1
|
Guo Z, Lei L, Zhang Z, Du M, Chen Z. The potential of vascular normalization for sensitization to radiotherapy. Heliyon 2024; 10:e32598. [PMID: 38952362 PMCID: PMC11215263 DOI: 10.1016/j.heliyon.2024.e32598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/11/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
Radiotherapy causes apoptosis mainly through direct or indirect damage to DNA via ionizing radiation, leading to DNA strand breaks. However, the efficacy of radiotherapy is attenuated in malignant tumor microenvironment (TME), such as hypoxia. Tumor vasculature, due to the imbalance of various angiogenic and anti-angiogenic factors, leads to irregular morphology of tumor neovasculature, disordered arrangement of endothelial cells, and too little peripheral coverage. This ultimately leads to a TME characterized by hypoxia, low pH and high interstitial pressure. This deleterious TME further exacerbates the adverse effects of tumor neovascularization and weakens the efficacy of conventional radiotherapy. Whereas normalization of blood vessels improves TME and thus the efficacy of radiotherapy. In addition to describing the research progress of radiotherapy sensitization and vascular normalization, this review focuses on the strategy and application prospect of modulating vascular normalization to improve the efficacy of radiotherapy sensitization.
Collapse
Affiliation(s)
- Zhili Guo
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
- The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Lingling Lei
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Zenan Zhang
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
- The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Meng Du
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhiyi Chen
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
- The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| |
Collapse
|
2
|
Yoon C, Chang KK, Lee JH, Tap WD, Hart CP, Simon MC, Yoon SS. Retraction: Multimodal targeting of tumor vasculature and cancer stem-like cells in sarcomas with VEGF-A inhibition, HIF-1α inhibition, and hypoxia-activated chemotherapy. Oncotarget 2024; 15:123. [PMID: 38329733 PMCID: PMC10852056 DOI: 10.18632/oncotarget.28560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Affiliation(s)
- Changhwan Yoon
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kevin K. Chang
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jun Ho Lee
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - William D. Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - M. Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sam S. Yoon
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
3
|
Liu A, Gammon ST, Pisaneschi F, Boda A, Ager CR, Piwnica-Worms D, Hong DS, Curran MA. Hypoxia-activated prodrug and antiangiogenic therapies cooperatively treat pancreatic cancer but elicit immunosuppressive G-MDSC infiltration. JCI Insight 2024; 9:e169150. [PMID: 37988164 PMCID: PMC10906452 DOI: 10.1172/jci.insight.169150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023] Open
Abstract
We previously showed that ablation of tumor hypoxia can sensitize tumors to immune checkpoint blockade (ICB). Here, we used a Kras+/G12D TP53+/R172H Pdx1-Cre-derived (KPC-derived) model of pancreatic adenocarcinoma to examine the tumor response and adaptive resistance mechanisms involved in response to 2 established methods of hypoxia-reducing therapy: the hypoxia-activated prodrug TH-302 and vascular endothelial growth factor receptor 2 (VEGFR-2) blockade. The combination of both modalities normalized tumor vasculature, increased DNA damage and cell death, and delayed tumor growth. In contrast with prior cancer models, the combination did not alleviate overall tissue hypoxia or sensitize these KPC tumors to ICB therapy despite qualitative improvements to the CD8+ T cell response. Bulk tumor RNA sequencing, flow cytometry, and adoptive myeloid cell transfer suggested that treated tumor cells increased their capacity to recruit granulocytic myeloid-derived suppressor cells (G-MDSCs) through CCL9 secretion. Blockade of the CCL9/CCR1 axis could limit G-MDSC migration, and depletion of Ly6G-positive cells could sensitize tumors to the combination of TH-302, anti-VEGFR-2, and ICB. Together, these data suggest that pancreatic tumors modulate G-MDSC migration as an adaptive response to vascular normalization and that these immunosuppressive myeloid cells act in a setting of persistent hypoxia to maintain adaptive immune resistance.
Collapse
Affiliation(s)
- Arthur Liu
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Immunology program, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center, Department of Immunology, Houston, Texas, USA
| | - Seth T. Gammon
- The University of Texas MD Anderson Cancer Center, Division of Diagnostic Imaging, Department of Cancer Systems Imaging, Houston, Texas, USA
| | - Federica Pisaneschi
- The University of Texas MD Anderson Cancer Center, Division of Diagnostic Imaging, Department of Cancer Systems Imaging, Houston, Texas, USA
| | - Akash Boda
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Immunology program, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center, Department of Immunology, Houston, Texas, USA
| | - Casey R. Ager
- Mayo Clinic, Department of Immunology, Scottsdale, Arizona, USA
| | - David Piwnica-Worms
- The University of Texas MD Anderson Cancer Center, Division of Diagnostic Imaging, Department of Cancer Systems Imaging, Houston, Texas, USA
| | - David S. Hong
- The University of Texas MD Anderson Cancer Center, Department of Investigational Cancer Therapeutics, Houston, Texas, USA
| | - Michael A. Curran
