25/2019] [Indexed: 12/21/2022]
Abstract
Cranial radiotherapy in children has detrimental effects on cognition, mood, and social competence in young cancer survivors. Treatments harnessing hippocampal neurogenesis are currently of great relevance in this context. Lithium, a well-known mood stabilizer, has both neuroprotective, pro-neurogenic as well as antitumor effects, and in the current study we introduced lithium treatment 4 weeks after irradiation. Female mice received a single 4 Gy whole-brain radiation dose on postnatal day (PND) 21 and were randomized to 0.24% Li2CO3 chow or normal chow from PND 49 to 77. Hippocampal neurogenesis was assessed on PND 77, 91, and 105. We found that lithium treatment had a pro-proliferative effect on neural progenitors, but neuronal integration occurred only after it was discontinued. Also, the treatment ameliorated deficits in spatial learning and memory retention observed in irradiated mice. Gene expression profiling and DNA methylation analysis identified two novel factors related to the observed effects, Tppp, associated with microtubule stabilization, and GAD2/65, associated with neuronal signaling. Our results show that lithium treatment reverses irradiation-induced loss of hippocampal neurogenesis and cognitive impairment even when introduced long after the injury. We propose that lithium treatment should be intermittent in order to first make neural progenitors proliferate and then, upon discontinuation, allow them to differentiate. Our findings suggest that pharmacological treatment of cognitive so-called late effects in childhood cancer survivors is possible.
Collapse
Affiliation(s)
- Giulia Zanni
- Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, 171 64, Stockholm, Sweden.
- Department of Developmental Neuroscience, New York State Psychiatric Institute, Columbia University, 1051 Riverside, New York, NY, 10032, USA.
| | - Shinobu Goto
- Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, 171 64, Stockholm, Sweden
- Department of Obstetrics and Gynecology, Nagoya City University Graduate School of Medical Sciences, 467-8601, 1, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Japan
| | - Adamantia F Fragopoulou
- Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, 171 64, Stockholm, Sweden
| | - Giulia Gaudenzi
- Department of Neuroscience, Karolinska Institutet, Biomedicum, 171 77, Stockholm, Sweden
- Department of Protein Science, Division of Nanobiotechnology, KTH Royal Institute of Technology, Science for Life Laboratory, 171 21, Stockholm, Sweden
| | - Vinogran Naidoo
- Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, 171 64, Stockholm, Sweden
- Department of Human Biology, Faculty of Health Sciences, Anzio Road Observatory, 7925, University of Cape Town, Cape Town, South Africa
| | - Elena Di Martino
- Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, 171 64, Stockholm, Sweden
| | - Gabriel Levy
- Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, 171 64, Stockholm, Sweden
- Ludwig Institute for Cancer Research, Brussels Branch, Avenue Hippocrate 75, 1200, Brussels, Belgium
| | - Cecilia A Dominguez
- Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, 171 64, Stockholm, Sweden
| | - Olga Dethlefsen
- National Bioinformatics Infrastructure Sweden (NIBIS), Science for Life Laboratory (SciLifeLab), Svante Arrhenius väg 16C, 106 91, Stockholm, Sweden
- Department of Biochemistry and Biophysics (DBB), Stockholm University, Svante Arrhenius väg 16C, 106 91, Stockholm, Sweden
| | - Angel Cedazo-Minguez
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, BioClinicum J9:20, 171 64, Stockholm, Sweden
| | - Paula Merino-Serrais
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, BioClinicum J9:20, 171 64, Stockholm, Sweden
| | - Antonios Stamatakis
- Biology-Biochemistry Lab, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, Papadiamantopoulou 123, Goudi, 11527, Athens, Greece
| | - Ola Hermanson
- Department of Neuroscience, Karolinska Institutet, Biomedicum, 171 77, Stockholm, Sweden
| | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institutet, BioClinicum J9:30, 171 64, Stockholm, Sweden.
