1
|
Joe S, Kim J, Lee JY, Jeon J, Byeon I, Han SW, Ryoo SB, Park KJ, Song SH, Cho S, Shim H, Chu HBK, Kang J, Lee HS, Kim D, Kim YJ, Kim TY, Kim SY. Epigenetic insights into colorectal cancer: comprehensive genome-wide DNA methylation profiling of 294 patients in Korea. BMB Rep 2023; 56:563-568. [PMID: 37574809 PMCID: PMC10618077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 08/15/2023] Open
Abstract
DNA methylation regulates gene expression and contributes to tumorigenesis in the early stages of cancer. In colorectal cancer (CRC), CpG island methylator phenotype (CIMP) is recognized as a distinct subset that is associated with specific molecular and clinical features. In this study, we investigated the genomewide DNA methylation patterns among patients with CRC. The methylation data of 1 unmatched normal, 142 adjacent normal, and 294 tumor samples were analyzed. We identified 40,003 differentially methylated positions with 6,933 (79.8%) hypermethylated and 16,145 (51.6%) hypomethylated probes in the genic region. Hypermethylated probes were predominantly found in promoter-like regions, CpG islands, and N shore sites; hypomethylated probes were enriched in open-sea regions. CRC tumors were categorized into three CIMP subgroups, with 90 (30.6%) in the CIMP-high (CIMP-H), 115 (39.1%) in the CIMP-low (CIMP-L), and 89 (30.3%) in the non-CIMP group. The CIMP-H group was associated with microsatellite instabilityhigh tumors, hypermethylation of MLH1, older age, and rightsided tumors. Our results showed that genome-wide methylation analyses classified patients with CRC into three subgroups according to CIMP levels, with clinical and molecular features consistent with previous data. [BMB Reports 2023; 56(10): 563-568].
Collapse
Affiliation(s)
- Soobok Joe
- Korea Bioinformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Jinyong Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jin-Young Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Jongbum Jeon
- Korea Bioinformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Iksu Byeon
- Korea Bioinformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Sae-Won Han
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Seung-Bum Ryoo
- Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Kyu Joo Park
- Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sang-Hyun Song
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sheehyun Cho
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Hyeran Shim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Hoang Bao Khanh Chu
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Jisun Kang
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Hong Seok Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | | | - Young-Joon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
- LepiDyne Co., Ltd., Seoul 04779, Korea
| | - Tae-You Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea
- IMBdx, Inc., Seoul 08506, Korea
| | - Seon-Young Kim
- Korea Bioinformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| |
Collapse
|
2
|
Song S, Wang J, Zhou H, Wang W, Kong D. Poorer Survival in Patients with Cecum Cancer Compared with Sigmoid Colon Cancer. MEDICINA (KAUNAS, LITHUANIA) 2022; 59:medicina59010045. [PMID: 36676671 PMCID: PMC9864791 DOI: 10.3390/medicina59010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022]
Abstract
Background and Objectives: An increasing number of studies have shown the influence of primary tumor location of colon cancer on prognosis, but the prognostic difference between colon cancers at different locations remains controversial. After comparing the prognostic differences between left-sided and right-sided colon cancer, the study subdivided left-sided and right-sided colon cancer into three parts, respectively, and explored which parts had the most significant prognostic differences, with the aim to further analyze the prognostic significance of primary locations of colon cancer. Materials and Methods: Clinicopathological data of patients with colon cancer who underwent radical surgery from the Surveillance, Epidemiology, and End Results Program database were analyzed. The data was divided into two groups (2004−2009 and 2010−2015) based on time intervals. Two tumor locations with the most significant survival difference were explored by using Cox regression analyses. The prognostic difference of the two locations was further verified in survival analyses after propensity score matching. Results: Patients with right-sided colon cancer had worse cancer-specific and overall survival compared to left-sided colon cancer. Survival difference between cecum cancer and sigmoid colon cancer was found to be the most significant among six tumor locations in both 2004−2009 and 2010−2015 time periods. After propensity score matching, multivariate analyses showed that cecum cancer was an independent unfavorable factor for cancer specific survival (HR [95% CI]: 1.11 [1.04−1.17], p = 0.001 for 2004−2009; HR [95% CI]: 1.23 [1.13−1.33], p < 0.001 for 2010−2015) and overall survival (HR [95% CI]: 1.09 [1.04−1.14], p < 0.001 for 2004−2009; HR [95% CI]: 1.09 [1.04−1.14], p < 0.001 for 2010−2015) compared to sigmoid colon cancer. Conclusions: The study indicates the prognosis of cecum cancer is worse than that of sigmoid colon. The current dichotomy model (right-sided vs. left-sided colon) may be inappropriate for the study of colon cancer.
Collapse
Affiliation(s)
- Shibo Song
- Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiefu Wang
- Department of Colorectal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Heng Zhou
- Department of Oncology Surgery, People’s Hospital of QingXian, Cangzhou 062655, China
| | - Wenpeng Wang
- Department of Colorectal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Correspondence: (W.W.); (D.K.); Tel./Fax: +20-2334-0123-1071 (W.W.)
| | - Dalu Kong
- Department of Colorectal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Correspondence: (W.W.); (D.K.); Tel./Fax: +20-2334-0123-1071 (W.W.)
| |
Collapse
|
3
|
Meta-Analysis of the Prognostic and Predictive Role of the CpG Island Methylator Phenotype in Colorectal Cancer. DISEASE MARKERS 2022; 2022:4254862. [PMID: 36157209 PMCID: PMC9499813 DOI: 10.1155/2022/4254862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/30/2022] [Indexed: 12/24/2022]
Abstract
Background Various studies have produced contradictory results on the prognostic role of the CpG island methylator phenotype (CIMP) among colorectal cancer (CRC) patients. Although a meta-analysis published in 2014 reported a worse prognosis of CIMP among CIMP-high (CIMP-H) CRC patients, the sample sizes of the major included studies were small. In this study, we included the most recent studies with large sample sizes and performed an updated meta-analysis on the relationship between CIMP and CRC prognosis. Methods A search of MEDLINE, Web of Science, and Cochrane for studies related to CIMP and CRC published until July 2021 was conducted based on the PICO (participant, intervention, control, outcome) framework. Data extraction and literature analyses were performed according to PRISMA standards. Results In the present update, 36 eligible studies (20 recently published) reported survival data in 15315 CRC patients, 18.3% of whom were characterized as CIMP-H. Pooled analysis suggested that CIMP-H was associated with poorer overall survival (OS) (hazard ratio [HR] = 1.37, 95% CI: 1.26–1.48) and disease-free survival/progression-free survival/recurrence-free survival (DFS/PFS/RFS) (HR = 1.51, 95% CI: 1.19–1.91) among CRC patients. Subgroup analysis based on tumor stage and DNA mismatch repair (MMR) status showed that only patients with stages III-IV and proficient MMR (pMMR) tumors showed a significant association between CIMP-H and shorter OS, with HRs of 1.52 and 1.37, respectively. Three studies were pooled to explore the predictive value of CIMP on CRC patient DFS after receiving postoperative chemotherapy, and no significant correlation was found. Conclusion CIMP-H is associated with a significantly poor prognosis in CRC patients, especially those with stage III-IV and pMMR tumors. However, the predictive value of CIMP needs to be confirmed by more prospective randomized studies.
Collapse
|
4
|
Hino H, Shiomi A, Hatakeyama K, Kagawa H, Manabe S, Yamaoka Y, Nagashima T, Ohshima K, Urakami K, Akiyama Y, Yamaguchi K. Comprehensive genetic characterization of rectal cancer in a large cohort of Japanese patients: differences according to tumor location. J Gastroenterol 2022; 57:476-485. [PMID: 35449312 DOI: 10.1007/s00535-022-01875-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/03/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND In clinical practice, rectal cancer (RC) is classified according to tumor location. However, RC's genetic characteristics according to tumor location remain unclear. Therefore, we aimed to compare RC's genetic characteristics according to tumor location. METHODS In 611 patients with surgically resected RC, we performed genetic analyses and compared the results between low and other RCs. Low RC was defined according to the European Society for Medical Oncology (ESMO) guidelines and Japanese Classification of Colorectal, Appendiceal, and Anal Carcinoma (JCCRC). RESULTS KRAS mutation accumulation was significantly higher in low RC under the ESMO classification. Gene expression levels significantly differed between the groups for CTNNB1, KRAS, and ERBB2, under the ESMO classification and for TP53, KRAS, and ERBB2 under the JCCRC. Under the JCCRC, low RC had a significantly higher prevalence of fusion genes, such as EIF3E-RSPO2, PTPRK-RSPO3, and VTI1A-TCF7L2. Consensus molecular subtype (CMS) distribution was significantly different between the groups under both classifications. In particular, low RC had lower and higher frequencies of CMS2 and CMS4, respectively. CMS2 and CMS4 frequencies in low RC were 14.8% and 41.5% under the ESMO classification and 14.5% and 41.6% under the JCCRC, respectively. Multivariate Cox regression analysis demonstrated that pT3-4, pN1-2, and CMS4 were associated with poor relapse-free survival. CONCLUSIONS Low RC exhibited distinct genetic characteristics from other RCs. In particular, CMS4 was more frequent in low RC and was a risk factor for poor prognosis. These findings potentially avail further information regarding tumor biology and could lead to improvements in RC treatment.