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Immunology program, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center, Department of Immunology, Houston, Texas, USA
| |
Collapse
|
4
|
Li X, Hu Y, Xie Y, Lu R, Li Q, Tao H, Chen S. Whole-tumor histogram analysis of diffusion-weighted imaging and dynamic contrast-enhanced MRI for soft tissue sarcoma: correlation with HIF-1alpha expression. Eur Radiol 2022; 33:3961-3973. [PMID: 36462043 DOI: 10.1007/s00330-022-09296-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/02/2022] [Accepted: 11/10/2022] [Indexed: 12/04/2022]
Abstract
OBJECTIVE To investigate the correlation of histogram metrics from diffusion-weighted imaging (DWI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) parameters with HIF-1alpha expression in soft tissue sarcoma (STS). METHODS We enrolled 71 patients with STS who underwent 3.0-T MRI, including conventional MRI, DWI, and DCE-MRI sequences. Location, maximum tumor diameter, envelope, T2-weighted tumor heterogeneity, peritumoral edema, peritumoral enhancement, necrosis, tail-like pattern, bone invasion, and vessel/nerve invasion and/or encasement were determined using conventional MRI images. The whole-tumor histogram metrics were calculated on the apparent diffusion coefficient (ADC), Ktrans, Kep, and Ve maps. Independent-samples t test and one-way ANOVA were used for testing the differences between normally distributed categorical data with HIF-1alpha expression. Pearson and Spearman correlations and multiple linear regression analyses were performed to determine the correlations between histogram metrics and HIF-1alpha expression. Survival curves were plotted using the Kaplan-Meier method. RESULTS Regarding conventional MRI features, only highly heterogeneous on T2-weighted images (55.6 ± 19.9% vs. 45.4 ± 20.5%, p = 0.041) and more than 50% necrotic area (57.3 ± 20.4% vs. 43.9 ± 19.7%, p = 0.002) were prone to indicate STS with higher HIF-1alpha expression. Histogram metrics obtained from ADC (mean, median, 10th, and 25th percentile values), Ktrans (mean, median, 75th, and 90th percentile values), and Kep (90th percentile values) were significantly correlated with HIF-1alpha expression. Multiple linear regression analysis demonstrated that more than 50% necrosis, ADCskewness, Ktrans90th, and grade III were independently associated with HIF-1alpha expression. CONCLUSION DWI and DCE-MRI histogram parameters were significantly correlated with HIF-1alpha expression in STS. KEY POINTS • DWI and DCE-MRI histogram parameters are correlated with HIF-1alpha expression in STS. • More than 50% necrosis, ADCskewness, Ktrans90th, and grade III were independently associated with HIF-1alpha expression in STS.
Collapse
Affiliation(s)
- Xiangwen Li
- Department of Radiology and Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, 12 Wulumuqizhong Road, Shanghai, China
| | - Yiwen Hu
- Department of Radiology and Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, 12 Wulumuqizhong Road, Shanghai, China
| | - Yuxue Xie
- Department of Radiology and Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, 12 Wulumuqizhong Road, Shanghai, China
| | - Rong Lu
- Department of Radiology and Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, 12 Wulumuqizhong Road, Shanghai, China
| | - Qing Li
- MR Collaborations, Siemens Healthineers Ltd., Shanghai, China
| | - Hongyue Tao
- Department of Radiology and Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, 12 Wulumuqizhong Road, Shanghai, China.
| | - Shuang Chen
- Department of Radiology and Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, 12 Wulumuqizhong Road, Shanghai, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, 2 middle Wulumuqizhong Road, Shanghai, China.
| |
Collapse
|
5
|
Exploring hypoxic biology to improve radiotherapy outcomes. Expert Rev Mol Med 2022; 24:e21. [DOI: 10.1017/erm.2022.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Byun JY, Huang K, Lee JS, Huang W, Hu L, Zheng X, Tang X, Li F, Jo DG, Song X, Huang C. Targeting HIF-1α/NOTCH1 pathway eliminates CD44 + cancer stem-like cell phenotypes, malignancy, and resistance to therapy in head and neck squamous cell carcinoma. Oncogene 2022; 41:1352-1363. [PMID: 35013621 DOI: 10.1038/s41388-021-02166-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 12/03/2021] [Accepted: 12/22/2021] [Indexed: 01/16/2023]
Abstract
Poor prognosis of head and neck squamous cell carcinomas (HNSCCs) results from resistance to chemotherapy and radiotherapy. To uncover the drivers of HNSCC resistance, including stemness and hypoxia, in this study, we compared the gene expression between CD44+ and CD44- HNSCC cells and assessed the correlation of CD44 and hypoxia-inducible factor 1α (HIF-1α) expression with mouse features and outcomes of patients with HNSCC. We combined the knockdown or activation of HIF-1α with in vitro and in vivo assays to evaluate effects on stemness and resistance of HNSCC cells. Analysis of clinical data showed that activation of HIF-1α in CD44+ patients with HNSCC was correlated with worse prognosis. Functional assays showed that HIF-1α promoted stemness, resistance, and epithelial-mesenchymal transition in HNSCC CD44+ cells. HIF-1α activated NOTCH1 signaling in HNSCC stem-like cells characterized by CD44 expression. Moreover, inhibition of these signaling proteins using shRNA or Evofosfamide (Evo) development for cancer treatment, reversed chemoresistance in vitro and in vivo. Taken together, our results indicated that targeting HIF-1α attenuated NOTCH1-induced stemness, which regulates responses to chemotherapy or radiotherapy and malignancy in CD44+ HNSCCs. HIF-1α/NOTCH1 signaling may represent a target for HNSCC treatment.
