1
|
Guo Y, Wu P, Liao Q, Huang Z. Association of DNA methylation of RASSF1A and SHOX2 with lung cancer risk: A systematic review and meta-analysis. Medicine (Baltimore) 2024; 103:e40042. [PMID: 39686414 DOI: 10.1097/md.0000000000040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND This study estimates the research upon the potential worth of Ras association domain family member 1 A (RASSF1A) and short stature homeobox 2 (SHOX2) DNA methylation in lung cancer (LC) diagnosis. METHODS Open-published research was searched through PubMed, EMBASE, the Cochrane Library, Web of Science, China National Knowledge Infrastructure, and Chinese Biology Medicine Literature Database. Data on true positives, false positives, false negatives, and true negatives were extracted. RESULTS This meta-analysis included 22 studies encompassing 4109 subjects (2427 LC patients and 1682 controls). The combined sensitivity, specificity, and area under the curve for RASSF1A and SHOX2 DNA methylation were 0.77 (95% CI: 0.71-0.81), 0.90 (95% CI: 0.87-0.92), and 0.92 (95% CI: 0.87-0.92), respectively. The pooled positive likelihood ratio and negative likelihood ratio were 7.5 (5.9-9.7) and 0.26 (0.21-0.32). The combined diagnostic odds ratio was 29 (95% CI: 20-41). CONCLUSION RASSF1A and SHOX2 DNA methylation may emerge as potential diagnostic biomarkers for early-stage LC.
Collapse
Affiliation(s)
- Yixin Guo
- Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | | | | | | |
Collapse
|
2
|
Bai Y, Wang Y, Qin J, Wang T, Zhou X, Ma Z, Wang A, Yang W, Wang J, Li J, Hu Y. Systematic pan-cancer analysis identified RASSF1 as an immunological and prognostic biomarker and validated in lung cancer. Heliyon 2024; 10:e33304. [PMID: 39022053 PMCID: PMC11253667 DOI: 10.1016/j.heliyon.2024.e33304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Background Ras association domain family member 1 (RASSF1) encodes the RASSF1A protein, serving as a scaffold protein situated at the intersection of a complex signalling network. Aims To evaluate the immunological and prognostic significance of RASSF1 expression in various types of human cancers, with a specific focus on lung cancer. Methods Differential expression analysis of RASSF1 was conducted based on data from The Cancer Genome Atlas, Genotype-Tissue Expression, and Cancer Cell Line Encyclopaedia databases. Prognostic analysis was performed using the Cox regression test and Kaplan-Meier test. Spearman's test was utilized for correlation analysis. Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) gene sets were employed to enrich the associated signaling pathways. Immunohistochemical staining and quantitative real-time PCR were employed to detect protein and mRNA expression levels, respectively. Results RASSF1 expression was significantly lower in tumour tissues than in normal tissues in most cancers, and Cox regression analysis demonstrated a significant correlation between RASSF1 expression and the prognosis of over 12 types of cancer. Specifically, high RASSF1 expression was associated with poor OS in nine cancer types, including GBMLGG (HR = 4.98, P = 1.2e-31), LGG (HR = 3.72, P = 2.5e-10), and LAML (HR = 1.48, P = 2.4e-3). Further analysis showed that RASSF1 expression was significantly correlated with immune checkpoint- and immune-related genes. Moreover, RASSF1 expression is involved in tumour microenvironment (TME), RNA modification, genomic heterogeneity, and tumour stemness. GO and KEGG analyses showed that RASSF1 was closely related to tumour immune-related pathways. Finally, RASSF1A was moderately correlated with PD-L1 (R = 0.556), and RASSF1A overexpression significantly affected the expression of several genes involved in the Th17 cell differentiation signalling pathway in lung cancer. Conclusions RASSF1 was differentially expressed in 29 human cancers and played a critical role in tumour immunity. Thus, RASSF1 has the potential to be used as a prognostic marker and reference for achieving more precise immunotherapy, particularly in lung cancer.
Collapse
Affiliation(s)
- Yibing Bai
- Medical School of Chinese PLA, Beijing, China
- Department of Oncology, The First Medical Center of PLA General Hospital, Beijing, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jiapei Qin
- Medical School of Chinese PLA, Beijing, China
- Department of Oncology, The First Medical Center of PLA General Hospital, Beijing, China
| | - Ting Wang
- Department of Oncology, The First Medical Center of PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xin Zhou
- Medical School of Chinese PLA, Beijing, China
- Department of Oncology, The First Medical Center of PLA General Hospital, Beijing, China
| | - Zhiqiang Ma
- Department of Oncology, The First Medical Center of PLA General Hospital, Beijing, China
| | - An Wang
- Medical School of Chinese PLA, Beijing, China
- Department of Oncology, The First Medical Center of PLA General Hospital, Beijing, China
| | - Wenyu Yang
- Department of Oncology, The First Medical Center of PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Jinliang Wang
- Medical School of Chinese PLA, Beijing, China
- Department of Oncology, The First Medical Center of PLA General Hospital, Beijing, China
| | - Jinfeng Li
- Institute of Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yi Hu
- Medical School of Chinese PLA, Beijing, China
- Department of Oncology, The First Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Zhao Y, Sheldon M, Sun Y, Ma L. New Insights into YAP/TAZ-TEAD-Mediated Gene Regulation and Biological Processes in Cancer. Cancers (Basel) 2023; 15:5497. [PMID: 38067201 PMCID: PMC10705714 DOI: 10.3390/cancers15235497] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 02/12/2024] Open
Abstract
The Hippo pathway is conserved across species. Key mammalian Hippo pathway kinases, including MST1/2 and LATS1/2, inhibit cellular growth by inactivating the TEAD coactivators, YAP, and TAZ. Extensive research has illuminated the roles of Hippo signaling in cancer, development, and regeneration. Notably, dysregulation of Hippo pathway components not only contributes to tumor growth and metastasis, but also renders tumors resistant to therapies. This review delves into recent research on YAP/TAZ-TEAD-mediated gene regulation and biological processes in cancer. We focus on several key areas: newly identified molecular patterns of YAP/TAZ activation, emerging mechanisms that contribute to metastasis and cancer therapy resistance, unexpected roles in tumor suppression, and advances in therapeutic strategies targeting this pathway. Moreover, we provide an updated view of YAP/TAZ's biological functions, discuss ongoing controversies, and offer perspectives on specific debated topics in this rapidly evolving field.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (M.S.)
| | - Marisela Sheldon
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (M.S.)
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (M.S.)
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
4
|
Thrash HL, Pendergast AM. Multi-Functional Regulation by YAP/TAZ Signaling Networks in Tumor Progression and Metastasis. Cancers (Basel) 2023; 15:4701. [PMID: 37835395 PMCID: PMC10572014 DOI: 10.3390/cancers15194701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
The Hippo pathway transcriptional co-activators, YES-associated protein (YAP) and Transcriptional Co-Activator with PDZ Binding Motif (TAZ), have both been linked to tumor progression and metastasis. These two proteins possess overlapping and distinct functions, and their activities lead to the expression of genes involved in multiple cellular processes, including cell proliferation, survival, and migration. The dysregulation of YAP/TAZ-dependent cellular processes can result in altered tumor growth and metastasis. In addition to their well-documented roles in the regulation of cancer cell growth, survival, migration, and invasion, the YAP/TAZ-dependent signaling pathways have been more recently implicated in cellular processes that promote metastasis and therapy resistance in several solid tumor types. This review highlights the role of YAP/TAZ signaling networks in the regulation of tumor cell plasticity mediated by hybrid and reversible epithelial-mesenchymal transition (EMT) states, and the promotion of cancer stem cell/progenitor phenotypes. Mechanistically, YAP and TAZ regulate these cellular processes by targeting transcriptional networks. In this review, we detail recently uncovered mechanisms whereby YAP and TAZ mediate tumor growth, metastasis, and therapy resistance, and discuss new therapeutic strategies to target YAP/TAZ function in various solid tumor types. Understanding the distinct and overlapping roles of YAP and TAZ in multiple cellular processes that promote tumor progression to metastasis is expected to enable the identification of effective therapies to treat solid tumors through the hyper-activation of YAP and TAZ.
Collapse
Affiliation(s)
| | - Ann Marie Pendergast
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
5
|
Ji XY, Li H, Chen HH, Lin J. Diagnostic performance of RASSF1A and SHOX2 methylation combined with EGFR mutations for differentiation between small pulmonary nodules. J Cancer Res Clin Oncol 2023; 149:8557-8571. [PMID: 37097393 DOI: 10.1007/s00432-023-04745-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/03/2023] [Indexed: 04/26/2023]
Abstract
BACKGROUND AND AIM Aberrant methylation of Ras association domain family 1, isoform A (RASSF1A), and short-stature homeobox gene 2 (SHOX2) promoters has been validated as a pair of valuable biomarkers for diagnosing early lung adenocarcinomas (LUADs). Epidermal growth factor receptor (EGFR) is the key driver mutation in lung carcinogenesis. This study aimed to investigate the aberrant promoter methylation of RASSF1A and SHOX2, and the genetic mutation of EGFR in 258 specimens of early LUADs. METHODS We retrospectively selected 258 paraffin-embedded samples of pulmonary nodules measuring 2 cm or less in diameter and evaluated the diagnostic performance of individual biomarker assays and multiple panels between noninvasive (group 1) and invasive lesions (groups 2A and 2B). Then, we investigated the interaction between genetic and epigenetic alterations. RESULTS The degree of RASSF1A and SHOX2 promoter methylation and EGFR mutation was significantly higher in invasive lesions than in noninvasive lesions. The three biomarkers distinguished between noninvasive and invasive lesions with reliable sensitivity and specificity: 60.9% sensitivity [95% confidence interval (CI) 52.41-68.78] and 80.0% specificity (95% CI 72.14-86.07). The novel panel biomarkers could further discriminate among three invasive pathological subtypes (area under the curve value > 0.6). The distribution of RASSF1A methylation and EGFR mutation was considerably exclusive in early LUAD (P = 0.002). CONCLUSION DNA methylation of RASSF1A and SHOX2 is a pair of promising biomarkers, which may be used in combination with other driver alterations, such as EGFR mutation, to support the differential diagnosis of LUADs, especially for stage I.
Collapse
Affiliation(s)
- Xiang-Yu Ji
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Hong Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Hui-Hui Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jie Lin
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China.
- National Virtual and Reality Experimental Education Center for Medical Morphology, Southern Medical University, Guangzhou, People's Republic of China.
| |
Collapse
|
6
|
Lak NS, van Zogchel LM, Zappeij-Kannegieter L, Javadi A, van Paemel R, Vandeputte C, De Preter K, De Wilde B, Chicard M, Iddir Y, Schleiermacher G, Ruhen O, Shipley J, Fiocco M, Merks JH, van Noesel MM, van der Schoot CE, Tytgat GA, Stutterheim J. Cell-Free DNA as a Diagnostic and Prognostic Biomarker in Pediatric Rhabdomyosarcoma. JCO Precis Oncol 2023; 7:e2200113. [PMID: 36652664 PMCID: PMC9928631 DOI: 10.1200/po.22.00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
PURPOSE Total cell-free DNA (cfDNA) and tumor-derived cfDNA (ctDNA) can be used to study tumor-derived genetic aberrations. We analyzed the diagnostic and prognostic potential of cfDNA and ctDNA, obtained from pediatric patients with rhabdomyosarcoma. METHODS cfDNA was isolated from diagnostic plasma samples from 57 patients enrolled in the EpSSG RMS2005 study. To study the diagnostic potential, shallow whole genome sequencing (shWGS) and cell-free reduced representation bisulphite sequencing (cfRRBS) were performed in a subset of samples and all samples were tested using droplet digital polymerase chain reaction to detect methylated RASSF1A (RASSF1A-M). Correlation with outcome was studied by combining cfDNA RASSF1A-M detection with analysis of our rhabdomyosarcoma-specific RNA panel in paired cellular blood and bone marrow fractions and survival analysis in 56 patients. RESULTS At diagnosis, ctDNA was detected in 16 of 30 and 24 of 26 patients using shallow whole genome sequencing and cfRRBS, respectively. Furthermore, 21 of 25 samples were correctly classified as embryonal by cfRRBS. RASSF1A-M was detected in 21 of 57 patients. The presence of RASSF1A-M was significantly correlated with poor outcome (the 5-year event-free survival [EFS] rate was 46.2% for 21 RASSF1A-M‒positive patients, compared with 84.9% for 36 RASSF1A-M‒negative patients [P < .001]). RASSF1A-M positivity had the highest prognostic effect among patients with metastatic disease. Patients both negative for RASSF1A-M and the rhabdomyosarcoma-specific RNA panel (28 of 56 patients) had excellent outcome (5-year EFS 92.9%), while double-positive patients (11/56) had poor outcome (5-year EFS 13.6%, P < .001). CONCLUSION Analyzing ctDNA at diagnosis using various techniques is feasible in pediatric rhabdomyosarcoma and has potential for clinical use. Measuring RASSF1A-M in plasma at initial diagnosis correlated significantly with outcome, particularly when combined with paired analysis of blood and bone marrow using a rhabdomyosarcoma-specific RNA panel.
