1
|
Shrestha B, Stern NB, Zhou A, Dunn A, Porter T. Current trends in the characterization and monitoring of vascular response to cancer therapy. Cancer Imaging 2024; 24:143. [PMID: 39438891 PMCID: PMC11515715 DOI: 10.1186/s40644-024-00767-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/26/2024] [Indexed: 10/25/2024] Open
Abstract
Tumor vascular physiology is an important determinant of disease progression as well as the therapeutic outcome of cancer treatment. Angiogenesis or the lack of it provides crucial information about the tumor's blood supply and therefore can be used as an index for cancer growth and progression. While standalone anti-angiogenic therapy demonstrated limited therapeutic benefits, its combination with chemotherapeutic agents improved the overall survival of cancer patients. This could be attributed to the effect of vascular normalization, a dynamic process that temporarily reverts abnormal vasculature to the normal phenotype maximizing the delivery and intratumor distribution of chemotherapeutic agents. Longitudinal monitoring of vascular changes following antiangiogenic therapy can indicate an optimal window for drug administration and estimate the potential outcome of treatment. This review primarily focuses on the status of various imaging modalities used for the longitudinal characterization of vascular changes before and after anti-angiogenic therapies and their clinical prospects.
Collapse
Affiliation(s)
- Binita Shrestha
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Noah B Stern
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Annie Zhou
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrew Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Tyrone Porter
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
2
|
Abdul-Latif M, Tharmalingam H, Tsang Y, Hoskin PJ. Functional Magnetic Resonance Imaging in Cervical Cancer Diagnosis and Treatment. Clin Oncol (R Coll Radiol) 2023; 35:598-610. [PMID: 37246040 DOI: 10.1016/j.clon.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/12/2023] [Indexed: 05/30/2023]
Abstract
Cervical Cancer is the fourth most common cancer in women worldwide. Treatment with chemoradiotherapy followed by brachytherapy achieves high local control, but recurrence with metastatic disease impacts survival. This highlights the need for predictive and prognostic biomarkers identifying populations at risk of poorer treatment response and survival. Magnetic resonance imaging (MRI) is routinely used in cervical cancer and is a potential source for biomarkers. Functional MRI (fMRI) can characterise tumour beyond anatomical MRI, which is limited to the assessment of morphology. This review summarises fMRI techniques used in cervical cancer and examines the role of fMRI parameters as predictive or prognostic biomarkers. Different techniques characterise different tumour factors, which helps to explain the variation in patient outcomes. These can impact simultaneously on outcomes, making biomarker identification challenging. Most studies are small, focussing on single MRI techniques, which raises the need to investigate combined fMRI approaches for a more holistic characterisation of tumour.
Collapse
Affiliation(s)
| | | | - Y Tsang
- Mount Vernon Cancer Centre, Northwood, UK; Radiation Medicine Programme, Princess Margaret Cancer Centre, Toronto, Canada
| | - P J Hoskin
- Mount Vernon Cancer Centre, Northwood, UK; Division of Cancer Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
3
|
Avesani G, Perazzolo A, Amerighi A, Celli V, Panico C, Sala E, Gui B. The Utility of Contrast-Enhanced Magnetic Resonance Imaging in Uterine Cervical Cancer: A Systematic Review. Life (Basel) 2023; 13:1368. [PMID: 37374150 DOI: 10.3390/life13061368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Correct staging of cervical cancer is essential to establish the best therapeutic procedure and prognosis for the patient. MRI is the best imaging modality for local staging and follow-up. According to the latest ESUR guidelines, T2WI and DWI-MR sequences are fundamental in these settings, and CE-MRI remains optional. This systematic review, according to the PRISMA 2020 checklist, aims to give an overview of the literature regarding the use of contrast in MRI in cervical cancer and provide more specific indications of when it may be helpful. Systematic searches on PubMed and Web Of Science (WOS) were performed, and 97 papers were included; 1 paper was added considering the references of included articles. From our literature review, it emerged that many papers about the use of contrast in cervical cancer are dated, especially about staging and detection of tumor recurrence. We did not find strong evidence suggesting that CE-MRI is helpful in any clinical setting for cervical cancer staging and detection of tumor recurrence. There is growing evidence that perfusion parameters and perfusion-derived radiomics models might have a role as prognostic and predictive biomarkers, but the lack of standardization and validation limits their use in a research setting.