Collapse
Affiliation(s)
- Hitoshi Hino
- Division of Colon and Rectal Surgery, Shizuoka Cancer Center Hospital, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan.
| | - Akio Shiomi
- Division of Colon and Rectal Surgery, Shizuoka Cancer Center Hospital, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Keiichi Hatakeyama
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Hiroyasu Kagawa
- Division of Colon and Rectal Surgery, Shizuoka Cancer Center Hospital, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Shoichi Manabe
- Division of Colon and Rectal Surgery, Shizuoka Cancer Center Hospital, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Yusuke Yamaoka
- Division of Colon and Rectal Surgery, Shizuoka Cancer Center Hospital, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Takeshi Nagashima
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan.,SRL Inc., Shinjuku-ku, Tokyo, 163-0409, Japan
| | - Keiichi Ohshima
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Kenichi Urakami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Yasuto Akiyama
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Ken Yamaguchi
- Shizuoka Cancer Center, Sunto-gun, Shizuoka, 411-8777, Japan
| |
Collapse
|
5
|
Fatemi N, Tierling S, Es HA, Varkiani M, Nazemalhosseini Mojarad E, Asadzadeh Aghdaei H, Walter J, Totonchi M. DNA Methylation Biomarkers in Colorectal Cancer: Clinical Applications for Precision Medicine. Int J Cancer 2022; 151:2068-2081. [PMID: 35730647 DOI: 10.1002/ijc.34186] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/29/2022] [Accepted: 06/08/2022] [Indexed: 11/06/2022]
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer death worldwide that is attributed to gradual long-term accumulation of both genetic and epigenetic changes. To reduce the mortality rate of CRC and to improve treatment efficacy, it will be important to develop accurate noninvasive diagnostic tests for screening, acute, and personalized diagnosis. Epigenetic changes such as DNA methylation play an important role in the development and progression of CRC. Over the last decade, a panel of DNA methylation markers has been reported showing a high accuracy and reproducibility in various semi-invasive or noninvasive biosamples. Research to obtain comprehensive panels of markers allowing a highly sensitive and differentiating diagnosis of CRC is ongoing. Moreover, the epigenetic alterations for cancer therapy, as a precision medicine strategy will increase their therapeutic potential over time. Here, we discuss the current state of DNA methylation-based biomarkers and their impact on CRC diagnosis. We emphasize the need to further identify and stratify methylation-biomarkers and to develop robust and effective detection methods that are applicable for a routine clinical setting of CRC diagnostics particularly at the early stage of the disease.
Collapse
Affiliation(s)
- Nayeralsadat Fatemi
- Basic & Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sascha Tierling
- Department of Genetics/Epigenetics, Faculty NT, Life Sciences, Saarland University, Saarbrücken, Germany
| | | | - Maryam Varkiani
- Department of Molecular Genetics, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Ehsan Nazemalhosseini Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic & Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jörn Walter
- Department of Genetics/Epigenetics, Faculty NT, Life Sciences, Saarland University, Saarbrücken, Germany
| | - Mehdi Totonchi
- Basic & Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
6
|
Otsuki Y, Ouchi K, Takahashi S, Sasaki K, Sakamoto Y, Okita A, Ishioka C. Altered gene expression due to aberrant DNA methylation correlates with responsiveness to anti-EGFR antibody treatment. Cancer Sci 2022; 113:3221-3233. [PMID: 35403373 PMCID: PMC9459254 DOI: 10.1111/cas.15367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/26/2022] [Accepted: 04/03/2022] [Indexed: 11/29/2022] Open
Abstract
The cetuximab gene expression signature and DNA methylation status of colorectal cancer (CRC) are predictive of the therapeutic effects of anti‐epidermal growth factor receptor (EGFR) antibody therapy. As DNA methylation is a means of regulating gene expression, it may play an important role in the expression of cetuximab signature genes. This study aims to determine the effects of aberrant DNA methylation on the regulation of cetuximab signature gene expression. Comprehensive DNA methylation and gene expression data were retrieved from CRC patients in three tumor tissue (TT) cohorts and three normal colorectal mucosa/tumor tissue paired (NCM‐TT) cohorts. Of the 231 cetuximab signature genes, 57 exhibited an inverse correlation between the methylation of promoter CpG sites and gene expression level in multiple cohorts. About two‐thirds of the promoter CpG sites associated with the 57 genes exhibited this correlation. In all 57 gene promoter regions, the methylation levels in NCMs did not differ according to comparisons based on cetuximab signature or DNA methylation status classification of matched TTs. Thus, the altered expression of 57 genes was caused by aberrant DNA methylation during carcinogenesis. Analysis of the association between cetuximab signature or DNA methylation status and progression‐free survival (PFS) of anti‐EGFR antibody agents in the same cohort showed that DNA methylation status was most associated with PFS. In conclusion, we found that aberrant DNA methylation regulates specific gene expression in cetuximab signature during carcinogenesis, suggesting that it is one of the important determinants of sensitivity to anti‐EGFR antibody agents.
Collapse
Affiliation(s)
- Yasufumi Otsuki
- Department of Clinical Oncology, Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan.,Department of Medical Oncology, Tohoku University Hospital, Miyagi, Japan
| | - Kota Ouchi
- Department of Clinical Oncology, Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan.,Department of Medical Oncology, Tohoku University Hospital, Miyagi, Japan
| | - Shin Takahashi
- Department of Clinical Oncology, Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan.,Department of Medical Oncology, Tohoku University Hospital, Miyagi, Japan
| | - Keiju Sasaki
- Department of Clinical Oncology, Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan.,Department of Medical Oncology, Tohoku University Hospital, Miyagi, Japan
| | - Yasuhiro Sakamoto
- Department of Medical Oncology, Osaki Citizen Hospital, Miyagi, Japan
| | - Akira Okita
- Department of Medical Oncology, Osaki Citizen Hospital, Miyagi, Japan
| | - Chikashi Ishioka
- Department of Clinical Oncology, Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan.,Department of Medical Oncology, Tohoku University Hospital, Miyagi, Japan.,Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| |
Collapse
|
7
|
Ouchi K, Takahashi S, Okita A, Sakamoto Y, Muto O, Amagai K, Okada T, Ohori H, Shinozaki E, Ishioka C. A modified MethyLight assay predicts the clinical outcomes of anti-EGFR treatment in metastatic colorectal cancer. Cancer Sci 2021; 113:1057-1068. [PMID: 34962023 PMCID: PMC8898715 DOI: 10.1111/cas.15252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022] Open
Abstract
DNA methylation status correlates with clinical outcomes of anti‐epidermal growth factor receptor (EGFR) treatment. There is a strong need to develop a simple assay for measuring DNA methylation status for the clinical application of drug selection based on it. In this study, we collected data from 186 patients with metastatic colorectal cancer (mCRC) who had previously received anti‐EGFR treatment. We modified MethyLite to develop a novel assay to classify patients as having highly methylated colorectal cancer (HMCC) or low‐methylated colorectal cancer (LMCC) based on the methylation status of 16 CpG sites of tumor‐derived genomic DNA in the development cohort (n = 30). Clinical outcomes were then compared between the HMCC and LMCC groups in the validation cohort (n = 156). The results showed that HMCC had a significantly worse response rate (4.2% vs 33.3%; P = .004), progression‐free survival (median: 2.5 vs 6.6 mo, P < .001, hazard ratio [HR] = 0.22), and overall survival (median: 5.6 vs 15.5 mo, P < .001, HR = 0.23) than did LMCC in patients with RAS wild‐type mCRC who were refractory or intolerable to oxaliplatin‐ and irinotecan‐based chemotherapy (n = 101). The DNA methylation status was an independent predictive factor and a more accurate biomarker than was the primary site of anti‐EGFR treatment. In conclusion, our novel DNA methylation measurement assay based on MethyLight was simple and useful, suggesting its implementation as a complementary diagnostic tool in a clinical setting.
Collapse
Affiliation(s)
- Kota Ouchi
- Department of Clinical Oncology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Miyagi, Japan.,Department of Medical Oncology, Tohoku University Hospital, Miyagi, Japan
| | - Shin Takahashi
- Department of Clinical Oncology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Miyagi, Japan.,Department of Medical Oncology, Tohoku University Hospital, Miyagi, Japan
| | - Akira Okita
- Department of Clinical Oncology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Miyagi, Japan.,Department of Medical Oncology, Tohoku University Hospital, Miyagi, Japan
| | - Yasuhiro Sakamoto
- Department of Medical Oncology, Osaki Citizen Hospital, Miyagi, Japan
| | - Osamu Muto
- Department of Medical Oncology, Akita Red Cross Hospital, Akita, Japan
| | - Kenji Amagai
- Department of Gastroenterology, Ibaraki Prefectural Central Hospital, Ibaraki Cancer Center, Ibaraki, Japan
| | - Takaho Okada
- Department of Digestive Surgery, Sendai Open Hospital, Miyagi, Japan
| | - Hisatsugu Ohori
- Department of Medical Oncology, Ishinomaki Red Cross Hospital, Miyagi, Japan
| | - Eiji Shinozaki
- Gastrointestinal Oncology Department, The Cancer Institute Hospital of JFCR, Tokyo, Japan
| | - Chikashi Ishioka
- Department of Clinical Oncology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Miyagi, Japan.,Department of Medical Oncology, Tohoku University Hospital, Miyagi, Japan.,Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| |
Collapse
|
8
|
Tomicic MT, Dawood M, Efferth T. Epigenetic Alterations Upstream and Downstream of p53 Signaling in Colorectal Carcinoma. Cancers (Basel) 2021; 13:cancers13164072. [PMID: 34439227 PMCID: PMC8394868 DOI: 10.3390/cancers13164072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) belongs to the most common tumor types, and half of all CRC harbor missense mutations in the TP53 tumor suppressor gene. In addition to genetically caused loss of function of p53, epigenetic alterations (DNA methylation, histone modifications, micro-RNAs) contribute to CRC development. In this review, we focused on epigenetic alterations related to the entire p53 signaling pathway upstream and downstream of p53. Methylation of genes which activate p53 function has been reported, and methylation of APC and MGMT was associated with increased mutation rates of TP53. The micro-RNA 34a activates TP53 and was methylated in CRC. Proteins that regulate TP53 DNA methylation, mutations, and acetylation of TP53-related histones were methylated in CRC. P53 regulates the activity of numerous downstream proteins. Even if TP53 is not mutated, the function of wildtype p53 may be compromised if corresponding downstream genes are epigenetically inactivated. Thus, the role of p53 for CRC development, therapy response, and survival prognosis of patients may be much more eminent than previously estimated. Therefore, we propose that novel diagnostic devices measuring the entirety of genetic and epigenetic changes in the "p53 signalome" have the potential to improve the predictive and prognostic power in CRC diagnostics and management.