Collapse
Affiliation(s)
- Joo-Yun Byun
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kun Huang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jong Suk Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Wenjie Huang
- Key Laboratory of Diagnostic Medicine designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Li Hu
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuyu Zheng
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Tang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fengzeng Li
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Xinmao Song
- Department of Radiation Oncology, Eye, Ear, Nose and Throat Hospital of Fudan University, Shanghai, China.
| | - Chuang Huang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China.
| |
Collapse
|
7
|
Zhang Y, Coleman M, Brekken RA. Perspectives on Hypoxia Signaling in Tumor Stroma. Cancers (Basel) 2021; 13:3070. [PMID: 34202979 PMCID: PMC8234221 DOI: 10.3390/cancers13123070] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is a well-known characteristic of solid tumors that contributes to tumor progression and metastasis. Oxygen deprivation due to high demand of proliferating cancer cells and standard of care therapies induce hypoxia. Hypoxia signaling, mainly mediated by the hypoxia-inducible transcription factor (HIF) family, results in tumor cell migration, proliferation, metabolic changes, and resistance to therapy. Additionally, the hypoxic tumor microenvironment impacts multiple cellular and non-cellular compartments in the tumor stroma, including disordered tumor vasculature, homeostasis of ECM. Hypoxia also has a multifaceted and often contradictory influence on immune cell function, which contributes to an immunosuppressive environment. Here, we review the important function of HIF in tumor stromal components and summarize current clinical trials targeting hypoxia. We provide an overview of hypoxia signaling in tumor stroma that might help address some of the challenges associated with hypoxia-targeted therapies.
Collapse
Affiliation(s)
- Yuqing Zhang
- Hamon Center for Therapeutic Oncology Research, UT Southwestern, Dallas, TX 75390, USA; (Y.Z.); (M.C.)
- Department of Surgery, UT Southwestern, Dallas, TX 75390, USA
- Cancer Biology Graduate Program, UT Southwestern, Dallas, TX 75390, USA
| | - Morgan Coleman
- Hamon Center for Therapeutic Oncology Research, UT Southwestern, Dallas, TX 75390, USA; (Y.Z.); (M.C.)
- Division of Pediatric Hematology and Oncology, UT Southwestern, Dallas, TX 75390, USA
| | - Rolf A. Brekken
- Hamon Center for Therapeutic Oncology Research, UT Southwestern, Dallas, TX 75390, USA; (Y.Z.); (M.C.)
- Department of Surgery, UT Southwestern, Dallas, TX 75390, USA
- Cancer Biology Graduate Program, UT Southwestern, Dallas, TX 75390, USA
| |
Collapse
|
8
|
Li Y, Zhao L, Li XF. The Hypoxia-Activated Prodrug TH-302: Exploiting Hypoxia in Cancer Therapy. Front Pharmacol 2021; 12:636892. [PMID: 33953675 PMCID: PMC8091515 DOI: 10.3389/fphar.2021.636892] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/25/2021] [Indexed: 12/21/2022] Open
Abstract
Hypoxia is an important feature of most solid tumors, conferring resistance to radiation and many forms of chemotherapy. However, it is possible to exploit the presence of tumor hypoxia with hypoxia-activated prodrugs (HAPs), agents that in low oxygen conditions undergo bioreduction to yield cytotoxic metabolites. Although many such agents have been developed, we will focus here on TH-302. TH-302 has been extensively studied, and we discuss its mechanism of action, as well as its efficacy in preclinical and clinical studies, with the aim of identifying future research directions.
Collapse
Affiliation(s)
- Yue Li
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,The First Affiliated Hospital, Jinan University, Guangzhou, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Long Zhao
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xiao-Feng Li
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
9
|
Owczarek A, Gieczewska KB, Polanska M, Paterczyk B, Gruza A, Winiarska K. Melatonin Lowers HIF-1α Content in Human Proximal Tubular Cells (HK-2) Due to Preventing Its Deacetylation by Sirtuin 1. Front Physiol 2021; 11:572911. [PMID: 33519498 PMCID: PMC7841413 DOI: 10.3389/fphys.2020.572911] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022] Open
Abstract
Although melatonin is widely known for its nephroprotective properties, there are no reports clearly pointing at its impact on the activity of hypoxia-inducible factor-1 (HIF-1), the main mediator of metabolic responses to hypoxia, in kidneys. The aim of the present study was to elucidate how melatonin affects the expression of the regulatory subunit HIF-1α in renal proximal tubules. HK-2 cells, immortalized human proximal tubular cells, were cultured under hypoxic conditions (1% O2). Melatonin was applied at 100 μM concentration. Protein and mRNA contents were determined by Western blot and RT-qPCR, respectively. HIF-1α acetylation level was established by means of immunoprecipitation followed by Western blot. Melatonin receptors MT1 and MT2 localization in HK-2 cells was visualized using immunofluorescence confocal analysis. It was found that melatonin in HK-2 cells (1) lowered HIF-1α protein, but not mRNA, content; (2) attenuated expression of HIF-1 target genes; (3) increased HIF-1α acetylation level; and (4) diminished sirtuin 1 expression (both protein and mRNA). Sirtuin 1 involvement in the regulation of HIF-1α level was confirmed applying cells with silenced Sirt1 gene. Moreover, the presence of membrane MT1 and MT2 receptors was identified in HK-2 cells and their ligand, ramelteon, turned out to mimic melatonin action on both HIF-1α and sirtuin 1 levels. Thus, it is concluded that the mechanism of melatonin-evoked decline in HIF-1α content in renal proximal tubular cells involves increased acetylation of this subunit which results from the attenuated expression of sirtuin 1, an enzyme reported to deacetylate HIF-1α. This observation provides a new insight to the understanding of melatonin action in kidneys.