Collapse
Affiliation(s)
- Giacomo Avesani
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Alessio Perazzolo
- Department of Radiological and Hematological Sciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Andrea Amerighi
- Department of Radiological and Hematological Sciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Veronica Celli
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Camilla Panico
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Evis Sala
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Benedetta Gui
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| |
Collapse
|
4
|
Lindgren A, Anttila M, Arponen O, Hämäläinen K, Könönen M, Vanninen R, Sallinen H. Dynamic contrast-enhanced MRI to characterize angiogenesis in primary epithelial ovarian cancer: An exploratory study. Eur J Radiol 2023; 165:110925. [PMID: 37320880 DOI: 10.1016/j.ejrad.2023.110925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/02/2023] [Accepted: 06/09/2023] [Indexed: 06/17/2023]
Abstract
PURPOSE Angiogenesis is essential for tumor growth. Currently, there are no established imaging biomarkers to show angiogenesis in tumor tissue. The aim of this prospective study was to evaluate whether semiquantitative and pharmacokinetic DCE-MRI perfusion parameters could be used to assess angiogenesis in epithelial ovarian cancer (EOC). METHOD We enrolled 38 patients with primary EOC treated in 2011-2014. DCE-MRI was performed with a 3.0 T imaging system before the surgical treatment. Two different sizes of ROI were used to evaluate semiquantitative and pharmacokinetic DCE perfusion parameters: a large ROI (L-ROI) covering the whole primary lesion on one plane and a small ROI (S-ROI) covering a small solid, highly enhancing focus. Tissue samples from tumors were collected during the surgery. Immunohistochemistry was used to measure the expression of vascular endothelial growth factor (VEGF), its receptors (VEGFRs) and to analyse microvascular density (MVD) and the number of microvessels. RESULTS VEGF expression correlated inversely with Ktrans (L-ROI, r = -0.395 (p = 0.009), S-ROI, r = -0.390, (p = 0.010)), Ve (L-ROI, r = -0.395 (p = 0.009), S-ROI, r = -0.412 (p = 0.006)) and Vp (L-ROI, r = -0.388 (p = 0.011), S-ROI, r = -0.339 (p = 0.028)) values in EOC. Higher VEGFR-2 correlated with lower DCE parameters Ktrans (L-ROI, r = -0.311 (p = 0.040), S-ROI, r = -0.337 (p = 0.025)) and Ve (L-ROI, r = -0.305 (p = 0.044), S-ROI, r = -0.355 (p = 0.018)). We also found that MVD and the number of microvessels correlated positively with AUC, Peak and WashIn values. CONCLUSIONS We observed that several DCE-MRI parameters correlated with VEGF and VEGFR-2 expression and MVD. Thus, both semiquantitative and pharmacokinetic perfusion parameters of DCE-MRI represent promising tools for the assessment of angiogenesis in EOC.
Collapse
Affiliation(s)
- Auni Lindgren
- Department of Obstetrics and Gynaecology, Kuopio University Hospital, Kuopio, Finland; University of Eastern Finland, Faculty of Health Sciences, School of Medicine, Institute of Clinical Medicine, Obstetrics and Gynaecology, Kuopio, Finland.