Collapse
Affiliation(s)
- Maja T. Tomicic
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany;
| | - Mona Dawood
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128 Mainz, Germany;
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128 Mainz, Germany;
- Correspondence: ; Tel.: +49-6131-3925751; Fax: +49-6131-3923752
| |
Collapse
|
9
|
Zhang X, Zhang W, Cao P. Advances in CpG Island Methylator Phenotype Colorectal Cancer Therapies. Front Oncol 2021; 11:629390. [PMID: 33718206 PMCID: PMC7952756 DOI: 10.3389/fonc.2021.629390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/18/2021] [Indexed: 01/05/2023] Open
Abstract
With the aging of the population, the incidence of colorectal cancer in China is increasing. One of the epigenetic alterations: CpG island methylator phenotype (CIMP) plays an important role in the incidence of colorectal cancer. Recent studies have shown that CIMP is closely related to some specific clinicopathological phenotypes and multiple molecular phenotypes in colorectal cancer. In this paper, the newest progress of CIMP colorectal cancer in chemotherapeutic drugs, targeted agents and small molecular methylation inhibitors are going to be introduced. We hope to provide potential clinical treatment strategies for personalized and precise treatment of colorectal cancer patients.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Department of Medical Oncology, Dalian University Affiliated Xinhua Hospital, Dalian, China
| | - Wenjun Zhang
- Department of Colorectal Surgery, Dalian University Affiliated Xinhua Hospital, Dalian, China
| | - Pingan Cao
- Department of Medical Oncology, Dalian University Affiliated Xinhua Hospital, Dalian, China
| |
Collapse
|
10
|
Zhang C, Zhao N, Zhang X, Xiao J, Li J, Lv D, Zhou W, Li Y, Xu J, Li X. SurvivalMeth: a web server to investigate the effect of DNA methylation-related functional elements on prognosis. Brief Bioinform 2020; 22:5890509. [PMID: 32778890 DOI: 10.1093/bib/bbaa162] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/04/2020] [Accepted: 06/27/2020] [Indexed: 12/18/2022] Open
Abstract
Aberrant DNA methylation is a fundamental characterization of epigenetics for carcinogenesis. Abnormality of DNA methylation-related functional elements (DMFEs) may lead to dysfunction of regulatory genes in the progression of cancers, contributing to prognosis of many cancers. There is an urgent need to construct a tool to comprehensively assess the impact of DMFEs on prognosis. Therefore, we developed SurvivalMeth (http://bio-bigdata.hrbmu.edu.cn/survivalmeth) to explore the prognosis-related DMFEs, which documented many kinds of DMFEs, including 309,465 CpG island-related elements, 104,748 transcript-related elements, 77,634 repeat elements, as well as cell-type specific 1,689,653 super enhancers (SE) and 1,304,902 CTCF binding regions for analysis. SurvivalMeth is a convenient tool which collected DNA methylation profiles of 36 cancers and allowed users to query their genes of interest in different datasets for prognosis. Furthermore, SurvivalMeth not only integrated different combinations, including single DMFE, multiple DMFEs, SEs and clinical data, to perform survival analysis on preupload data but also allowed for uploading customized DNA methylation profile of DMFEs from various diseases to analyze. SurvivalMeth provided a comprehensive resource and automated analysis for prognostic DMFEs, including DMFE methylation level, correlation analysis, clinical analysis, differential analysis, DMFE annotation, survival-related detailed result and visualization of survival analysis. In summary, we believe that SurvivalMeth will facilitate prognostic research of DMFEs in diverse cancers.
Collapse
Affiliation(s)
- Chunlong Zhang
- College of Bioinformatics Science and Technology at Harbin Medical University
| | - Ning Zhao
- School of Life Sciences and Technology at Harbin Institute of Technology
| | - Xue Zhang
- College of Bioinformatics Science and Technology at Harbin Medical University
| | - Jun Xiao
- College of Bioinformatics Science and Technology at Harbin Medical University
| | - Junyi Li
- College of Bioinformatics Science and Technology at Harbin Medical University
| | - Dezhong Lv
- College of Bioinformatics Science and Technology at Harbin Medical University
| | - Weiwei Zhou
- College of Bioinformatics Science and Technology at Harbin Medical University
| | - Yongsheng Li
- College of Bioinformatics Science and Technology at Harbin Medical University
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Juan Xu
- College of Bioinformatics Science and Technology at Harbin Medical University
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Xia Li
- College of Bioinformatics Science and Technology at Harbin Medical University
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| |
Collapse
|
11
|
Cervena K, Siskova A, Buchler T, Vodicka P, Vymetalkova V. Methylation-Based Therapies for Colorectal Cancer. Cells 2020; 9:E1540. [PMID: 32599894 PMCID: PMC7349319 DOI: 10.3390/cells9061540] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 02/08/2023] Open
Abstract
Colorectal carcinogenesis (CRC) is caused by the gradual long-term accumulation of both genetic and epigenetic changes. Recently, epigenetic alterations have been included in the classification of the CRC molecular subtype, and this points out their prognostic impact. As epigenetic modifications are reversible, they may represent relevant therapeutic targets. DNA methylation, catalyzed by DNA methyltransferases (DNMTs), regulates gene expression. For many years, the deregulation of DNA methylation has been considered to play a substantial part in CRC etiology and evolution. Despite considerable advances in CRC treatment, patient therapy response persists as limited, and their profit from systemic therapies are often hampered by the introduction of chemoresistance. In addition, inter-individual changes in therapy response in CRC patients can arise from their specific (epi)genetic compositions. In this review article, we summarize the options of CRC treatment based on DNA methylation status for their predictive value. This review also includes the therapy outcomes based on the patient's methylation status in CRC patients. In addition, the current challenge of research is to develop therapeutic inhibitors of DNMT. Based on the essential role of DNA methylation in CRC development, the application of DNMT inhibitors was recently proposed for the treatment of CRC patients, especially in patients with DNA hypermethylation.
Collapse
Affiliation(s)
- Klara Cervena
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska 1083, 14 200 Prague, Czech Republic; (K.C.); (A.S.); (P.V.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
| | - Anna Siskova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska 1083, 14 200 Prague, Czech Republic; (K.C.); (A.S.); (P.V.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
| | - Tomas Buchler
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Videnska 800, 140 59 Prague, Czech Republic;
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska 1083, 14 200 Prague, Czech Republic; (K.C.); (A.S.); (P.V.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska 1083, 14 200 Prague, Czech Republic; (K.C.); (A.S.); (P.V.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| |
Collapse
|
12
|
George S, Lucero Y, Torres JP, Lagomarcino AJ, O'Ryan M. Gastric Damage and Cancer-Associated Biomarkers in Helicobacter pylori-Infected Children. Front Microbiol 2020; 11:90. [PMID: 32117120 PMCID: PMC7029740 DOI: 10.3389/fmicb.2020.00090] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori (H. pylori) is well-known to be involved in gastric carcinogenesis, associated with deregulation of cell proliferation and epigenetic changes in cancer-related genes. H. pylori infection is largely acquired during childhood, persisting long-term in about half of infected individuals, a subset of whom will go on to develop peptic ulcer disease and eventually gastric cancer, however, the sequence of events leading to disease is not completely understood. Knowledge on carcinogenesis and gastric damage-related biomarkers is abundant in adult populations, but scarce in children. We performed an extensive literature review focusing on gastric cancer related biomarkers identified in adult populations, which have been detected in children infected with H. pylori. Biomarkers were related to expression levels (RNA or protein) and/or methylation levels (DNA) in gastric tissue or blood of infected children as compared to non-infected controls. In this review, we identified 37 biomarkers of which 24 are over expressed, three are under expressed, and ten genes are significantly hypermethylated in H. pylori-infected children compared to healthy controls in at least 1 study. Only four of these biomarkers (pepsinogen I, pepsinogen II, gastrin, and SLC5A8) have been studied in asymptomatically infected children. Importantly, 13 of these biomarkers (β-catenin, C-MYC, GATA-4, DAPK1, CXCL13, DC-SIGN, TIMP3, EGFR, GRIN2B, PIM2, SLC5A8, CDH1, and VCAM-1.) are consistently deregulated in infected children and in adults with gastric cancer. Future studies should be designed to determine the clinical significance of these changes in infection-associated biomarkers in children and their persistence over time. The effect of eradication therapy over these biomarkers in children if proven significant, could lead to modifications in treatment guidelines for younger populations, and eventually promote the development of preventive strategies, such as vaccination, in the near future.
Collapse
Affiliation(s)
- Sergio George
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Yalda Lucero
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.,Department of Pediatrics and Pediatric Surgery, Dr. Roberto del Río Hospital, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Juan Pablo Torres
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.,Department of Pediatrics and Pediatric Surgery, Dr. Luis Calvo Mackenna Hospital, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Anne J Lagomarcino
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Miguel O'Ryan
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy (IMII), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
13
|
Guo W, Fu Y, Jin L, Song K, Yu R, Li T, Qi L, Gu Y, Zhao W, Guo Z. An Exon Signature to Estimate the Tumor Mutational Burden of Right-sided Colon Cancer Patients. J Cancer 2020; 11:883-892. [PMID: 31949492 PMCID: PMC6959028 DOI: 10.7150/jca.34363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 09/22/2019] [Indexed: 01/05/2023] Open
Abstract
The clinical applicability of the whole-exome sequencing (WES) in estimating tumor mutational burden (TMB) is currently limited by high cost, time-consuming and tissue availability. And given to the differences in the mutational landscapes among different types of cancer, we aimed to develop a cancer-specific signature to estimate TMB for right-sided colon cancer patients (RCC). Using WES data of 315 RCC patients, we identified the exons in which the number of mutational sites of the coding DNA sequences associated with TMB through linear regression analysis. Then, among these exons, we extracted a signature composed by 102 exons (~0.13 Mbp) through a heuristic selection procedure. The TMB estimated by the signature was highly correlated with those calculated by WES in the discovery dataset (R2=0.9869) and three independent validation datasets (R2=0.9351, R2=0.8063 and R2=0.9527, respectively). And the performance of the signature was superior to a colorectal-specific TMB estimation model contained 22 genes (~0.24 Mbp). Moreover, between TMB-high and TMB-low RCC patients, there were significantly differences in the frequencies of microsatellite instability status, CpG island methylator phenotype, BRAF, KRAS and POLE/POLD1 mutation status (p<0.01). However, the performances of the signature in other types of cancer were dramatically degraded (left-sided colon cancer, R2=0.7849 and 0.9407, respectively; rectum, R2=0.5955 and R2=0.965, respectively; breast cancer, R2=0.8444; lung cancer, R2=0.5963), suggesting that it was necessary to develop cancer-specific TMB estimated signatures to estimate precisely the TMB in different types of cancer. In summary, we developed an exon signature that can accurately estimate TMB in RCC patients, and the cost and time required for the assessment of TMB can be considerably decreased, making it more suitable for blood and/or biopsy samples.
