1
|
Elbadawi M, Efferth T. In Vivo and Clinical Studies of Natural Products Targeting the Hallmarks of Cancer. Handb Exp Pharmacol 2024. [PMID: 38797749 DOI: 10.1007/164_2024_716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Despite more than 200 approved anticancer agents, cancer remains a leading cause of death worldwide due to disease complexity, tumour heterogeneity, drug toxicity, and the emergence of drug resistance. Accordingly, the development of chemotherapeutic agents with higher efficacy, a better safety profile, and the capability of bypassing drug resistance would be a cornerstone in cancer therapy. Natural products have played a pivotal role in the field of drug discovery, especially for the pharmacotherapy of cancer, infectious, and chronic diseases. Owing to their distinctive structures and multiple mechanistic activities, natural products and their derivatives have been utilized for decades in cancer treatment protocols. In this review, we delve into the potential of natural products as anticancer agents by targeting cancer's hallmarks, including sustained proliferative signalling, evading growth suppression, resisting apoptosis and cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. We highlight the molecular mechanisms of some natural products, in vivo studies, and promising clinical trials. This review emphasizes the significance of natural products in fighting cancer and the need for further studies to uncover their fully therapeutic potential.
Collapse
Affiliation(s)
- Mohamed Elbadawi
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
2
|
Yakkala PA, Rahaman S, Soukya PSL, Begum SA, Kamal A. An update on the development on tubulin inhibitors for the treatment of solid tumors. Expert Opin Ther Targets 2024; 28:193-220. [PMID: 38618889 DOI: 10.1080/14728222.2024.2341630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/05/2024] [Indexed: 04/16/2024]
Abstract
INTRODUCTION Microtubules play a vital role in cancer therapeutics. They are implicated in tumorigenesis, thus inhibiting tubulin polymerization in cancer cells, and have now become a significant target for anticancer drug development. A plethora of drug molecules has been crafted to influence microtubule dynamics and presently, numerous tubulin inhibitors are being investigated. This review discusses the recently developed inhibitors including natural products, and also examines the preclinical and clinical data of some potential molecules. AREA COVERED The current review article summarizes the development of tubulin inhibitors while detailing their specific binding sites. It also discusses the newly designed inhibitors that may be useful in the treatment of solid tumors. EXPERT OPINION Microtubules play a crucial role in cellular processes, especially in cancer therapy where inhibiting tubulin polymerization holds promise. Ongoing trials signify a commitment to revolutionizing cancer treatment and exploring targeted therapies. Challenges in microtubule modulation, like resistance and off-target effects, demand focused efforts, emphasizing combination therapies and personalized treatments. Beyond microtubules, promising avenues in cancer research include immunotherapy, genomic medicine, CRISPR gene editing, liquid biopsies, AI diagnostics, and stem cell therapy, showcasing a holistic approach for future advancements.
Collapse
Affiliation(s)
- Prasanna Anjaneyulu Yakkala
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shaik Rahaman
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - P S Lakshmi Soukya
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, India
| | - Sajeli Ahil Begum
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, India
| | - Ahmed Kamal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, India
- Department of Environment, Forests, Science & Technology, Telangana State Council of Science & Technology, Hyderabad, India
| |
Collapse
|
3
|
Wagle S, Lee JA, Rupasinghe HPV. Synergistic Cytotoxicity of Extracts of Chaga Mushroom and Microalgae against Mammalian Cancer Cells In Vitro. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:7944378. [PMID: 38268969 PMCID: PMC10807943 DOI: 10.1155/2024/7944378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/17/2023] [Accepted: 12/30/2023] [Indexed: 01/26/2024]
Abstract
Chaga mushroom (Inonotus obliquus) contains bioactive metabolites and has been used to treat various ailments, including cancer. Similarly, marine microalgae are considered a sustainable food supplement with anticancer and antioxidant properties. This study investigated the cytotoxicity of different extracts prepared from I. obliquus and microalgae using cultured human and canine cancer cell lines (MCF-7, HepG2, HOS, D-17, and DH-82). MTS cell viability assay was used to study the cytotoxicity of I. obliquus and microalgae extracts, and a synergy matrix effect was used to study the combined effect of the extracts. Isobologram analysis and the highest single agent synergy model were applied to study and validate the synergy between the extracts from I. obliquus and microalgae. Ethanol-based extraction and supercritical water extract significantly inhibited the growth of various mammalian cancer cells compared to aqueous extracts. Osteosarcoma cells were more susceptible to the supercritical extracts of I. obliquus and chlorophyll-free and sugar-free ethanol extracts of microalgae. A combination of ethanol-based I. obliquus extract and chlorophyll-free microalgae extract resulted in a synergistic interaction with various tested cancer cells. This study provides experimental evidence supporting the potential therapeutic application of I. obliquus and microalgae extracts with a synergistic effect to inhibit the growth of various mammalian cancer cells. Additional in vivo studies are required to fully explore possible therapeutic applications of these unique mixtures to be used in treating cancers.