Collapse
Affiliation(s)
- Nathalie S.M. Lak
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands,Sanquin Research Department, Amsterdam, the Netherlands
| | - Lieke M.J. van Zogchel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands,Sanquin Research Department, Amsterdam, the Netherlands
| | | | - Ahmad Javadi
- Sanquin Research Department, Amsterdam, the Netherlands
| | - Ruben van Paemel
- Translational Oncogenomics and Bioinformatics Lab, Department of Biomolecular Medicine & Cancer Research Institute Ghent, Ghent University Hospital, Ghent, Belgium
| | - Charlotte Vandeputte
- Translational Oncogenomics and Bioinformatics Lab, Department of Biomolecular Medicine & Cancer Research Institute Ghent, Ghent University Hospital, Ghent, Belgium
| | - Katleen De Preter
- Translational Oncogenomics and Bioinformatics Lab, Department of Biomolecular Medicine & Cancer Research Institute Ghent, Ghent University Hospital, Ghent, Belgium
| | - Bram De Wilde
- Translational Oncogenomics and Bioinformatics Lab, Department of Biomolecular Medicine & Cancer Research Institute Ghent, Ghent University Hospital, Ghent, Belgium
| | - Mathieu Chicard
- Equipe SiRIC RTOP Recherche Translationelle en Oncologie Pédiatrique, and INSERM U830, Laboratoire de Génétique et Biologie des Cancers, Institut Curie, Paris, France
| | - Yasmine Iddir
- Equipe SiRIC RTOP Recherche Translationelle en Oncologie Pédiatrique, and INSERM U830, Laboratoire de Génétique et Biologie des Cancers, Institut Curie, Paris, France
| | - Gudrun Schleiermacher
- SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Olivia Ruhen
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Janet Shipley
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Marta Fiocco
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands,Mathematical Institute, Leiden University, Leiden, the Netherlands,Department of Biomedical Data Science, Medical Statistics Section, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Max M. van Noesel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands,UMC Utrecht, Division Oncology & Cancer, Utrecht, the Netherlands
| | | | - Godelieve A.M. Tytgat
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands,Sanquin Research Department, Amsterdam, the Netherlands
| | - Janine Stutterheim
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands,Sanquin Research Department, Amsterdam, the Netherlands,Janine Stutterheim, Princess Máxima Center, Heidelberglaan 25, 3435 CS, Utrecht, the Netherlands; e-mail:
| |
Collapse
|
7
|
Mashayekhi M, Asadi M, Hashemzadeh S, Vahedi A, Shanehbandi D, Al-Omar AF, Akbari M, Raeisi M. Promoter methylation levels of RASSF1 and ATIC genes are associated with lung cancer in Iranian patients. Horm Mol Biol Clin Investig 2023:hmbci-2022-0007. [PMID: 36584330 DOI: 10.1515/hmbci-2022-0007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 12/11/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Epigenetic alterations like methylation of tumor suppressor genes or oncogenes, in respiratory epithelium have been associated with lung cancer. Hypermethylation of genes promoter is an epigenetic event, and is responsible to tumor suppressor genes inactivation as well as oncogenes activation. This study aimed to assess the role of methylation status in promoter of RASSF1 and ATIC genes their potential implication in the pathogenesis of lung tumor in Iranian patients. METHODS In this study, we collected 100 tissue samples (50 lung cancer tissues and 50 adjacent non-cancerous lung tissues) from Iranian lung cancer patients. The genomic DNA was extracted, and methylation status of both RASSF1 and ATIC genes was investigated by methylation-sensitive high-resolution melting (MS-HRM) assay technique and Real-Time PCR. Cancer Genome Atlas (TCGA) dataset was also analyzed for further validation of the gene's methylation. RESULTS Methylation of RASSF1 gene promoter was significantly higher in lung tumor tissues. However, promoter methylation levels of ATIC gene was significantly lower in lung tumor tissues. These results were additionally confirmed by TCGA analysis. Promoter methylation of both RASSF1 and ATIC genes was significantly associated with lymph node metastasis, and clinical stage of lung cancer. The receiver operating characteristic (ROC) curve analysis indicated a high accuracy of promoter methylation in these genes as a diagnostic biomarker for lung cancer. CONCLUSIONS Methylation levels of both RASSF1 and ATIC genes promoters were associated with lung cancer pathogenesis in Iranian population, and may be a suitable biomarker for diagnosis and prognosis of lung cancer in early stage of tumorigenesis.
Collapse
Affiliation(s)
- Mahsa Mashayekhi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Asadi
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Türkiye
| | - Shahriar Hashemzadeh
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Vahedi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Faris Al-Omar
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Türkiye
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mortaza Raeisi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
van Zogchel LMJ, Lak NSM, Gelineau NU, Sergeeva I, Stelloo E, Swennenhuis J, Feitsma H, van Min M, Splinter E, Bleijs M, Groot Koerkamp M, Breunis W, Meister MT, Kholossy WH, Holstege FCP, Molenaar JJ, de Leng WWJ, Stutterheim J, van der Schoot CE, Tytgat GAM. Targeted locus amplification to develop robust patient-specific assays for liquid biopsies in pediatric solid tumors. Front Oncol 2023; 13:1124737. [PMID: 37152023 PMCID: PMC10157037 DOI: 10.3389/fonc.2023.1124737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Background Liquid biopsies combine minimally invasive sample collection with sensitive detection of residual disease. Pediatric malignancies harbor tumor-driving copy number alterations or fusion genes, rather than recurrent point mutations. These regions contain tumor-specific DNA breakpoint sequences. We investigated the feasibility to use these breakpoints to design patient-specific markers to detect tumor-derived cell-free DNA (cfDNA) in plasma from patients with pediatric solid tumors. Materials and methods Regions of interest (ROI) were identified through standard clinical diagnostic pipelines, using SNP array for CNAs, and FISH or RT-qPCR for fusion genes. Using targeted locus amplification (TLA) on tumor organoids grown from tumor material or targeted locus capture (TLC) on FFPE material, ROI-specific primers and probes were designed, which were used to design droplet digital PCR (ddPCR) assays. cfDNA from patient plasma at diagnosis and during therapy was analyzed. Results TLA was performed on material from 2 rhabdomyosarcoma, 1 Ewing sarcoma and 3 neuroblastoma. FFPE-TLC was performed on 8 neuroblastoma tumors. For all patients, at least one patient-specific ddPCR was successfully designed and in all diagnostic plasma samples the patient-specific markers were detected. In the rhabdomyosarcoma and Ewing sarcoma patients, all samples after start of therapy were negative. In neuroblastoma patients, presence of patient-specific markers in cfDNA tracked tumor burden, decreasing during induction therapy, disappearing at complete remission and re-appearing at relapse. Conclusion We demonstrate the feasibility to determine tumor-specific breakpoints using TLA/TLC in different pediatric solid tumors and use these for analysis of cfDNA from plasma. Considering the high prevalence of CNAs and fusion genes in pediatric solid tumors, this approach holds great promise and deserves further study in a larger cohort with standardized plasma sampling protocols.
Collapse
Affiliation(s)
- Lieke M. J. van Zogchel
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
- Sanquin Research and Landsteiner Laboratory of the AMC‐ University of Amsterdam, Department of Experimental Immunohematology, Amsterdam, Netherlands
| | - Nathalie S. M. Lak
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
- Sanquin Research and Landsteiner Laboratory of the AMC‐ University of Amsterdam, Department of Experimental Immunohematology, Amsterdam, Netherlands
| | - Nina U. Gelineau
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
- Sanquin Research and Landsteiner Laboratory of the AMC‐ University of Amsterdam, Department of Experimental Immunohematology, Amsterdam, Netherlands
| | | | | | | | | | | | | | - Margit Bleijs
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
| | | | - Willemijn Breunis
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
- University Children’s Hospital Zürich, Zürich, Switzerland
| | - Michael Torsten Meister
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | | | - Frank C. P. Holstege
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
- Center for Molecular Medicine, University Medical Center (UMC) Utrecht and Utrecht University, Utrecht, Netherlands
| | - Jan J. Molenaar
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
| | - Wendy W. J. de Leng
- Department of Pathology, University Medical Center (UMC) Utrecht, Utrecht, Netherlands
| | - Janine Stutterheim
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
| | - C. Ellen van der Schoot
- Sanquin Research and Landsteiner Laboratory of the AMC‐ University of Amsterdam, Department of Experimental Immunohematology, Amsterdam, Netherlands
| | - Godelieve A. M. Tytgat
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
- *Correspondence: Godelieve A. M. Tytgat,
| |
Collapse
|
9
|
Opposing roles of ZEB1 in the cytoplasm and nucleus control cytoskeletal assembly and YAP1 activity. Cell Rep 2022; 41:111452. [DOI: 10.1016/j.celrep.2022.111452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
|
10
|
García-Gutiérrez L, Fallahi E, Aboud N, Quinn N, Matallanas D. Interaction of LATS1 with SMAC links the MST2/Hippo pathway with apoptosis in an IAP-dependent manner. Cell Death Dis 2022; 13:692. [PMID: 35941108 PMCID: PMC9360443 DOI: 10.1038/s41419-022-05147-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 01/21/2023]
Abstract
Metastatic malignant melanoma is the deadliest skin cancer, and it is characterised by its high resistance to apoptosis. The main melanoma driving mutations are part of ERK pathway, with BRAF mutations being the most frequent ones, followed by NRAS, NF1 and MEK mutations. Increasing evidence shows that the MST2/Hippo pathway is also deregulated in melanoma. While mutations are rare, MST2/Hippo pathway core proteins expression levels are often dysregulated in melanoma. The expression of the tumour suppressor RASSF1A, a bona fide activator of the MST2 pathway, is silenced by promoter methylation in over half of melanomas and correlates with poor prognosis. Here, using mass spectrometry-based interaction proteomics we identified the Second Mitochondria-derived Activator of Caspases (SMAC) as a novel LATS1 interactor. We show that RASSF1A-dependent activation of the MST2 pathway promotes LATS1-SMAC interaction and negatively regulates the antiapoptotic signal mediated by the members of the IAP family. Moreover, proteomic experiments identified a common cluster of apoptotic regulators that bind to SMAC and LATS1. Mechanistic analysis shows that the LATS1-SMAC complex promotes XIAP ubiquitination and its subsequent degradation which ultimately results in apoptosis. Importantly, we show that the oncogenic BRAFV600E mutant prevents the proapoptotic signal mediated by the LATS1-SMAC complex while treatment of melanoma cell lines with BRAF inhibitors promotes the formation of this complex, indicating that inhibition of the LATS1-SMAC might be necessary for BRAFV600E-driven melanoma. Finally, we show that LATS1-SMAC interaction is regulated by the SMAC mimetic Birinapant, which requires C-IAP1 inhibition and the degradation of XIAP, suggesting that the MST2 pathway is part of the mechanism of action of Birinapant. Overall, the current work shows that SMAC-dependent apoptosis is regulated by the LATS1 tumour suppressor and supports the idea that LATS1 is a signalling hub that regulates the crosstalk between the MST2 pathway, the apoptotic network and the ERK pathway.
Collapse
Affiliation(s)
- Lucía García-Gutiérrez
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Emma Fallahi
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Nourhan Aboud
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Niall Quinn
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - David Matallanas
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
11
|
Mourkioti I, Angelopoulou A, Belogiannis K, Lagopati N, Potamianos S, Kyrodimos E, Gorgoulis V, Papaspyropoulos A. Interplay of Developmental Hippo-Notch Signaling Pathways with the DNA Damage Response in Prostate Cancer. Cells 2022; 11:cells11152449. [PMID: 35954292 PMCID: PMC9367915 DOI: 10.3390/cells11152449] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer belongs in the class of hormone-dependent cancers, representing a major cause of cancer incidence in men worldwide. Since upon disease onset almost all prostate cancers are androgen-dependent and require active androgen receptor (AR) signaling for their survival, the primary treatment approach has for decades relied on inhibition of the AR pathway via androgen deprivation therapy (ADT). However, following this line of treatment, cancer cell pools often become resistant to therapy, contributing to disease progression towards the significantly more aggressive castration-resistant prostate cancer (CRPC) form, characterized by poor prognosis. It is, therefore, of critical importance to elucidate the molecular mechanisms and signaling pathways underlying the progression of early-stage prostate cancer towards CRPC. In this review, we aim to shed light on the role of major signaling pathways including the DNA damage response (DDR) and the developmental Hippo and Notch pathways in prostate tumorigenesis. We recapitulate key evidence demonstrating the crosstalk of those pathways as well as with pivotal prostate cancer-related 'hubs' such as AR signaling, and evaluate the clinical impact of those interactions. Moreover, we attempt to identify molecules of the complex DDR-Hippo-Notch interplay comprising potentially novel therapeutic targets in the battle against prostate tumorigenesis.
Collapse
Affiliation(s)
- Ioanna Mourkioti
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
| | - Andriani Angelopoulou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
| | - Konstantinos Belogiannis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
| | - Nefeli Lagopati
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Spyridon Potamianos
- First ENT Department, Hippocration Hospital, University of Athens, 11527 Athens, Greece
| | - Efthymios Kyrodimos
- First ENT Department, Hippocration Hospital, University of Athens, 11527 Athens, Greece
| | - Vassilis Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Clinical Molecular Pathology, Medical School, University of Dundee, Dundee DD1 9SY, UK
- Molecular and Clinical Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Faculty of Health and Medical Sciences, University of Surrey, Surrey GU2 7YH, UK
- Correspondence: (V.G.); (A.P.); Tel.: +30-210-7462352 (V.G.); +30-210-7462174 (A.P.)
| | - Angelos Papaspyropoulos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Correspondence: (V.G.); (A.P.); Tel.: +30-210-7462352 (V.G.); +30-210-7462174 (A.P.)
| |
Collapse
|
12
|
Tsaridou S, Velimezi G, Willenbrock F, Chatzifrangkeskou M, Elsayed W, Panagopoulos A, Karamitros D, Gorgoulis V, Lygerou Z, Roukos V, O'Neill E, Pefani DE. 53BP1-mediated recruitment of RASSF1A to ribosomal DNA breaks promotes local ATM signaling. EMBO Rep 2022; 23:e54483. [PMID: 35758159 PMCID: PMC9346497 DOI: 10.15252/embr.202154483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 12/29/2022] Open
Abstract
DNA lesions occur across the genome and constitute a threat to cell viability; however, damage at specific genomic loci has a relatively greater impact on overall genome stability. The ribosomal RNA gene repeats (rDNA) are emerging fragile sites. Recent progress in understanding how the rDNA damage response is organized has highlighted a key role of adaptor proteins. Here, we show that the scaffold tumor suppressor RASSF1A is recruited to rDNA breaks. RASSF1A recruitment to double-strand breaks is mediated by 53BP1 and depends on RASSF1A phosphorylation at Serine 131 by ATM kinase. Employing targeted rDNA damage, we uncover that RASSF1A recruitment promotes local ATM signaling. RASSF1A silencing, a common epigenetic event during malignant transformation, results in persistent breaks, rDNA copy number alterations and decreased cell viability. Overall, we identify a novel role for RASSF1A at rDNA break sites, provide mechanistic insight into how the DNA damage response is organized in a chromatin context, and provide further evidence for how silencing of the RASSF1A tumor suppressor contributes to genome instability.