- Pediatric Oncology, Karolinska University Hospital, Eugeniavägen 23, 171 64, Stockholm, Sweden.
| |
Collapse
|
13
|
Kluiver TA, Alieva M, van Vuurden DG, Wehrens EJ, Rios AC. Invaders Exposed: Understanding and Targeting Tumor Cell Invasion in Diffuse Intrinsic Pontine Glioma. Front Oncol 2020; 10:92. [PMID: 32117746 PMCID: PMC7020612 DOI: 10.3389/fonc.2020.00092] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/17/2020] [Indexed: 12/20/2022] Open
Abstract
Diffuse Intrinsic Pontine Glioma (DIPG) is a rare, highly aggressive pediatric brain tumor that originates in the pons. DIPG is untreatable and universally fatal, with a median life expectancy of less than a year. Resection is not an option, due to the anatomical location of the tumor, radiotherapy has limited effect and no chemotherapeutic or targeted treatment approach has proven to be successful. This poor prognosis is partly attributed to the tumor's highly infiltrative diffuse and invasive spread. Thus, targeting the invasive behavior of DIPG has the potential to be of therapeutic value. In order to target DIPG invasion successfully, detailed mechanistic knowledge on the underlying drivers is required. Here, we review both DIPG tumor cell's intrinsic molecular processes and extrinsic environmental factors contributing to DIPG invasion. Importantly, DIPG represents a heterogenous disease and through advances in whole-genome sequencing, different subtypes of disease based on underlying driver mutations are now being recognized. Recent evidence also demonstrates intra-tumor heterogeneity in terms of invasiveness and implies that highly infiltrative tumor subclones can enhance the migratory behavior of neighboring cells. This might partially be mediated by “tumor microtubes,” long membranous extensions through which tumor cells connect and communicate, as well as through the secretion of extracellular vesicles. Some of the described processes involved in invasion are already being targeted in clinical trials. However, more research into the mechanisms of DIPG invasion is urgently needed and might result in the development of an effective therapy for children suffering from this devastating disease. We discuss the implications of newly discovered invasive mechanisms for therapeutic targeting and the challenges therapy development face in light of disease in the developing brain.
Collapse
Affiliation(s)
- T A Kluiver
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Cancer Research, Oncode Institute, Hubrecht Institute, KNAW Utrecht, Utrecht, Netherlands.,Cancer Genomics Center, Utrecht, Netherlands
| | - M Alieva
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Cancer Research, Oncode Institute, Hubrecht Institute, KNAW Utrecht, Utrecht, Netherlands.,Cancer Genomics Center, Utrecht, Netherlands
| | - D G van Vuurden
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Ellen J Wehrens
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Cancer Research, Oncode Institute, Hubrecht Institute, KNAW Utrecht, Utrecht, Netherlands.,Cancer Genomics Center, Utrecht, Netherlands
| | - Anne C Rios
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Cancer Research, Oncode Institute, Hubrecht Institute, KNAW Utrecht, Utrecht, Netherlands.,Cancer Genomics Center, Utrecht, Netherlands
| |
Collapse
|
14
|
Ichimaru Y, Sano M, Kajiwara I, Tobe T, Yoshioka H, Hayashi K, Ijichi H, Miyairi S. Indirubin 3'-Oxime Inhibits Migration, Invasion, and Metastasis InVivo in Mice Bearing Spontaneously Occurring Pancreatic Cancer via Blocking the RAF/ERK, AKT, and SAPK/JNK Pathways. Transl Oncol 2019; 12:1574-1582. [PMID: 31671317 PMCID: PMC6835019 DOI: 10.1016/j.tranon.2019.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with high invasive and metastatic potential. We generated a spontaneous PDAC mouse model and examined the therapeutic potential of indirubin 3'-oxime (Indox) against PDAC bearing mouse in vivo. METHODS Randomized 3-month-old LSL-KrasG12D/+;Trp53flox/+;Pdx-1-cre (KPCflox) mice were intraperitoneally injected with 40 mg/kg Indox (n = 9) or a vehicle (n = 10) twice a week. At the end point, tumor status including proliferation, direct invasion, and distant metastasis was analyzed histopathologically. The inhibitory potentials of Indox for proliferation, migration/invasion, and the phosphorylation of target molecules were determined in KPCflox-derived PDAC cells in vitro. RESULTS Prolonged survival by Indox via intraperitoneal administration was observed in the KPCflox mice. Indox inhibited tumor proliferation accompanied with low levels of nuclear phosphorylated cyclin-dependent kinase (p-CDK) and cyclin B1 in vivo. Furthermore, Indox inhibited the migration/invasive activities of PDAC via down-regulation of matrix metalloproteinase (MMP)-9 in vitro and in vivo. Antibody array and immunoblotting analysis revealed that Indox inhibited the phosphorylation of multiple molecules, including key upstream proteins of MMP-9 in RAF/extracellular signal-regulated kinase (ERK), AKT, and stress-activated protein kinase/c-Jun-N-terminal kinase (SAPK/JNK) pathways. CONCLUSION Indox inhibited the proliferative, invasive, and metastatic potentials of PDAC in vitro and in vivo. Therefore, Indox could a therapeutic candidate for treating spontaneously occurring PDAC via blocking the RAF/ERK, AKT and SAPK/JNK pathways.
