1
|
Kaufmann J, Haist M, Kur IM, Zimmer S, Hagemann J, Matthias C, Grabbe S, Schmidberger H, Weigert A, Mayer A. Tumor-stroma contact ratio - a novel predictive factor for tumor response to chemoradiotherapy in locally advanced oropharyngeal cancer. Transl Oncol 2024; 46:102019. [PMID: 38833784 PMCID: PMC11190748 DOI: 10.1016/j.tranon.2024.102019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
The growth pattern of oropharyngeal squamous cell carcinomas (OPSCC) varies from compact tumor cell aggregates to diffusely infiltrating tumor cell-clusters. The influence of the growth pattern on local tumor control and survival has been studied mainly for surgically treated oral cavity carcinomas on a visual basis. In this study, we used multiplex immunofluorescence staining (mIF) to examine the antigens pan-cytokeratin, p16INK4a, Ki67, CD271, PD-L1, and CD8 in pretherapeutic biopsies from 86 OPSCC. We introduce Tumor-stroma contact ratio (TSC), a novel parameter, to quantify the relationship between tumor cells in contact with the stromal surface and the total number of epithelial tumor cells. mIF tumor cores were analyzed at the single-cell level, and tumor-stromal contact area was quantified using the R package "Spatstat". TSC was correlated with the visually assessed invasion pattern by two independent investigators. Furthermore, TSC was analyzed in relation to clinical parameters and patient survival data to evaluate its potential prognostic significance. Higher TSC correlated with poor response to (chemo-)radiotherapy (r = 0.3, p < 0.01), and shorter overall (OS) and progression-free (PFS) survival (median OS: 13 vs 136 months, p < 0.0001; median PFS: 5 vs 85 months, p < 0.0001). Visual categorization of growth pattern according to established criteria of tumor aggressiveness showed interobserver variability increasing with more nuanced categories (2 categories: k = 0.7, 95 %-CI: 0.55 - 0.85; 4 categories k = 0.48, 95 %-CI: 0.35 - 0.61). In conclusion, TSC is an objective and reproducible computer-based parameter to quantify tumor-stroma contact area. We demonstrate its relevance for the response of oropharyngeal carcinomas to primary (chemo-)radiotherapy.
Collapse
Affiliation(s)
- Justus Kaufmann
- Department of Radiation Oncology and Radiotherapy, University Medical Center of the Johannes-Gutenberg-University, Mainz 55131, Germany.
| | - Maximilian Haist
- Department of Dermatology, University Medical Center of the Johannes-Gutenberg-University, 55131 Mainz, Germany; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ivan-Maximiliano Kur
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60596 Frankfurt, Germany
| | - Stefanie Zimmer
- Institute of Pathology, University Medical Center of the Johannes-Gutenberg-University, 55131 Mainz, Germany
| | - Jan Hagemann
- Department of Otorhinolaryngology, University Medical Center of the Johannes-Gutenberg-University, Mainz 55131, Germany
| | - Christoph Matthias
- Department of Otorhinolaryngology, University Medical Center of the Johannes-Gutenberg-University, Mainz 55131, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes-Gutenberg-University, 55131 Mainz, Germany
| | - Heinz Schmidberger
- Department of Radiation Oncology and Radiotherapy, University Medical Center of the Johannes-Gutenberg-University, Mainz 55131, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60596 Frankfurt, Germany
| | - Arnulf Mayer
- Department of Radiation Oncology and Radiotherapy, University Medical Center of the Johannes-Gutenberg-University, Mainz 55131, Germany; Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
2
|
Higginson JA, Breik O, Thompson AH, Ashrafian H, Hardman JC, Takats Z, Paleri V, Dhanda J. Diagnostic accuracy of intraoperative margin assessment techniques in surgery for head and neck squamous cell carcinoma: A meta-analysis. Oral Oncol 2023; 142:106419. [PMID: 37178655 DOI: 10.1016/j.oraloncology.2023.106419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/18/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Positive margins following head and neck squamous cell carcinoma (HNSCC) surgery lead to significant morbidity and mortality. Existing Intraoperative Margin Assessment (IMA) techniques are not widely used due to limitations in sampling technique, time constraints and resource requirements. We performed a meta-analysis of the diagnostic performance of existing IMA techniques in HNSCC, providing a benchmark against which emerging techniques may be judged. METHODS The study was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guidelines. Studies were included if they reported diagnostic metrics of techniques used during HNSCC surgery, compared with permanent histopathology. Screening, manuscript review and data extraction was performed by multiple independent observers. Pooled sensitivity and specificity were estimated using the bivariate random effects model. RESULTS From an initial 2344 references, 35 studies were included for meta-analysis. Sensitivity (Sens), specificity (Spec), diagnostic odds ratio (DOR) and area under the receiver operating characteristic curve (AUROC) were calculated for each group (n, Sens, Spec, DOR, AUROC): frozen section = 13, 0.798, 0.991, 309.8, 0.976; tumour-targeted fluorescence (TTF) = 5, 0.957, 0.827, 66.4, 0.944; optical techniques = 10, 0.919, 0.855, 58.9, 0.925; touch imprint cytology = 3, 0.925, 0.988, 51.1, 0.919; topical staining = 4, 0.918, 0.759, 16.4, 0.833. CONCLUSIONS Frozen section and TTF had the best diagnostic performance. Frozen section is limited by sampling error. TTF shows promise but involves administration of a systemic agent. Neither is currently in widespread clinical use. Emerging techniques must demonstrate competitive diagnostic accuracy whilst allowing rapid, reliable, cost-effective results.