Collapse
Affiliation(s)
- Stavroula Tsaridou
- Department of Biology, School of Medicine, University of Patras, Patras, Greece
| | - Georgia Velimezi
- Department of Biology, School of Medicine, University of Patras, Patras, Greece.,Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | | | | | | | - Dimitris Karamitros
- Department of Physiology, School of Medicine, University of Patras, Patras, Greece
| | - Vassilis Gorgoulis
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Laboratory of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Faculty of Biology, Medicine and Health, Manchester Academic Health Centre, University of Manchester, Manchester, UK.,Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Zoi Lygerou
- Department of Biology, School of Medicine, University of Patras, Patras, Greece
| | - Vassilis Roukos
- Department of Biology, School of Medicine, University of Patras, Patras, Greece.,Institute of Molecular Biology (IMB), Mainz, Germany
| | - Eric O'Neill
- Department of Oncology, University of Oxford, Oxford, UK
| | | |
Collapse
|
13
|
Yamaguchi T, Yoshida K, Murata M, Suwa K, Tsuneyama K, Matsuzaki K, Naganuma M. Smad3 Phospho-Isoform Signaling in Nonalcoholic Steatohepatitis. Int J Mol Sci 2022; 23:ijms23116270. [PMID: 35682957 PMCID: PMC9181097 DOI: 10.3390/ijms23116270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis with insulin resistance, oxidative stress, lipotoxicity, adipokine secretion by fat cells, endotoxins (lipopolysaccharides) released by gut microbiota, and endoplasmic reticulum stress. Together, these factors promote NAFLD progression from steatosis to nonalcoholic steatohepatitis (NASH), fibrosis, and eventually end-stage liver diseases in a proportion of cases. Hepatic fibrosis and carcinogenesis often progress together, sharing inflammatory pathways. However, NASH can lead to hepatocarcinogenesis with minimal inflammation or fibrosis. In such instances, insulin resistance, oxidative stress, and lipotoxicity can directly lead to liver carcinogenesis through genetic and epigenetic alterations. Transforming growth factor (TGF)-β signaling is implicated in hepatic fibrogenesis and carcinogenesis. TGF-β type I receptor (TβRI) and activated-Ras/c-Jun-N-terminal kinase (JNK) differentially phosphorylate the mediator Smad3 to create two phospho-isoforms: C-terminally phosphorylated Smad3 (pSmad3C) and linker-phosphorylated Smad3 (pSmad3L). TβRI/pSmad3C signaling terminates cell proliferation, while constitutive Ras activation and JNK-mediated pSmad3L promote hepatocyte proliferation and carcinogenesis. The pSmad3L signaling pathway also antagonizes cytostatic pSmad3C signaling. This review addresses TGF-β/Smad signaling in hepatic carcinogenesis complicating NASH. We also discuss Smad phospho-isoforms as biomarkers predicting HCC in NASH patients with or without cirrhosis.
Collapse
Affiliation(s)
- Takashi Yamaguchi
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan; (K.Y.); (M.M.); (K.S.); (K.M.); (M.N.)
- Correspondence: ; Tel.: +81-72-804-0101; Fax: +81-72-804-2524
| | - Katsunori Yoshida
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan; (K.Y.); (M.M.); (K.S.); (K.M.); (M.N.)
| | - Miki Murata
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan; (K.Y.); (M.M.); (K.S.); (K.M.); (M.N.)
| | - Kanehiko Suwa
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan; (K.Y.); (M.M.); (K.S.); (K.M.); (M.N.)
| | - Koichi Tsuneyama
- Department of Pathology & Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8503, Japan;
| | - Koichi Matsuzaki
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan; (K.Y.); (M.M.); (K.S.); (K.M.); (M.N.)
| | - Makoto Naganuma
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan; (K.Y.); (M.M.); (K.S.); (K.M.); (M.N.)
| |
Collapse
|
14
|
Correlation between RASSF1A Methylation in Cell-Free DNA and the Prognosis of Cancer Patients: A Systematic Review and Meta-Analysis. JOURNAL OF ONCOLOGY 2022; 2022:3458420. [PMID: 35528240 PMCID: PMC9071870 DOI: 10.1155/2022/3458420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/18/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022]
Abstract
Background Although the effects of methylation of the Ras association domain-containing protein 1 isoform A (RASSF1A) gene in cell-free DNA on the outcomes of patients with different types of cancer have been reported, the results are inconsistent. Objective : To explore the relationships between RASSF1A methylation in cell-free DNA and the outcomes of cancer patients. Methods The PubMed, Embase, and Web of Science databases were searched for papers related to this topic on December 8, 2021. The retrieved articles were screened by two independent researchers, following which the methodological quality of the selected studies was evaluated using the Newcastle-Ottawa Scale. Additionally, hazard ratios were calculated, and publication bias of the studies was determined using Egger's test. Results Nine relevant publications involving a combined total of 1254 patients with different types of cancer were included in this study. The combined results of the random effects models yielded a hazard ratio of 1.73 (95% confidence interval: 1.31, 2.29; P < 0.001), which suggested there was a significant association between RASSF1A methylation and overall survival, and patients with an RASSF1A methylation status had a significantly increased risk of total death. Moreover, the Egger test result suggested there was no significant publication bias among the included studies. Conclusions The methylation of RASSF1A in cell-free DNA in cancer patients was observably associated with an increased risk of poor overall survival.
Collapse
|
15
|
An L, Cao Z, Nie P, Zhang H, Tong Z, Chen F, Tang Y, Han Y, Wang W, Zhao Z, Zhao Q, Yang Y, Xu Y, Fang G, Shi L, Xu H, Ma H, Jiao S, Zhou Z. Combinatorial targeting of Hippo-STRIPAK and PARP elicits synthetic lethality in gastrointestinal cancers. J Clin Invest 2022; 132:155468. [PMID: 35290241 PMCID: PMC9057599 DOI: 10.1172/jci155468] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/10/2022] [Indexed: 11/29/2022] Open
Abstract
The striatin-interacting phosphatase and kinase (STRIPAK) complexes integrate extracellular stimuli that result in intracellular activities. Previously, we discovered that STRIPAK is a key machinery responsible for loss of the Hippo tumor suppressor signal in cancer. Here, we identified the Hippo-STRIPAK complex as an essential player in the control of DNA double-stranded break (DSB) repair and genomic stability. Specifically, we found that the mammalian STE20-like protein kinases 1 and 2 (MST1/2), independent of classical Hippo signaling, directly phosphorylated zinc finger MYND type–containing 8 (ZMYND8) and hence resulted in the suppression of DNA repair in the nucleus. In response to genotoxic stress, the cyclic GMP-AMP synthase/stimulator of IFN genes (cGAS/STING) pathway was determined to relay nuclear DNA damage signals to the dynamic assembly of Hippo-STRIPAK via TANK-binding kinase 1–induced (TBK1-induced) structural stabilization of the suppressor of IKBKE 1– sarcolemma membrane–associated protein (SIKE1-SLMAP) arm. As such, we found that STRIPAK-mediated MST1/2 inactivation increased the DSB repair capacity of cancer cells and endowed these cells with resistance to radio- and chemotherapy and poly(ADP-ribose)polymerase (PARP) inhibition. Importantly, targeting the STRIPAK assembly with each of 3 distinct peptide inhibitors efficiently recovered the kinase activity of MST1/2 to suppress DNA repair and resensitize cancer cells to PARP inhibitors in both animal- and patient-derived tumor models. Overall, our findings not only uncover what we believe to be a previously unrecognized role for STRIPAK in modulating DSB repair but also provide translational implications of cotargeting STRIPAK and PARP for a new type of synthetic lethality anticancer therapy.
Collapse
Affiliation(s)
- Liwei An
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhifa Cao
- CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Pingping Nie
- CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Hui Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhenzhu Tong
- CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Fan Chen
- CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yang Tang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Han
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenjia Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhangting Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Qingya Zhao
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqin Yang
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanzhi Xu
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gemin Fang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Lei Shi
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Huixiong Xu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haiqing Ma
- Department of Oncology, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Kanit N, Uysal Yoca O, Ince D, Olgun N, Ozer E. Gene-Specific DNA Methylation Profiles in Pediatric Medulloblastomas. Pediatr Dev Pathol 2022; 25:82-90. [PMID: 34554028 DOI: 10.1177/10935266211036680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Medulloblastoma is the most common pediatric central nervous tumor of high malignancy that has been classified into both histological subtypes and molecular subgroups by the 2016 World Health Organization classification. However, there is a still need to understand the genomic characteristics and predict the clinical course. The aim of the study is to investigate the significance of the methylation profiles in molecular subclassification and precision medicine of the disease. METHODS The study enrolled 47 pediatric medulloblastoma patients. DNA methylation levels of KLF4, SPINT2, RASSF1A, EZH2, ZIC2, and PTCH1 genes were analyzed using methylation-specific pyrosequencing. The significance of the statistical relationship between methylation profiles and clinicopathological parameters including molecular subgroups and histological subtypes, the status of metastasis, and event-free survival were analyzed. RESULTS DNA methylation analysis demonstrated that KLF4, PTCH1, and ZIC2 hypermethylation were associated with the SHH-activated subgroup, whereas both SPINT2 and RASSF1A hypermethylation were associated with metastatic disease. EZH2 gene was not methylated in any of the samples. CONCLUSION We think that customized DNA methylation profiling may be a useful tool in the molecular subclassification of pediatric medulloblastoma and a potential technical approach in precision medicine.
Collapse
Affiliation(s)
- Naz Kanit
- Department of Molecular Medicine, Dokuz Eylul University Institute of Health Sciences, Izmir, Turkey
| | - Ozge Uysal Yoca
- Department of Medical Biology and Genetics, Dokuz Eylul University Institute of Health Sciences, Izmir, Turkey
| | - Dilek Ince
- Department of Clinical Oncology, Dokuz Eylul University Institute of Oncology, Izmir, Turkey
| | - Nur Olgun
- Department of Clinical Oncology, Dokuz Eylul University Institute of Oncology, Izmir, Turkey
| | - Erdener Ozer
- Department of Molecular Medicine, Dokuz Eylul University Institute of Health Sciences, Izmir, Turkey
| |
Collapse
|
17
|
Papaspyropoulos A, Angelopoulou A, Mourkioti I, Polyzou A, Pankova D, Toskas K, Lanfredini S, Pantazaki AA, Lagopati N, Kotsinas A, Evangelou K, Chronopoulos E, O’Neill E, Gorgoulis V. RASSF1A disrupts the NOTCH signaling axis via SNURF/RNF4-mediated ubiquitination of HES1. EMBO Rep 2022; 23:e51287. [PMID: 34897944 PMCID: PMC8811633 DOI: 10.15252/embr.202051287] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 02/05/2023] Open
Abstract
RASSF1A promoter methylation has been correlated with tumor dedifferentiation and aggressive oncogenic behavior. Nevertheless, the underlying mechanism of RASSF1A-dependent tumor dedifferentiation remains elusive. Here, we show that RASSF1A directly uncouples the NOTCH-HES1 axis, a key suppressor of differentiation. Interestingly, the crosstalk of RASSF1A with HES1 occurs independently from the signaling route connecting RASSF1A with the Hippo pathway. At the molecular level, we demonstrate that RASSF1A acts as a scaffold essential for the SUMO-targeted E3 ligase SNURF/RNF4 to target HES1 for degradation. The reciprocal relationship between RASSF1A and HES1 is evident across a wide range of human tumors, highlighting the clinical significance of the identified pathway. We show that HES1 upregulation in a RASSF1A-depleted environment renders cells non-responsive to the downstream effects of γ-secretase inhibitors (GSIs) which restrict signaling at the level of the NOTCH receptor. Taken together, we report a mechanism through which RASSF1A exerts autonomous regulation of the critical Notch effector HES1, thus classifying RASSF1A expression as an integral determinant of the clinical effectiveness of Notch inhibitors.