Collapse
Affiliation(s)
- Wenbing Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China
| | - Yelin Fu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China
| | - Liangliang Jin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China
| | - Kai Song
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China
| | - Ruihan Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China
| | - Tianhao Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China
| | - Lishuang Qi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China
| | - Yunyan Gu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China
| | - Wenyuan Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China
| | - Zheng Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China;,Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China.,Key Laboratory of Medical Bioinformatics, Fujian Province, Fuzhou 350122, China
| |
Collapse
|
14
|
Fu Y, Qi L, Guo W, Jin L, Song K, You T, Zhang S, Gu Y, Zhao W, Guo Z. A qualitative transcriptional signature for predicting microsatellite instability status of right-sided Colon Cancer. BMC Genomics 2019; 20:769. [PMID: 31646964 PMCID: PMC6813057 DOI: 10.1186/s12864-019-6129-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/23/2019] [Indexed: 12/16/2022] Open
Abstract
Background Microsatellite instability (MSI) accounts for about 15% of colorectal cancer and is associated with prognosis. Today, MSI is usually detected by polymerase chain reaction amplification of specific microsatellite markers. However, the instability is identified by comparing the length of microsatellite repeats in tumor and normal samples. In this work, we developed a qualitative transcriptional signature to individually predict MSI status for right-sided colon cancer (RCC) based on tumor samples. Results Using RCC samples, based on the relative expression orderings (REOs) of gene pairs, we extracted a signature consisting of 10 gene pairs (10-GPS) to predict MSI status for RCC through a feature selection process. A sample is predicted as MSI when the gene expression orderings of at least 7 gene pairs vote for MSI; otherwise the microsatellite stability (MSS). The classification performance reached the largest F-score in the training dataset. This signature was verified in four independent datasets of RCCs with the F-scores of 1, 0.9630, 0.9412 and 0.8798, respectively. Additionally, the hierarchical clustering analyses and molecular features also supported the correctness of the reclassifications of the MSI status by 10-GPS. Conclusions The qualitative transcriptional signature can be used to classify MSI status of RCC samples at the individualized level.
Collapse
Affiliation(s)
- Yelin Fu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China
| | - Lishuang Qi
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China
| | - Wenbing Guo
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China
| | - Liangliang Jin
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China
| | - Kai Song
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China
| | - Tianyi You
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China
| | - Shuobo Zhang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China
| | - Yunyan Gu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China
| | - Wenyuan Zhao
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China.
| | - Zheng Guo
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China. .,Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China. .,Key Laboratory of Medical Bioinformatics, Fujian Province, Fuzhou, 350122, China.
| |
Collapse
|
15
|
Duan L, Yang W, Wang X, Zhou W, Zhang Y, Liu J, Zhang H, Zhao Q, Hong L, Fan D. Advances in prognostic markers for colorectal cancer. Expert Rev Mol Diagn 2019; 19:313-324. [PMID: 30907673 DOI: 10.1080/14737159.2019.1592679] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Lili Duan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Wanli Yang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Xiaoqian Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Wei Zhou
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Yujie Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Jinqiang Liu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Hongwei Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Qingchuan Zhao
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Liu Hong
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| |
Collapse
|
16
|
Clinical characteristics and prognosis of different primary tumor location in colorectal cancer: a population-based cohort study. Clin Transl Oncol 2019; 21:1524-1531. [PMID: 30875062 DOI: 10.1007/s12094-019-02083-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Emerging data have shown that patients with left-sided cancers have better survival than patients with right-sided cancers in terms of metastatic colorectal cancer. However, the available information and findings remain limited and contradictory in localized colorectal cancer. This study aimed to evaluate the clinical characteristics and prognosis of primary tumor location (PTL) in colorectal cancer. METHODS Patients' diagnoses were identified using the Surveillance, Epidemiology, and End Result database between 2006 and 2015. The analyses were further stipulated to patients with primary cancer site, histology, and stage information. The correlations between PTL and overall survival (OS) were assessed. RESULTS Compared with left-sided tumors, right-sided tumors were more likely to develop into T3 cancers (50.0% vs. 44.8%), T4 cancers (15.8% vs. 12.3%), mucinous or mucin-producing adenocarcinoma (10.8% vs. 5.0%), and signet ring cell carcinoma (1.4% vs. 0.7%), P < 0.01, respectively. Patients with right-sided tumors showed inferior OS (56.1% vs. 60.2%), and the hazard ratio was 1.224 (95% CI, 1.208-1.241, P < 0.001) in all stages. Stage-specific Cox regression analysis revealed that patients with right-sided tumors also showed inferior OS in every stage (respectively, P < 0.05) than left-sided tumors. CONCLUSIONS This study demonstrated that the prognoses of patients with left-sided cancers were better than those of patients with right-sided cancers regardless of stage. PTL can be a prognosis factor in colorectal cancer. We encourage developing clinical and translational studies to elucidate the causative relationship between PTL and prognosis.
Collapse
|
17
|
Roles of Methylated DNA Biomarkers in Patients with Colorectal Cancer. DISEASE MARKERS 2019; 2019:2673543. [PMID: 30944663 PMCID: PMC6421784 DOI: 10.1155/2019/2673543] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/22/2018] [Indexed: 12/25/2022]
Abstract
Colorectal cancer (CRC) is a leading cancer globally; therefore, early diagnosis and surveillance of this cancer are of paramount importance. Current methods of CRC diagnosis rely heavily on endoscopy or radiological imaging. Noninvasive tests including serum detection of the carcinoembryonic antigen (CEA) and faecal occult blood testing (FOBT) are associated with low sensitivity and specificity, especially at early stages. DNA methylation biomarkers have recently been found to have higher accuracy in CRC detection and enhanced prediction of prognosis and chemotherapy response. The most widely studied biomarker in CRC is methylated septin 9 (SEPT9), which is the only FDA-approved methylation-based biomarker for CRC. Apart from SEPT9, other methylated biomarkers including tachykinin-1 (TAC1), somatostatin (SST), and runt-related transcription factor 3 (RUNX3) have been shown to effectively detect CRC in a multitude of sample types. This review will discuss the performances of various methylated biomarkers used for CRC diagnosis and monitoring, when used alone or in combination.
Collapse
|
18
|
Mendis S, Beck S, Lee B, Lee M, Wong R, Kosmider S, Shapiro J, Yip D, Steel S, Nott L, Jennens R, Lipton L, Burge M, Field K, Ananda S, Wong HL, Gibbs P. Right versus left sided metastatic colorectal cancer: Teasing out clinicopathologic drivers of disparity in survival. Asia Pac J Clin Oncol 2019; 15:136-143. [PMID: 30761750 DOI: 10.1111/ajco.13135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 01/16/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Metastatic colorectal cancer (mCRC) patients with a right-sided primary (RC) have an inferior survival to mCRC arising from a left-sided primary (LC). Previous analyses have suggested multiple factors contribute. METHODS The Treatment of Recurrent and Advanced Colorectal Cancer (TRACC) Registry prospectively captured data on consecutive mCRC patients. RC were defined as tumors proximal to the splenic flexure; LC were those at and distal to the splenic flexure and included rectal cancers. Patient, tumor, treatment, and survival data were analyzed stratified by side. RESULTS Of 2306 patients enrolled from July 2009-March 2018, 747 (32%) had an RC. Patients with RC were older, more likely to be female and have a Charlson score ≥3. RC were more frequently BRAF mutated, deficient in mismatch repair, associated with peritoneal metastases, and less likely to receive chemotherapy. Progression-free survival on first-line systemic therapy was inferior for RC patients (8.1 vs. 10.8 months, hazard ratio [HR] for progression in RC 1.38, P < 0.001). Median overall survival for all RC patients was inferior (19.6 vs. 27.5 months, HR for death in RC 1.44, P < 0.001), and inferior within the treated (21 vs. 29.5 months, HR 1.52, P < 0.001) and untreated subgroups (5.9 vs. 10.3 months, HR 1.38, P = 0.009). Primary side remained a significant factor for overall survival in multivariate analysis. CONCLUSION Our data from a real-world population confirms the poorer prognosis associated with RC. Primary tumor location remains significantly associated with overall survival even when adjusting for multiple factors, indicating the existence of further side-based differences that are as yet undefined.