| | - Maarit Anttila
- Department of Obstetrics and Gynaecology, Kuopio University Hospital, Kuopio, Finland; University of Eastern Finland, Faculty of Health Sciences, School of Medicine, Institute of Clinical Medicine, Obstetrics and Gynaecology, Kuopio, Finland
| | - Otso Arponen
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland; Faculty of Medicine and Health Technology, University of Tampere, Tampere, Finland
| | - Kirsi Hämäläinen
- Department of Pathology and Forensic Medicine, Kuopio University Hospital, Kuopio, Finland; University of Eastern Finland, Faculty of Health Sciences, School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, Kuopio, Finland
| | - Mervi Könönen
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland; Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland
| | - Ritva Vanninen
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland; University of Eastern Finland, Faculty of Health Sciences, School of Medicine, Institute of Clinical Medicine, Clinical Radiology, Kuopio, Finland; Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland
| | - Hanna Sallinen
- Department of Obstetrics and Gynaecology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
5
|
Gao D, Xu X, Liu L, Liu L, Zhang X, Liang X, Cen L, Liu Q, Yuan X, Yu Z. Combination of Peglated-H1/HGFK1 Nanoparticles and TAE in the Treatment of Hepatocellular Carcinoma. Appl Biochem Biotechnol 2023; 195:505-518. [PMID: 36094649 PMCID: PMC9832107 DOI: 10.1007/s12010-022-04153-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/14/2023]
Abstract
Transarterial embolization (TAE) constitutes the gold standard for the treatment of hepatocellular carcinoma. The effect of combination of TAE and peglated-H1/HGFK1 nanoparticles was explored on hepatocellular carcinoma. MTT and Annexin V-FITC were used to determine the cell viability and apoptosis of HepG2, ml-1, LO2, and VX2 cells after the treatment of HGFK1. Next, the orthotopic rabbit was selected to establish the in situ models of VX2 hepatocellular carcinoma. Nanoparticles were synthesized with peglated-PH1 and used to deliver HGFK1 overexpressing plasmids. MRI was performed to monitor tumor volume after being treated with TAE. The protein expression levels of CD31, CD90, and Ki67 were determined by immunohistochemistry. H&E and TUNEL staining were used to determine the necrosis and apoptosis in vivo. HGFK1 significantly inhibited the proliferation and increased the apoptosis of HepG2 and ml-1 cells (P < 0.05). MRI on 14 days after modeling suggested that the tumor showed ring enhancement. MRI on 7 days and 14 days after interventional therapy showed that tumor volume was significantly inhibited after the treatment with TAE and HGFK1 (P < 0.05). The immunohistochemical results 7 days after interventional therapy indicated that the expressions of CD31, CD90, and Ki67 were significantly lower after treatment with TAE and HGFK1 (P < 0.05). TAE and HGFK1 all extended the survival period of rabbits (P < 0.05). PH1/HGFK1 nanoparticle is an innovative and effective embolic agent, which could limit angiogenesis post-TAE treatment. The combination of TAE with PH1/HGFK1 is a promising strategy and might alter the way that surgeons manage hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Dazhi Gao
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210029 China ,Department of Interventional Therapy, Jinling Hospital Affiliated to Nanjing University, Nanjing, 210002 China
| | - Xiangxian Xu
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029 China
| | - Ling Liu
- Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 China
| | - Li Liu
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210029 China
| | - Xiang Zhang
- Medical Imaging College, Xuzhou Medical University, Xuzhou, 221004 China
| | - Xianxian Liang
- Medical Imaging College, Xuzhou Medical University, Xuzhou, 221004 China
| | - Lanqi Cen
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Qian Liu