Collapse
Affiliation(s)
| | - Omar Breik
- School of Dentristy, University of Queensland, Australia
| | | | | | - John C Hardman
- International Centre for Recurrent Head and Neck Cancer, The Royal Marsden NHS Foundation Trust, UK
| | | | - Vinidh Paleri
- International Centre for Recurrent Head and Neck Cancer, The Royal Marsden NHS Foundation Trust, UK; Institute of Cancer Research, UK
| | - Jagtar Dhanda
- Department of Surgery, Brighton and Sussex Medical School, UK
| |
Collapse
|
3
|
Haist M, Kaufmann J, Kur IM, Zimmer S, Grabbe S, Schmidberger H, Weigert A, Mayer A. Response to primary chemoradiotherapy of locally advanced oropharyngeal carcinoma is determined by the degree of cytotoxic T cell infiltration within tumor cell aggregates. Front Immunol 2023; 14:1070203. [PMID: 37187729 PMCID: PMC10175951 DOI: 10.3389/fimmu.2023.1070203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Background Effective anti-tumor immune responses are mediated by T cells and require organized, spatially coordinated interactions within the tumor microenvironment (TME). Understanding coordinated T-cell-behavior and deciphering mechanisms of radiotherapy resistance mediated by tumor stem cells will advance risk stratification of oropharyngeal cancer (OPSCC) patients treated with primary chemoradiotherapy (RCTx). Methods To determine the role of CD8 T cells (CTL) and tumor stem cells for response to RCTx, we employed multiplex immunofluorescence stains on pre-treatment biopsy specimens from 86 advanced OPSCC patients and correlated these quantitative data with clinical parameters. Multiplex stains were analyzed at the single-cell level using QuPath and spatial coordination of immune cells within the TME was explored using the R-package Spatstat. Results Our observations demonstrate that a strong CTL-infiltration into the epithelial tumor compartment (HR for overall survival, OS: 0.35; p<0.001) and the expression of PD-L1 on CTL (HR: 0.36; p<0.001) were both associated with a significantly better response and survival upon RCTx. As expected, p16 expression was a strong predictor of improved OS (HR: 0.38; p=0.002) and correlated with overall CTL infiltration (r: 0.358, p<0.001). By contrast, tumor cell proliferative activity, expression of the tumor stem cell marker CD271 and overall CTL infiltration, regardless of the affected compartment, were not associated with response or survival. Conclusion In this study, we could demonstrate the clinical relevance of the spatial organization and the phenotype of CD8 T cells within the TME. In particular, we found that the infiltration of CD8 T cells specifically into the tumor cell compartment was an independent predictive marker for response to chemoradiotherapy, which was strongly associated with p16 expression. Meanwhile, tumor cell proliferation and the expression of stem cell markers showed no independent prognostic effect for patients with primary RCTx and thus requires further study.
Collapse
Affiliation(s)
- Maximilian Haist
- Department of Dermatology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, United States
- *Correspondence: Maximilian Haist,
| | - Justus Kaufmann
- Department of Radiation Oncology and Radiotherapy, University Medical Center, Mainz, Germany
| | - Ivan-Maximiliano Kur
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Stefanie Zimmer
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Heinz Schmidberger
- Department of Radiation Oncology and Radiotherapy, University Medical Center, Mainz, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Arnulf Mayer
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
4
|
Precision Medicine in Head and Neck Cancers: Genomic and Preclinical Approaches. J Pers Med 2022; 12:jpm12060854. [PMID: 35743639 PMCID: PMC9224778 DOI: 10.3390/jpm12060854] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 02/07/2023] Open
Abstract
Head and neck cancers (HNCs) represent the sixth most widespread malignancy worldwide. Surgery, radiotherapy, chemotherapeutic and immunotherapeutic drugs represent the main clinical approaches for HNC patients. Moreover, HNCs are characterised by an elevated mutational load; however, specific genetic mutations or biomarkers have not yet been found. In this scenario, personalised medicine is showing its efficacy. To study the reliability and the effects of personalised treatments, preclinical research can take advantage of next-generation sequencing and innovative technologies that have been developed to obtain genomic and multi-omic profiles to drive personalised treatments. The crosstalk between malignant and healthy components, as well as interactions with extracellular matrices, are important features which are responsible for treatment failure. Preclinical research has constantly implemented in vitro and in vivo models to mimic the natural tumour microenvironment. Among them, 3D systems have been developed to reproduce the tumour mass architecture, such as biomimetic scaffolds and organoids. In addition, in vivo models have been changed over the last decades to overcome problems such as animal management complexity and time-consuming experiments. In this review, we will explore the new approaches aimed to improve preclinical tools to study and apply precision medicine as a therapeutic option for patients affected by HNCs.