Collapse
Affiliation(s)
- Sajeev Wagle
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro NS B2N 5E3, Canada
| | - Julie Anne Lee
- Adored Beast Apothecary, 77 Rooney Crescent, Moncton NB E1E 4M4, Canada
| | - H. P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro NS B2N 5E3, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax NS B3H 4H7, Canada
| |
Collapse
|
4
|
Ahmed MB, Islam SU, Alghamdi AAA, Kamran M, Ahsan H, Lee YS. Phytochemicals as Chemo-Preventive Agents and Signaling Molecule Modulators: Current Role in Cancer Therapeutics and Inflammation. Int J Mol Sci 2022; 23:15765. [PMID: 36555406 PMCID: PMC9779495 DOI: 10.3390/ijms232415765] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer is one of the deadliest non communicable diseases. Numerous anticancer medications have been developed to target the molecular pathways driving cancer. However, there has been no discernible increase in the overall survival rate in cancer patients. Therefore, innovative chemo-preventive techniques and agents are required to supplement standard cancer treatments and boost their efficacy. Fruits and vegetables should be tapped into as a source of compounds that can serve as cancer therapy. Phytochemicals play an important role as sources of new medication in cancer treatment. Some synthetic and natural chemicals are effective for cancer chemoprevention, i.e., the use of exogenous medicine to inhibit or impede tumor development. They help regulate molecular pathways linked to the development and spread of cancer. They can enhance antioxidant status, inactivating carcinogens, suppressing proliferation, inducing cell cycle arrest and death, and regulating the immune system. While focusing on four main categories of plant-based anticancer agents, i.e., epipodophyllotoxin, camptothecin derivatives, taxane diterpenoids, and vinca alkaloids and their mode of action, we review the anticancer effects of phytochemicals, like quercetin, curcumin, piperine, epigallocatechin gallate (EGCG), and gingerol. We examine the different signaling pathways associated with cancer and how inflammation as a key mechanism is linked to cancer growth.