- Department of Pharmacy, Xuzhou Infectious Disease Hospital, Xuzhou, 221004 China
| | - Xiaoli Yuan
- Department of Psychiatry, Jinling Hospital Affiliated to Nanjing University, No. 305 Zhongshan East Road, Nanjing, 210002 Jiangsu Province China
| | - Zhenghong Yu
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210029 China ,Department of Oncology, Jinling Hospital Affiliated to Nanjing University, No. 305 Zhongshan East Road, Nanjing, 210029 Jiangsu Province China
| |
Collapse
|
6
|
Skipar K, Hompland T, Lund KV, Løndalen A, Malinen E, Kristensen GB, Lindemann K, Nakken ES, Bruheim K, Lyng H. Risk of recurrence after chemoradiotherapy identified by multimodal MRI and 18F-FDG-PET/CT in locally advanced cervical cancer. Radiother Oncol 2022; 176:17-24. [PMID: 36113778 DOI: 10.1016/j.radonc.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/24/2022] [Accepted: 09/02/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE MRI, applying dynamic contrast-enhanced (DCE) and diffusion-weighted (DW) sequences, and 18F-fluorodeoxyglucose (18F-FDG) PET/CT provide information about tumor aggressiveness that is unexploited in treatment of locally advanced cervical cancer (LACC). We investigated the potential of a multimodal combination of imaging parameters for classifying patients according to their risk of recurrence. MATERIALS AND METHODS Eighty-two LACC patients with diagnostic MRI and FDG-PET/CT, treated with chemoradiotherapy, were collected. Thirty-eight patients with MRI only were included for validation of MRI results. Endpoints were survival (disease-free, cancer-specific, overall) and tumor control (local, locoregional, distant). Ktrans, reflecting vascular function, apparent diffusion coefficient (ADC), reflecting cellularity, and standardized uptake value (SUV), reflecting glucose uptake, were extracted from DCE-MR, DW-MR and FDG-PET images, respectively. By applying an oxygen consumption and supply-based method, ADC and Ktrans parametric maps were voxel-wise combined into hypoxia images that were used to determine hypoxic fraction (HF). RESULTS HF showed a stronger association with outcome than the single modality parameters. This association was confirmed in the validation cohort. Low HF identified low-risk patients with 95% precision. Based on the 50th SUV-percentile (SUV50), patients with high HF were divided into an intermediate- and high-risk group with high and low SUV50, respectively. This defined a multimodality biomarker, HF/SUV50. HF/SUV50 increased the precision of detecting high-risk patients from 41% (HF alone) to 57% and showed prognostic significance in multivariable analysis for all endpoints. CONCLUSION Multimodal combination of MR- and FDG-PET/CT-images improves classification of LACC patients compared to single modality images and clinical factors.
Collapse
Affiliation(s)
- Kjersti Skipar
- Department of Radiation Biology, Oslo University Hospital, Oslo, Norway; Department of Oncology, Telemark Hospital Trust, Skien, Norway; Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Tord Hompland
- Department of Radiation Biology, Oslo University Hospital, Oslo, Norway
| | - Kjersti Vassmo Lund
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Ayca Løndalen
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Eirik Malinen
- Department of Medical Physics, Oslo University Hospital, Oslo, Norway; Department of Physics, University of Oslo, Oslo, Norway
| | - Gunnar B Kristensen
- Department of Gynecological Oncology, Oslo University Hospital, Oslo, Norway
| | - Kristina Lindemann
- Department of Gynecological Oncology, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Esten S Nakken
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Kjersti Bruheim
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Heidi Lyng
- Department of Radiation Biology, Oslo University Hospital, Oslo, Norway; Department of Physics, University of Oslo, Oslo, Norway.