Collapse
Affiliation(s)
- Angelos Papaspyropoulos
- Department of OncologyUniversity of OxfordOxfordUK
- Molecular Carcinogenesis GroupDepartment of Histology and EmbryologySchool of MedicineNational Kapodistrian University of Athens (NKUA)AthensGreece
- Biomedical Research FoundationAcademy of AthensAthensGreece
| | - Andriani Angelopoulou
- Molecular Carcinogenesis GroupDepartment of Histology and EmbryologySchool of MedicineNational Kapodistrian University of Athens (NKUA)AthensGreece
- Biomedical Research FoundationAcademy of AthensAthensGreece
| | - Ioanna Mourkioti
- Molecular Carcinogenesis GroupDepartment of Histology and EmbryologySchool of MedicineNational Kapodistrian University of Athens (NKUA)AthensGreece
| | - Aikaterini Polyzou
- Molecular Carcinogenesis GroupDepartment of Histology and EmbryologySchool of MedicineNational Kapodistrian University of Athens (NKUA)AthensGreece
| | | | | | | | - Anastasia A Pantazaki
- Laboratory of BiochemistryDepartment of ChemistryAristotle University of ThessalonikiThessalonikiGreece
| | - Nefeli Lagopati
- Molecular Carcinogenesis GroupDepartment of Histology and EmbryologySchool of MedicineNational Kapodistrian University of Athens (NKUA)AthensGreece
- Biomedical Research FoundationAcademy of AthensAthensGreece
| | - Athanassios Kotsinas
- Molecular Carcinogenesis GroupDepartment of Histology and EmbryologySchool of MedicineNational Kapodistrian University of Athens (NKUA)AthensGreece
| | - Konstantinos Evangelou
- Molecular Carcinogenesis GroupDepartment of Histology and EmbryologySchool of MedicineNational Kapodistrian University of Athens (NKUA)AthensGreece
| | - Efstathios Chronopoulos
- Laboratory for Research of the Musculoskeletal SystemKAT General HospitalSchool of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Eric O’Neill
- Department of OncologyUniversity of OxfordOxfordUK
| | - Vassilis Gorgoulis
- Molecular Carcinogenesis GroupDepartment of Histology and EmbryologySchool of MedicineNational Kapodistrian University of Athens (NKUA)AthensGreece
- Biomedical Research FoundationAcademy of AthensAthensGreece
- Molecular and Clinical Cancer SciencesManchester Cancer Research CentreManchester Academic Health Sciences CentreUniversity of ManchesterManchesterUK
- Center for New Biotechnologies and Precision MedicineMedical SchoolNational and Kapodistrian University of AthensAthensGreece
- Faculty of Health and Medical SciencesUniversity of SurreySurreyUK
| |
Collapse
|
18
|
Dong Y, Liu X, Jiang B, Wei S, Xiang B, Liao R, Wang Q, He X. A Genome-Wide Investigation of Effects of Aberrant DNA Methylation on the Usage of Alternative Promoters in Hepatocellular Carcinoma. Front Oncol 2022; 11:780266. [PMID: 35111672 PMCID: PMC8803206 DOI: 10.3389/fonc.2021.780266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The alternative usage of promoters provides a way to regulate gene expression, has a significant influence on the transcriptome, and contributes to the cellular transformation of cancer. However, the function of alternative promoters (APs) in hepatocellular carcinoma (HCC) has not been systematically studied yet. In addition, the potential mechanism of regulation to the usage of APs remains unclear. DNA methylation, one of the most aberrant epigenetic modifications in cancers, is known to regulate transcriptional activity. Whether DNA methylation regulates the usage of APs needs to be explored. Here, we aim to investigate the effects of DNA methylation on usage of APs in HCC. METHODS Promoter activities were calculated based on RNA-seq data. Functional enrichment analysis was implemented to conduct GO terms. Correlation tests were used to detect the correlation between promoter activity and methylation status. The LASSO regression model was used to generate a diagnostic model. Kaplan-Meier analysis was used to compare the overall survival between high and low methylation groups. RNA-seq and whole-genome bisulfite sequencing (WGBS) in HCC samples were performed to validate the correlation of promoter activity and methylation. RESULTS We identified 855 APs in total, which could be well used to distinguish cancer from normal samples. The correlation of promoter activity and DNA methylation in APs was observed, and the APs with negative correlation were defined as methylation-regulated APs (mrAPs). Six mrAPs were identified to generate a diagnostic model with good performance (AUC = 0.97). Notably, the majority of mrAPs had CpG sites that could be used to predict clinical outcomes by methylation status. Finally, we verified 85.6% of promoter activity variation and 92.3% of methylation changes in our paired RNA-seq and WGBS samples, respectively. The negative correlation between promoter activity and methylation status was further confirmed in our HCC samples. CONCLUSION The aberrant methylation status plays a critical role in the precision usage of APs in HCC, which sheds light on the mechanism of cancer development and provides a new insight into cancer screening and treatment.
Collapse
Affiliation(s)
- Yuting Dong
- Department of Physiology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaozhao Liu
- Department of Physiology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Bijun Jiang
- Department of Physiology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Siting Wei
- Department of Physiology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Bangde Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ruichu Liao
- Department of Physiology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuyan Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi, Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Ximiao He
- Department of Physiology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Huang G, Chen J, Zhou J, Xiao S, Zeng W, Xia J, Zeng X. Epigenetic modification and BRAF gene mutation in thyroid carcinoma. Cancer Cell Int 2021; 21:687. [PMID: 34923978 PMCID: PMC8684614 DOI: 10.1186/s12935-021-02405-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/09/2021] [Indexed: 12/22/2022] Open
Abstract
AbstractThyroid cancer remains the most prevailing endocrine malignancy, and a progressively increasing incidence rate has been observed in recent years, with 95% of thyroid cancer represented by differentiated thyroid carcinomas. The genetics and epigenetics of thyroid cancer are gradually increasing, and gene mutations and methylation changes play an important roles in its occurrence and development. Although the role of RAS and BRAF mutations in thyroid cancer have been partially clarified,but the pathogenesis and molecular mechanisms of thyroid cancer remain to be elucidated. Epigenetic modification refer to genetic modification that does not change the DNA sequence of a gene but causes heritable phenotypic changes in its expression. Epigenetic modification mainly includes four aspects: DNA methylation, chromatin remodelling, noncoding RNA regulation, and histone modification. This article reviews the importance of thyroid cancer epigenetic modification and BRAF gene mutation in the treatment of thyroid cancer.
Collapse
|
20
|
van Zogchel LMJ, Lak NSM, Verhagen OJHM, Tissoudali A, Gussmalla Nuru M, Gelineau NU, Zappeij-Kannengieter L, Javadi A, Zijtregtop EAM, Merks JHM, van den Heuvel-Eibrink M, Schouten-van Meeteren AYN, Stutterheim J, van der Schoot CE, Tytgat GAM. Novel Circulating Hypermethylated RASSF1A ddPCR for Liquid Biopsies in Patients With Pediatric Solid Tumors. JCO Precis Oncol 2021; 5:PO.21.00130. [PMID: 34820594 PMCID: PMC8608265 DOI: 10.1200/po.21.00130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/06/2021] [Accepted: 10/08/2021] [Indexed: 12/19/2022] Open
Abstract
Liquid biopsies can be used to investigate tumor-derived DNA, circulating in the cell-free DNA (cfDNA) pool in blood. We aimed to develop a droplet digital polymerase chain reaction (ddPCR) assay detecting hypermethylation of tumor suppressor gene RASSF1A as a simple standard test to detect various pediatric tumor types in small volume blood samples and to evaluate this test for monitoring treatment response of patients with high-risk neuroblastoma. The circulating tumor marker hypermethylated RASSF1A can be detected in the plasma of pediatric patients with solid tumors![]()
Collapse
Affiliation(s)
- Lieke M J van Zogchel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Nathalie S M Lak
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Onno J H M Verhagen
- Department of Immunocytology, Sanquin Diagnostic Services, Amsterdam, the Netherlands
| | - Ahmed Tissoudali
- Department of Immunohematology Diagnostics, Sanquin Diagnostic Services, Amsterdam, the Netherlands
| | - Mohammed Gussmalla Nuru
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Nina U Gelineau
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Lily Zappeij-Kannengieter
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, Amsterdam, the Netherlands.,Department of Immunocytology, Sanquin Diagnostic Services, Amsterdam, the Netherlands
| | - Ahmad Javadi
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Eline A M Zijtregtop
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Department of Pediatric Oncology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands
| | | | | | | | | | - C Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | | |
Collapse
|
21
|
Scheiter A, Evert K, Reibenspies L, Cigliano A, Annweiler K, Müller K, Pöhmerer LMG, Xu H, Cui G, Itzel T, Materna-Reichelt S, Coluccio A, Honarnejad K, Teufel A, Brochhausen C, Dombrowski F, Chen X, Evert M, Calvisi DF, Utpatel K. RASSF1A independence and early galectin-1 upregulation in PIK3CA-induced hepatocarcinogenesis: new therapeutic venues. Mol Oncol 2021; 16:1091-1118. [PMID: 34748271 PMCID: PMC8895452 DOI: 10.1002/1878-0261.13135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/19/2021] [Accepted: 11/04/2021] [Indexed: 02/05/2023] Open
Abstract
Aberrant activation of the phosphoinositide 3‐kinase (PI3K)/AKT/mTOR and Ras/mitogen‐activated protein kinase (MAPK) pathways is a hallmark of hepatocarcinogenesis. In a subset of hepatocellular carcinomas (HCCs), PI3K/AKT/mTOR signaling dysregulation depends on phosphatidylinositol‐4,5‐bisphosphate 3‐kinase, catalytic subunit alpha (PIK3CA) mutations, while RAS/MAPK activation is partly attributed to promoter methylation of the tumor suppressor Ras association domain‐containing protein 1 (RASSF1A). To evaluate a possible cocarcinogenic effect of PIK3CA activation and RASSF1A knockout, plasmids expressing oncogenic forms of PIK3CA (E545K or H1047R mutants) were delivered to the liver of RASSF1A knockout and wild‐type mice by hydrodynamic tail vein injection combined with sleeping beauty‐mediated somatic integration. Transfection of either PIK3CA E545K or H1047R mutants sufficed to induce HCCs in mice irrespective of RASSF1A mutational background. The related tumors displayed a lipogenic phenotype with upregulation of fatty acid synthase and stearoyl‐CoA desaturase‐1 (SCD1). Galectin‐1, which was commonly upregulated in preneoplastic lesions and tumors, emerged as a regulator of SCD1. Co‐inhibitory treatment with PIK3CA inhibitors and the galectin‐1 inhibitor OTX008 resulted in synergistic cytotoxicity in human HCC cell lines, suggesting novel therapeutic venues.
Collapse
Affiliation(s)
| | - Katja Evert
- Institute of Pathology, University of Regensburg, Germany
| | | | | | | | - Karolina Müller
- Center for Clinical Studies, University Hospital Regensburg, Germany
| | | | - Hongwei Xu
- Department of Liver Surgery, Center of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, China.,Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Guofei Cui
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Timo Itzel
- Division of Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Silvia Materna-Reichelt
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Andrea Coluccio
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Kamran Honarnejad
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Andreas Teufel
- Division of Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Frank Dombrowski
- Institute of Pathology, University Medicine of Greifswald, Germany
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Germany
| | | | | |
Collapse
|
22
|
Zhang X, Ma L, Tang Y, Han J, Qi Y, Huang D. Low-dose cadmium exposure facilitates cell proliferation by promoter hypermethylation of RASSF1A and DAPK1 genes. ENVIRONMENTAL TOXICOLOGY 2021; 36:2313-2321. [PMID: 34402589 DOI: 10.1002/tox.23345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) at low concentrations has a potential to promote cell proliferation. However, the molecular mechanisms of Cd-induced proliferation are not well understood. Here, we reported that Cd (0-500 nM) significantly promoted the proliferation of HepG2 cells as demonstrated by elevated cell viability, more EdU-positive cells and increased gene expression of KI-67 and COX-2. Meanwhile, the gene expression of DNA methyltransferases was found to be elevated while that of tumor suppressor genes DAPK1 and RASSF1A were decreased under Cd exposure. Correspondingly, the methylation level of promoters in DAPK1 and RASSF1A were increased. Specifically, the CpG sites at -461 (Chr3:50, 374, 481) of RASSF1A promoter, and that at -260 (Chr9:90, 113, 207), -239 (Chr9:90, 113, 228), and -68 (Chr9:90, 113, 399) of DAPK1 promoter, were significantly hypermethylated. Moreover, 5-azacytidine (an inhibitor of DNA methyltransferase) partly impaired Cd-induced promoter hypermethylation of RASSF1A and DAPK1 genes, increased their expressions and slowed down Cd-induced cell proliferation, suggesting that DNA methylation play an essential part in Cd-boosted proliferation. The study showed that Cd caused promoter hypermethylation of RASSF1A and DAPK1, decreasing their expression and leading to higher level of cell proliferation. Furthermore, Cd at low concentrations could influence DNA methylation, which may serve as the proliferative mechanism of Cd.
Collapse
Affiliation(s)
- Xingjie Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
- Department of Wildlife Management, Administration of Wildlife, Gansu Province, Lanzhou, China
| | - Lin Ma
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yue Tang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jiangyuan Han
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yongmei Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Dejun Huang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
23
|
Li H, Ma ZL, Li B, Pan YJ, Xiang JQ, Zhang YW, Sun YH, Hou T, Lizaso A, Chen Y, Li X, Hu H. Potential utility of longitudinal somatic mutation and methylation profiling for predicting molecular residual disease in postoperative non-small cell lung cancer patients. Cancer Med 2021; 10:8377-8386. [PMID: 34664796 PMCID: PMC8633238 DOI: 10.1002/cam4.4339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/19/2021] [Accepted: 09/06/2021] [Indexed: 11/08/2022] Open
Abstract
GROWING EFFORTS ARE BEING INVESTED IN INVESTIGATING VARIOUS MOLECULAR APPROACHES TO DETECT MINIMAL RESIDUAL DISEASE (MRD) AND PREDICT DISEASE RECURRENCE. IN OUR STUDY, WE INVESTIGATED THE UTILITY OF PARALLEL LONGITUDINAL ANALYSIS OF MUTATION AND DNA METHYLATION PROFILES FOR PREDICTING MRD IN POSTOPERATIVE NON-SMALL-CELL LUNG CANCER (NSCLC) PATIENTS. TUMOR TISSUES AND LONGITUDINAL BLOOD SAMPLES WERE OBTAINED FROM 65 PATIENTS WITH RESECTED STAGE IA-IIIB NSCLC. SOMATIC MUTATION AND DNA METHYLATION PROFILING WERE PERFORMED USING ULTRA-DEEP TARGETED SEQUENCING AND TARGETED BISULFITE SEQUENCING, RESPECTIVELY. DYNAMIC CHANGES IN PLASMA-BASED MUTATION AND TUMOR-INFORMED METHYLATION PROFILES, REFLECTED AS MRD SCORE, WERE OBSERVED FROM BEFORE SURGERY (BASELINE) TO POSTOPERATIVE FOLLOW-UP, REFLECTING THE DECREASE IN TUMOR BURDEN OF THE PATIENTS WITH RESECTED NSCLC. MUTATIONS WERE DETECTED FROM PLASMA SAMPLES IN 63% OF THE PATIENTS AT BASELINE, WHICH SIGNIFICANTLY REDUCED TO 23-25% DURING POST-OPERATIVE FOLLOW-UPS. MRD SCORE POSITIVE RATE WAS 95.7% AT BASELINE, WHICH REDUCED TO 74% AT THE FIRST AND 70% AT THE SECOND FOLLOW-UP. AMONG THE 5 RELAPSED PATIENTS WITH PARALLEL LONGITUDINAL ANALYSIS OF MUTATION AND METHYLATION PROFILE, ELEVATED MRD SCORE WAS OBSERVED AT FOLLOW-UP BETWEEN 0.5-7 MONTHS PRIOR TO RADIOLOGIC RECURRENCE FOR ALL 5 PATIENTS. OF THEM, 4 PATIENTS ALSO HAD CONCOMITANT INCREASE IN ALLELIC FRACTION OF MUTATIONS IN AT LEAST 1 FOLLOW-UP TIME POINT, BUT ONE PATIENT HAD NO MUTATION DETECTED THROUGHOUT ALL FOLLOW-UPS. OUR RESULTS DEMONSTRATE THAT LONGITUDINAL PROFILING OF MUTATION AND DNA METHYLATION MAY HAVE POTENTIAL FOR DETECTING MRD AND PREDICTING RECURRENCE IN POSTOPERATIVE NSCLC PATIENTS.