Collapse
Affiliation(s)
- Muhammad Bilal Ahmed
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Salman Ul Islam
- Department of Pharmacy, Cecos University, Peshawar, Street 1, Sector F 5 Phase 6 Hayatabad, Peshawar 25000, Pakistan
| | | | - Muhammad Kamran
- School of Molecular Sciences, The University of Western Australia, M310, 35 Stirling Hwy, Perth, WA 6009, Australia
| | - Haseeb Ahsan
- Department of Pharmacy, Faculty of Life and Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Young Sup Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
5
|
Zhang K, Chen J, Li C, Yuan Y, Fang S, Liu W, Qian Y, Ma J, Chang L, Chen F, Yang Z, Gu W. Exosome-mediated transfer of SNHG7 enhances docetaxel resistance in lung adenocarcinoma. Cancer Lett 2021; 526:142-154. [PMID: 34715254 DOI: 10.1016/j.canlet.2021.10.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022]
Abstract
Long noncoding RNA (lncRNA) small nucleolar RNA host gene 7 (SNHG7) has been widely reported in various cancers, including lung adenocarcinoma (LUAD). However, it is largely unknown whether SNHG7 is involved in docetaxel resistance of LUAD. In the current study, we identified the high expression of SNHG7 in docetaxel-resistant cells. Through functional assays, we determined that silencing of SNHG7 decreased IC50 value of LUAD cells to docetaxel and suppressed proliferation and autophagy in LUAD cells, and reversed M2 polarization in macrophages. Mechanistically, we uncovered that SNHG7 promoted autophagy via recruiting human antigen R (HuR) to stabilize autophagy-related genes autophagy related 5 (ATG5) and autophagy related 12 (ATG12). Moreover, exosomal SNHG7 was transmitted from docetaxel-resistant LUAD cells to parental LUAD cells and thus facilitated docetaxel resistance. Additionally, exosomal SNHG7 activated the phosphatidylinositol 3-kinase (PI3K)/AKT pathway to promote M2 polarization in macrophages via recruiting cullin 4A (CUL4A) to induce ubiquitination and degradation of phosphatase and tensin homolog (PTEN). Taken together, we concluded that exosomal SNHG7 enhances docetaxel resistance of LUAD cells through inducing autophagy and macrophage M2 polarization. All findings in the study suggested that SNHG7 may be a promising target for relieving docetaxel resistance in LUAD.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Jing Chen
- Department of Biochemistry and Molecular Biology, School of Medicine& Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Chen Li
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, Jiangsu, China
| | - Yuan Yuan
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Surong Fang
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Wenfei Liu
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Yingying Qian
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Jiyong Ma
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Ligong Chang
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Feifei Chen
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Zhenhua Yang
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China.
| | - Wei Gu
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China.
| |
Collapse
|
6
|
Singla RK, Sharma P, Dubey AK, Gundamaraju R, Kumar D, Kumar S, Madaan R, Shri R, Tsagkaris C, Parisi S, Joon S, Singla S, Kamal MA, Shen B. Natural Product-Based Studies for the Management of Castration-Resistant Prostate Cancer: Computational to Clinical Studies. Front Pharmacol 2021; 12:732266. [PMID: 34737700 PMCID: PMC8560712 DOI: 10.3389/fphar.2021.732266] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/06/2021] [Indexed: 02/05/2023] Open
Abstract
Background: With prostate cancer being the fifth-greatest cause of cancer mortality in 2020, there is a dire need to expand the available treatment options. Castration-resistant prostate cancer (CRPC) progresses despite androgen depletion therapy. The mechanisms of resistance are yet to be fully discovered. However, it is hypothesized that androgens depletion enables androgen-independent cells to proliferate and recolonize the tumor. Objectives: Natural bioactive compounds from edible plants and herbal remedies might potentially address this need. This review compiles the available cheminformatics-based studies and the translational studies regarding the use of natural products to manage CRPC. Methods: PubMed and Google Scholar searches for preclinical studies were performed, while ClinicalTrials.gov and PubMed were searched for clinical updates. Studies that were not in English and not available as full text were excluded. The period of literature covered was from 1985 to the present. Results and Conclusion: Our analysis suggested that natural compounds exert beneficial effects due to their broad-spectrum molecular disease-associated targets. In vitro and in vivo studies revealed several bioactive compounds, including rutaecarpine, berberine, curcumin, other flavonoids, pentacyclic triterpenoids, and steroid-based phytochemicals. Molecular modeling tools, including machine and deep learning, have made the analysis more comprehensive. Preclinical and clinical studies on resveratrol, soy isoflavone, lycopene, quercetin, and gossypol have further validated the translational potential of the natural products in the management of prostate cancer.