Collapse
|
5
|
MCM-2, Ki-67, and EGFR downregulated expression levels in advanced stage laryngeal squamous cell carcinoma. Sci Rep 2021; 11:14607. [PMID: 34272446 PMCID: PMC8285532 DOI: 10.1038/s41598-021-94077-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/06/2021] [Indexed: 12/29/2022] Open
Abstract
We present the conceptual study investigated the capacity of minichromosome maintenance-2 (MCM-2), Ki-67, and epidermal growth factor receptor (EGFR) to assess the severity and progression of laryngeal squamous cell carcinoma (LSCC) disease and to study the correlations among these markers. A total of 30 patients with LSCC with immunohistochemistry (IHC) staining for MCM-2, Ki-67 and EGFR were examined. Mean expression levels of the three markers were evaluated for comparing between early and advanced stages of LSCC. The mean MCM-2, Ki-67, and EGFR expression levels were significantly decreased in advanced-stage compared with early-stage LSCC. Pearson correlation analysis showed a statistically significant correlation between the MCM-2 and Ki-67. Regarding subgroup analyses, MCM-2, Ki-67, and EGFR showed significant differences between early- and advanced-stage LSCC with non-recurrence, while for the recurrent subgroup LSCC, only MCM-2 revealed a significant difference between early- and advanced-stage LSCC. Altogether, these results support the role for downregulation of MCM-2, Ki-67 and EGFR in advanced-stage LSCC and correlation of MCM-2 and Ki-67 expressions that would be a promising strategy to predict prognosis of LSCC including severity and progression. We contextualize our findings and advocate the position of the biological markers, especially MCM-2, as an emerging evaluation tool for LSCC disease.
Collapse
|
6
|
Kaufmann J, Biscio CAN, Bankhead P, Zimmer S, Schmidberger H, Rubak E, Mayer A. Using the R Package Spatstat to Assess Inhibitory Effects of Microregional Hypoxia on the Infiltration of Cancers of the Head and Neck Region by Cytotoxic T Lymphocytes. Cancers (Basel) 2021; 13:cancers13081924. [PMID: 33923522 PMCID: PMC8072547 DOI: 10.3390/cancers13081924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/27/2021] [Accepted: 04/12/2021] [Indexed: 11/27/2022] Open
Abstract
Simple Summary Progress in the field of in situ proteomics allows for the simultaneous detection of multiple biomarkers within one cancer tissue specimen. As a result, biological hypotheses previously only assessable ex vivo can now be studied in human cancer tissue. However, methods for objective analysis have so far been lacking behind. In this study, we established a free, objective, and entirely open-source-based method for the analysis of multiplexed immunofluorescence specimens. This will gain further importance with the availability of more advanced multiplexing methods in the future. Abstract (1) Background: The immune system has physiological antitumor activity, which is partially mediated by cytotoxic T lymphocytes (CTL). Tumor hypoxia, which is highly prevalent in cancers of the head and neck region, has been hypothesized to inhibit the infiltration of tumors by CTL. In situ data validating this concept have so far been based solely upon the visual assessment of the distribution of CTL. Here, we have established a set of spatial statistical tools to address this problem mathematically and tested their performance. (2) Patients and Methods: We have analyzed regions of interest (ROI) of 22 specimens of cancers of the head and neck region after 4-plex immunofluorescence staining and whole-slide scanning. Single cell-based segmentation was carried out in QuPath. Specimens were analyzed with the endpoints clustering and interactions between CTL, normoxic, and hypoxic tumor areas, both visually and using spatial statistical tools implemented in the R package Spatstat. (3) Results: Visual assessment suggested clustering of CTL in all instances. The visual analysis also suggested an inhibitory effect between hypoxic tumor areas and CTL in a minority of the whole-slide scans (9 of 22, 41%). Conversely, the objective mathematical analysis in Spatstat demonstrated statistically significant inhibitory interactions between hypoxia and CTL accumulation in a substantially higher number of specimens (16 of 22, 73%). It showed a similar trend in all but one of the remaining samples. (4) Conclusion: Our findings provide non-obvious but statistically rigorous evidence of inhibition of CTL infiltration into hypoxic tumor subregions of cancers of the head and neck. Importantly, these shielded sites may be the origin of tumor recurrences. We provide the methodology for the transfer of our statistical approach to similar questions. We discuss why versions of the Kcross and pcf.cross functions may be the methods of choice among the repertoire of statistical tests in Spatstat for this type of analysis.