Collapse
Affiliation(s)
- Hang Li
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China.,Institute of Thoracic Oncology, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ze-Lin Ma
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China.,Institute of Thoracic Oncology, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bin Li
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China.,Institute of Thoracic Oncology, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yun-Jian Pan
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China.,Institute of Thoracic Oncology, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia-Qing Xiang
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China.,Institute of Thoracic Oncology, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Wei Zhang
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China.,Institute of Thoracic Oncology, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Hua Sun
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China.,Institute of Thoracic Oncology, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ting Hou
- Burning Rock Biotech, Guangzhou, China
| | | | - Yan Chen
- Burning Rock Biotech, Guangzhou, China
| | - Xi Li
- Burning Rock Biotech, Guangzhou, China
| | - Hong Hu
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China.,Institute of Thoracic Oncology, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Tognoli ML, Vlahov N, Steenbeek S, Grawenda AM, Eyres M, Cano‐Rodriguez D, Scrace S, Kartsonaki C, von Kriegsheim A, Willms E, Wood MJ, Rots MG, van Rheenen J, O'Neill E, Pankova D. RASSF1C oncogene elicits amoeboid invasion, cancer stemness, and extracellular vesicle release via a SRC/Rho axis. EMBO J 2021; 40:e107680. [PMID: 34532864 PMCID: PMC8521318 DOI: 10.15252/embj.2021107680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 12/20/2022] Open
Abstract
Cell plasticity is a crucial hallmark leading to cancer metastasis. Upregulation of Rho/ROCK pathway drives actomyosin contractility, protrusive forces, and contributes to the occurrence of highly invasive amoeboid cells in tumors. Cancer stem cells are similarly associated with metastasis, but how these populations arise in tumors is not fully understood. Here, we show that the novel oncogene RASSF1C drives mesenchymal-to-amoeboid transition and stem cell attributes in breast cancer cells. Mechanistically, RASSF1C activates Rho/ROCK via SRC-mediated RhoGDI inhibition, resulting in generation of actomyosin contractility. Moreover, we demonstrate that RASSF1C-induced amoeboid cells display increased expression of cancer stem-like markers such as CD133, ALDH1, and Nanog, and are accompanied by higher invasive potential in vitro and in vivo. Further, RASSF1C-induced amoeboid cells employ extracellular vesicles to transfer the invasive phenotype to target cells and tissue. Importantly, the underlying RASSF1C-driven biological processes concur to explain clinical data: namely, methylation of the RASSF1C promoter correlates with better survival in early-stage breast cancer patients. Therefore, we propose the use of RASSF1 gene promoter methylation status as a biomarker for patient stratification.
Collapse
Affiliation(s)
| | | | - Sander Steenbeek
- Molecular PathologyOncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | | | | | - David Cano‐Rodriguez
- University of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Simon Scrace
- Department of OncologyUniversity of OxfordOxfordUK
| | | | - Alex von Kriegsheim
- Cancer Research UK Edinburgh CentreMRC Institute of Genetics & Molecular MedicineThe University of EdinburghWestern General HospitalEdinburghUK
| | - Eduard Willms
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
- La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVic.Australia
| | | | - Marianne G Rots
- University of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Jacco van Rheenen
- Molecular PathologyOncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Eric O'Neill
- Department of OncologyUniversity of OxfordOxfordUK
| | | |
Collapse
|
25
|
Translational Utility of Liquid Biopsies in Thyroid Cancer Management. Cancers (Basel) 2021; 13:cancers13143443. [PMID: 34298656 PMCID: PMC8306718 DOI: 10.3390/cancers13143443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/21/2022] Open
Abstract
Liquid biopsies are a novel technique to assess for either circulating tumor cells (CTC) or circulating tumor DNA (ctDNA and microRNA (miRNA)) in peripheral blood samples of cancer patients. The diagnostic role of liquid biopsy in oncology has expanded in recent years, particularly in lung, colorectal and breast cancer. In thyroid cancer, the role of liquid biopsy in either diagnosis or prognosis is beginning to translate from the lab to the clinic. In this review, we describe the evolution of liquid biopsies in detecting CTC, ctDNA and miRNA in thyroid cancer patients, together with its limitations and future directions in clinical practice.
Collapse
|
26
|
McKenna S, García-Gutiérrez L. Resistance to Targeted Therapy and RASSF1A Loss in Melanoma: What Are We Missing? Int J Mol Sci 2021; 22:5115. [PMID: 34066022 PMCID: PMC8150731 DOI: 10.3390/ijms22105115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022] Open
Abstract
Melanoma is one of the most aggressive forms of skin cancer and is therapeutically challenging, considering its high mutation rate. Following the development of therapies to target BRAF, the most frequently found mutation in melanoma, promising therapeutic responses were observed. While mono- and combination therapies to target the MAPK cascade did induce a therapeutic response in BRAF-mutated melanomas, the development of resistance to MAPK-targeted therapies remains a challenge for a high proportion of patients. Resistance mechanisms are varied and can be categorised as intrinsic, acquired, and adaptive. RASSF1A is a tumour suppressor that plays an integral role in the maintenance of cellular homeostasis as a central signalling hub. RASSF1A tumour suppressor activity is commonly lost in melanoma, mainly by aberrant promoter hypermethylation. RASSF1A loss could be associated with several mechanisms of resistance to MAPK inhibition considering that most of the signalling pathways that RASSF1A controls are found to be altered targeted therapy resistant melanomas. Herein, we discuss resistance mechanisms in detail and the potential role for RASSF1A reactivation to re-sensitise BRAF mutant melanomas to therapy.
Collapse
Affiliation(s)
| | - Lucía García-Gutiérrez
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland;
| |
Collapse
|
27
|
Jia J, Wang N, Zheng Y, Mo X, Zhang Y, Ye S, Liu J, Yan F, Li H, Chen D. RAS-association domain family 1A regulates the abnormal cell proliferation in psoriasis via inhibition of Yes-associated protein. J Cell Mol Med 2021; 25:5070-5081. [PMID: 33960627 PMCID: PMC8178269 DOI: 10.1111/jcmm.16489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 03/04/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
Psoriasis is a chronic, inflammatory skin disease with a high incidence and recurrence; however, its exact pathogenesis and aetiology remain unclear. This study aimed to analyse the effect of the upstream negative regulator RAS‐association domain family 1A (RASSF1A) on Yes‐associated protein (YAP) in psoriasis. Skin lesions of 22 patients with psoriasis and 19 healthy controls were used. Human epidermal keratinocytes stimulated by M5 (IL‐1α, IL‐17, IL‐22, TNF‐α and oncostatin M) were used to establish a psoriatic cell model. BALB/c mice treated with topical imiquimod were used to establish a psoriatic mouse model. As the methylation level of RASSF1A increased, its expression in psoriatic patients and mice model decreased. Addition of the methylation inhibitor 5‐Aza‐CdR or RASSF1A‐overexpressing lentivirus vector increased RASSF1A and reduced YAP expression; meanwhile improved skin lesions, reduced cell proliferation, induced cell cycle arrest in the G0/G1 phase, increased apoptosis, reduced inflammatory cytokines and activities of ERK, STAT3 and NF‐κB signalling pathways. The results indicated that RASSF1A could play a role in the treatment of psoriasis by inhibiting YAP expression. Based on these findings, targeted drugs that can inhibit the methylation or increase the expression of RASSF1A may be useful for treating psoriasis.
Collapse
Affiliation(s)
- Jinjing Jia
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Disease, Guangzhou, China
| | - Ning Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Zheng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiumei Mo
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Disease, Guangzhou, China
| | - Yu Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Disease, Guangzhou, China
| | - Siqi Ye
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Disease, Guangzhou, China
| | - Junfeng Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Disease, Guangzhou, China
| | - Fenggen Yan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Disease, Guangzhou, China
| | - Hongyi Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Disease, Guangzhou, China
| | - Dacan Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Disease, Guangzhou, China
| |
Collapse
|
28
|
Tian H, Chen X, Zhang Y, Wang Y, Fu X, Gu W, Wen Y. Dioscin inhibits SCC15 cell proliferation via the RASSF1A/MST2/YAP axis. Mol Med Rep 2021; 23:414. [PMID: 33786612 PMCID: PMC8025490 DOI: 10.3892/mmr.2021.12053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
Dioscin, an extract from traditional Chinese herbal plants, displays various biological and pharmacological effects on tumors, including inhibition of cell proliferation and induction of DNA damage. However, the effects of dioscin on oral squamous cell carcinoma (OSCC) cells are not completely understood. The present study aimed to evaluate the impact of dioscin on OSCC cell proliferation. Cell Counting Kit-8 and 5-ethynyl-2′-deoxyuridine incorporation assays were performed to assess cell proliferation. Flow cytometry was conducted to detect alterations in the cell cycle and cell apoptosis. Western blotting and coimmunoprecipitation were performed to determine protein expression levels. In SCC15 cells, dioscin treatment significantly induced cell cycle arrest, increased apoptosis and inhibited proliferation compared with the control group. Mechanistically, the tumor suppressor protein Ras association domain-containing protein 1A (RASSF1A) was activated and oncoprotein yes-associated protein (YAP) was phosphorylated by dioscin. Furthermore, YAP overexpression and knockdown reduced and enhanced the inhibitory effects of dioscin on SCC15 cells, respectively. In summary, the results demonstrated that, compared with the control group, dioscin upregulated RASSF1A expression in OSCC cells, which resulted in YAP phosphorylation, thus weakening its transcriptional coactivation function, enhancing cell cycle arrest and apoptosis, and inhibiting cell proliferation. The present study indicated that dioscin may serve as a therapeutic agent for OSCC.
Collapse
Affiliation(s)
- Hui Tian
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiyan Chen
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yafei Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Ying Wang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xucheng Fu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Weiting Gu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yong Wen
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
29
|
Shi J, Chen X, Zhang L, Fang X, Liu Y, Zhu X, Zhang H, Fan L, Gu J, Zhang S, She B, Han H, Yi X. Performance Evaluation of SHOX2 and RASSF1A Methylation for the Aid in Diagnosis of Lung Cancer Based on the Analysis of FFPE Specimen. Front Oncol 2020; 10:565780. [PMID: 33425721 PMCID: PMC7793934 DOI: 10.3389/fonc.2020.565780] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/09/2020] [Indexed: 12/28/2022] Open
Abstract
Emerging molecular diagnostic methods are more sensitive and objective, which can overcome the intrinsic failings of morphological diagnosis. Here, a RT-PCR-based in vitro diagnostic test kit (LungMe®) was developed and characterized to simultaneously quantify the DNA methylation of SHOX2 and RASSF1A in FFPE tissue specimens. The clinical manifestations were evaluated in 251 FFPE samples with specificity and sensitivity of 90.4 and 89.8%, respectively. Furthermore, the quantitative analysis shows that the degree of SHOX2 methylation was correlated with the stages of lung cancer, but not in the case of RASSF1A. Our observation indicated that the DNA methylation of SHOX2 and RASSF1A may play different roles in cancer development. Comparison of the methylation levels of SHOX2 and RASSF1A between cancer and cancer-adjacent specimens (n = 30), showed they have “epigenetic field defect”. As additional clinical validation, the hypermethylation of SHOX2 and RASSF1A was detected not only in surgical operative specimens, but also in histopathological negative puncture biopsies. SHOX2 and RASSF1A methylation detection can be used to increase sensitivity and NPV, which provide us with a more accurate method of differential diagnosis and are likely to be rapidly applied in clinical examinations.
Collapse
Affiliation(s)
- Juanhong Shi
- Department of Pathology, Tongji Hospital, Tongji University, Shianghai, China
| | - Xue Chen
- Department of Pathology, Tongji Hospital, Tongji University, Shianghai, China
| | - Long Zhang
- Department of Pathology, Tongji Hospital, Tongji University, Shianghai, China
| | - Xia Fang
- Department of Pulmonary and Critical Care Medicine, Dongfang Hospital Affiliated to Tongji University, Shanghai, China
| | - Yuting Liu
- Department of Pathology, Tongji Hospital, Tongji University, Shianghai, China
| | - Xuyou Zhu
- Department of Pathology, Tongji Hospital, Tongji University, Shianghai, China
| | - Haoyang Zhang
- Department of Pathology, Tongji Hospital, Tongji University, Shianghai, China
| | - Lichao Fan
- Department of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital Affiliated to Tongji University, Shanghai, China
| | - Jun Gu
- Department of Pathology, Tongji Hospital, Tongji University, Shianghai, China
| | - Suxia Zhang
- Department of Pathology, Tongji Hospital, Tongji University, Shianghai, China
| | - Bin She
- Academic Development, Tellgen Corporation, Shanghai, China
| | - Hongxiu Han
- Department of Pathology, Tongji Hospital, Tongji University, Shianghai, China
| | - Xianghua Yi
- Department of Pathology, Tongji Hospital, Tongji University, Shianghai, China
| |
Collapse
|
30
|
Nell RJ, van Steenderen D, Menger NV, Weitering TJ, Versluis M, van der Velden PA. Quantification of DNA methylation independent of sodium bisulfite conversion using methylation-sensitive restriction enzymes and digital PCR. Hum Mutat 2020; 41:2205-2216. [PMID: 32906203 PMCID: PMC7756443 DOI: 10.1002/humu.24111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/22/2020] [Accepted: 09/06/2020] [Indexed: 12/20/2022]
Abstract
Epigenetic regulation is important in human health and disease, but the exact mechanisms remain largely enigmatic. DNA methylation represents one epigenetic aspect but is challenging to quantify. In this study, we introduce a digital approach for the quantification of the amount and density of DNA methylation. We designed an experimental setup combining efficient methylation‐sensitive restriction enzymes with digital polymerase chain reaction (PCR) to quantify a targeted density of DNA methylation independent of bisulfite conversion. By using a stable reference and comparing experiments treated and untreated with these enzymes, copy number instability could be properly normalized. In silico simulations demonstrated the mathematical validity of the setup and showed that the measurement precision depends on the amount of input DNA and the fraction methylated alleles. This uncertainty could be successfully estimated by the confidence intervals. Quantification of RASSF1 promoter methylation in a variety of healthy and malignant samples and in a calibration curve confirmed the high accuracy of our approach, even in minute amounts of DNA. Overall, our results indicate the possibility of quantifying DNA methylation with digital PCR, independent of bisulfite conversion. Moreover, as the context‐density of methylation can also be determined, biological mechanisms can now be quantitatively assessed.