Collapse
Affiliation(s)
- Shehara Mendis
- Footscray Hospital, Western Health, Footscray, Victoria, Australia
| | - Sophie Beck
- Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Belinda Lee
- Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Royal Melbourne Hospital, Parkville, Victoria, Australia.,Faculty of Medicine & Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Margaret Lee
- Footscray Hospital, Western Health, Footscray, Victoria, Australia.,Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Royal Melbourne Hospital, Parkville, Victoria, Australia.,Faculty of Medicine & Health Sciences, University of Melbourne, Melbourne, Victoria, Australia.,Box Hill Hospital, Eastern Health, Box Hill, Victoria, Australia
| | - Rachel Wong
- Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Box Hill Hospital, Eastern Health, Box Hill, Victoria, Australia.,Faculty of Nursing & Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Suzanne Kosmider
- Footscray Hospital, Western Health, Footscray, Victoria, Australia
| | | | - Desmond Yip
- Canberra and Calvary Hospitals, Garran, Australian Capital Territory, Australia.,ANU Medical School, The Canberra Hospital, Garran, Australian Capital Territory, Australia
| | - Simone Steel
- Peninsula Private Hospital, Frankston, Victoria, Australia
| | - Louise Nott
- Royal Hobart Hospital, Hobart, Tasmania, Australia
| | | | - Lara Lipton
- Footscray Hospital, Western Health, Footscray, Victoria, Australia.,Cabrini Health, Malvern, Victoria, Australia
| | - Matthew Burge
- Royal Brisbane Hospital, Herston, Queensland, Australia
| | - Kathryn Field
- Royal Melbourne Hospital, Parkville, Victoria, Australia.,Faculty of Medicine & Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Sumitra Ananda
- Footscray Hospital, Western Health, Footscray, Victoria, Australia
| | - Hui-Li Wong
- Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Peter Gibbs
- Footscray Hospital, Western Health, Footscray, Victoria, Australia.,Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Royal Melbourne Hospital, Parkville, Victoria, Australia.,Faculty of Medicine & Health Sciences, University of Melbourne, Melbourne, Victoria, Australia.,BioGrid Australia, Melbourne, Australia
| |
Collapse
|
19
|
Ab Mutalib NS, Baharuddin R, Jamal R. Epigenome-Wide Analysis of DNA Methylation in Colorectal Cancer. COMPUTATIONAL EPIGENETICS AND DISEASES 2019:289-310. [DOI: 10.1016/b978-0-12-814513-5.00018-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
20
|
Cha Y, Kim SY, Yeo HY, Baek JY, Choi MK, Jung KH, Dong SM, Chang HJ. Association of CHFR Promoter Methylation with Treatment Outcomes of Irinotecan-Based Chemotherapy in Metastatic Colorectal Cancer. Neoplasia 2018; 21:146-155. [PMID: 30562637 PMCID: PMC6297269 DOI: 10.1016/j.neo.2018.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/27/2018] [Indexed: 02/08/2023] Open
Abstract
Aberrant promoter methylation plays a vital role in colorectal carcinogenesis. However, its role in treatment responses is unclear, especially for metastatic disease. Here, we investigated the association between promoter methylation and treatment outcomes of irinotecan-based chemotherapy in 102 patients with metastatic colorectal cancer. Promoter methylation was examined by methylation-specific polymerase chain reaction for three loci (CHFR, WRN, and SULF2) associated with chemotherapy response and five CpG island methylator phenotype (CIMP)–specific markers (CACNA1G, IGF2, NEUROG1, RUNX3, and SOCS1). Association between CHFR methylation and in vitro sensitivity to irinotecan was also evaluated. Promoter methylation of CHFR, WRN, and SULF2 was identified in 16 (15.7%), 24 (23.5%), and 33 (32.4%) patients, respectively. CIMP status was positive in 22 (21.6%) patients. CHFR methylation was associated with a significantly longer time to progression (TTP) (median: 8.77 vs. 4.43 months, P = .019), with trends favoring higher overall survival (OS) (median: 22.83 vs. 20.17 months, P = .300) and response rates (31.3% vs. 17.4%, P = .300). For patients with unmethylated CHFR, TTP (median: 5.60 vs. 3.53, P = .020) and OS (median: 20.57 vs. 9.23, P = .006) were significantly different according to CIMP status. Colorectal cancer cell lines with CHFR methylation demonstrated increased sensitivity to irinotecan. Both CHFR overexpression and combination with 5-aza-2′-deoxycytidine reversed irinotecan sensitivity in CHFR-methylated cell lines, whereas CHFR knockdown in unmethylated cells restored sensitivity to irinotecan. These data suggest that CHFR methylation may be associated with favorable treatment outcomes of irinotecan-based chemotherapy in patients with metastatic colorectal cancer.
Collapse
Affiliation(s)
- Yongjun Cha
- Center for Colorectal Cancer, National Cancer Center, Goyang, Korea; Precision Medicine Branch, Division of Precision Medicine, Research Institute of National Cancer Center, Goyang, Korea
| | - Sun Young Kim
- Center for Colorectal Cancer, National Cancer Center, Goyang, Korea
| | - Hyun Yang Yeo
- Precision Medicine Branch, Division of Precision Medicine, Research Institute of National Cancer Center, Goyang, Korea
| | - Ji Yeon Baek
- Center for Colorectal Cancer, National Cancer Center, Goyang, Korea; Translational Research Branch, Division of Translational Science, Research Institute of National Cancer Center, Goyang, Korea
| | - Moon Ki Choi
- Center for Colorectal Cancer, National Cancer Center, Goyang, Korea
| | - Kyung Hae Jung
- Center for Colorectal Cancer, National Cancer Center, Goyang, Korea
| | - Seung Myung Dong
- Molecular Epidemiology Branch, Division of Cancer Epidemiology and Prevention, Research Institute of National Cancer Center, Goyang, Korea.
| | - Hee Jin Chang
- Center for Colorectal Cancer, National Cancer Center, Goyang, Korea; Precision Medicine Branch, Division of Precision Medicine, Research Institute of National Cancer Center, Goyang, Korea.
| |
Collapse
|
21
|
Herviou L, Kassambara A, Boireau S, Robert N, Requirand G, Müller-Tidow C, Vincent L, Seckinger A, Goldschmidt H, Cartron G, Hose D, Cavalli G, Moreaux J. PRC2 targeting is a therapeutic strategy for EZ score defined high-risk multiple myeloma patients and overcome resistance to IMiDs. Clin Epigenetics 2018; 10:121. [PMID: 30285865 PMCID: PMC6171329 DOI: 10.1186/s13148-018-0554-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 09/24/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a malignant plasma cell disease with a poor survival, characterized by the accumulation of myeloma cells (MMCs) within the bone marrow. Epigenetic modifications in MM are associated not only with cancer development and progression, but also with drug resistance. METHODS We identified a significant upregulation of the polycomb repressive complex 2 (PRC2) core genes in MM cells in association with proliferation. We used EPZ-6438, a specific small molecule inhibitor of EZH2 methyltransferase activity, to evaluate its effects on MM cells phenotype and gene expression prolile. RESULTS PRC2 targeting results in growth inhibition due to cell cycle arrest and apoptosis together with polycomb, DNA methylation, TP53, and RB1 target genes induction. Resistance to EZH2 inhibitor is mediated by DNA methylation of PRC2 target genes. We also demonstrate a synergistic effect of EPZ-6438 and lenalidomide, a conventional drug used for MM treatment, activating B cell transcription factors and tumor suppressor gene expression in concert with MYC repression. We establish a gene expression-based EZ score allowing to identify poor prognosis patients that could benefit from EZH2 inhibitor treatment. CONCLUSIONS These data suggest that PRC2 targeting in association with IMiDs could have a therapeutic interest in MM patients characterized by high EZ score values, reactivating B cell transcription factors, and tumor suppressor genes.
Collapse
Affiliation(s)
| | - Alboukadel Kassambara
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
- IGH, CNRS, Univ Montpellier, Montpellier, France
| | - Stéphanie Boireau
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
- IGH, CNRS, Univ Montpellier, Montpellier, France
| | - Nicolas Robert
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
- IGH, CNRS, Univ Montpellier, Montpellier, France
| | - Guilhem Requirand
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
- IGH, CNRS, Univ Montpellier, Montpellier, France
| | - Carsten Müller-Tidow
- Medizinische Klinik und Poliklinik V, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Laure Vincent
- Department of Clinical Hematology, CHU Montpellier, Montpellier, France
| | - Anja Seckinger
- Medizinische Klinik und Poliklinik V, Universitätsklinikum Heidelberg, Heidelberg, Germany
- Nationales Centrum für Tumorerkrankungen, Heidelberg, Germany
| | - Hartmut Goldschmidt
- Medizinische Klinik und Poliklinik V, Universitätsklinikum Heidelberg, Heidelberg, Germany
- Nationales Centrum für Tumorerkrankungen, Heidelberg, Germany
| | - Guillaume Cartron
- UFR de Médecine, Univ Montpellier, Montpellier, France
- Department of Clinical Hematology, CHU Montpellier, Montpellier, France
- UMR CNRS 5235, Univ Montpellier, Montpellier, France
| | - Dirk Hose
- Medizinische Klinik und Poliklinik V, Universitätsklinikum Heidelberg, Heidelberg, Germany
- Nationales Centrum für Tumorerkrankungen, Heidelberg, Germany
| | | | - Jerome Moreaux
- Department of Biological Hematology, CHU Montpellier, Montpellier, France.
- IGH, CNRS, Univ Montpellier, Montpellier, France.
- UFR de Médecine, Univ Montpellier, Montpellier, France.
- Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, Hôpital Saint-Eloi-CHRU de Montpellier, 80, av. Augustin Fliche, 34295, Montpellier, Cedex 5, France.
| |
Collapse
|
22
|
Lee DW, Han SW, Kang JK, Bae JM, Kim HP, Won JK, Jeong SY, Park KJ, Kang GH, Kim TY. Association Between Fusobacterium nucleatum, Pathway Mutation, and Patient Prognosis in Colorectal Cancer. Ann Surg Oncol 2018; 25:3389-3395. [PMID: 30062471 DOI: 10.1245/s10434-018-6681-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND There is a close link between Fusobacterium nucleatum and colorectal cancer (CRC) tumorigenesis and chemoresistance. However, the genetic characteristics and clinical significance of CRC related with F. nucleatum remains unclear. This study evaluated the relationship between F. nucleatum, pathway mutation, and patient prognosis. METHODS Fusobacterium nucleatum amount in the tumor tissue and adjacent normal tissue were measured by quantitative polymerase chain reaction in adjuvant (N = 128) and metastatic (N = 118) cohorts. Patients were divided into binary (F. nucleatum-high and F. nucleatum-low) according to F. nucleatum amount. Targeted next-generation sequencing of 40 genes included in the 5 critical pathways (WNT, P53, RTK-RAS, PI3 K, and TGF-β) was performed in the adjuvant cohort. RESULTS Patients with MSI-H and CIMP-H had higher amount of F. nucleatum in tumor tissue. Fusobacterium nucleatum-high patients had higher rates of transition mutation and C to T (G to A) nucleotide change regardless of MSI status. In addition, mutation rate of AMER1 and ATM genes, and TGF-β pathway was higher in F. nucleatum-high patients. Fusobacterium nucleatum-high was associated with poor overall survival (OS) in the palliative cohort (26.4 vs. 30.7 months, p = 0.042). Multivariate analysis revealed F. nucleatum-high as an independent negative prognostic factor for OS [adjusted hazard ratio of 1.69 (95% confidence interval 1.04-2.75), p = 0.034]. However, F. nucleatum amount was not associated with recurrence in the adjuvant cohort. CONCLUSIONS F. nucleatum-high was associated with poor survival in metastatic CRC. In addition, we identified mutational characteristics of colorectal cancer according to F. nucleatum amount.