Collapse
Affiliation(s)
- Justus Kaufmann
- Department of Radiation Oncology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.K.); (H.S.)
| | - Christophe A. N. Biscio
- Department of Mathematical Sciences, Aalborg University, Skjernvej 4A, 9220 Aalborg East, Denmark; (C.A.N.B.); (E.R.)
| | - Peter Bankhead
- Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK;
| | - Stefanie Zimmer
- Institute of Pathology and Tissue Biobank, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Heinz Schmidberger
- Department of Radiation Oncology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.K.); (H.S.)
| | - Ege Rubak
- Department of Mathematical Sciences, Aalborg University, Skjernvej 4A, 9220 Aalborg East, Denmark; (C.A.N.B.); (E.R.)
| | - Arnulf Mayer
- Department of Radiation Oncology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.K.); (H.S.)
- Correspondence: ; Tel.: +49-6131-173576
| |
Collapse
|
7
|
Zahnreich S, Gebrekidan S, Multhoff G, Vaupel P, Schmidberger H, Mayer A. Oxygen Deprivation Modulates EGFR and PD-L1 in Squamous Cell Carcinomas of the Head and Neck. Front Oncol 2021; 11:623964. [PMID: 33718186 PMCID: PMC7953989 DOI: 10.3389/fonc.2021.623964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/13/2021] [Indexed: 11/13/2022] Open
Abstract
Abundance and signaling of the epidermal growth factor receptor (EGFR) and programmed cell death protein ligand 1 (PD-L1) in head and neck squamous cell carcinoma (HNSCC) are not only genetically determined but are also subject to the traits of the tumor microenvironment, which has hitherto not been clarified completely. We investigated the impact of hypoxia on the EGFR system and on PD-L1 in six HPV negative HNSCC cell lines in vitro and in FaDu xenografts in vivo. Protein levels of EGFR, AKT, pAKT, ERK1/2, pERK1/2, CA IX, cleaved PARP (apoptosis), LC3B (autophagy), and PD-L1 were quantified by western blot after oxygen deprivation or CoCl2, staurosporine, and erlotinib treatment. In FaDu xenograft tumors the expression of EGFR, CA IX andCD34 staining were analyzed. Reduced oxygen supply strongly downregulated EGFR protein levels and signaling in FaDu cells in vitro and in vivo, and a transient downregulation of EGFR signaling was found in three other HNSCC cell lines. PD-L1 was affected by oxygen deprivation in only one HNSCC cell line showing increased protein amounts. The results of this study indicate a significant impact of the traits of the tumor microenvironment on crucial molecular targets of cancer therapies with high clinical relevance for therapy resistance and response in HNSCC.
Collapse
Affiliation(s)
- Sebastian Zahnreich
- Department of Radiation Oncology and Radiation Therapy, University Medical Center Mainz, Mainz, Germany
| | - Senayit Gebrekidan
- Department of Radiation Oncology and Radiation Therapy, University Medical Center Mainz, Mainz, Germany
| | - Gabriele Multhoff
- Radiation Immuno-Oncology Project Group, Central Institute for Translational Cancer Research, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Peter Vaupel
- Department of Radiation Oncology and Radiation Therapy, University Medical Center Mainz, Mainz, Germany
| | - Heinz Schmidberger
- Department of Radiation Oncology and Radiation Therapy, University Medical Center Mainz, Mainz, Germany
| | - Arnulf Mayer
- Department of Radiation Oncology and Radiation Therapy, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
8
|
Role of Hypoxia and the Adenosine System in Immune Evasion and Prognosis of Patients with Brain Metastases of Melanoma: A Multiplex Whole Slide Immunofluorescence Study. Cancers (Basel) 2020; 12:cancers12123753. [PMID: 33322215 PMCID: PMC7763902 DOI: 10.3390/cancers12123753] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023] Open
Abstract
Following the introduction of immune checkpoint inhibitors, a substantial prolongation of the overall survival has been achieved for many patients with multiple brain metastases from melanoma. However, heterogeneity between individual tumor responses is incompletely understood. In order to determine the impact of the individual tumor phenotype on the prognosis of melanoma patients, we examined surgical sections from 33 patients who were treated with radiotherapy (whole-brain radiotherapy, WBRT, stereotactic radiotherapy, STX, or both) and Ipilimumab. We analyzed multiplex staining of the hypoxia marker GLUT-1, the adenosine (ADO)-associated enzymes CD73 and CD39, and CD8, a marker of cytotoxic T lymphocytes (CTL) on a single-cell basis using QuPath. Additionally, the MOSAIC interaction analysis algorithm was used to explore the hypothesis that CTL systematically avoid GLUT-1high tumor areas. Our results revealed, that a strong GLUT-1 expression, low numbers of CTL, or exclusion of CTL from the tumor were correlated with significant prognostic detriment. Hypoxic tumors overall have smaller amounts of CTL, and spatial analysis revealed a repellent effect of hypoxia on CTL. In contrast to in vitro studies, specific upregulation of ADO-related enzymes CD73 and CD39 in GLUT-1high tumor regions was never observed. In this study, we could show direct in vivo evidence for hypoxia-mediated immunosuppression in melanoma. Moreover, this study suggests a significant prognostic relevance of the tumor immune phenotype, the strength of CD8 infiltration in the tumor, and the expression of hypoxia marker GLUT-1 on melanoma cells. Last, our results suggest a temporal stability of the microenvironment-mediated immunosuppressive phenotype in melanoma.