Collapse
Affiliation(s)
- Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Pooja Sharma
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
- Khalsa College of Pharmacy, Amritsar, India
| | | | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Lab, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Dinesh Kumar
- Department of Pharmaceutical Sciences, Sri Sai College of Pharmacy, Amritsar, India
| | - Suresh Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Reecha Madaan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Richa Shri
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | | | - Salvatore Parisi
- Lourdes Matha Institute of Hotel Management and Catering Technology, Thiruvananthapuram, India
| | - Shikha Joon
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Shailja Singla
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Mohammad Amjad Kamal
- West China School of Nursing/Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Enzymoics; Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Karunakaran KB, Yanamala N, Boyce G, Becich MJ, Ganapathiraju MK. Malignant Pleural Mesothelioma Interactome with 364 Novel Protein-Protein Interactions. Cancers (Basel) 2021; 13:1660. [PMID: 33916178 PMCID: PMC8037232 DOI: 10.3390/cancers13071660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer affecting the outer lining of the lung, with a median survival of less than one year. We constructed an 'MPM interactome' with over 300 computationally predicted protein-protein interactions (PPIs) and over 2400 known PPIs of 62 literature-curated genes whose activity affects MPM. Known PPIs of the 62 MPM associated genes were derived from Biological General Repository for Interaction Datasets (BioGRID) and Human Protein Reference Database (HPRD). Novel PPIs were predicted by applying the HiPPIP algorithm, which computes features of protein pairs such as cellular localization, molecular function, biological process membership, genomic location of the gene, and gene expression in microarray experiments, and classifies the pairwise features as interacting or non-interacting based on a random forest model. We validated five novel predicted PPIs experimentally. The interactome is significantly enriched with genes differentially ex-pressed in MPM tumors compared with normal pleura and with other thoracic tumors, genes whose high expression has been correlated with unfavorable prognosis in lung cancer, genes differentially expressed on crocidolite exposure, and exosome-derived proteins identified from malignant mesothelioma cell lines. 28 of the interactors of MPM proteins are targets of 147 U.S. Food and Drug Administration (FDA)-approved drugs. By comparing disease-associated versus drug-induced differential expression profiles, we identified five potentially repurposable drugs, namely cabazitaxel, primaquine, pyrimethamine, trimethoprim and gliclazide. Preclinical studies may be con-ducted in vitro to validate these computational results. Interactome analysis of disease-associated genes is a powerful approach with high translational impact. It shows how MPM-associated genes identified by various high throughput studies are functionally linked, leading to clinically translatable results such as repurposed drugs. The PPIs are made available on a webserver with interactive user interface, visualization and advanced search capabilities.
Collapse
Affiliation(s)
- Kalyani B. Karunakaran
- Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560012, India;
| | - Naveena Yanamala
- Exposure Assessment Branch, National Institute of Occupational Safety and Health, Center for Disease Control, Morgantown, WV 26506, USA; (N.Y.); (G.B.)
| | - Gregory Boyce
- Exposure Assessment Branch, National Institute of Occupational Safety and Health, Center for Disease Control, Morgantown, WV 26506, USA; (N.Y.); (G.B.)
| | - Michael J. Becich
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15206, USA;
| | - Madhavi K. Ganapathiraju
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15206, USA;
- Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
8
|
Koutras A, Zagouri F, Koliou GA, Psoma E, Chryssogonidis I, Lazaridis G, Tryfonopoulos D, Kotsakis A, Res E, Kentepozidis NK, Razis E, Psyrri A, Koumakis G, Kalofonos HP, Dimopoulos MA, Fountzilas G. Phase 2 study of cabazitaxel as second-line treatment in patients with HER2-negative metastatic breast cancer previously treated with taxanes-a Hellenic Cooperative Oncology Group (HeCOG) Trial. Br J Cancer 2020; 123:355-361. [PMID: 32488135 PMCID: PMC7403584 DOI: 10.1038/s41416-020-0909-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 04/22/2020] [Accepted: 05/06/2020] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Cabazitaxel is a novel taxane that might be active in breast cancer resistant to first-generation taxanes. METHODS The purpose of the current multicentre phase II trial was to evaluate the activity and safety of cabazitaxel, as second-line treatment, in patients with human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer (MBC) previously treated with taxanes. The primary endpoint was objective response rate (ORR). RESULTS Eighty-four patients were enrolled between October 2012 and November 2016. Taxane resistance to previous treatment was detected in 43 cases. The ORR was 22.6% in the intent-to-treat population, 23.3% in taxane-resistant and 20.5% in taxane-non-resistant cases. At a median follow-up of 39.6 months, the median progression-free survival and overall survival were 3.7 months (95% CI 2.2-4.4) and 15.2 months (95% CI 11.3-19.4), respectively. Regarding toxicity, grade 3-4 neutropenia was reported in 22.6% and febrile neutropenia in 6% of the patients, respectively. Two fatal events (one febrile neutropenia and one sepsis) were reported as being related to study treatment. CONCLUSIONS This phase II trial suggests that cabazitaxel is active as second-line treatment in taxane-pretreated patients with HER2-negative MBC, with manageable toxicity.