Collapse
Affiliation(s)
- Dae-Won Lee
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehang-Ro, Jongno-Gu, Seoul, 110-744, Korea
| | - Sae-Won Han
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehang-Ro, Jongno-Gu, Seoul, 110-744, Korea. .,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.
| | - Jun-Kyu Kang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Jeong Mo Bae
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Hwang-Phill Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Jae-Kyung Won
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Yong Jeong
- Department of Surgery, Seoul National University Hospital, Seoul, Korea
| | - Kyu Joo Park
- Department of Surgery, Seoul National University Hospital, Seoul, Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Tae-You Kim
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehang-Ro, Jongno-Gu, Seoul, 110-744, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| |
Collapse
|
23
|
Beggs AD, James J, Caldwell G, Prout T, Dilworth MP, Taniere P, Iqbal T, Morton DG, Matthews G. Discovery and Validation of Methylation Biomarkers for Ulcerative Colitis Associated Neoplasia. Inflamm Bowel Dis 2018; 24:1503-1509. [PMID: 29762666 PMCID: PMC6176894 DOI: 10.1093/ibd/izy119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Indexed: 12/11/2022]
Abstract
Background and aims Ulcerative colitis (UC) is associated with a higher background risk of dysplasia and/or neoplasia due to chronic inflammation. There exist few biomarkers for identification of patients with dysplasia, and targeted biopsies in this group of patients are inaccurate in reliably identifying dysplasia. We aimed to examine the epigenome of UC dysplasia and to identify and validate potential biomarkers. Methods Colonic samples from patients with UC-associated dysplasia or neoplasia underwent epigenome-wide analysis on the Illumina 450K methylation array. Markers were validated by bisulphite pyrosequencing on a secondary validation cohort and accuracy calculated using logistic regression and receiver-operator curves. Results Twelve samples from 4 patients underwent methylation array analysis and 6 markers (GNG7, VAV3, KIF5C, PIK3R5, TUBB6, and ZNF583) were taken forward for secondary validation on a cohort of 71 colonic biopsy samples consisting of normal uninflamed mucosa from control patients, acute and chronic colitis, "field" mucosa in patients with dysplasia/neoplasia, dysplasia, and neoplasia. Methylation in the beta-tubulin TUBB6 correlated with the presence of dysplasia (P < 0.0001) and accurately discriminated between dysplasia and nondysplastic tissue, even in the apparently normal field mucosa downstream from dysplastic lesions (AUC 0.84, 95% CI 0.81-0.87). Conclusions Methylation in TUBB6 is a potential biomarker for UC- associated dysplasia. Further validation is needed and is ongoing as part of the ENDCAP-C study.
Collapse
Affiliation(s)
- Andrew D Beggs
- Institute of Cancer and Genomic Science, University of Birmingham
| | - Jonathan James
- Institute of Cancer and Genomic Science, University of Birmingham
| | | | - Toby Prout
- Institute of Cancer and Genomic Science, University of Birmingham
| | - Mark P Dilworth
- Institute of Cancer and Genomic Science, University of Birmingham
| | - Phillipe Taniere
- Institute of Cancer and Genomic Science, University of Birmingham
| | - Tariq Iqbal
- Institute of Cancer and Genomic Science, University of Birmingham
| | - Dion G Morton
- Institute of Cancer and Genomic Science, University of Birmingham
| | - Glenn Matthews
- Institute of Cancer and Genomic Science, University of Birmingham
| |
Collapse
|
24
|
Wong CC, Li W, Chan B, Yu J. Epigenomic biomarkers for prognostication and diagnosis of gastrointestinal cancers. Semin Cancer Biol 2018; 55:90-105. [PMID: 29665409 DOI: 10.1016/j.semcancer.2018.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/04/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
Abstract
Altered epigenetic regulation is central to many human diseases, including cancer. Over the past two decade, major advances have been made in our understanding of the role of epigenetic alterations in carcinogenesis, particularly for DNA methylation, histone modifications and non-coding RNAs. Aberrant hypermethylation of DNA at CpG islands is a well-established phenomenon that mediates transcriptional silencing of tumor suppressor genes, and it is an early event integral to gastrointestinal cancer development. As such, detection of aberrant DNA methylation is being developed as biomarkers for prognostic and diagnostic purposes in gastrointestinal cancers. Diverse tissue types are suitable for the analyses of methylated DNA, such as tumor tissues, blood, plasma, and stool, and some of these markers are already utilized in the clinical setting. Recent advances in the genome-wide epigenomic approaches are enabling the comprehensive mapping of the cancer methylome, thus providing new avenues for mining novel biomarkers for disease prognosis and diagnosis. Here, we review the current knowledge on DNA methylation biomarkers for the prognostication and non-invasive diagnosis of gastrointestinal cancers and highlight their clinical application.
Collapse
Affiliation(s)
- Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong.
| | - Weilin Li
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong; Department of Surgery, The Chinese University of Hong Kong, Hong Kong
| | - Bertina Chan
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
25
|
Bahrami A, Hassanian SM, Khazaei M, Gharib M, Rahmani M, Fiuji H, Jazayeri MH, Moetamani-Ahmadi M, Ferns GA, Avan A. The 9p21 locus as a potential therapeutic target and prognostic marker in colorectal cancer. Pharmacogenomics 2018; 19:463-474. [DOI: 10.2217/pgs-2017-0096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is a major cause of cancer-related-death worldwide. Despite extensive efforts to identify valid biomarkers for the risk stratification of CRC patients, there are few of proven clinical utility. It is recognized that genetic factors play a major role in determining susceptibility to CRC. Recent genome-wide association studies have demonstrated common genetic variants in a region on chromosome 9p21 associated with an increased risk of CRC. Several genetic polymorphisms have been identified in this region that are associated with CRC. Three genes are located at this locus; CDKN2B(encoding-p15ink4b), CDKN2A (encoding-p16ink4a/p14ARF) and 3′ end of CDKN2BAS (termed-antisense-noncoding-RNA in the INK4-locus [ANRIL]). ANRIL has a post-transcriptional modulatory activity, which has been shown to perturb the expression of nearby genes. It also plays an important role in coordinating tissue remodeling through regulation of cell proliferation, apoptosis, aging, extra-cellular matrix remodeling and inflammatory response. However, the role of ANRIL is not well understood in CRC. Hypermethylation of the p14ARF and p16INK4a genes is often found in some tumors, including CRC. However, further studies are necessary to explore the clinical utility of these putative markers in risk stratification, and in the assessment of prognosis. In this review, we have summarized the prognostic and therapeutic potential of the p14ARF and p16INK4a genes in patients with colorectal cancer.
Collapse
Affiliation(s)
- Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjnad, Iran
- Department of Modern Sciences & Technologies; School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoumeh Gharib
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Rahmani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Fiuji
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mir Hadi Jazayeri
- Immunology Research Center, and Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex B. 9PH, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
26
|
Tumors with unmethylated MLH1 and the CpG island methylator phenotype are associated with a poor prognosis in stage II colorectal cancer patients. Oncotarget 2018; 7:86480-86489. [PMID: 27880934 PMCID: PMC5349928 DOI: 10.18632/oncotarget.13441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/09/2016] [Indexed: 01/17/2023] Open
Abstract
We previously developed a novel tumor subtype classification model for duodenal adenocarcinomas based on a combination of the CpG island methylator phenotype (CIMP) and MLH1 methylation status. Here, we tested the prognostic value of this model in stage II colorectal cancer (CRC) patients. Tumors were assigned to CIMP+/MLH1-unmethylated (MLH1-U), CIMP+/MLH1-methylated (MLH1-M), CIMP−/MLH1-U, or CIMP−/MLH1-M groups. Age, tumor location, lymphovascular invasion, and mucin production differed among the four patient subgroups, and CIMP+/MLH1-U tumors were more likely to have lymphovascular invasion and mucin production. Kaplan-Meier analyses revealed differences in both disease-free survival (DFS) and overall survival (OS) among the four groups. In a multivariate analysis, CIMP/MLH1 methylation status was predictive of both DFS and OS, and DFS and OS were shortest in CIMP+/MLH1-U stage II CRC patients. These results suggest that tumor subtype classification based on the combination of CIMP and MLH1 methylation status is informative in stage II CRC patients, and that CIMP+/MLH1-U tumors exhibit aggressive features and are associated with poor clinical outcomes.