Collapse
|
9
|
Bhatia P, Sharma V, Alam O, Manaithiya A, Alam P, Kahksha, Alam MT, Imran M. Novel quinazoline-based EGFR kinase inhibitors: A review focussing on SAR and molecular docking studies (2015-2019). Eur J Med Chem 2020; 204:112640. [PMID: 32739648 DOI: 10.1016/j.ejmech.2020.112640] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022]
Abstract
The over expression of EGFR has been recognized as the driver mechanism in the occurrence and progression of carcinomas such as lung cancer, breast cancer, pancreatic cancer, etcetera. EGFR receptor was thus established as an important target for the management of solid tumors. The occurrence of resistance caused as a result of mutations in EGFR has presented a formidable challenge in the discovery of novel inhibitors of EGFR. This has resulted in the development of three generations of EGFR TKIs. Newer mutations like C797S cause failure of Osimertinib and other EGFR TKIs belonging to the third-generation caused by the development of resistance. In this review, we have summarized the work done in the last five years to overcome the limitations of currently marketed drugs, giving structural activity relationships of quinazoline-based lead compounds synthesized and tested recently. We have also highlighted the shortcomings of the currently used approaches and have provided guidance for circumventing these limitations. Our review would help medicinal chemists streamline and guide their efforts towards developing novel quinazoline-based EGFR inhibitors.
Collapse
Affiliation(s)
- Parth Bhatia
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Vrinda Sharma
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Ozair Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Ajay Manaithiya
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Perwaiz Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Kahksha
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Md Tauquir Alam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha, Pin Code 91911, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha, Pin Code 91911, Saudi Arabia
| |
Collapse
|
10
|
Leesutipornchai T, Ratchataswan T, Vivatvakin S, Ruangritchankul K, Keelawat S, Kerekhanjanarong V, Bongsebandhu-phubhakdi S, Mahattanasakul P. EGFR cut-off point for prognostic impact in laryngeal squamous cell carcinoma. Acta Otolaryngol 2020; 140:610-614. [PMID: 32186231 DOI: 10.1080/00016489.2020.1738548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Background: Various molecular biomarkers, including epidermal growth factor receptor (EGFR), have gained importance as predictors of head and neck cancer disease progression.Aims: This study aimed to investigate the ability of EGFR expression as a prognostic marker for laryngeal squamous cell carcinoma (LSCC).Materials and methods: A total of 31 patients with LSCC with immunohistochemistry (IHC) staining for EGFR were examined. Digital image processing was applied to analyze EGFR staining intensity and percent distribution, which were calculated as the H-score. We used a receiver operating characteristic (ROC) curve to identify the best cut-off point of EGFR expression, with H-score separated into high- and low-grade for cancer recurrence prediction.Results: The cut-off point of EGFR expression for high- and low-grades was an H-score of 170 with a sensitivity of 75% and a specificity of 66.7%. Using this cut-off, 14 (45.16%) and 17 (54.84%) patients were categorized as having high- and low-grades EGFR, respectively. The analysis showed a significant reverse correlation between the EGFR grade and LSCC recurrence (RR, 0.4; 95% CI, 0.17-0.98; p = .02).Conclusions: Our study demonstrated that EGFR grading using H-score with the generated cut-off point by the ROC curve might be further applied as a potential marker for LSCC prognostic prediction.