Collapse
Affiliation(s)
- Yoshimi Ichimaru
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan; College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyamaku, Nagoya, Aichi 463-8521, Japan.
| | - Makoto Sano
- Division of Human Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan; Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Ichie Kajiwara
- Department of Anesthesiology, Nihon University School of Medicine, Tokyo 173-8610, Japan.
| | - Takao Tobe
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyamaku, Nagoya, Aichi 463-8521, Japan.
| | - Hiroki Yoshioka
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyamaku, Nagoya, Aichi 463-8521, Japan.
| | - Kazuhiko Hayashi
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyamaku, Nagoya, Aichi 463-8521, Japan.
| | - Hideaki Ijichi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan; Department of Clinical Nutrition Therapy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Shinichi Miyairi
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan.
| |
Collapse
|
15
|
Egbivwie N, Cockle JV, Humphries M, Ismail A, Esteves F, Taylor C, Karakoula K, Morton R, Warr T, Short SC, Brüning-Richardson A. FGFR1 Expression and Role in Migration in Low and High Grade Pediatric Gliomas. Front Oncol 2019; 9:103. [PMID: 30931252 PMCID: PMC6425865 DOI: 10.3389/fonc.2019.00103] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/04/2019] [Indexed: 01/10/2023] Open
Abstract
The heterogeneous and invasive nature of pediatric gliomas poses significant treatment challenges, highlighting the importance of identifying novel chemotherapeutic targets. Recently, recurrent Fibroblast growth factor receptor 1 (FGFR1) mutations in pediatric gliomas have been reported. Here, we explored the clinical relevance of FGFR1 expression, cell migration in low and high grade pediatric gliomas and the role of FGFR1 in cell migration/invasion as a potential chemotherapeutic target. A high density tissue microarray (TMA) was used to investigate associations between FGFR1 and activated phosphorylated FGFR1 (pFGFR1) expression and various clinicopathologic parameters. Expression of FGFR1 and pFGFR1 were measured by immunofluorescence and by immunohistochemistry (IHC) in 3D spheroids in five rare patient-derived pediatric low-grade glioma (pLGG) and two established high-grade glioma (pHGG) cell lines. Two-dimensional (2D) and three-dimensional (3D) migration assays were performed for migration and inhibitor studies with three FGFR1 inhibitors. High FGFR1 expression was associated with age, malignancy, tumor location and tumor grade among astrocytomas. Membranous pFGFR1 was associated with malignancy and tumor grade. All glioma cell lines exhibited varying levels of FGFR1 and pFGFR1 expression and migratory phenotypes. There were significant anti-migratory effects on the pHGG cell lines with inhibitor treatment and anti-migratory or pro-migratory responses to FGFR1 inhibition in the pLGGs. Our findings support further research to target FGFR1 signaling in pediatric gliomas.