Collapse
Affiliation(s)
- Rogier J Nell
- Department of Ophthalmology, Leiden University Medical Center, Leiden, South Holland, The Netherlands
| | - Debby van Steenderen
- Department of Ophthalmology, Leiden University Medical Center, Leiden, South Holland, The Netherlands
| | - Nino V Menger
- Department of Ophthalmology, Leiden University Medical Center, Leiden, South Holland, The Netherlands
| | - Thomas J Weitering
- Department of Ophthalmology, Leiden University Medical Center, Leiden, South Holland, The Netherlands
| | - Mieke Versluis
- Department of Ophthalmology, Leiden University Medical Center, Leiden, South Holland, The Netherlands
| | - Pieter A van der Velden
- Department of Ophthalmology, Leiden University Medical Center, Leiden, South Holland, The Netherlands
| |
Collapse
|
31
|
Moro L, Simoneschi D, Kurz E, Arbini AA, Jang S, Guaragnella N, Giannattasio S, Wang W, Chen YA, Pires G, Dang A, Hernandez E, Kapur P, Mishra A, Tsirigos A, Miller G, Hsieh JT, Pagano M. Epigenetic silencing of the ubiquitin ligase subunit FBXL7 impairs c-SRC degradation and promotes epithelial-to-mesenchymal transition and metastasis. Nat Cell Biol 2020; 22:1130-1142. [PMID: 32839549 PMCID: PMC7484425 DOI: 10.1038/s41556-020-0560-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
Abstract
Epigenetic plasticity is a pivotal factor that drives metastasis. Here, we show that the promoter of the gene that encodes the ubiquitin ligase subunit FBXL7 is hypermethylated in advanced prostate and pancreatic cancers, correlating with decreased FBXL7 mRNA and protein levels. Low FBXL7 mRNA levels are predictive of poor survival in patients with pancreatic and prostatic cancers. FBXL7 mediates the ubiquitylation and proteasomal degradation of active c-SRC after its phosphorylation at Ser 104. The DNA-demethylating agent decitabine recovers FBXL7 expression and limits epithelial-to-mesenchymal transition and cell invasion in a c-SRC-dependent manner. In vivo, FBXL7-depleted cancer cells form tumours with a high metastatic burden. Silencing of c-SRC or treatment with the c-SRC inhibitor dasatinib together with FBXL7 depletion prevents metastases. Furthermore, decitabine reduces metastases derived from prostate and pancreatic cancer cells in a FBXL7-dependent manner. Collectively, this research implicates FBXL7 as a metastasis-suppressor gene and suggests therapeutic strategies to counteract metastatic dissemination of pancreatic and prostatic cancer cells.
Collapse
Affiliation(s)
- Loredana Moro
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA.
- Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY, USA.
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy.
| | - Daniele Simoneschi
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
- Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Emma Kurz
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
- Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Arnaldo A Arbini
- Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Shaowen Jang
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
- Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Nicoletta Guaragnella
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy
| | - Sergio Giannattasio
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Wei Wang
- Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Surgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Yu-An Chen
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Geoffrey Pires
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Andrew Dang
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elizabeth Hernandez
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Payal Kapur
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ankita Mishra
- Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Surgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Aristotelis Tsirigos
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - George Miller
- Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Surgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA.
- Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
32
|
Abstract
The presence of actin in the nucleus has been a matter of debate for many years. In recent years many important roles of actin in the nucleus (transcriptional regulation, chromatin remodeling, DNA repair, cell division, maintenance of nuclear architecture) have been identified, and the precise control of nuclear actin levels has been demonstrated. The vital importance of the actin driven processes in the cell make it highly likely that dysregulation of nuclear actin dynamics and structure can be linked to tumor induction and -progression. In this chapter I summarize our current knowledge about nuclear actin in the cancer context.
Collapse
|
33
|
Roncarati R, Lupini L, Miotto E, Saccenti E, Mascetti S, Morandi L, Bassi C, Rasio D, Callegari E, Conti V, Rinaldi R, Lanza G, Gafà R, Papi A, Frassoldati A, Sabbioni S, Ravenna F, Casoni GL, Negrini M. Molecular testing on bronchial washings for the diagnosis and predictive assessment of lung cancer. Mol Oncol 2020; 14:2163-2175. [PMID: 32441866 PMCID: PMC7463327 DOI: 10.1002/1878-0261.12713] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/04/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
Cytopathological analyses of bronchial washings (BWs) collected during fibre‐optic bronchoscopy are often inconclusive for lung cancer diagnosis. To address this issue, we assessed the suitability of conducting molecular analyses on BWs, with the aim to improve the diagnosis and outcome prediction of lung cancer. The methylation status of RASSF1A, CDH1, DLC1 and PRPH was analysed in BW samples from 91 lung cancer patients and 31 controls, using a novel two‐colour droplet digital methylation‐specific PCR (ddMSP) technique. Mutations in ALK, BRAF, EGFR, ERBB2, KRAS, MAP2K1, MET, NRAS, PIK3CA, ROS1 and TP53 and gene fusions of ALK, RET and ROS1 were also investigated, using next‐generation sequencing on 73 lung cancer patients and 14 tumour‐free individuals. Our four‐gene methylation panel had significant diagnostic power, with 97% sensitivity and 74% specificity (relative risk, 7.3; odds ratio, 6.1; 95% confidence interval, 12.7–127). In contrast, gene mutation analysis had a remarkable value for predictive, but not for diagnostic, purposes. Actionable mutations in EGFR, HER2 and ROS1 as well as in other cancer genes (KRAS, PIK3CA and TP53) were detected. Concordance with gene mutations uncovered in tumour biopsies was higher than 90%. In addition, bronchial‐washing analyses permitted complete patient coverage and the detection of additional actionable mutations. In conclusion, BWs are a useful material on which to perform molecular tests based on gene panels: aberrant gene methylation and mutation analyses could be performed as approaches accompanying current diagnostic and predictive assays during the initial workup phase. This study establishes the grounds for further prospective investigation.
Collapse
Affiliation(s)
- Roberta Roncarati
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy.,CNR, Institute of Genetics and Biomedical Research, National Research Council of Italy, Milano, Italy
| | - Laura Lupini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy
| | - Elena Miotto
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy
| | - Elena Saccenti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy
| | - Susanna Mascetti
- Azienda Ospedaliero-Universitaria di Ferrara, Division of Respiratory Endoscopy, S. Anna Hospital, Cona, Italy
| | - Luca Morandi
- Azienda Ospedaliero-Universitaria di Ferrara, Division of Respiratory Endoscopy, S. Anna Hospital, Cona, Italy
| | - Cristian Bassi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy.,Laboratorio per le Tecnologie delle Terapie Avanzate, Tecnopolo, University of Ferrara, Italy
| | - Debora Rasio
- Department of Clinical and Molecular Medicine, Sant' Andrea Hospital, University "La Sapienza", Rome, Italy
| | - Elisa Callegari
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy
| | - Valentina Conti
- Pneumology Division, State Hospital, San Marino, Republic of San Marino
| | - Rosa Rinaldi
- Division of Anatomic Pathology, Carlo Poma Hospital, Mantova, Italy
| | - Giovanni Lanza
- Azienda Ospedaliero-Universitaria di Ferrara, Division of Anatomic Pathology, S. Anna Hospital, Cona, Italy.,Department of Medical Sciences, University of Ferrara, Italy
| | - Roberta Gafà
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy.,Azienda Ospedaliero-Universitaria di Ferrara, Division of Anatomic Pathology, S. Anna Hospital, Cona, Italy
| | - Alberto Papi
- Azienda Ospedaliero-Universitaria di Ferrara, Division of Respiratory Endoscopy, S. Anna Hospital, Cona, Italy.,Department of Medical Sciences, University of Ferrara, Italy
| | - Antonio Frassoldati
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy.,Azienda Ospedaliero-Universitaria di Ferrara, Medical Oncology Unit, S. Anna Hospital, Cona, Italy
| | - Silvia Sabbioni
- Laboratorio per le Tecnologie delle Terapie Avanzate, Tecnopolo, University of Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Italy
| | - Franco Ravenna
- Division of Pneumology and Intensive Respiratory Unit, Carlo Poma Hospital, Mantova, Italy
| | - Gian L Casoni
- Azienda Ospedaliero-Universitaria di Ferrara, Division of Respiratory Endoscopy, S. Anna Hospital, Cona, Italy
| | - Massimo Negrini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy.,Laboratorio per le Tecnologie delle Terapie Avanzate, Tecnopolo, University of Ferrara, Italy
| |
Collapse
|
34
|
Kong R, Sun G, Li X, Wu L, Li L, Li Y, Wang F, Xuan P, Yang S, Sun B, Hu J. Small Molecule Inhibitor C188-9 Synergistically Enhances the Demethylated Activity of Low-Dose 5-Aza-2'-Deoxycytidine Against Pancreatic Cancer. Front Oncol 2020; 10:612. [PMID: 32457835 PMCID: PMC7225308 DOI: 10.3389/fonc.2020.00612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/03/2020] [Indexed: 01/26/2023] Open
Abstract
Aberrant DNA methylation, especially hypermethylation of tumor suppressor genes, has been associated with many cancers' progression. 5-Aza-2′-deoxycytidine (DAC) can reverse hypermethylation-induced gene silencing via regulating DNA methyltransferases (DNMTs) activity, In addition, low-dose of DAC was proved to exert durable antitumor effects against solid tumor cells. Nevertheless, no clinical effect of DAC has been made when fighting against pancreatic cancer. Hence, it is necessary to raise a novel therapeutic strategy that further enhance the efficacy of DAC but not increase side effect, which impede the utilization of DAC. In the present study, we have discovered that C188-9, a novel signal transduction activator of transcription (STAT) inhibitor, could improve the antitumor effects of low-dose DAC in vivo and in vitro. Further study demonstrated that such improvement was attributed to re-expression of Ras association domain family member 1A (RASSF1A), a well-known tumor suppressor gene. Bisulfite sequencing PCR (BSP) assay showed that C188-9 combined with DAC treatment could significantly reverse the hypermethylation status of RASSF1A promoter, which indicated that C188-9 could enhance the demethylation efficacy of DAC. Our data demonstrated that DNA methyltransferase 1 (DNMT1) was the underlying mechanism that C188-9 regulates the demethylation efficacy of DAC. Overall, these findings provide a novel therapeutic strategy combining low-dose DAC and C188-9 to improve therapeutic efficacy by inhibiting DNMT1-inducing promoter methylation.
Collapse
Affiliation(s)
- Rui Kong
- Department of Pancreatic and Biliary Surgery, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Guangming Sun
- Department of Pancreatic and Biliary Surgery, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Xina Li
- Department of Pancreatic and Biliary Surgery, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Linfeng Wu
- Department of Pancreatic and Biliary Surgery, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Le Li
- Department of Pancreatic and Biliary Surgery, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Yilong Li
- Department of Pancreatic and Biliary Surgery, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Fei Wang
- Department of Pancreatic and Biliary Surgery, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Ping Xuan
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
| | - Shifeng Yang
- Department of Pancreatic and Biliary Surgery, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Jisheng Hu
- Department of Pancreatic and Biliary Surgery, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| |
Collapse
|
35
|
Direct comparison of size-dependent versus EpCAM-dependent CTC enrichment at the gene expression and DNA methylation level in head and neck squamous cell carcinoma. Sci Rep 2020; 10:6551. [PMID: 32300118 PMCID: PMC7162906 DOI: 10.1038/s41598-020-63055-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/29/2020] [Indexed: 11/15/2022] Open
Abstract
We directly compared two different approaches used for Circulating Tumor Cell (CTC) isolation, a size-dependent microfluidic system versus an EpCAM-dependent positive selection for downstream molecular characterization of CTC both at the gene expression and DNA methylation level in Head and Neck Squamous Cell Carcinoma (HNSCC). A size-dependent microfluidic device (Parsortix, ANGLE) and an EpCAM-dependent positive immune-magnetic isolation procedure were applied in parallel, using 10 mL PB from 50 HNSCC patients and 18 healthy donors. Total RNA was isolated from enriched CTCs and RT-qPCR was used to study the expression levels of CK-19, PD-L1, EGFR, TWIST1, CDH2 and B2M (reference gene). Real time methylation specific PCR (MSP) was used to study the methylation status of RASSF1A and MLL3 genes. In identical blood draws, the label-free size-dependent CTC-isolation system was superior in terms of sensitivity when compared to the EpCAM-dependent CTC enrichment, since a significantly higher percentage of identical PB samples was found positive at the gene expression and DNA methylation level, while the specificity was not affected. Our results indicate that future studies focused on the evaluation of clinical utility of CTC molecular characterization in HNSCC should be based on size-dependent enrichment approaches.