Collapse
Affiliation(s)
| | - Thanaporn Ratchataswan
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sarocha Vivatvakin
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Somboon Keelawat
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Virachai Kerekhanjanarong
- Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Patnarin Mahattanasakul
- Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Otolaryngology, Head and Neck Surgery, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
11
|
Yu YY, Chiou HL, Tsao SM, Huang CC, Lin CY, Lee CY, Tsao TCY, Yang SF, Huang YW. Association of Carbonic Anhydrase 9 Polymorphism and the Epithelial Growth Factor Receptor Mutations in Lung Adenocarcinoma Patients. Diagnostics (Basel) 2020; 10:diagnostics10050266. [PMID: 32365566 PMCID: PMC7277165 DOI: 10.3390/diagnostics10050266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
Carbonic anhydrase 9 (CA9) plays a vital role in lung cancer progression. The current study explored the effect of CA9 gene polymorphisms and the epidermal growth factor receptor (EGFR) mutations on the clinicopathological characters of lung adenocarcinoma. In this study, three loci of CA9 single nucleotide polymorphism (SNP) (rs2071676 A>G, rs3829078 A>G, and rs1048638 C>A) were genotyped using the TaqMan allelic discrimination method in 193 EGFR wild type individuals and 281 EGFR mutation subjects. After adjusting for age, gender, and cigarette smoking status in logistic regression, all three CA9 SNPs illustrated a non-significant difference for the distribution between the EGFR wild type group and EGFR mutation group. Nevertheless, a significantly lower rate of CA9 SNP rs2071676 AG (adjusted odds ratio (AOR): 0.40, 95% confidence interval (CI): 0.16-0.95, p = 0.039) and AG+GG (AOR: 0.43, 95% CI: 0.18-0.98, p = 0.046) were found in the male population with L858R EGFR mutation compared to men with EGFR wild type. In addition, the CA9 SNP rs2071676 AG+GG genotype were significantly correlated to the lower tumor stage of lung adenocarcinoma in the whole study population (p = 0.044) and EGFR wild type individuals (p = 0.033). For the male population, the presence of CA9 SNP rs2071676 AG+GG genotype was also correlated to a lower tumor stage (p = 0.037) and fewer lymph node invasion (p = 0.003) in those with EGFR wild type. In conclusion, the existence of CA9 SNP rs2071676 is associated with the rate of EGFR L858R mutation in males. Furthermore, the CA9 SNP rs2071676 is correlated to lower tumor stage and lower risk for developing lymph node metastasis in lung adenocarcinoma, mainly in the EGFR wild type.
Collapse
Affiliation(s)
- Ya-Yen Yu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Clinical Laboratory, Changhua Hospital, Changhua 513, Taiwan
| | - Hui-Ling Chiou
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Shih-Ming Tsao
- Division of Chest, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan; (S.-M.T.); (T.C.-Y.T.)
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung 402, Taiwan
| | - Chen-Cheng Huang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Hospital, Ministry of Health and Welfare, Taichung 403, Taiwan;
| | - Chih-Yun Lin
- Department of Health, Pulmonary and Critical Care Unit, Changhua Hospital, Changhua 500, Taiwan;
| | - Chia-Yi Lee
- Department of Ophthalmology, Show Chwan Memorial Hospital, Changhua 500, Taiwan;
| | - Thomas Chang-Yao Tsao
- Division of Chest, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan; (S.-M.T.); (T.C.-Y.T.)
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Correspondence: (S.-F.Y.); (Y.-W.H.)
| | - Yi-Wen Huang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Health, Pulmonary and Critical Care Unit, Changhua Hospital, Changhua 500, Taiwan;
- Correspondence: (S.-F.Y.); (Y.-W.H.)
| |
Collapse
|
12
|
Targeting Cellular Metabolism Modulates Head and Neck Oncogenesis. Int J Mol Sci 2019; 20:ijms20163960. [PMID: 31416244 PMCID: PMC6721038 DOI: 10.3390/ijms20163960] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/24/2022] Open
Abstract
Considering the great energy and biomass demand for cell survival, cancer cells exhibit unique metabolic signatures compared to normal cells. Head and neck squamous cell carcinoma (HNSCC) is one of the most prevalent neoplasms worldwide. Recent findings have shown that environmental challenges, as well as intrinsic metabolic manipulations, could modulate HNSCC experimentally and serve as clinic prognostic indicators, suggesting that a better understanding of dynamic metabolic changes during HNSCC development could be of great benefit for developing adjuvant anti-cancer schemes other than conventional therapies. However, the following questions are still poorly understood: (i) how does metabolic reprogramming occur during HNSCC development? (ii) how does the tumorous milieu contribute to HNSCC tumourigenesis? and (iii) at the molecular level, how do various metabolic cues interact with each other to control the oncogenicity and therapeutic sensitivity of HNSCC? In this review article, the regulatory roles of different metabolic pathways in HNSCC and its microenvironment in controlling the malignancy are therefore discussed in the hope of providing a systemic overview regarding what we knew and how cancer metabolism could be translated for the development of anti-cancer therapeutic reagents.