Collapse
Affiliation(s)
- Naomi Egbivwie
- Leeds School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Julia V Cockle
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Matthew Humphries
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Azzam Ismail
- Histopathology Department, Bexley Wing, St James's University Hospital, Leeds, United Kingdom
| | - Filomena Esteves
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Claire Taylor
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Katherine Karakoula
- School of Biology, Chemistry and Forensic Science, University of Wolverhampton, Wolverhampton, United Kingdom
| | - Ruth Morton
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Tracy Warr
- School of Biology, Chemistry and Forensic Science, University of Wolverhampton, Wolverhampton, United Kingdom
| | - Susan C Short
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Anke Brüning-Richardson
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
16
|
Lee MY, Li YZ, Huang KJ, Huang HC, Lin CY, Lee YR. Indirubin-3'-oxime suppresses human cholangiocarcinoma through cell-cycle arrest and apoptosis. Eur J Pharmacol 2018; 839:57-65. [PMID: 30267650 DOI: 10.1016/j.ejphar.2018.09.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/10/2018] [Accepted: 09/25/2018] [Indexed: 12/19/2022]
Abstract
Cholangiocarcinoma (CCA) is one of the most serious of all cancers and a major public health problem. CCA is an extremely invasive cancer, and the survival rate for CCA patients is only 24 months after diagnosis. Although surgery and chemotherapy can extend the survival rate to 5 years, < 20-40% of CCA patients will survive this long; therefore, it is crucial to discover an effective chemotherapeutic agent for CCA. Indirubin-3'-oxime (I3O), a derivative of indirubin, has been shown to suppress cell proliferation and induce cell-cycle arrest and cell apoptosis in various human cancers. In this study, four human CCA cell lines-NOZ, HuCCT1, OCUG-1, and OZ-were used to evaluate the anticancer properties of I3O. Cell viability, cell-cycle arrest, and apoptosis were assessed using Western blotting, immunofluorescence, and flow cytometry analysis. The data show that I3O treatment can inhibit cell proliferation and induce cell-cycle arrest, and caspase-dependent apoptosis in CCA cells. These findings suggest that I3O could suppress tumor growth by regulating the cell cycle and inducing apoptosis, and is a potential therapeutic agent for treating human CCA.
Collapse
Affiliation(s)
- Ming-Yang Lee
- Departments of Hematology and Oncology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan; Departments of Nursing, Min-Hwei College of Health Care Management, Tainan 736, Taiwan.
| | - Yi-Zhen Li
- Departments of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan.
| | - Kao-Jean Huang
- Institute of Biologics, Development Center for Biotechnology, New Taipei City 22180, Taiwan.
| | - Hui-Chi Huang
- Development of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan.
| | - Ching-Yen Lin
- Departments of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan.
| | - Ying-Ray Lee
- Departments of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan; Departments of Nursing, Min-Hwei College of Health Care Management, Tainan 736, Taiwan.
| |
Collapse
|
17
|
Turano M, Costabile V, Cerasuolo A, Duraturo F, Liccardo R, Delrio P, Pace U, Rega D, Dodaro CA, Milone M, Izzo P, De Rosa M. Characterisation of mesenchymal colon tumour-derived cells in tumourspheres as a model for colorectal cancer progression. Int J Oncol 2018; 53:2379-2396. [PMID: 30272331 PMCID: PMC6203159 DOI: 10.3892/ijo.2018.4565] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/25/2018] [Indexed: 12/21/2022] Open
Abstract
Cellular plasticity, the ability of cells to switch from an epitheial phenotype to a mesenchymal one and vice versa, plays a crucial role in tumour progression and metastases development. In 20-25% of patients with colon cancer and in 18% of patients with rectal cancer, metastases are present at the time of the first diagnosis. They are the first cause of colorectal cancer (CRC)-related mortality, defining stage IV CRC, which is characterized by a relatively short overall survival. We previously isolated two primary colon adenocarcinoma cell cultures that had undergone epithelial-mesenchymal transition (EMT), one with a high microsatellite instability phenotype (T88) and one with a chromosomal instability phenotype (T93). The aim of this study was to establish a model with which to study EMT, stemness features and cell plasticity in cancer progression and to examine the effects of incubation with lithium chloride (LiCl), a specific glycogen synthase kinase 3 β (GSK-3β) inhibitor, on these cellular processes. Indeed, GSK3β is an important regulator of cell survival, which promotes tumourigenesis in colon cells by facilitating the crosstalk between colorectal cancer pathways. Thus, we further characterized our system of adherent primary mesenchymal colon cancer cells and their paired tumourspheres by examining the expression and localisation of a panel of markers, including E- and N‑cadherin, CD133, CD44v6, aldehyde dehydrogenase 1 (ALDH1) and leucine-rich repeat‑containing G-protein coupled receptor 5 (LGR5). We also characterised the molecular features of these tumourspheres and examined their response to LiCl. Furthermore, we explored the effects of LiCl on cell motility and plasticity. We demonstrated that LiCl reduced cell migration, stemness features and cell plasticity. We also observed the atypical nuclear localisation of membrane proteins, including N‑cadherin, CD133 and CD44v6 in mesenchymal tumour cells. Of note, CD133 and CD44v6 appeared to localise at the plasma membrane in cells with a more epithelial phenotype, suggesting that the cytoplasmic/nuclear localisation of these proteins could favour and characterize cell plasticity in colorectal cancer progression.