Collapse
Affiliation(s)
- Angelos Koutras
- Division of Oncology, Department of Medicine, University Hospital, University of Patras Medical School, Patras, Greece.
| | - Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | | | - Elizabeth Psoma
- Department of Radiology, AHEPA Hospital, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | - Ioannis Chryssogonidis
- Department of Radiology, AHEPA Hospital, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | - Georgios Lazaridis
- Department of Medical Oncology, Papageorgiou Hospital, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | | | - Athanasios Kotsakis
- Department of Medical Oncology, University General Hospital of Heraklion Crete, Heraklion, Greece
| | - Eleni Res
- Third Department of Medical Oncology, Agii Anargiri Cancer Hospital, Athens, Greece
| | | | - Evangelia Razis
- Third Department of Medical Oncology, Hygeia Hospital, Athens, Greece
| | - Amanda Psyrri
- Section of Medical Oncology, Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Georgios Koumakis
- Second Department of Internal Medicine, Agios Savvas Cancer Hospital, Athens, Greece
| | - Haralabos P Kalofonos
- Division of Oncology, Department of Medicine, University Hospital, University of Patras Medical School, Patras, Greece
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - George Fountzilas
- Aristotle University of Thessaloniki, Thessaloniki, Greece.,German Oncology Center, Limassol, Cyprus
| |
Collapse
|
9
|
Li Z, Xuan Z, Chen J, Song W, Zhang S, Jin C, Zhou M, Zheng S, Song P. Inhibiting the NF-κB pathway enhances the antitumor effect of cabazitaxel by downregulating Bcl-2 in pancreatic cancer. Int J Oncol 2020; 57:161-170. [PMID: 32377719 PMCID: PMC7252454 DOI: 10.3892/ijo.2020.5053] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/28/2020] [Indexed: 12/15/2022] Open
Abstract
Optimizing the currently available treatment options for pancreatic cancer (PC) is a priority. Cabazitaxel (CTX), a semisynthetic taxane, is mainly used for treating patients with PC who are resistant to paclitaxel (PTX) or docetaxel, due its poor affinity for P-glycoprotein. However, there are only a few studies demonstrating the effect of CTX on PC. The present study aimed to investigate the efficiency and underlying mechanism of CTX in PC treatment. Cell proliferation, colony formation assay and apoptosis analysis were achieved in the two human PC cell lines AsPC-1 and BxPC-3. Drug sensitivity test was performed in BxPC-3 tumor-bearing mice. The results demonstrated that CTX had a lower half maximal inhibitory concentration compared with PTX for the inhibition of cell proliferation, both in vivo and in vitro. Furthermore, the nuclear factor-κB (NF-κB) pathway was activated following cell treatment with CTX, and NF-κB p65 overexpression attenuated CTX cytotoxicity. In addition, the combined use of the specific NF-κB inhibitor caffeic acid phenethyl ester (CAPE) with CTX significantly enhanced CTX effect, both in vivo and in vitro. Similarly, the mRNA and protein expression of B-cell lymphoma-2 was decreased in AsPC-1 and BxPC-3 cells following treatment with CTX and CAPE, suggesting that NF-κB may serve a crucial role in CTX efficiency. In conclusion, results from our previous study indicated that CTX could potentially replace PTX in the treatment of PC, and the present study demonstrated that CTX combination with an NF-κB inhibitor may be considered as a potential therapeutic option for PC, which may improve the prognosis of patients with PC.