Collapse
|
13
|
Liu B, Han D, Zhang T, Cheng G, Lu Y, Wang J, Zhao H, Zhao Z. Hypoxia-induced autophagy promotes EGFR loss in specific cell contexts, which leads to cell death and enhanced radiosensitivity. Int J Biochem Cell Biol 2018; 111:12-18. [PMID: 30278227 DOI: 10.1016/j.biocel.2018.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 10/28/2022]
Abstract
Treatment failure through radioresistance of tumors is associated with activation of the epidermal growth factor receptor (EGFR). Tumor cell proliferation, DNA-repair, hypoxia and metastases-formation are four mechanisms in which EGFR signaling has an important role. However, the effect of hypoxia on EGFR expression is still controversial. In this study, we demonstrated that hypoxia enhanced EGFR expression and sustained cell survival in SiHa, CAL 27 and A549 cells at both low and high cell desnities, while in MCF-7, MDA-MB-231 and HeLa cells, EGFR and cell survival were regulated by hypoxic treatment in a cell-density dependent manner: upregulated at low cell density and downregulated at high cell density. In MCF-7 and HeLa xenografts in nude mice, EGFR expression varied inversely with the pimonidazole level that was used as an indicator of hypoxia, accordant with the effect of hypoxia at high cell density in vitro. Hypoxia induced more remarkable cell autophagy at high cell density than at low cell density. Autophagy inhibitor 3MA, rather than proteasome inhibitor MG132 inhibited hypoxia-mediated EGFR loss and shifted cell death to cell survival in HeLa cells. The MCF7 cells' sensitivity to ionizing radiation (IR) under hypoxia was also conditional on the cell densities when the hypoxia treatment was introduced, inversely associated with the expression levels of EGFR. Altogether, hypoxia can decrease EGFR expression in some cell lines by enhancing autophagy at high cell density, leading to cell death and hypersensitivity to radiotherapy. This study may help to understand how hypoxia influences EGFR expression and radiosensitivity.
Collapse
Affiliation(s)
- Baocai Liu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Dongmei Han
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Tingting Zhang
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Guanghui Cheng
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Yinliang Lu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Jinbao Wang
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Hongfu Zhao
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Zhipeng Zhao
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| |
Collapse
|
14
|
Raulf N, Lucarelli P, Thavaraj S, Brown S, Vicencio JM, Sauter T, Tavassoli M. Annexin A1 regulates EGFR activity and alters EGFR-containing tumour-derived exosomes in head and neck cancers. Eur J Cancer 2018; 102:52-68. [PMID: 30142511 DOI: 10.1016/j.ejca.2018.07.123] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/29/2018] [Accepted: 07/16/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is the 6th most common cancer with approximately half a million cases diagnosed each year worldwide. HNSCC has a poor survival rate which has not improved for over 30 years. The molecular pathogenesis of HNSCCs remains largely unresolved; there is high prevalence of p53 mutations and EGFR overexpression; however, the contribution of these molecular changes to disease development and/or progression remains unknown. We have recently identified microRNA miR-196a to be highly overexpressed in HNSCC with poor prognosis. Oncogenic miR-196a directly targets Annexin A1 (ANXA1). Although increased ANXA1 expression levels have been associated with breast cancer development, its role in HNSCC is debatable and its functional contribution to HNSCC development remains unclear. METHODS ANXA1 mRNA and protein expression levels were determined by RNA Seq analysis and immunohistochemistry, respectively. Gain- and loss-of-function studies were performed to analyse the effects of ANXA1 modulation on cell proliferation, mechanism of activation of EGFR signalling as well as on exosome production and exosomal phospho-EGFR. RESULTS ANXA1 was found to be downregulated in head and neck cancer tissues, both at mRNA and protein level. Its anti-proliferative effects were mediated through the intracellular form of the protein. Importantly, ANXA1 downregulation resulted in increased phosphorylation and activity of EGFR and its downstream PI3K-AKT signalling. Additionally, ANXA1 modulation affected exosome production and influenced the release of exosomal phospho-EGFR. CONCLUSIONS ANXA1 acts as a tumour suppressor in HNSCC. It is involved in the regulation of EGFR activity and exosomal phospho-EGFR release and could be an important prognostic biomarker.