Collapse
|
36
|
Li N, Zeng Y, Huang J. Signaling pathways and clinical application of RASSF1A and SHOX2 in lung cancer. J Cancer Res Clin Oncol 2020; 146:1379-1393. [PMID: 32266538 DOI: 10.1007/s00432-020-03188-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/17/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND An increasing number of studies have focused on the early diagnostic value of the methylation of RASSF1A and SHOX2 in lung cancer. However, the intricate cellular events related to RASSF1A and SHOX2 in lung cancer are still a mystery. For researchers and clinicians aiming to more profoundly understand the diagnostic value of methylated RASSF1A and SHOX2 in lung cancer, this review will provide deeper insights into the molecular events of RASSF1A and SHOX2 in lung cancer. METHODOLOGY We searched for relevant publications in the PubMed and Google Scholar databases using the keywords "RASSF1A", "SHOX2" and "lung cancer" etc. First, we reviewed the RASSF1A and SHOX2 genes, from their family structures to the functions of their basic structural domains. Then we mainly focused on the roles of RASSF1A and SHOX2 in lung cancer, especially on their molecular events in recent decades. Finally, we compared the value of measuring RASSF1A and SHOX2 gene methylation with that of the common methods for the diagnosis of lung cancer patients. RESULTS The RASSF1A and SHOX2 genes were confirmed to be regulators or effectors of multiple cancer signaling pathways, driving tumorigenesis and lung cancer progression. The detection of RASSF1A and SHOX2 gene methylation has higher sensitivity and specificity than other commonly used methods for diagnosing lung cancer, especially in the early stage. CONCLUSIONS The RASSF1A and SHOX2 genes are critical for the processes of tumorigenesis, development, metastasis, drug resistance, and recurrence in lung cancer. The combined detection of RASSF1A and SHOX2 gene methylation was identified as an excellent method for the screening and surveillance of lung cancer that exhibits high sensitivity and specificity.
Collapse
Affiliation(s)
- Nanhong Li
- Department of Pathology, Guangdong Medical University, Zhanjiang, 524023, China
| | - Yu Zeng
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524003, China
| | - Jian Huang
- Department of Pathology, Guangdong Medical University, Zhanjiang, 524023, China.
- Pathological Diagnosis and Research Center, Affiliated Hospital, Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
37
|
Effects of Propolis and Phenolic Acids on Triple-Negative Breast Cancer Cell Lines: Potential Involvement of Epigenetic Mechanisms. Molecules 2020; 25:molecules25061289. [PMID: 32178333 PMCID: PMC7143942 DOI: 10.3390/molecules25061289] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 12/23/2022] Open
Abstract
Triple-negative breast cancer is an aggressive disease frequently associated with resistance to chemotherapy. Evidence supports that small molecules showing DNA methyltransferase inhibitory activity (DNMTi) are important to sensitize cancer cells to cytotoxic agents, in part, by reverting the acquired epigenetic changes associated with the resistance to therapy. The present study aimed to evaluate if chemical compounds derived from propolis could act as epigenetic drugs (epi-drugs). We selected three phenolic acids (caffeic, dihydrocinnamic, and p-coumaric) commonly detected in propolis and the (−)-epigallocatechin-3-gallate (EGCG) from green tea, which is a well-known DNA demethylating agent, for further analysis. The treatment with p-coumaric acid and EGCG significantly reduced the cell viability of four triple-negative breast cancer cell lines (BT-20, BT-549, MDA-MB-231, and MDA-MB-436). Computational predictions by molecular docking indicated that both chemicals could interact with the MTAse domain of the human DNMT1 and directly compete with its intrinsic inhibitor S-Adenosyl-l-homocysteine (SAH). Although the ethanolic extract of propolis (EEP) did not change the global DNA methylation content, by using MS-PCR (Methylation-Specific Polymerase Chain Reaction) we demonstrated that EEP and EGCG were able to partly demethylate the promoter region of RASSF1A in BT-549 cells. Also, in vitro treatment with EEP altered the RASSF1 protein expression levels. Our data indicated that some chemical compound present in the EEP has DNMTi activity and can revert the epigenetic silencing of the tumor suppressor RASSF1A. These findings suggest that propolis are a promising source for epi-drugs discovery.
Collapse
|
38
|
Ahmed AA, Adam Essa ME. Epigenetic alterations in female urogenital organs cancer: Premise, properties, and perspectives. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
39
|
Khatami F, Larijani B, Heshmat R, Nasiri S, Haddadi-Aghdam M, Teimoori-Toolabi L, Tavangar SM. Hypermethylated RASSF1 and SLC5A8 promoters alongside BRAF V600E mutation as biomarkers for papillary thyroid carcinoma. J Cell Physiol 2020; 235:6954-6968. [PMID: 32017063 DOI: 10.1002/jcp.29591] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
Abstract
Circulating cell-free DNA (cfDNA) has been considered as a diagnostic source to track genetic and epigenetic alterations in cancer. We aimed to study mutation in addition to the methylation status in the promoter regions of RASSF1 and SLC5A8 genes in tissues and circulating free DNA samples of patients affected with papillary thyroid carcinoma (PTC) and thyroid nodules as controls. BRAFV600E mutation was studied by ARMS-scorpion real-time polymerase chain reaction method in 57 PTC and 45 thyroid nodule cases. Methylation status of RASSF1 and SLC5A8 promoter regions was analyzed by methylation-specific high-resolution melting curve analysis. BRAFV600E mutation was found in 39 (68.4%) out of 57 PTC tissue samples, while in 33 (49.1%) cases of cfDNA, this mutation was detected. The frequency of BRAFV600E mutation in cfDNA was significantly different between metastatic and nonmetastatic PTC cases (22 of 33 PTC cases vs. 5 of 34 thyroid nodule samples). Methylation levels of three promoter regions of SLC5A8 and proximal promoter region of RASSF1 was significantly different between PTC and thyroid nodule cases in both cfDNA and tissue DNA. In addition, the methylation status of these two genes in tissue DNA was reflected in methylation status observed in cfDNA. This study confirmed that BRAFV600E mutation is better for discrimination between papillary thyroid carcinoma and thyroid nodules. On the other hand, hypermethylation in the more proximal promoter regions to RASSF1 and SLC5A8 genes showed higher sensitivity and more acceptable specificity for this discrimination.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirzad Nasiri
- Departments of Surgery, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Haddadi-Aghdam
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ladan Teimoori-Toolabi
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed M Tavangar
- Department of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Bin Y, Ding Y, Xiao W, Liao A. RASSF1A: A promising target for the diagnosis and treatment of cancer. Clin Chim Acta 2020; 504:98-108. [PMID: 31981586 DOI: 10.1016/j.cca.2020.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
The Ras association domain family 1 isoform A (RASSF1A), a tumor suppressor, regulates several tumor-related signaling pathways and interferes with diverse cellular processes. RASSF1A is frequently demonstrated to be inactivated by hypermethylation in numerous types of solid cancers. It is also associated with lymph node metastasis, vascular invasion, and chemo-resistance. Therefore, reactivation of RASSF1A may be a viable strategy to block tumor progress and reverse drug resistance. In this review, we have summarized the clinical value of RASSF1A for screening, staging, and therapeutic management of human malignancies. We also highlighted the potential mechanism of RASSF1A in chemo-resistance, which may help identify novel drugs in the future.
Collapse
Affiliation(s)
- Yuling Bin
- Digestive System Department, the First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Yong Ding
- Department of Vascular Surgery, Zhongshan Hospital, Institue of Vascular Surgery, Fudan University, Shanghai 200032, China
| | - Weisheng Xiao
- Digestive System Department, the First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Aijun Liao
- Digestive System Department, the First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
41
|
García-Gutiérrez L, McKenna S, Kolch W, Matallanas D. RASSF1A Tumour Suppressor: Target the Network for Effective Cancer Therapy. Cancers (Basel) 2020; 12:cancers12010229. [PMID: 31963420 PMCID: PMC7017281 DOI: 10.3390/cancers12010229] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
The RASSF1A tumour suppressor is a scaffold protein that is involved in cell signalling. Increasing evidence shows that this protein sits at the crossroad of a complex signalling network, which includes key regulators of cellular homeostasis, such as Ras, MST2/Hippo, p53, and death receptor pathways. The loss of expression of RASSF1A is one of the most common events in solid tumours and is usually caused by gene silencing through DNA methylation. Thus, re-expression of RASSF1A or therapeutic targeting of effector modules of its complex signalling network, is a promising avenue for treating several tumour types. Here, we review the main modules of the RASSF1A signalling network and the evidence for the effects of network deregulation in different cancer types. In particular, we summarise the epigenetic mechanism that mediates RASSF1A promoter methylation and the Hippo and RAF1 signalling modules. Finally, we discuss different strategies that are described for re-establishing RASSF1A function and how a multitargeting pathway approach selecting druggable nodes in this network could lead to new cancer treatments.
Collapse
Affiliation(s)
- Lucía García-Gutiérrez
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland; (L.G.-G.); (S.M.); (W.K.)
| | - Stephanie McKenna
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland; (L.G.-G.); (S.M.); (W.K.)
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland; (L.G.-G.); (S.M.); (W.K.)
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - David Matallanas
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland; (L.G.-G.); (S.M.); (W.K.)
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Correspondence:
| |
Collapse
|
42
|
The Role of RASSF1 Methylation in Lung Carcinoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1255:99-108. [PMID: 32949393 DOI: 10.1007/978-981-15-4494-1_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lung carcinoma is the most frequently diagnosed malignant neoplasms and mainly consists of small-cell lung carcinoma (SCLC) and non-small-cell lung carcinoma (NSCLC). Large number of lung carcinoma patients have poor outcomes due to the late diagnosis and the limited therapeutic options. Previous attempts have proved that the evolution of lung carcinoma is a multistep molecular aberration which various genetic or epigenetic alterations may be take part in. Among these molecular aberrations, the inactivation of tumor suppressor gene has been widely observed in all types of carcinoma including lung carcinoma. As a vital inactivated mechanism, DNA methylation of tumor suppressor gene is frequently found in lung cancer. To gain exhaustive comprehension of the carcinogenesis of lung carcinoma, we summarize our current knowledge on DNA methylation of RASSF1 (RAS-Association Domain Family 1) and its clinical significance in lung carcinoma.
Collapse
|
43
|
Dubois F, Bergot E, Zalcman G, Levallet G. RASSF1A, puppeteer of cellular homeostasis, fights tumorigenesis, and metastasis-an updated review. Cell Death Dis 2019; 10:928. [PMID: 31804463 PMCID: PMC6895193 DOI: 10.1038/s41419-019-2169-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/27/2022]
Abstract
The Ras association domain family protein1 isoform A (RASSF1A) is a well-known tumor-suppressor protein frequently inactivated in various human cancers. Consistent with its function as a molecular scaffold protein, referred to in many studies, RASSF1A prevents initiation of tumorigenesis, growth, and dissemination through different biological functions, including cell cycle arrest, migration/metastasis inhibition, microtubular stabilization, and apoptosis promotion. As a regulator of key cancer pathways, namely Ras/Rho GTPases and Hippo signaling without ignoring strong interaction with microtubules, RASSF1A is indeed one of the guardians of cell homeostasis. To date, as we approach the two decade anniversary of RASSF1A's discovery, this review will summarize our current knowledge on the RASSF1A key interactions as a tumor suppressor and discuss their impact on cell fate during carcinogenesis. This could facilitate a deeper understanding of tumor development and provide us with new strategies in cancer treatment by targeting the RASSF1A pathway.
Collapse
Affiliation(s)
- Fatéméh Dubois
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, Caen, France
- Department of Pathology, CHU de Caen, Caen, France
| | - Emmanuel Bergot
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, Caen, France
- Department of Pulmonology & Thoracic Oncology, CHU de Caen, Caen, France
| | - Gérard Zalcman
- U830 INSERM "Genetics and biology of cancers, A.R.T group", Curie Institute, Paris, France
- Department of Thoracic Oncology & CIC1425, Hôpital Bichat-Claude Bernard, Assistance Publique Hôpitaux de Paris, Université Paris-Diderot, Paris, France
| | - Guénaëlle Levallet
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, Caen, France.
- Department of Pathology, CHU de Caen, Caen, France.
| |
Collapse
|
44
|
Zinatizadeh MR, Miri SR, Zarandi PK, Chalbatani GM, Rapôso C, Mirzaei HR, Akbari ME, Mahmoodzadeh H. The Hippo Tumor Suppressor Pathway (YAP/TAZ/TEAD/MST/LATS) and EGFR-RAS-RAF-MEK in cancer metastasis. Genes Dis 2019; 8:48-60. [PMID: 33569513 PMCID: PMC7859453 DOI: 10.1016/j.gendis.2019.11.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/24/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Abstract
Hippo Tumor Suppressor Pathway is the main pathway for cell growth that regulates tissue enlargement and organ size by limiting cell growth. This pathway is activated in response to cell cycle arrest signals (cell polarity, transduction, and DNA damage) and limited by growth factors or mitogens associated with EGF and LPA. The major pathway consists of the central kinase of Ste20 MAPK (Saccharomyces cerevisiae), Hpo (Drosophila melanogaster) or MST kinases (mammalian) that activates the mammalian AGC kinase dmWts or LATS effector (MST and LATS). YAP in the nucleus work as a cofactor for a wide range of transcription factors involved in proliferation (TEA domain family, TEAD1-4), stem cells (Oct4 mononuclear factor and SMAD-related TGFβ effector), differentiation (RUNX1), and Cell cycle/apoptosis control (p53, p63, and p73 family members). This is due to the diverse roles of YAP and may limit tumor progression and establishment. TEAD also coordinates various signal transduction pathways such as Hippo, WNT, TGFβ and EGFR, and effects on lack of regulation of TEAD cancerous genes, such as KRAS, BRAF, LKB1, NF2 and MYC, which play essential roles in tumor progression, metastasis, cancer metabolism, immunity, and drug resistance. However, RAS signaling is a pivotal factor in the inactivation of Hippo, which controls EGFR-RAS-RAF-MEK-ERK-mediated interaction of Hippo signaling. Thus, the loss of the Hippo pathway may have significant consequences on the targets of RAS-RAF mutations in cancer.