Collapse
Affiliation(s)
- Mimmo Turano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Valeria Costabile
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Andrea Cerasuolo
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale per lo studio e la cura dei tumori, 'Fondazione Giovanni Pascale' IRCCS, 80131 Naples, Italy
| | - Francesca Duraturo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Raffaella Liccardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Paolo Delrio
- Colorectal Surgical Oncology - Abdominal Oncology Department, Istituto Nazionale per lo studio e la cura dei tumori, 'Fondazione Giovanni Pascale' IRCCS, 80131 Naples, Italy
| | - Ugo Pace
- Colorectal Surgical Oncology - Abdominal Oncology Department, Istituto Nazionale per lo studio e la cura dei tumori, 'Fondazione Giovanni Pascale' IRCCS, 80131 Naples, Italy
| | - Daniela Rega
- Colorectal Surgical Oncology - Abdominal Oncology Department, Istituto Nazionale per lo studio e la cura dei tumori, 'Fondazione Giovanni Pascale' IRCCS, 80131 Naples, Italy
| | - Concetta Anna Dodaro
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Marco Milone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Paola Izzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Marina De Rosa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
18
|
Dong Y, Furuta T, Sabit H, Kitabayashi T, Jiapaer S, Kobayashi M, Ino Y, Todo T, Teng L, Hirao A, Zhao SG, Nakada M. Identification of antipsychotic drug fluspirilene as a potential anti-glioma stem cell drug. Oncotarget 2017; 8:111728-111741. [PMID: 29340087 PMCID: PMC5762355 DOI: 10.18632/oncotarget.22904] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 11/15/2017] [Indexed: 12/14/2022] Open
Abstract
Glioma stem cell (GSC)-targeted therapy is expected to be one of the most innovative approaches to treat patients with glioblastoma (GBM). A number of the drugs that restrain the signaling pathway essential for GSC maintenance have been under clinical trials. Here, we identified fluspirilene, a traditional antipsychotic drug, as a GSC-targeting agent, selected from thousands of existing drugs, and investigated its therapeutic effects against GBM with the purpose of drug repositioning. To develop novel therapeutics targeting GSCs, we initially screened drug libraries for small-molecule compounds showing a greater efficacy, compared to that of controls, in inhibiting the proliferation and survival of different GSC lines using cell proliferation assay. Drugs already reported to show therapeutic effects against GBM or those under clinical trials were excluded from subsequent screening. Finally, we found three drugs showing remarkable antiproliferative effects on GSCs at low concentrations and investigated their therapeutic effects on GSCs, glioma cell lines, and in a GBM mouse model. Of the three compounds, fluspirilene demonstrated a significant inhibitory effect on the proliferation and invasion of glioma cells as well as in the model mice treated with the drug. These effects were associated with the inactivation of the signal transducer and activator of transcription 3 (STAT3). Redeveloping of fluspirilene is a promising approach for the treatment of GBM.