Collapse
Affiliation(s)
- N Raulf
- Department of Molecular Oncology, King's College London, Guy's Hospital Campus, Hodgkin Building, London SE1 1UL, UK
| | - P Lucarelli
- Faculté des Sciences, de La Technologie et de La Communication, University of Luxembourg, 6, Avenue Du Swing, 4367 Belvaux, Luxembourg
| | - S Thavaraj
- Department of Head and Neck Pathology, Mucosal and Salivary Biology, Guy's Hospital Campus, King's College London, SE1 9RT, UK
| | - S Brown
- DCT3 Oral and Maxillofacial Histopathology, Department of Head & Neck Pathology, Guy's Hospital Campus, King's College London, SE1 9RT, UK
| | - J M Vicencio
- Research Department of Cancer Biology, Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - T Sauter
- Faculté des Sciences, de La Technologie et de La Communication, University of Luxembourg, 6, Avenue Du Swing, 4367 Belvaux, Luxembourg
| | - M Tavassoli
- Department of Molecular Oncology, King's College London, Guy's Hospital Campus, Hodgkin Building, London SE1 1UL, UK.
| |
Collapse
|
15
|
Baker LCJ, Sikka A, Price JM, Boult JKR, Lepicard EY, Box G, Jamin Y, Spinks TJ, Kramer-Marek G, Leach MO, Eccles SA, Box C, Robinson SP. Evaluating Imaging Biomarkers of Acquired Resistance to Targeted EGFR Therapy in Xenograft Models of Human Head and Neck Squamous Cell Carcinoma. Front Oncol 2018; 8:271. [PMID: 30083516 PMCID: PMC6064942 DOI: 10.3389/fonc.2018.00271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/02/2018] [Indexed: 01/18/2023] Open
Abstract
Background: Overexpression of EGFR is a negative prognostic factor in head and neck squamous cell carcinoma (HNSCC). Patients with HNSCC who respond to EGFR-targeted tyrosine kinase inhibitors (TKIs) eventually develop acquired resistance. Strategies to identify HNSCC patients likely to benefit from EGFR-targeted therapies, together with biomarkers of treatment response, would have clinical value. Methods: Functional MRI and 18F-FDG PET were used to visualize and quantify imaging biomarkers associated with drug response within size-matched EGFR TKI-resistant CAL 27 (CALR) and sensitive (CALS) HNSCC xenografts in vivo, and pathological correlates sought. Results: Intrinsic susceptibility, oxygen-enhanced and dynamic contrast-enhanced MRI revealed significantly slower baseline R 2 ∗ , lower hyperoxia-induced Δ R 2 ∗ and volume transfer constant Ktrans in the CALR tumors which were associated with significantly lower Hoechst 33342 uptake and greater pimonidazole-adduct formation. There was no difference in oxygen-induced ΔR1 or water diffusivity between the CALR and CALS xenografts. PET revealed significantly higher relative uptake of 18F-FDG in the CALR cohort, which was associated with significantly greater Glut-1 expression. Conclusions: CALR xenografts established from HNSCC cells resistant to EGFR TKIs are more hypoxic, poorly perfused and glycolytic than sensitive CALS tumors. MRI combined with PET can be used to non-invasively assess HNSCC response/resistance to EGFR inhibition.
Collapse
Affiliation(s)
- Lauren C. J. Baker
- Division of Radiotherapy & Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Arti Sikka
- Division of Radiotherapy & Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Jonathan M. Price
- Division of Radiotherapy & Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Jessica K. R. Boult
- Division of Radiotherapy & Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Elise Y. Lepicard
- Division of Radiotherapy & Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Gary Box
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Yann Jamin
- Division of Radiotherapy & Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Terry J. Spinks
- Division of Radiotherapy & Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Gabriela Kramer-Marek
- Division of Radiotherapy & Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Martin O. Leach
- Division of Radiotherapy & Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Suzanne A. Eccles
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Carol Box
- Division of Radiotherapy & Imaging, The Institute of Cancer Research, London, United Kingdom
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Simon P. Robinson
- Division of Radiotherapy & Imaging, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
16
|
Multiparametric Analysis of the Tumor Microenvironment: Hypoxia Markers and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 977:101-107. [PMID: 28685433 DOI: 10.1007/978-3-319-55231-6_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have established a novel in situ protein analysis pipeline, which is built upon highly sensitive, multichannel immunofluorescent staining of paraffin sections of human and xenografted tumor tissue. Specimens are digitized using slide scanners equipped with suitable light sources and fluorescence filter combinations. Resulting digital images are subsequently subjected to quantitative image analysis using a primarily object-based approach, which comprises segmentation of single cells or higher-order structures (e.g., blood vessels), cell shape approximation, measurement of signal intensities in individual fluorescent channels and correlation of these data with positional information for each object. Our approach could be particularly useful for the study of the hypoxic tumor microenvironment as it can be utilized to systematically explore the influence of spatial factors on cell phenotypes, e.g., the distance of a given cell type from the nearest blood vessel on the cellular expression of hypoxia-associated biomarkers and other proteins reflecting their specific state of activation or function. In this report, we outline the basic methodology and provide an outlook on possible use cases.
Collapse
|