Collapse
Affiliation(s)
- Zequn Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou 310003, P.R. China
| | - Zefeng Xuan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou 310003, P.R. China
| | - Jian Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou 310003, P.R. China
| | - Wenfeng Song
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou 310003, P.R. China
| | - Shiyu Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou 310003, P.R. China
| | - Cheng Jin
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou 310003, P.R. China
| | - Mengqiao Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou 310003, P.R. China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou 310003, P.R. China
| | - Penghong Song
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou 310003, P.R. China
| |
Collapse
|
10
|
Choudhari AS, Mandave PC, Deshpande M, Ranjekar P, Prakash O. Phytochemicals in Cancer Treatment: From Preclinical Studies to Clinical Practice. Front Pharmacol 2020; 10:1614. [PMID: 32116665 PMCID: PMC7025531 DOI: 10.3389/fphar.2019.01614] [Citation(s) in RCA: 435] [Impact Index Per Article: 108.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/10/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer is a severe health problem that continues to be a leading cause of death worldwide. Increasing knowledge of the molecular mechanisms underlying cancer progression has led to the development of a vast number of anticancer drugs. However, the use of chemically synthesized drugs has not significantly improved the overall survival rate over the past few decades. As a result, new strategies and novel chemoprevention agents are needed to complement current cancer therapies to improve efficiency. Naturally occurring compounds from plants known as phytochemicals, serve as vital resources for novel drugs and are also sources for cancer therapy. Some typical examples include taxol analogs, vinca alkaloids such as vincristine, vinblastine, and podophyllotoxin analogs. These phytochemicals often act via regulating molecular pathways which are implicated in growth and progression of cancer. The specific mechanisms include increasing antioxidant status, carcinogen inactivation, inhibiting proliferation, induction of cell cycle arrest and apoptosis; and regulation of the immune system. The primary objective of this review is to describe what we know to date of the active compounds in the natural products, along with their pharmacologic action and molecular or specific targets. Recent trends and gaps in phytochemical based anticancer drug discovery are also explored. The authors wish to expand the phytochemical research area not only for their scientific soundness but also for their potential druggability. Hence, the emphasis is given to information about anticancer phytochemicals which are evaluated at preclinical and clinical level.
Collapse
Affiliation(s)
- Amit S Choudhari
- Combi-Chem Bio-Resource Center, Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune, India
| | - Pallavi C Mandave
- Interactive Research School of Health Affairs, Bharati Vidyapeeth Deemed University, Pune, India
| | - Manasi Deshpande
- Department of Dravyaguna Vigan, Ayurved Pharmacology, College of Ayurved, Bharati Vidyapeeth Deemed University, Pune, India
| | | | - Om Prakash
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
11
|
Tagliamento M, Genova C, Rossi G, Coco S, Rijavec E, Dal Bello MG, Boccardo S, Grossi F, Alama A. Microtubule-targeting agents in the treatment of non-small cell lung cancer: insights on new combination strategies and investigational compounds. Expert Opin Investig Drugs 2019; 28:513-523. [DOI: 10.1080/13543784.2019.1627326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Marco Tagliamento
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genova,
Italy
| | - Carlo Genova
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genova,
Italy
| | - Giovanni Rossi
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genova,
Italy
| | - Simona Coco
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genova,
Italy
| | - Erika Rijavec
- Medical Oncology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano,
Italy
| | | | - Simona Boccardo
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genova,
Italy
| | - Francesco Grossi
- Medical Oncology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano,
Italy
| | - Angela Alama
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genova,
Italy
| |
Collapse
|
12
|
Tsironis G, Ziogas DC, Kyriazoglou A, Lykka M, Koutsoukos K, Bamias A, Dimopoulos MA. Breakthroughs in the treatment of advanced squamous-cell NSCLC: not the neglected sibling anymore? ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:143. [PMID: 29862232 DOI: 10.21037/atm.2018.02.18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During the last years, translational research has contributed in many advances in the treatment of non-small cell lung cancer (NSCLC) discovering genetic alternations or recognizing the immuno-escape and neo-angiogenesis of lung cancer. Although the majority of these advances took place in the non-squamous histological subtype, therapeutic options for patients diagnosed with advanced squamous cell lung cancer (SqCLC) have been also enriched significantly with the addition of nab-paclitaxel in the conventional chemotherapy; the introduction of necitumumab, afatinib and erlotinib in the inhibition of epidermal growth factor receptor (EGFR) axis and of ramucirumab in the inhibition of VEGF-induced angiogenesis and last with the approvals of nivolumab, pembrolizumab atezolizumab and durvalumab soon in the promising field of immunotherapies. Agents targeted various other pathways including FGFR, IGF-1, PI3K, CDK4/6, MET and PARP inhibitors are under investigation in order to open new prospects in the treatment of SqCLC. In this review, we present all published data that led to recent approvals for the treatment of advanced SqCLC and all ongoing clinical trials that keep searching for new molecular targets following a more-personalized approach.