Collapse
Affiliation(s)
- Yu Dong
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Takuya Furuta
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Hemragul Sabit
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Tomohiro Kitabayashi
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Shabierjiang Jiapaer
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Masahiko Kobayashi
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Yasushi Ino
- Laboratory of Innovative Cancer Therapy, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tomoki Todo
- Laboratory of Innovative Cancer Therapy, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Lei Teng
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Atsushi Hirao
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Shi-Guang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
19
|
Cockle JV, Brüning-Richardson A, Scott KJ, Thompson J, Kottke T, Morrison E, Ismail A, Carcaboso AM, Rose A, Selby P, Conner J, Picton S, Short S, Vile R, Melcher A, Ilett E. Oncolytic Herpes Simplex Virus Inhibits Pediatric Brain Tumor Migration and Invasion. Mol Ther Oncolytics 2017; 5:75-86. [PMID: 28547002 PMCID: PMC5435599 DOI: 10.1016/j.omto.2017.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 04/25/2017] [Indexed: 12/13/2022] Open
Abstract
Pediatric high-grade glioma (pHGG) and diffuse intrinsic pontine glioma (DIPG) are invasive tumors with poor survival. Oncolytic virotherapy, initially devised as a direct cytotoxic treatment, is now also known to act via immune-mediated mechanisms. Here we investigate a previously unreported mechanism of action: the inhibition of migration and invasion in pediatric brain tumors. We evaluated the effect of oncolytic herpes simplex virus 1716 (HSV1716) on the migration and invasion of pHGG and DIPG both in vitro using 2D (scratch assay, live cell imaging) and 3D (spheroid invasion in collagen) assays and in vivo using an orthotopic xenograft model of DIPG invasion. HSV1716 inhibited migration and invasion in pHGG and DIPG cell lines. pHGG cells demonstrated reduced velocity and changed morphology in the presence of virus. HSV1716 altered pHGG cytoskeletal dynamics by stabilizing microtubules, inhibiting glycogen synthase kinase-3, and preventing localized clustering of adenomatous polyposis coli (APC) to the leading edge of cells. HSV1716 treatment also reduced tumor infiltration in a mouse orthotopic xenograft DIPG model. Our results demonstrate that HSV1716 targets the migration and invasion of pHGG and DIPG and indicates the potential of an oncolytic virus (OV) to be used as a novel anti-invasive treatment strategy for pediatric brain tumors.
Collapse
Affiliation(s)
- Julia V. Cockle
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
- Yorkshire Regional Centre for Paediatric Oncology and Haematology, Leeds General Infirmary, Leeds LS1 3EX, UK
| | | | - Karen J. Scott
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
| | - Jill Thompson
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Timothy Kottke
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ewan Morrison
- Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds LS9 7TF, UK
| | - Azam Ismail
- Department of Pathology, St. James’s University Hospital, Leeds LS9 7TF, UK
| | | | - Ailsa Rose
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
| | - Peter Selby
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
| | | | - Susan Picton
- Yorkshire Regional Centre for Paediatric Oncology and Haematology, Leeds General Infirmary, Leeds LS1 3EX, UK
| | - Susan Short
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
| | - Richard Vile
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Alan Melcher
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
- Institute of Cancer Research, London SM2 5NG, UK
| | - Elizabeth Ilett
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
| |
Collapse
|
20
|
Pinheiro R, Braga C, Santos G, Bronze MR, Perry MJ, Moreira R, Brites D, Falcão AS. Targeting Gliomas: Can a New Alkylating Hybrid Compound Make a Difference? ACS Chem Neurosci 2017; 8:50-59. [PMID: 27665765 DOI: 10.1021/acschemneuro.6b00169] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive type of brain tumor in adults. The triazene Temozolomide (TMZ), an alkylating drug, is the classical chemotherapeutic agent for gliomas, but has been disappointing against the highly invasive and resistant nature of GBM. Hybrid compounds may open new horizons within this challenge. The multicomponent therapeutic strategy here used resides on a combination of two repurposing drugs acting by different but potentially synergistic mechanisms, improved efficacy, and lower resistance effects. We synthesized a new hybrid compound (HYBCOM) by covalently binding a TMZ analogue to valproic acid, a histone deacetylase inhibitor drug that was shown to sensitize TMZ-resistant glioma cells. Advantages of this new molecule as compared to TMZ, in terms of chemotherapeutic efficacy, were investigated. Our results evidenced that HYBCOM more efficiently decreased the viability and proliferation of the GL261 glioma cells, while showing to better target the tumor cells than the functionally normal astrocytes. Increased cytotoxicity by HYBCOM may be a consequence of the improved autophagic process observed. Additionally, HYBCOM changed the morphology of GL261 cells into a nonpolar, more rounded shape, impairing cell migration ability. Most interesting, and in opposite to TMZ, cells exposed to HYBCOM did not enhance the expression of drug resistance proteins, a major issue in the treatment of GBM. Overall, our studies indicate that HYBCOM has promising chemotherapeutic benefits over the classical TMZ, and future studies should assess if the treatment translates into efficacy in glioblastoma experimental models and reveal clinical benefits in GBM patients.