Collapse
Affiliation(s)
- Aleksandra Owczarek
- Department of Metabolic Regulation, Faculty of Biology, Institute of Biochemistry, University of Warsaw, Warsaw, Poland
| | - Katarzyna B Gieczewska
- Department of Plant Anatomy and Cytology, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Marta Polanska
- Department of Animal Physiology, Faculty of Biology, Institute of Functional Biology and Ecology, University of Warsaw, Warsaw, Poland
| | - Bohdan Paterczyk
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Andrzej Gruza
- Department of Metabolic Regulation, Faculty of Biology, Institute of Biochemistry, University of Warsaw, Warsaw, Poland
| | - Katarzyna Winiarska
- Department of Metabolic Regulation, Faculty of Biology, Institute of Biochemistry, University of Warsaw, Warsaw, Poland
| |
Collapse
|
10
|
Yoon C, Lu J, Yi BC, Chang KK, Simon MC, Ryeom S, Yoon SS. PI3K/Akt pathway and Nanog maintain cancer stem cells in sarcomas. Oncogenesis 2021; 10:12. [PMID: 33468992 PMCID: PMC7815726 DOI: 10.1038/s41389-020-00300-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/21/2022] Open
Abstract
The self-renewal transcription factor Nanog and the phosphoinositide 3-kinase (PI3K)-Akt pathway are known to be essential for maintenance of mesenchymal stem cells. We evaluated their contribution to the maintenance of CD133(+) cancer stem-like cells (CSCs) and spheroid-forming cells in patient-derived cell lines from three human sarcoma subtypes: HT1080 fibrosarcoma, SK-LMS-1 leiomyosarcoma, and DDLS8817 dedifferentiated liposarcoma. Levels of Nanog and activated Akt were significantly higher in sarcoma cells grown as spheroids or sorted for CD133 expression to enrich for CSCs. shRNA knockdown of Nanog decreased spheroid formation 10- to 14-fold, and reversed resistance to both doxorubicin and radiation in vitro and in H1080 flank xenografts. In the HT1080 xenograft model, doxorubicin and Nanog knockdown reduced tumor growth by 34% and 45%, respectively, and the combination reduced tumor growth by 74%. Using a human phospho-kinase antibody array, Akt1/2 signaling, known to regulate Nanog, was found to be highly activated in sarcoma spheroid cells compared with monolayer cells. Pharmacologic inhibition of Akt using LY294002 and Akt1/2 knockdown using shRNA in sarcoma CSCs decreased Nanog expression and spheroid formation and reversed chemotherapy resistance. Akt1/2 inhibition combined with doxorubicin treatment of HT1080 flank xenografts reduced tumor growth by 73%. Finally, in a human sarcoma tumor microarray, expression of CD133, Nanog, and phospho-Akt were 1.8- to 6.8-fold higher in tumor tissue compared with normal tissue. Together, these results indicate that the Akt1/2-Nanog pathway is critical for maintenance of sarcoma CSCs and spheroid-forming cells, supporting further exploration of this pathway as a therapeutic target in sarcoma.
Collapse
Affiliation(s)
- Changhwan Yoon
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jun Lu
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fujian, China
| | - Brendan C Yi
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kevin K Chang
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sandra Ryeom
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sam S Yoon
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
11
|
Meaney C, Rhebergen S, Kohandel M. In silico analysis of hypoxia activated prodrugs in combination with anti angiogenic therapy through nanocell delivery. PLoS Comput Biol 2020; 16:e1007926. [PMID: 32463836 PMCID: PMC7282674 DOI: 10.1371/journal.pcbi.1007926] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 06/09/2020] [Accepted: 05/05/2020] [Indexed: 01/22/2023] Open
Abstract
Tumour hypoxia is a well-studied phenomenon with implications in cancer progression, treatment resistance, and patient survival. While a clear adverse prognosticator, hypoxia is also a theoretically ideal target for guided drug delivery. This idea has lead to the development of hypoxia-activated prodrugs (HAPs): a class of chemotherapeutics which remain inactive in the body until metabolized within hypoxic regions. In theory, these drugs have the potential for increased tumour selectivity and have therefore been the focus of numerous preclinical studies. Unfortunately, HAPs have had mixed results in clinical trials, necessitating further study in order to harness their therapeutic potential. One possible avenue for the improvement of HAPs is through the selective application of anti angiogenic agents (AAs) to improve drug delivery. Such techniques have been used in combination with other conventional chemotherapeutics to great effect in many studies. A further benefit is theoretically achieved through nanocell administration of the combination, though this idea has not been the subject of any experimental or mathematical studies to date. In the following, a mathematical model is outlined and used to compare the predicted efficacies of separate vs. nanocell administration for AAs and HAPs in tumours. The model is experimentally motivated, both in mathematical form and parameter values. Preliminary results of the model are highlighted throughout which qualitatively agree with existing experimental evidence. The novel prediction of our model is an improvement in the efficacy of AA/HAP combination therapies when administered through nanocells as opposed to separately. While this study specifically models treatment on glioblastoma, similar analyses could be performed for other vascularized tumours, making the results potentially applicable to a range of tumour types. Tumour hypoxia is a well-documented phenomenon with adverse effects for the progression of the cancer. Accordingly, various therapeutic strategies have emerged in recent years to combat its effects. Herein, we present an experimentally-motivated mathematical model used to assess the feasibility of the therapeutic combination of anti angiogenic agents with hypoxia-activated prodrugs. Analysis of the combination therapy shows that delivery through drug nanocells provides the optimal anticancer effect: a novel result which should inspire further examination.