Collapse
Affiliation(s)
- Georgios Tsironis
- Department of Clinical Therapeutics, Alexandra General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Dimitrios C Ziogas
- Department of Clinical Therapeutics, Alexandra General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Anastasios Kyriazoglou
- Department of Clinical Therapeutics, Alexandra General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Marita Lykka
- Department of Clinical Therapeutics, Alexandra General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Konstantinos Koutsoukos
- Department of Clinical Therapeutics, Alexandra General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Aristotelis Bamias
- Department of Clinical Therapeutics, Alexandra General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, Alexandra General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| |
Collapse
|
13
|
Hardin C, Shum E, Singh AP, Perez-Soler R, Cheng H. Emerging treatment using tubulin inhibitors in advanced non-small cell lung cancer. Expert Opin Pharmacother 2017; 18:701-716. [DOI: 10.1080/14656566.2017.1316374] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Shum E, Wang F, Kim S, Perez-Soler R, Cheng H. Investigational therapies for squamous cell lung cancer: from animal studies to phase II trials. Expert Opin Investig Drugs 2017; 26:415-426. [PMID: 28277882 DOI: 10.1080/13543784.2017.1302425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION It remains challenging to treat squamous cell lung cancer (SCC) with limited therapeutic options. However, recent breakthroughs in targeted therapies and immunotherapies have shed some light on the management of this deadly disease. Areas covered: The article first reviews the current treatment options for advanced SCC, especially recent FDA approved molecular agents (afatinib, ramucirumab and necitumumab) and immunotherapies (nivolumab, pembrolizumab and atezolimumab). We then provide an overview on investigational therapies with data ranging from preclinical to phase II studies, focusing on new cytotoxic agents, emerging molecularly targeted agents (including a PARP inhibitor for Homologous Recombinant Deficiency positive SCC) and novel immunotherapeutic strategies. Expert opinion summary: Identification of potential therapeutic targets, development of novel clinical trials and the rapid approvals of immune checkpoint inhibitors have shifted the management paradigm for squamous cell lung cancer. On the other hand, continued efforts are needed to identify the predictive biomarkers and to investigate novel mechanistically-driven mono- and combination therapies. We need to learn more about the biology behind immune checkpoint blockade and tumor genomics in SCC for better patient selection and future trial design.
Collapse
Affiliation(s)
- Elaine Shum
- a Department of Oncology , Montefiore Medical Center/Albert Einstein College of Medicine , Bronx , NY , USA
| | - Feng Wang
- a Department of Oncology , Montefiore Medical Center/Albert Einstein College of Medicine , Bronx , NY , USA
| | - Salem Kim
- a Department of Oncology , Montefiore Medical Center/Albert Einstein College of Medicine , Bronx , NY , USA
| | - Roman Perez-Soler
- a Department of Oncology , Montefiore Medical Center/Albert Einstein College of Medicine , Bronx , NY , USA
| | - Haiying Cheng
- a Department of Oncology , Montefiore Medical Center/Albert Einstein College of Medicine , Bronx , NY , USA
| |
Collapse
|