Collapse
|
27
|
Kokelaar RF, Jones HG, Williamson J, Williams N, Griffiths AP, Beynon J, Jenkins GJ, Harris DA. DNA hypermethylation as a predictor of extramural vascular invasion (EMVI) in rectal cancer. Cancer Biol Ther 2018; 19:214-221. [PMID: 29260978 DOI: 10.1080/15384047.2017.1416933] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE DNA hypermethylation in gene promoter regions (CpG islands) is emerging as an important pathway in colorectal cancer tumourigenesis. Whilst genetic mutations have been associated with extramural vascular invasion (EMVI) in rectal cancer, no such association has yet been made with epigenetic factors. METHODS 100 consecutive neoadjuvant-naïve patients undergoing curative surgery for rectal were classified according to the presence or absence of EMVI on histopathological examination. DNA was extracted from tumours and subjected to bisulfite conversion and methylation-specific PCR to determine CIMP status (high, intermediate, or low; according to a validated panel of 8 genes). CIMP status was correlated with EMVI status, histopathological, clinical, and demographic variables, in addition to overall (OS) and disease free (DFS) survival. RESULTS 51 patients were characterised as CIMP-low, 48 CIMP-intermediate, and one patient CIMP-high. EMVI-positivity was associated with CIMP-intermediate epigenotype (p < 0.001). Patients with EMVI-positive tumours were found to have significantly more advanced disease by pT, pN, and pAJCC categorisation (p = 0.002, p < 0.001, and = p < 0.001, respectively). EMVI-positivity was significantly associated with the requirement for adjuvant chemotherapy (p < 0.001), and worse DFS but not OS (p = 0.012 and p = 0.052). CONCLUSIONS Given the association between CIMP-intermediate epigenotype and EMVI-positivity, and the subsequent disadvantage in pathological stage, requirement for adjuvant therapy and worse survival, tumour epigenotyping could potentially play an important role in personalising patients' cancer care. Further work is required to understand the mechanisms that underlie the observed effect, with the hope that they may provide novel opportunities for intervention and inform treatment decisions in rectal cancer.
Collapse
Affiliation(s)
- Rory F Kokelaar
- a Departments of Colorectal Surgery and Pathology , Abertawe Bro Morgannwg University Health Board , Swansea , Wales , United Kingdom.,c Cancer Biomarker Group, Institute of Life Science, School of Medicine, Swansea University , Swansea , Wales , United Kingdom
| | - Huw G Jones
- a Departments of Colorectal Surgery and Pathology , Abertawe Bro Morgannwg University Health Board , Swansea , Wales , United Kingdom
| | - Jeremy Williamson
- a Departments of Colorectal Surgery and Pathology , Abertawe Bro Morgannwg University Health Board , Swansea , Wales , United Kingdom
| | - Namor Williams
- b Pathology, Abertawe Bro Morgannwg University Health Board , Swansea , Wales , United Kingdom
| | - A Paul Griffiths
- b Pathology, Abertawe Bro Morgannwg University Health Board , Swansea , Wales , United Kingdom
| | - John Beynon
- a Departments of Colorectal Surgery and Pathology , Abertawe Bro Morgannwg University Health Board , Swansea , Wales , United Kingdom
| | - Gareth J Jenkins
- c Cancer Biomarker Group, Institute of Life Science, School of Medicine, Swansea University , Swansea , Wales , United Kingdom
| | - Dean A Harris
- a Departments of Colorectal Surgery and Pathology , Abertawe Bro Morgannwg University Health Board , Swansea , Wales , United Kingdom
| |
Collapse
|
28
|
El Bairi K, Tariq K, Himri I, Jaafari A, Smaili W, Kandhro AH, Gouri A, Ghazi B. Decoding colorectal cancer epigenomics. Cancer Genet 2018; 220:49-76. [PMID: 29310839 DOI: 10.1016/j.cancergen.2017.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is very heterogeneous and presents different types of epigenetic alterations including DNA methylation, histone modifications and microRNAs. These changes are considered as characteristics of various observed clinical phenotypes. Undoubtedly, the discovery of epigenetic pathways with novel epigenetic-related mechanisms constitutes a promising advance in cancer biomarker discovery. In this review, we provide an evidence-based discussing of the current understanding of CRC epigenomics and its role in initiation, epithelial-to-mesenchymal transition and metastasis. We also discuss the recent findings regarding the potential clinical perspectives of these alterations as potent biomarkers for CRC diagnosis, prognosis, and therapy in the era of liquid biopsy.
Collapse
Affiliation(s)
- Khalid El Bairi
- Independent Research Team in Cancer Biology and Bioactive Compounds, Mohamed 1(st) University, Oujda, Morocco.
| | - Kanwal Tariq
- B-10 Jumani Center, Garden East, Karachi 74400, Pakistan
| | - Imane Himri
- Laboratory of Biochemistry, Faculty of Sciences, Mohamed I(st) Universiy, Oujda, Morocco; Delegation of the Ministry of Health, Oujda, Morocco
| | - Abdeslam Jaafari
- Laboratoire de Génie Biologique, Equipe d'Immunopharmacologie, Faculté des Sciences et Techniques, Université Sultan Moulay Slimane, Beni Mellal, Maroc
| | - Wiam Smaili
- Centre de Génomique Humaine, Faculté de Médecine et de Pharmacie, Université Mohamed V, Rabat, Maroc; Département de Génétique Médicale, Institut National d'Hygiène, Rabat, Maroc
| | - Abdul Hafeez Kandhro
- Department of Biochemistry, Healthcare Molecular and Diagnostic Laboratory, Hyderabad, Pakistan
| | - Adel Gouri
- Laboratory of Medical Biochemistry, Ibn Rochd University Hospital, Annaba, Algeria
| | - Bouchra Ghazi
- National Laboratory of Reference, Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| |
Collapse
|
29
|
Loree JM, Pereira AAL, Lam M, Willauer AN, Raghav K, Dasari A, Morris VK, Advani S, Menter DG, Eng C, Shaw K, Broaddus R, Routbort MJ, Liu Y, Morris JS, Luthra R, Meric-Bernstam F, Overman MJ, Maru D, Kopetz S. Classifying Colorectal Cancer by Tumor Location Rather than Sidedness Highlights a Continuum in Mutation Profiles and Consensus Molecular Subtypes. Clin Cancer Res 2017; 24:1062-1072. [PMID: 29180604 DOI: 10.1158/1078-0432.ccr-17-2484] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/13/2017] [Accepted: 11/15/2017] [Indexed: 12/15/2022]
Abstract
Purpose: Colorectal cancers are classified as right/left-sided based on whether they occur before/after the splenic flexure, with established differences in molecular subtypes and outcomes. However, it is unclear if this division is optimal and whether precise tumor location provides further information.Experimental Design: In 1,876 patients with colorectal cancer, we compared mutation prevalence and overall survival (OS) according to side and location. Consensus molecular subtype (CMS) was compared in a separate cohort of 608 patients.Results: Mutation prevalence differed by side and location for TP53, KRAS, BRAFV600, PIK3CA, SMAD4, CTNNB1, GNAS, and PTEN Within left- and right-sided tumors, there remained substantial variations in mutation rates. For example, within right-sided tumors, RAS mutations decreased from 70% for cecal, to 43% for hepatic flexure location (P = 0.0001), while BRAFV600 mutations increased from 10% to 22% between the same locations (P < 0.0001). Within left-sided tumors, the sigmoid and rectal region had more TP53 mutations (P = 0.027), less PIK3CA (P = 0.0009), BRAF (P = 0.0033), or CTNNB1 mutations (P < 0.0001), and less MSI (P < 0.0001) than other left-sided locations. Despite this, a left/right division preceding the transverse colon maximized prognostic differences by side and transverse colon tumors had K-modes mutation clustering that appeared more left than right sided. CMS profiles showed a decline in CMS1 and CMS3 and rise in CMS2 prevalence moving distally.Conclusions: Current right/left classifications may not fully recapitulate regional variations in tumor biology. Specifically, the sigmoid-rectal region appears unique and the transverse colon is distinct from other right-sided locations. Clin Cancer Res; 24(5); 1062-72. ©2017 AACRSee related commentary by Dienstmann, p. 989.
Collapse
Affiliation(s)
- Jonathan M Loree
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Allan A L Pereira
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Lam
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexandra N Willauer
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kanwal Raghav
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Arvind Dasari
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Van K Morris
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shailesh Advani
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David G Menter
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cathy Eng
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kenna Shaw
- Sheikh Khalifa Bin Zayed Al Nahyan Institute of Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Russell Broaddus
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mark J Routbort
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yusha Liu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey S Morris
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rajyalakshmi Luthra
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Funda Meric-Bernstam
- Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael J Overman
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dipen Maru
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Scott Kopetz
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
30
|
Saadallah-Kallel A, Abdelmaksoud-Dammak R, Triki M, Charfi S, Khabir A, Sallemi-Boudawara T, Mokdad-Gargouri R. Clinical and prognosis value of the CIMP status combined with MLH1 or p16 INK4a methylation in colorectal cancer. Med Oncol 2017; 34:147. [PMID: 28730335 DOI: 10.1007/s12032-017-1007-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 07/15/2017] [Indexed: 01/10/2023]
Abstract
Aberrant DNA methylation of CpG islands occurred frequently in CRC and associated with transcriptional silencing of key genes. In this study, the CIMP combined with MLH1 or p16 INK4a methylation status was determined in CRC patients and correlated with clinicopathological parameters and overall survival. Our data showed that CIMP+ CRCs were identified in 32.9% of cases and that CACNAG1 is the most frequently methylated promoter. When we combined the CIMP with the MLH1 or the p16 INK4a methylation status, we found that CIMP-/MLH1-U (37.8%) and CIMP-/p16 INK4a -U (35.4%) tumors were the most frequent among the four subtypes. Statistical analysis showed that tumor location, lymphovascular invasion, TNM stage, and MSI differed among the group of patients. Kaplan-Meier analyses revealed differences in overall survival according to the CIMP combined with MLH1 or p16 INK4a methylation status. In a multivariate analysis, CIMP/MLH1 and CIMP/p16 INK4a methylation statuses were predictive of prognosis, and the OS was longer for patients with tumors CIMP-/MLH1-M, as well as CIMP-/p16 INK4a -M. Furthermore, DNMT1 is significantly overexpressed in tumors than in normal tissues as well as in CIMP+ than CIMP- tumors. Our results suggest that tumor classification based on the CIMP status combined with MLH1 or p16 INK4a methylation is useful to predict prognosis in CRC patients.