Collapse
Affiliation(s)
- Cameron Meaney
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
- * E-mail:
| | - Sander Rhebergen
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Mohammad Kohandel
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
12
|
Kumar S, Sun JD, Zhang L, Mokhtari RB, Wu B, Meng F, Liu Q, Bhupathi D, Wang Y, Yeger H, Hart C, Baruchel S. Hypoxia-Targeting Drug Evofosfamide (TH-302) Enhances Sunitinib Activity in Neuroblastoma Xenograft Models. Transl Oncol 2018; 11:911-919. [PMID: 29803017 PMCID: PMC6041570 DOI: 10.1016/j.tranon.2018.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 05/01/2018] [Accepted: 05/07/2018] [Indexed: 01/16/2023] Open
Abstract
Antiangiogenic therapy has shown promising results in preclinical and clinical trials. However, tumor cells acquire resistance to this therapy by gaining ability to survive and proliferate under hypoxia induced by antiangiogenic therapy. Combining antiangiogenic therapy with hypoxia-activated prodrugs can overcome this limitation. Here, we have tested the combination of antiangiogenic drug sunitinib in combination with hypoxia-activated prodrug evofosfamide in neuroblastoma. In vitro, neuroblastoma cell line SK-N-BE(2) was 40-folds sensitive to evofosfamide under hypoxia compared to normoxia. In IV metastatic model, evofosfamide significantly increased mice survival compared to the vehicle (P=.02). In SK-N-BE(2) subcutaneous xenograft model, we tested two different treatment regimens using 30 mg/kg sunitinib and 50 mg/kg evofosfamide. Here, sunitinib therapy when started along with evofosfamide treatment showed higher efficacy compared to single agents in subcutaneous SK-N-BE(2) xenograft model, whereas sunitinib when started 7 days after evofosfamide treatment did not have any advantage compared to treatment with either single agent. Immunofluorescence of tumor sections revealed higher number of apoptotic cells and hypoxic areas compared to either single agent when both treatments were started together. Treatment with 80 mg/kg sunitinib with 50 mg/kg evofosfamide was significantly superior to single agents in both xenograft and metastatic models. This study confirms the preclinical efficacy of sunitinib and evofosfamide in murine models of aggressive neuroblastoma. Sunitinib enhances the efficacy of evofosfamide by increasing hypoxic areas, and evofosfamide targets hypoxic tumor cells. Consequently, each drug enhances the activity of the other.
Collapse
Affiliation(s)
- Sushil Kumar
- Division of Hematology and Oncology, Hospital for Sick Children, 686 Bay St, Toronto, ON, Canada, M5G 0A4; Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Room 2374, Toronto, Ontario, Canada, M5S 1A8
| | - Jessica D Sun
- Threshold Pharmaceuticals Inc., 170 Harbor Way # 300, South San Francisco, CA, USA, 94080
| | - Libo Zhang
- Division of Hematology and Oncology, Hospital for Sick Children, 686 Bay St, Toronto, ON, Canada, M5G 0A4
| | - Reza Bayat Mokhtari
- Division of Hematology and Oncology, Hospital for Sick Children, 686 Bay St, Toronto, ON, Canada, M5G 0A4; Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, 686 Bay St, Toronto, ON, Canada, M5G 0A4
| | - Bing Wu
- Division of Hematology and Oncology, Hospital for Sick Children, 686 Bay St, Toronto, ON, Canada, M5G 0A4
| | - Fanying Meng
- Threshold Pharmaceuticals Inc., 170 Harbor Way # 300, South San Francisco, CA, USA, 94080
| | - Qian Liu
- Threshold Pharmaceuticals Inc., 170 Harbor Way # 300, South San Francisco, CA, USA, 94080
| | - Deepthi Bhupathi
- Threshold Pharmaceuticals Inc., 170 Harbor Way # 300, South San Francisco, CA, USA, 94080
| | - Yan Wang
- Threshold Pharmaceuticals Inc., 170 Harbor Way # 300, South San Francisco, CA, USA, 94080
| | - Herman Yeger
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Room 2374, Toronto, Ontario, Canada, M5S 1A8; Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, 686 Bay St, Toronto, ON, Canada, M5G 0A4
| | - Charles Hart
- Threshold Pharmaceuticals Inc., 170 Harbor Way # 300, South San Francisco, CA, USA, 94080
| | - Sylvain Baruchel
- Division of Hematology and Oncology, Hospital for Sick Children, 686 Bay St, Toronto, ON, Canada, M5G 0A4; Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Room 2374, Toronto, Ontario, Canada, M5S 1A8.
| |
Collapse
|
13
|
Huang Y, Tian Y, Zhao Y, Xue C, Zhan J, Liu L, He X, Zhang L. Efficacy of the hypoxia-activated prodrug evofosfamide (TH-302) in nasopharyngeal carcinoma in vitro and in vivo. Cancer Commun (Lond) 2018; 38:15. [PMID: 29764490 PMCID: PMC5993153 DOI: 10.1186/s40880-018-0285-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/22/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Tumor hypoxia is considered an important factor in metastasis and disease relapse. Evofosfamide is a hypoxia-activated prodrug that selectively targets the hypoxic regions of solid tumors. As hypoxia-inducible factor-1α (HIF-1α) is overexpressed in nasopharyngeal carcinoma (NPC) tissues, we performed the present study to evaluate the efficacy profile of evofosfamide in NPC. METHODS We evaluated the efficacy of evofosfamide as a single agent or combined with cisplatin (DDP) in the NPC cell lines CNE-2, HONE-1 and HNE-1, and in nude mouse xenograft tumor models. RESULTS Evofosfamide exhibited hypoxia-selective cytotoxicity in NPC cell lines, with 50% inhibition concentration (IC50) values of 8.33 ± 0.75, 7.62 ± 0.67, and 0.31 ± 0.07 μmol/L under hypoxia in CNE-2, HONE-1 and HNE-1 cells, respectively. The sensitization ranged from ninefold to greater than 300-fold under hypoxia compared with normoxia controls. The combination of evofosfamide with DDP had a synergistic effect on cytotoxicity in the NPC cell lines by combination index values assessment. Cell cycle G2 phase was arrested after treated with 0.05 μmol/L evofosfamide under hypoxia. Histone H2AX phosphorylation (γH2AX) (a marker of DNA damage) expression increased while HIF-1α expression suppressed after evofosfamide treatment under hypoxic conditions. In the HNE-1 NPC xenograft models, evofosfamide exhibited antitumor activity both as a single agent and combined with DDP. Hypoxic regions in xenograft tissue were reduced after both evofosfamide monotherapy and combined therapy with DDP. CONCLUSIONS Our results present preclinical evidence for targeting the selective hypoxic portion of NPC by evofosfamide as a single agent and combined with DDP and provide rationale for the potential clinical application of evofosfamide for the treatment of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Yan Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060 Guangdong P. R. China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060 Guangdong P. R. China