Collapse
Affiliation(s)
- Mohammad Reza Zinatizadeh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
- Corresponding author. Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Rouhollah Miri
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Peyman Kheirandish Zarandi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Ghanbar Mahmoodi Chalbatani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Catarina Rapôso
- Faculty of Pharmaceutical Sciences State University of Campinas – UNICAMP Campinas, SP, Brazil
| | - Hamid Reza Mirzaei
- Cancer Research Center, Shohadae Tajrish Hospital, Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Habibollah Mahmoodzadeh
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
- Corresponding author. Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
45
|
Xia S, Ye J, Chen Y, Lizaso A, Huang L, Shi L, Su J, Han-Zhang H, Chuai S, Li L, Chen Y. Parallel serial assessment of somatic mutation and methylation profile from circulating tumor DNA predicts treatment response and impending disease progression in osimertinib-treated lung adenocarcinoma patients. Transl Lung Cancer Res 2019; 8:1016-1028. [PMID: 32010579 DOI: 10.21037/tlcr.2019.12.09] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Circulating tumor DNA (ctDNA) harboring tumor-specific genetic and epigenetic aberrations allows for early detection and real-time monitoring of tumor dynamics. In this study, we aimed to evaluate the potential of parallel serial assessment of somatic mutation and methylation profile in monitoring the response to osimertinib of epidermal growth factor receptor (EGFR) T790M-positive advanced lung adenocarcinoma patients. Methods Parallel somatic mutation and DNA methylation profiling was performed on a total of 85 longitudinal plasma samples obtained from 8 stage IV osimertinib-treated EGFR T790M-positive lung adenocarcinoma patients. Results Our results revealed a significant correlation between the by-patient methylation level with the maximum allele fraction (maxAF, P=0.0002). The methylation levels were significantly higher in the plasma samples of patients with detectable somatic mutations than patients without somatic mutations (P=0.0003) and healthy controls (P=0.0018). Moreover, analysis of both the DNA methylation level and maxAF revealed four trends of treatment response. Collectively, the decrease in methylation level and maxAF reflected treatment efficacy, while the gradual increase reflected impending disease progression (PD). Elevated methylation levels and maxAF were observed in 6 and 5 patients in an average lead-time of 3.0 and 1.9 months, respectively, prior to evaluation of PD using radiological imaging. Conclusions DNA methylation profiling has the potential to predict disease relapse prior to evaluation through radiological modalities, suggesting that serial assessment of methylation level in combination with somatic mutation profiling are reliable methods for treatment monitoring. These methods should thus be incorporated with imaging modalities for a more comprehensive work-up of treatment response, particularly for patients treated with targeted therapies.
Collapse
Affiliation(s)
- Shu Xia
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Affiliated Hospital of Qinghai University, Xining 810000, China
| | - Junyi Ye
- Burning Rock Biotech, Guangzhou 510300, China
| | - Yu Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | - Le Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lei Shi
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Su
- Burning Rock Biotech, Guangzhou 510300, China
| | | | | | - Lingling Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuan Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
46
|
Guo M, Peng Y, Gao A, Du C, Herman JG. Epigenetic heterogeneity in cancer. Biomark Res 2019; 7:23. [PMID: 31695915 PMCID: PMC6824025 DOI: 10.1186/s40364-019-0174-y] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
Phenotypic and functional heterogeneity is one of the hallmarks of human cancers. Tumor genotype variations among tumors within different patients are known as interpatient heterogeneity, and variability among multiple tumors of the same type arising in the same patient is referred to as intra-patient heterogeneity. Subpopulations of cancer cells with distinct phenotypic and molecular features within a tumor are called intratumor heterogeneity (ITH). Since Nowell proposed the clonal evolution of tumor cell populations in 1976, tumor heterogeneity, especially ITH, was actively studied. Research has focused on the genetic basis of cancer, particularly mutational activation of oncogenes or inactivation of tumor-suppressor genes (TSGs). The phenomenon of ITH is commonly explained by Darwinian-like clonal evolution of a single tumor. Despite the monoclonal origin of most cancers, new clones arise during tumor progression due to the continuous acquisition of mutations. It is clear that disruption of the "epigenetic machinery" plays an important role in cancer development. Aberrant epigenetic changes occur more frequently than gene mutations in human cancers. The epigenome is at the intersection of the environment and genome. Epigenetic dysregulation occurs in the earliest stage of cancer. The current trend of epigenetic therapy is to use epigenetic drugs to reverse and/or delay future resistance to cancer therapies. A majority of cancer therapies fail to achieve durable responses, which is often attributed to ITH. Epigenetic therapy may reverse drug resistance in heterogeneous cancer. Complete understanding of genetic and epigenetic heterogeneity may assist in designing combinations of targeted therapies based on molecular information extracted from individual tumors.
Collapse
Affiliation(s)
- Mingzhou Guo
- 1Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, 40 Daxue Road, Zhengzhou, Henan 450052 China
| | - Yaojun Peng
- 1Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - Aiai Gao
- 1Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - Chen Du
- 1Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - James G Herman
- 3The Hillman Cancer Center, University of Pittsburgh Cancer Institute, 5117 Centre Ave., Pittsburgh, PA 15213 USA
| |
Collapse
|
47
|
Sun X, Li H, Sun M, Yuan Y, Sun L. Circulating tumor DNA RASSF1 methylation for predicting cancer risk: a diagnostic meta-analysis. Future Oncol 2019; 15:3513-3525. [PMID: 31578881 DOI: 10.2217/fon-2019-0219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: We conducted a meta-analysis to assess diagnostic accuracy of circulating tumor DNA RASSF1 methylation in cancer. Materials & methods: Studies were searched from PubMed, Embase, Web of Science and China National Knowledge Infrastructure databases for articles published until December 2018. The sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio and summary receiver operating characteristic were used to assess the diagnostic value, and MethHC database was used for verification. Results: 13 studies with 1237 subjects and 676 cancer patients were enrolled. The area under curve was 0.80 (95% CI: 0.76-0.83), the pooled sensitivity was 0.35 (95% CI: 0.31-0.39) and the specificity was 0.97 (95% CI: 0.95-0.98). Verification by MethHC database was almost consistent with the result of meta-analysis. Conclusion: Circulating tumor DNA RASSF1 methylation is a potential biomarker for predicting cancer.
Collapse
Affiliation(s)
- Xin Sun
- Tumor Etiology & Screening Department of Cancer Institute & General Surgery, the First Hospital of China Medical University, Shenyang 110001, PR China.,Digestive Department, The First Affiliated Hospital of China Medical University, Liaoning, Shenyang 110001, PR China
| | - Hao Li
- Tumor Etiology & Screening Department of Cancer Institute & General Surgery, the First Hospital of China Medical University, Shenyang 110001, PR China
| | - Mingjun Sun
- Digestive Department, The First Affiliated Hospital of China Medical University, Liaoning, Shenyang 110001, PR China
| | - Yuan Yuan
- Tumor Etiology & Screening Department of Cancer Institute & General Surgery, the First Hospital of China Medical University, Shenyang 110001, PR China.,Key Laboratory of Cancer Etiology & Prevention in Liaoning Education Department, Key Laboratory of GI Cancer Etiology & Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang 110001, PR China
| | - Liping Sun
- Tumor Etiology & Screening Department of Cancer Institute & General Surgery, the First Hospital of China Medical University, Shenyang 110001, PR China.,Key Laboratory of Cancer Etiology & Prevention in Liaoning Education Department, Key Laboratory of GI Cancer Etiology & Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang 110001, PR China
| |
Collapse
|
48
|
Khatami F, Larijani B, Heshmat R, Nasiri S, Saffar H, Shafiee G, Mossafa A, Tavangar SM. Promoter Methylation of Four Tumor Suppressor Genes in Human Papillary Thyroid Carcinoma. IRANIAN JOURNAL OF PATHOLOGY 2019; 14:290-298. [PMID: 31754358 PMCID: PMC6824767 DOI: 10.30699/ijp.2019.94401.1922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 07/27/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND & OBJECTIVE Papillary thyroid cancer (PTC) is considered to be the most common type of thyroid malignancies. Epigenetic alteration, in which the chromatin conformation and gene expression change without changing the sequence of DNA, can occur in some tumor suppressor genes and oncogenes. Methylation is the most common type of epigenetic alterations that can be an excellent indicator of PTC invasive behavior. METHODS In this research, we determined the promoter methylation status of four tumor suppressor genes (SLC5A8, RASSF1, MGMT, and DNMT1) and compared the results of 55 PTC cases with 40 goiter patients. For methylation, we used the methylation-sensitive high resolution melting (MS-HRM) assay technique. The resulting graphs of each run were compared with those of 0%, 50%, and 100% methylated controls. RESULTS Our data showed that the promoter methylation of SLC5A8, Ras association domain family member 1(RASSF1), and MGMT were significantly different between PTC tissue and goiter with P-value less than 0.05. The most significant differences were observed in RASSF1; 77.2% of hyper-methylated PTC patients versus 15.6% hyper-methylated goiter samples (P<0.001). CONCLUSION RASSF1 promoter methylation can be a PTC genetic marker. RASSF1 promoter methylation is under the impact of the methyltransferase genes (DNMT1 and MGMT), protein expression, and promoter methylation.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirzad Nasiri
- Department of Surgery, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Hiva Saffar
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Gita Shafiee
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azam Mossafa
- Department of Surgery, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Dvorská D, Braný D, Nagy B, Grendár M, Poka R, Soltész B, Jagelková M, Zelinová K, Lasabová Z, Zubor P, Danková Z. Aberrant Methylation Status of Tumour Suppressor Genes in Ovarian Cancer Tissue and Paired Plasma Samples. Int J Mol Sci 2019; 20:ijms20174119. [PMID: 31450846 PMCID: PMC6747242 DOI: 10.3390/ijms20174119] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is a highly heterogeneous disease and its formation is affected by many epidemiological factors. It has typical lack of early signs and symptoms, and almost 70% of ovarian cancers are diagnosed in advanced stages. Robust, early and non-invasive ovarian cancer diagnosis will certainly be beneficial. Herein we analysed the regulatory sequence methylation profiles of the RASSF1, PTEN, CDH1 and PAX1 tumour suppressor genes by pyrosequencing in healthy, benign and malignant ovarian tissues, and corresponding plasma samples. We recorded statistically significant higher methylation levels (p < 0.05) in the CDH1 and PAX1 genes in malignant tissues than in controls (39.06 ± 18.78 versus 24.22 ± 6.93; 13.55 ± 10.65 versus 5.73 ± 2.19). Higher values in the CDH1 gene were also found in plasma samples (22.25 ± 14.13 versus 46.42 ± 20.91). A similar methylation pattern with positive correlation between plasma and benign lesions was noted in the CDH1 gene (r = 0.886, p = 0.019) and malignant lesions in the PAX1 gene (r = 0.771, p < 0.001). The random forest algorithm combining methylation indices of all four genes and age determined 0.932 AUC (area under the receiver operating characteristic (ROC) curve) prediction power in the model classifying malignant lesions and controls. Our study results indicate the effects of methylation changes in ovarian cancer development and suggest that the CDH1 gene is a potential candidate for non-invasive diagnosis of ovarian cancer.
Collapse
Affiliation(s)
- Dana Dvorská
- Division of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Dušan Braný
- Division of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia.
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Marián Grendár
- Bioinformatic Unit, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Robert Poka
- Institute of Obstetrics and Gynecology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Beáta Soltész
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Marianna Jagelková
- Department of Gynaecology and Obstetrics, Martin University Hospital, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Katarína Zelinová
- Department of Gynaecology and Obstetrics, Martin University Hospital, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Zora Lasabová
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Pavol Zubor
- Department of Gynaecology and Obstetrics, Martin University Hospital, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Zuzana Danková
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| |
Collapse
|
50
|
Chatzifrangkeskou M, Pefani D, Eyres M, Vendrell I, Fischer R, Pankova D, O'Neill E. RASSF1A is required for the maintenance of nuclear actin levels. EMBO J 2019; 38:e101168. [PMID: 31414556 PMCID: PMC6694222 DOI: 10.15252/embj.2018101168] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/23/2019] [Accepted: 05/14/2019] [Indexed: 01/19/2023] Open
Abstract
Nuclear actin participates in many essential cellular processes including gene transcription, chromatin remodelling and mRNA processing. Actin shuttles into and out the nucleus through the action of dedicated transport receptors importin-9 and exportin-6, but how this transport is regulated remains unclear. Here, we show that RASSF1A is a novel regulator of actin nucleocytoplasmic trafficking and is required for the active maintenance of nuclear actin levels through supporting binding of exportin-6 (XPO6) to RAN GTPase. RASSF1A (Ras association domain family 1 isoform A) is a tumour suppressor gene frequently silenced by promoter hypermethylation in all major solid cancers. Specifically, we demonstrate that endogenous RASSF1A localises to the nuclear envelope (NE) and is required for nucleocytoplasmic actin transport and the concomitant regulation of myocardin-related transcription factor A (MRTF-A), a co-activator of the transcription factor serum response factor (SRF). The RASSF1A/RAN/XPO6/nuclear actin pathway is aberrant in cancer cells where RASSF1A expression is lost and correlates with reduced MRTF-A/SRF activity leading to cell adhesion defects. Taken together, we have identified a previously unknown mechanism by which the nuclear actin pool is regulated and uncovered a previously unknown link of RASSF1A and MRTF-A/SRF in tumour suppression.
Collapse
Affiliation(s)
| | - Dafni‐Eleftheria Pefani
- Department of OncologyUniversity of OxfordOxfordUK
- Laboratory of BiologyMedical SchoolNational and Kapodistrian University of AthensAthensGreece
- Biomedical Research Foundation of the Academy of AthensAthensGreece
| | | | - Iolanda Vendrell
- Department of OncologyUniversity of OxfordOxfordUK
- Nuffield Department of MedicineTarget Discovery InstituteUniversity of OxfordOxfordUK
| | - Roman Fischer
- Nuffield Department of MedicineTarget Discovery InstituteUniversity of OxfordOxfordUK
| | | | - Eric O'Neill
- Department of OncologyUniversity of OxfordOxfordUK
| |
Collapse
|