Collapse
Affiliation(s)
- Amana Saadallah-Kallel
- Laboratory of Molecular Biotechnology of Eukaryotes, Department of Cancer Genetics, Center of Biotechnology of Sfax, University of Sfax, BPK1177, 3018, Sfax, Tunisia
| | - Rania Abdelmaksoud-Dammak
- Laboratory of Molecular Biotechnology of Eukaryotes, Department of Cancer Genetics, Center of Biotechnology of Sfax, University of Sfax, BPK1177, 3018, Sfax, Tunisia
| | - Mouna Triki
- Laboratory of Molecular Biotechnology of Eukaryotes, Department of Cancer Genetics, Center of Biotechnology of Sfax, University of Sfax, BPK1177, 3018, Sfax, Tunisia
| | - Slim Charfi
- Service of Pathology, Habib Bourguiba Hospital, Sfax, Tunisia
| | | | | | - Raja Mokdad-Gargouri
- Laboratory of Molecular Biotechnology of Eukaryotes, Department of Cancer Genetics, Center of Biotechnology of Sfax, University of Sfax, BPK1177, 3018, Sfax, Tunisia.
| |
Collapse
|
31
|
Vedeld HM, Merok M, Jeanmougin M, Danielsen SA, Honne H, Presthus GK, Svindland A, Sjo OH, Hektoen M, Eknaes M, Nesbakken A, Lothe RA, Lind GE. CpG island methylator phenotype identifies high risk patients among microsatellite stable BRAF mutated colorectal cancers. Int J Cancer 2017; 141:967-976. [PMID: 28542846 PMCID: PMC5518206 DOI: 10.1002/ijc.30796] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/08/2017] [Indexed: 12/26/2022]
Abstract
The prognostic value of CpG island methylator phenotype (CIMP) in colorectal cancer remains unsettled. We aimed to assess the prognostic value of this phenotype analyzing a total of 1126 tumor samples obtained from two Norwegian consecutive colorectal cancer series. CIMP status was determined by analyzing the 5‐markers CAGNA1G, IGF2, NEUROG1, RUNX3 and SOCS1 by quantitative methylation specific PCR (qMSP). The effect of CIMP on time to recurrence (TTR) and overall survival (OS) were determined by uni‐ and multivariate analyses. Subgroup analyses were conducted according to MSI and BRAF mutation status, disease stage, and also age at time of diagnosis (<60, 60‐74, ≥75 years). Patients with CIMP positive tumors demonstrated significantly shorter TTR and worse OS compared to those with CIMP negative tumors (multivariate hazard ratio [95% CI] 1.86 [1.31‐2.63] and 1.89 [1.34‐2.65], respectively). In stratified analyses, CIMP tumors showed significantly worse outcome among patients with microsatellite stable (MSS, P < 0.001), and MSS BRAF mutated tumors (P < 0.001), a finding that persisted in patients with stage II, III or IV disease, and that remained significant in multivariate analysis (P < 0.01). Consistent results were found for all three age groups. To conclude, CIMP is significantly associated with inferior outcome for colorectal cancer patients, and can stratify the poor prognostic patients with MSS BRAF mutated tumors. What's new? As many as one‐fifth of colorectal cancers have a CpG island methylator phenotype (CIMP) involving widespread promoter DNA methylation. CIMP is associated with key factors related to disease outcome, including microsatellite instability and BRAF mutations. In this study, CIMP was found to be significantly associated with worse prognosis in colorectal cancer patients, particularly those with microsatellite stable (MSS) BRAF‐mutated tumors. In stratified analyses, trends toward worse survival were identified for CIMP‐positive stage III and stage IV patients in the MSS BRAF‐mutated group. The findings suggest that CIMP status should be included in prognostic analyses at time of diagnosis.
Collapse
Affiliation(s)
- Hege Marie Vedeld
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marianne Merok
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Gastrointestinal Surgery, Oslo University Hospital - Aker, Oslo, Norway
| | - Marine Jeanmougin
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Stine A Danielsen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hilde Honne
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Gro Kummeneje Presthus
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Aud Svindland
- Department of Pathology, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ole H Sjo
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Department of Gastrointestinal Surgery, Oslo University Hospital - Aker, Oslo, Norway
| | - Merete Hektoen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Mette Eknaes
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Arild Nesbakken
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Gastrointestinal Surgery, Oslo University Hospital - Aker, Oslo, Norway
| | - Ragnhild A Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Guro E Lind
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
32
|
Distinct clinical outcomes of two CIMP-positive colorectal cancer subtypes based on a revised CIMP classification system. Br J Cancer 2017; 116:1012-1020. [PMID: 28278514 PMCID: PMC5396110 DOI: 10.1038/bjc.2017.52] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 12/22/2022] Open
Abstract
Background: Colorectal cancer (CRC) is a heterogeneous disease in terms of molecular carcinogenic pathways. Based on recent findings regarding the multiple serrated neoplasia pathway, we revised an eight-marker panel for a new CIMP classification system. Methods: 1370 patients who received surgical resection for CRCs were classified into three CIMP subtypes (CIMP-N: 0–4 methylated markers, CIMP-P1: 5–6 methylated markers and CIMP-P2: 7–8 methylated markers). Our findings were validated in a separate set of high-risk stage II or stage III CRCs receiving adjuvant fluoropyrimidine plus oxaliplatin (n=950). Results: A total of 1287/62/21 CRCs cases were classified as CIMP-N/CIMP-P1/CIMP-P2, respectively. CIMP-N showed male predominance, distal location, lower T, N category and devoid of BRAF mutation, microsatellite instability (MSI) and MLH1 methylation. CIMP-P1 showed female predominance, proximal location, advanced TNM stage, mild decrease of CK20 and CDX2 expression, mild increase of CK7 expression, BRAF mutation, MSI and MLH1 methylation. CIMP-P2 showed older age, female predominance, proximal location, advanced T category, markedly reduced CK20 and CDX2 expression, rare KRAS mutation, high frequency of CK7 expression, BRAF mutation, MSI and MLH1 methylation. CIMP-N showed better 5-year cancer-specific survival (CSS; HR=0.47; 95% CI: 0.28–0.78) in discovery set and better 5-year relapse-free survival (RFS; HR=0.50; 95% CI: 0.29–0.88) in validation set compared with CIMP-P1. CIMP-P2 showed marginally better 5-year CSS (HR=0.28, 95% CI: 0.07–1.22) in discovery set and marginally better 5-year RFS (HR=0.21, 95% CI: 0.05–0.92) in validation set compared with CIMP-P1. Conclusions: CIMP subtypes classified using our revised system showed different clinical outcomes, demonstrating the heterogeneity of multiple serrated precursors of CIMP-positive CRCs.
Collapse
|
33
|
Wen X, Jeong S, Kim Y, Bae JM, Cho NY, Kim JH, Kang GH. Improved results of LINE-1 methylation analysis in formalin-fixed, paraffin-embedded tissues with the application of a heating step during the DNA extraction process. Clin Epigenetics 2017; 9:1. [PMID: 28149329 PMCID: PMC5270344 DOI: 10.1186/s13148-016-0308-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/26/2016] [Indexed: 12/20/2022] Open
Abstract
Background Formalin-fixed, paraffin-embedded (FFPE) tissues are important resources for profiling DNA methylation changes and for studying a variety of diseases. However, formalin fixation introduces inter-strand crosslinking, which might cause incomplete bisulfite conversion of unmethylated cytosines, which might lead to falsely elevated measurements of methylation levels in pyrosequencing assays. Long interspersed nucleotide element-1 (LINE-1) is a major constituent of repetitive transposable DNA elements, and its methylation is referred to correlates with global DNA methylation. To identify whether formalin fixation might impact the measured values of methylation in LINE-1 repetitive elements and whether prolonged heat-induced denaturation of DNA might reduce the artificial increases in measured values caused by formalin fixation, we analyzed paired fresh-frozen (FF) and FFPE xenograft tissue samples for their methylation levels in LINE-1 using a pyrosequencing assay. To further confirm the effect of a heating step in the measurement of LINE-1 or single gene methylation levels, we analyzed FFPE tissue samples of gastric cancer and colorectal cancer for their methylation status in LINE-1 and eight single genes, respectively. Results Formalin fixation led to an increase in the measured values of LINE-1 methylation regardless of the duration of fixation. Prolonged heating of the DNA at 95 °C for 30 min before bisulfite conversion was found (1) to decrease the discrepancy in the measured values between the paired FF and FFPE tissue samples, (2) to decrease the standard deviation of the measured value of LINE-1 methylation levels in FFPE tissue samples of gastric cancer, and (3) to improve the performance in the measurement of single gene methylation levels in FFPE tissue samples of colorectal cancer. Conclusions Formalin fixation leads to artificial increases in the measured values of LINE-1 methylation, and the application of prolonged heating of DNA samples decreases the discrepancy in the measured values of LINE-1 methylation between paired FF and FFPE tissue samples. The application of prolonged heating of DNA samples improves bisulfite conversion-based measurement of LINE-1 or single gene methylation levels in FFPE tissue samples. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0308-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xianyu Wen
- Department of Pathology, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul, 110-744, South Korea.,Laboratory of Epigenetics, Seoul National University College of Medicine, Seoul, South Korea
| | - Seorin Jeong
- Laboratory of Epigenetics, Seoul National University College of Medicine, Seoul, South Korea
| | - Younghoon Kim
- Department of Pathology, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul, 110-744, South Korea.,Laboratory of Epigenetics, Seoul National University College of Medicine, Seoul, South Korea
| | - Jeong Mo Bae
- Laboratory of Epigenetics, Seoul National University College of Medicine, Seoul, South Korea.,Department of Pathology, SMG-SNU Boramae Medical Centre, Seoul, South Korea
| | - Nam Yun Cho
- Laboratory of Epigenetics, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung Ho Kim
- Laboratory of Epigenetics, Seoul National University College of Medicine, Seoul, South Korea.,Department of Pathology, SMG-SNU Boramae Medical Centre, Seoul, South Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul, 110-744, South Korea.,Laboratory of Epigenetics, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
34
|
Colorectal cancer: CpG island methylation indicates inferior survival outcomes. Nat Rev Clin Oncol 2016; 13:464-5. [PMID: 27377133 DOI: 10.1038/nrclinonc.2016.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|