| | - Ying Tian
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060 Guangdong P. R. China
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong P. R. China
| | - Yuanyuan Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060 Guangdong P. R. China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060 Guangdong P. R. China
| | - Cong Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060 Guangdong P. R. China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060 Guangdong P. R. China
| | - Jianhua Zhan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060 Guangdong P. R. China
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong P. R. China
| | - Lin Liu
- Department of Medical Oncology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000 Guangdong P. R. China
| | - Xiaobo He
- Department of Radiation Oncology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000 Guangdong P. R. China
| | - Li Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060 Guangdong P. R. China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060 Guangdong P. R. China
| |
Collapse
|
14
|
Wang F, Li H, Markovsky E, Glass R, de Stanchina E, Powell SN, Schwartz GK, Haimovitz-Friedman A. Pazopanib radio-sensitization of human sarcoma tumors. Oncotarget 2018; 9:9311-9324. [PMID: 29507692 PMCID: PMC5823639 DOI: 10.18632/oncotarget.24281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/13/2018] [Indexed: 11/25/2022] Open
Abstract
Recent data in our laboratory indicate that engagement of host-derived microenvironmental elements impact tumor response to single high dose radiation therapy (SDRT). In these studies we showed that microvascular endothelial damage plays a critical role in tumor response as regulator of direct lethal damage of SDRT. Using a genetic model of Acid Sphingomyelinase (ASMase)-deficient mice we showed that activation of this enzyme by SDRT-induced damage in the endothelium is mandatory for tumor cure. ASMase activation triggers ceramide-mediated apoptosis, and therein microvascular dysfunction, which increased the vulnerability of tumor cells to lethal damage by radiation. Angiogenic factors repressed this activity while a monoclonal antibody targeting VEGF, de-repressed ASMase activity and radiosensitized tumor endothelium when delivered immediately prior to SDRT. In this study, we tested the effect of SDRT in combination with the short-acting anti-angiogenic agent, Pazopanib (anti-VEGFR-1/2/3, PDGF-α/β and c-kit), in two xenograft models of human sarcoma. Pre-treatment with a single dose of Pazopanib increased SDRT-induced ASMase activity and endothelial dysfunction in vitro and in vivo, enhancing SDRT tumor cure, and exhibiting critical dependence on timing relative to SDRT exposure, suggesting a mechanism of action identical to that demonstrated for anti-VEGF/VEGFR2 antibodies. These results demonstrate the ability of Pazopanib to shift the response towards tumor cure and could therefore have a significant impact on clinical trial development in combination with SDRT for sarcoma cancer patients.
Collapse
Affiliation(s)
- Feng Wang
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Current address: Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY USA
| | - Hongyan Li
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ela Markovsky
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ryan Glass
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Anti-Tumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simon N. Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gary K. Schwartz
- Department of Medicine, Division of Hematology/Oncology, Columbia University Medical Center, New York, NY, USA
| | | |
Collapse
|
15
|
Yoon C, Chang KK, Lee JH, Tap WD, Hart CP, Simon MC, Yoon SS. Multimodal targeting of tumor vasculature and cancer stem-like cells in sarcomas with VEGF-A inhibition, HIF-1α inhibition, and hypoxia-activated chemotherapy. Oncotarget 2018; 7:42844-42858. [PMID: 27374091 PMCID: PMC5189991 DOI: 10.18632/oncotarget.10212] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/07/2016] [Indexed: 01/08/2023] Open
Abstract
Vascular endothelial growth factor A (VEGF-A) inhibition with pazopanib is an approved therapy for sarcomas, but likely results in compensatory pathways such as upregulation of hypoxia inducible factor 1α (HIF-1α). In addition, cancer stem-like cells can preferentially reside in hypoxic regions of tumors and be resistant to standard chemotherapies. In this study, we hypothesized that the combination of VEGF-A inhibition, HIF-1α inhibition, and hypoxia-activated chemotherapy with evofosfamide would be an effective multimodal strategy. Multimodal therapy was examined in one genetically engineered and two xenograft mouse models of sarcoma. In all three models, multimodal therapy showed greater efficacy than any single agent therapy or bimodality therapy in blocking tumor growth. Even after cessation of therapy, tumors treated with multimodal therapy remained relatively dormant for up to 2 months. Compared to the next best bimodality therapy, multimodal therapy caused 2.8-3.3 fold more DNA damage, 1.5-2.7 fold more overall apoptosis, and 2.3-3.6 fold more endothelial cell-specific apoptosis. Multimodal therapy also decreased microvessel density and HIF-1α activity by 85-90% and 79-89%, respectively, compared to controls. Sarcomas treated with multimodal therapy had 95-96% depletion of CD133(+) cancer stem-like ells compared to control tumors. Sarcoma cells grown as spheroids to enrich for CD133(+) cancer stem-like cells were more sensitive than monolayer cells to multimodal therapy in terms of DNA damage and apoptosis, especially under hypoxic conditions. Thus multimodal therapy of sarcomas with VEGF-A inhibition, HIF-1α inhibition, and hypoxia-activated chemotherapy effectively blocks sarcoma growth through inhibition of tumor vasculature and cancer stem-like cells.