Collapse
Affiliation(s)
- Rui Pinheiro
- Research Institute for
Medicines (iMed.ULisboa), ‡Department of Biochemistry and Human
Biology, §Department
of Pharmaceutical Chemistry and Therapeutics, and ∥Department of Toxicological and Bromatological
Sciences, Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor
Gama Pinto, 1649-003 Lisbon, Portugal
| | - Cláudia Braga
- Research Institute for
Medicines (iMed.ULisboa), ‡Department of Biochemistry and Human
Biology, §Department
of Pharmaceutical Chemistry and Therapeutics, and ∥Department of Toxicological and Bromatological
Sciences, Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor
Gama Pinto, 1649-003 Lisbon, Portugal
| | - Gisela Santos
- Research Institute for
Medicines (iMed.ULisboa), ‡Department of Biochemistry and Human
Biology, §Department
of Pharmaceutical Chemistry and Therapeutics, and ∥Department of Toxicological and Bromatological
Sciences, Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor
Gama Pinto, 1649-003 Lisbon, Portugal
| | - Maria R. Bronze
- Research Institute for
Medicines (iMed.ULisboa), ‡Department of Biochemistry and Human
Biology, §Department
of Pharmaceutical Chemistry and Therapeutics, and ∥Department of Toxicological and Bromatological
Sciences, Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor
Gama Pinto, 1649-003 Lisbon, Portugal
| | - Maria J. Perry
- Research Institute for
Medicines (iMed.ULisboa), ‡Department of Biochemistry and Human
Biology, §Department
of Pharmaceutical Chemistry and Therapeutics, and ∥Department of Toxicological and Bromatological
Sciences, Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor
Gama Pinto, 1649-003 Lisbon, Portugal
| | - Rui Moreira
- Research Institute for
Medicines (iMed.ULisboa), ‡Department of Biochemistry and Human
Biology, §Department
of Pharmaceutical Chemistry and Therapeutics, and ∥Department of Toxicological and Bromatological
Sciences, Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor
Gama Pinto, 1649-003 Lisbon, Portugal
| | - Dora Brites
- Research Institute for
Medicines (iMed.ULisboa), ‡Department of Biochemistry and Human
Biology, §Department
of Pharmaceutical Chemistry and Therapeutics, and ∥Department of Toxicological and Bromatological
Sciences, Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor
Gama Pinto, 1649-003 Lisbon, Portugal
| | - Ana S. Falcão
- Research Institute for
Medicines (iMed.ULisboa), ‡Department of Biochemistry and Human
Biology, §Department
of Pharmaceutical Chemistry and Therapeutics, and ∥Department of Toxicological and Bromatological
Sciences, Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor
Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
21
|
Kim WH, Shen H, Jung DW, Williams DR. Some leopards can change their spots: potential repositioning of stem cell reprogramming compounds as anti-cancer agents. Cell Biol Toxicol 2016; 32:157-68. [DOI: 10.1007/s10565-016-9333-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/28/2016] [Indexed: 01/14/2023]
|
22
|
Taking Aim at Moving Targets in Computational Cell Migration. Trends Cell Biol 2016; 26:88-110. [DOI: 10.1016/j.tcb.2015.09.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/31/2015] [Accepted: 09/03/2015] [Indexed: 01/07/2023]
|
23
|
Vanan MI, Eisenstat DD. DIPG in Children - What Can We Learn from the Past? Front Oncol 2015; 5:237. [PMID: 26557503 PMCID: PMC4617108 DOI: 10.3389/fonc.2015.00237] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 10/08/2015] [Indexed: 02/02/2023] Open
Abstract
Brainstem tumors represent 10–15% of pediatric central nervous system tumors and diffuse intrinsic pontine glioma (DIPG) is the most common brainstem tumor of childhood. DIPG is almost uniformly fatal and is the leading cause of brain tumor-related death in children. To date, radiation therapy (RT) is the only form of treatment that offers a transient benefit in DIPG. Chemotherapeutic strategies including multi-agent neoadjuvant chemotherapy, concurrent chemotherapy with RT, and adjuvant chemotherapy have not provided any survival advantage. To overcome the restrictive ability of the intact blood–brain barrier (BBB) in DIPG, several alternative drug delivery strategies have been proposed but have met with minimal success. Targeted therapies either alone or in combination with RT have also not improved survival. Five decades of unsuccessful therapies coupled with recent advances in the genetics and biology of DIPG have taught us several important lessons (1). DIPG is a heterogeneous group of tumors that are biologically distinct from other pediatric and adult high grade gliomas (HGG). Adapting chemotherapy and targeted therapies that are used in pediatric or adult HGG for the treatment of DIPG should be abandoned (2). Biopsy of DIPG is relatively safe and informative and should be considered in the context of multicenter clinical trials (3). DIPG probably represents a whole brain disease so regular neuraxis imaging is important at diagnosis and during therapy (4). BBB permeability is of major concern in DIPG and overcoming this barrier may ensure that drugs reach the tumor (5). Recent development of DIPG tumor models should help us accurately identify and validate therapeutic targets and small molecule inhibitors in the treatment of this deadly tumor.