Collapse
Affiliation(s)
- Changhwan Yoon
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kevin K Chang
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jun Ho Lee
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - William D Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sam S Yoon
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
16
|
Sun X, Deng L, Lu Y. Challenges and opportunities of using stereotactic body radiotherapy with anti-angiogenesis agents in tumor therapy. Chin J Cancer Res 2018; 30:147-156. [PMID: 29545728 DOI: 10.21147/j.issn.1000-9604.2018.01.15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Microvessels promote proliferation of tumor cells by delivering oxygen and nutrients, but rapid growth of tumors results in unmet demands for oxygen and nutrients, thereby creating a hypoxia microenvironment. Under hypoxic conditions, vascular endothelial cells (ECs) initiate the formation of immature and abnormal microvasculature. This results in leakage and tortuosity that facilitates tumor cell invasion, metastasis and resistance to cytotoxic treatment. Radiotherapy (RT) is a vital tumor treatment modality. Currently, more than 60% of patients with malignant tumors receive RT at certain points during their treatment. Hypoxia induced by abnormal microvessels can hamper the cytotoxic effect of ionizing radiation, particularly, stereotactic body radiotherapy (SBRT). Anti-angiogenesis (AA) agents are known to reduce and renormalize microvessels in tumors, and hence alleviate hypoxia. The combination of AA agents with SBRT may have a synergistic role in inhibiting the growth of tumors. On the contrary, large doses of irradiation may affect tumor microvessels itself. In this review, we aim to clarify the relationship between SBRT and microvessel formation in tumors. In addition, we provide a retrospective analysis of the combination therapy involving SBRT and AA agents in preclinical and clinical practice to define its role in anti-tumor treatment.
Collapse
Affiliation(s)
- Xiaowen Sun
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Deng
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - You Lu
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
17
|
Paolicchi E, Gemignani F, Krstic-Demonacos M, Dedhar S, Mutti L, Landi S. Targeting hypoxic response for cancer therapy. Oncotarget 2017; 7:13464-78. [PMID: 26859576 PMCID: PMC4924654 DOI: 10.18632/oncotarget.7229] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/17/2016] [Indexed: 12/21/2022] Open
Abstract
Hypoxic tumor microenvironment (HTM) is considered to promote metabolic changes, oncogene activation and epithelial mesenchymal transition, and resistance to chemo- and radio-therapy, all of which are hallmarks of aggressive tumor behavior. Cancer cells within the HTM acquire phenotypic properties that allow them to overcome the lack of energy and nutrients supply within this niche. These phenotypic properties include activation of genes regulating glycolysis, glucose transport, acidosis regulators, angiogenesis, all of which are orchestrated through the activation of the transcription factor, HIF1A, which is an independent marker of poor prognosis. Moreover, during the adaptation to a HTM cancer cells undergo deep changes in mitochondrial functions such as “Warburg effect” and the “reverse Warburg effect”. This review aims to provide an overview of the characteristics of the HTM, with particular focus on novel therapeutic strategies currently in clinical trials, targeting the adaptive response to hypoxia of cancer cells.
Collapse
Affiliation(s)
- Elisa Paolicchi
- Genetics-Department of Biology, University of Pisa, Pisa, Italy
| | | | - Marija Krstic-Demonacos
- School of Environment and Life Sciences, College of Science and Technology, University of Salford, Salford, UK
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Centre, BC Cancer Agency and Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Luciano Mutti
- School of Environment and Life Sciences, College of Science and Technology, University of Salford, Salford, UK
| | - Stefano Landi
- Genetics-Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
18
|
Zhang W, Fan W, Zhou Z, Garrison J. Synthesis and Evaluation of Radiolabeled Phosphoramide Mustard with Selectivity for Hypoxic Cancer Cells. ACS Med Chem Lett 2017; 8:1269-1274. [PMID: 29259746 DOI: 10.1021/acsmedchemlett.7b00355] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/23/2017] [Indexed: 01/27/2023] Open
Abstract
Tumor hypoxia has been widely explored over the years as a diagnostic and therapeutic marker. Herein, we synthesized an alkyne functionalized version of evofosfamide, a hypoxia-selective prodrug. The purpose of this effort was to investigate if this novel 2-nitroimidazole phosphoramide nitrogen mustard (2-NIPAM) retained hypoxia selectivity and could be utilized in radiopharmaceutical development to significantly increase retention of conjugated agents in hypoxic cells. 2-NIPAM demonstrated good hypoxia selectivity with a 62- and 225-fold increase in cytotoxicity toward PC-3 and DU145 human prostate cancer cell lines, respectively, under hypoxic conditions. Radiolabeling of 2-NIPAM with 125I was accomplished through a Cu(I)-mediated azide-alkyne cycloaddition reaction. The 125I-conjugate demonstrated 13.6 and 17.8% lower efflux rates for DU145 and PC-3 cells, correspondingly, under hypoxic conditions, suggesting that the increased retention is likely due to the known intracellular trapping mechanism. In conclusion, these studies demonstrate the potential of 2-NIPAM in serving as a trapping agent for radiopharmaceutical development.
Collapse
Affiliation(s)
- Wenting Zhang
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Center
for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Wei Fan
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Center
for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Zhengyuan Zhou
- Department
of Radiology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Jered Garrison
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department
of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Center
for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Eppley
Cancer Center, University of Nebraska Medical Center, 985950 Nebraska
Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
19
|
Nyström H, Jönsson M, Werner-Hartman L, Nilbert M, Carneiro A. Hypoxia-inducible factor 1α predicts recurrence in high-grade soft tissue sarcoma of extremities and trunk wall. J Clin Pathol 2017; 70:879-885. [DOI: 10.1136/jclinpath-2016-204149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/21/2016] [Accepted: 03/19/2017] [Indexed: 12/25/2022]
|
20
|
Nytko KJ, Grgic I, Bender S, Ott J, Guckenberger M, Riesterer O, Pruschy M. The hypoxia-activated prodrug evofosfamide in combination with multiple regimens of radiotherapy. Oncotarget 2017; 8:23702-23712. [PMID: 28423594 PMCID: PMC5410338 DOI: 10.18632/oncotarget.15784] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 02/06/2017] [Indexed: 11/30/2022] Open
Abstract
The promising treatment combination of ionizing radiation (IR) with a hypoxia-activated prodrug (HAP) is based on biological cooperation. Here we investigated the hypoxia-activated prodrug evofosfamide in combination with different treatment regimens of IR against lung A549- and head&neck UT-SCC-14-derived tumor xenografts. DNA damage-related endpoints and clonogenic cell survival of A549 and UT-SCC-14 carcinoma cells were probed under normoxia and hypoxia.Evofosfamide (TH-302) induced DNA-damage and a dose-dependent antiproliferative response in A549 cells on cellular pretreatment under hypoxia, and supra-additively reduced clonogenic survival in combination with IR. Concomitant treatment of A549-derived tumor xenografts with evofosfamide and fractionated irradiation induced the strongest treatment response in comparison to the corresponding neoadjuvant and adjuvant regimens. Adjuvant evofosfamide was more potent than concomitant and neoadjuvant evofosfamide when combined with a single high dose of IR. Hypoxic UT-SCC-14 cells and tumor xenografts thereof were resistant to evofosfamide alone and in combination with IR, most probably due to reduced P450 oxidoreductase expression, which might act as major predictive determinant of sensitivity to HAPs.In conclusion, evofosfamide with IR is a potent combined treatment modality against hypoxic tumors. However, the efficacy and the therapeutic outcome of this combined treatment modality is, as indicated here in preclinical tumor models, dependent on scheduling parameters and tumor type, which is most probably related to the status of respective HAP-activating oxidoreductases. Further biomarker development is necessary for the launch of successful clinical trials.
Collapse
Affiliation(s)
- Katarzyna J. Nytko
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
- Clinical Research Priority Program “Tumor Oxygenation”, Zurich, Switzerland
| | - Ivo Grgic
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
- Clinical Research Priority Program “Tumor Oxygenation”, Zurich, Switzerland
| | - Sabine Bender
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Janosch Ott
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | | | - Oliver Riesterer
- Clinical Research Priority Program “Tumor Oxygenation”, Zurich, Switzerland
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
- Clinical Research Priority Program “Tumor Oxygenation”, Zurich, Switzerland
| |
Collapse
|
21
|
Emerging targets for radioprotection and radiosensitization in radiotherapy. Tumour Biol 2016; 37:11589-11609. [DOI: 10.1007/s13277-016-5117-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/09/2016] [Indexed: 01/12/2023] Open
|
22
|
Abstract
The presence of a microenvironment within most tumours containing regions of low oxygen tension or hypoxia has profound biological and therapeutic implications. Tumour hypoxia is known to promote the development of an aggressive phenotype, resistance to both chemotherapy and radiotherapy and is strongly associated with poor clinical outcome. Paradoxically, it is recognised as a high-priority target and one of the therapeutic strategies designed to eradicate hypoxic cells in tumours is a group of compounds known collectively as hypoxia-activated prodrugs (HAPs) or bioreductive drugs. These drugs are inactive prodrugs that require enzymatic activation (typically by 1 or 2 electron oxidoreductases) to generate cytotoxic species with selectivity for hypoxic cells being determined by (1) the ability of oxygen to either reverse or inhibit the activation process and (2) the presence of elevated expression of oxidoreductases in tumours. The concepts underpinning HAP development were established over 40 years ago and have been refined over the years to produce a new generation of HAPs that are under preclinical and clinical development. The purpose of this article is to describe current progress in the development of HAPs focusing on the mechanisms of action, preclinical properties and clinical progress of leading examples.
Collapse
|
23
|
Phillips RM. Targeting the hypoxic fraction of tumours using hypoxia-activated prodrugs. Cancer Chemother Pharmacol 2016; 77:441-57. [PMID: 26811177 PMCID: PMC4767869 DOI: 10.1007/s00280-015-2920-7] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/13/2015] [Indexed: 12/17/2022]
Abstract
The presence of a microenvironment within most tumours containing regions of low oxygen tension or hypoxia has profound biological and therapeutic implications. Tumour hypoxia is known to promote the development of an aggressive phenotype, resistance to both chemotherapy and radiotherapy and is strongly associated with poor clinical outcome. Paradoxically, it is recognised as a high-priority target and one of the therapeutic strategies designed to eradicate hypoxic cells in tumours is a group of compounds known collectively as hypoxia-activated prodrugs (HAPs) or bioreductive drugs. These drugs are inactive prodrugs that require enzymatic activation (typically by 1 or 2 electron oxidoreductases) to generate cytotoxic species with selectivity for hypoxic cells being determined by (1) the ability of oxygen to either reverse or inhibit the activation process and (2) the presence of elevated expression of oxidoreductases in tumours. The concepts underpinning HAP development were established over 40 years ago and have been refined over the years to produce a new generation of HAPs that are under preclinical and clinical development. The purpose of this article is to describe current progress in the development of HAPs focusing on the mechanisms of action, preclinical properties and clinical progress of leading examples.
Collapse
Affiliation(s)
- Roger M Phillips
- Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| |
Collapse
|