Collapse
Affiliation(s)
- Magimairajan Issai Vanan
- Department of Pediatrics and Child Health, University of Manitoba , Winnipeg, MB , Canada ; Department of Biochemistry and Medical Genetics, University of Manitoba , Winnipeg, MB , Canada
| | - David D Eisenstat
- Department of Pediatrics, University of Alberta , Edmonton, AB , Canada ; Department of Medical Genetics, University of Alberta , Edmonton, AB , Canada ; Department of Oncology, University of Alberta , Edmonton, AB , Canada
| |
Collapse
|
24
|
Indirubin and Indirubin Derivatives for Counteracting Proliferative Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:654098. [PMID: 26457112 PMCID: PMC4589628 DOI: 10.1155/2015/654098] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/23/2015] [Accepted: 08/24/2015] [Indexed: 02/08/2023]
Abstract
Indirubin is the active component of Danggui Longhui Wan, a traditional Chinese medicine formulation. The encouraging clinical results from the 1980s obtained in chronic myelocytic leukemia patients treated with indirubin stimulated numerous studies on this compound. These investigations explored the use of indirubin in different types of cancer and reported the synthesis of novel derivatives with improved chemical and pharmacokinetic properties. In this paper, we review the impressive progress that has been made in elucidating the mechanistic understanding of how indirubin and its derivatives affect physiological and pathophysiological processes, mainly by inhibition of cell proliferation and induction of cell death. Furthermore, we survey the therapeutic use of these compounds in combating proliferative diseases such as cancer, restenosis, and psoriasis.
Collapse
|
25
|
High-content analysis of tumour cell invasion in three-dimensional spheroid assays. Oncoscience 2015; 2:596-606. [PMID: 26244167 PMCID: PMC4506363 DOI: 10.18632/oncoscience.171] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/11/2015] [Indexed: 01/13/2023] Open
Abstract
Targeting infiltrating tumour cells is an attractive way of combating cancer invasion and metastasis. Here we describe a novel and reproducible method for high content analysis of invading cells using multicellular tumour spheroid assays in a high grade glioma model. Live cell imaging of spheroids generated from glioma cell lines, U87 and U251, gave insight into migration dynamics and cell morphology in response to anti-migratory drugs. Immunofluorescence imaging confirmed cytoskeletal rearrangements in the treated cells indicating a direct effect on cell morphology. Effect on migration was determined by a Migration Index (MI) from brightfield images which confirmed anti-migratory activity of the drugs. A marked effect on the core with treatment suggestive of disordered proliferation was also observed. A newly developed technique to prepare the spheroids and migratory cells for immunohistochemistry allowed an assessment of response to drug treatment with a selection of markers. A difference in protein expression was noted between cells maintained within the core and migratory cells indicative of the presence of cell subpopulations within the spheroid core. We conclude that this high content analysis allows researchers to perform screening of anti-tumour invasion compounds and study their effects on cellular dynamics, particularly in relation to protein expression, for the first time.
Collapse
|