| |
Collapse
|
7
|
ADC and kinetic parameter of primary tumor: Surrogate imaging markers for fertility-sparing vaginal radical trachelectomy in patients with stage IB cervical cancer. Eur J Radiol 2022; 155:110467. [PMID: 35970120 DOI: 10.1016/j.ejrad.2022.110467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/23/2022] [Accepted: 08/07/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE To investigate the role of ADC and kinetic parameters derived from DCE-MRI in selecting eligible candidates for fertility-sparing vaginal radical trachelectomy (VRT). METHOD Female patients with FIGO stage IB cervical cancers between March 2019 and January 2022 were retrospectively included. All patients underwent hysterectomy and bilateral lymphadenectomy. According to the surgical pathology, the study population was divided into VRT-eligible group and VRT-ineligible group. ADC, semi-quantitative and quantitative kinetic parameters of the primary tumor were compared between the two groups. Logistic regression analysis was used to determine the independent predictors for VRT eligibility and ROC curve was used to evaluate the predictive performance. RESULTS 19 patients were deemed eligible for VRT and 50 were ineligible. Compared with VRT-eligible group, time to peak and ADC were significantly lower in VRT-ineligible group (P = 0.004 and 0.001, respectively) while volume fraction of plasma (Vp) was higher in VRT ineligible group (P = 0.001). ADC and Vp were independent predictors for VRT eligibility. Combining Vp and ADC yielded the highest area under the ROC curve of 0.853 compared with that of 0.766 for Vp and 0.764 for ADC, though marginal differences were found (P = 0.109 and 0.078, respectively). CONCLUSIONS ADC and the kinetic DCE-MRI parameter Vp can be used as surrogate markers to select eligible candidates for fertility-sparing VRT.
Collapse
|
8
|
Bhaduri S, Lesbats C, Sharkey J, Kelly CL, Mukherjee S, Taylor A, Delikatny EJ, Kim SG, Poptani H. Assessing Tumour Haemodynamic Heterogeneity and Response to Choline Kinase Inhibition Using Clustered Dynamic Contrast Enhanced MRI Parameters in Rodent Models of Glioblastoma. Cancers (Basel) 2022; 14:cancers14051223. [PMID: 35267531 PMCID: PMC8909848 DOI: 10.3390/cancers14051223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 12/04/2022] Open
Abstract
To investigate the utility of DCE-MRI derived pharmacokinetic parameters in evaluating tumour haemodynamic heterogeneity and treatment response in rodent models of glioblastoma, imaging was performed on intracranial F98 and GL261 glioblastoma bearing rodents. Clustering of the DCE-MRI-based parametric maps (using Tofts, extended Tofts, shutter speed, two-compartment, and the second generation shutter speed models) was performed using a hierarchical clustering algorithm, resulting in areas with poor fit (reflecting necrosis), low, medium, and high valued pixels representing parameters Ktrans, ve, Kep, vp, τi and Fp. There was a significant increase in the number of necrotic pixels with increasing tumour volume and a significant correlation between ve and tumour volume suggesting increased extracellular volume in larger tumours. In terms of therapeutic response in F98 rat GBMs, a sustained decrease in permeability and perfusion and a reduced cell density was observed during treatment with JAS239 based on Ktrans, Fp and ve as compared to control animals. No significant differences in these parameters were found for the GL261 tumour, indicating that this model may be less sensitive to JAS239 treatment regarding changes in vascular parameters. This study demonstrates that region-based clustered pharmacokinetic parameters derived from DCE-MRI may be useful in assessing tumour haemodynamic heterogeneity with the potential for assessing therapeutic response.
Collapse
Affiliation(s)
- Sourav Bhaduri
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK; (S.B.); (C.L.); (J.S.); (C.L.K.); (S.M.)
| | - Clémentine Lesbats
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK; (S.B.); (C.L.); (J.S.); (C.L.K.); (S.M.)
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK
| | - Jack Sharkey
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK; (S.B.); (C.L.); (J.S.); (C.L.K.); (S.M.)
| | - Claire Louise Kelly
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK; (S.B.); (C.L.); (J.S.); (C.L.K.); (S.M.)
| | - Soham Mukherjee
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK; (S.B.); (C.L.); (J.S.); (C.L.K.); (S.M.)
| | - Arthur Taylor
- Department of Molecular Physiology & Cell Signalling, University of Liverpool, Liverpool L69 3BX, UK;
| | - Edward J. Delikatny
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Sungheon G. Kim
- Department of Radiology, Weill Cornell Medical College, New York, NY 10021, USA;
| | - Harish Poptani
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK; (S.B.); (C.L.); (J.S.); (C.L.K.); (S.M.)
- Correspondence:
| |
Collapse
|
9
|
Gaustad JV, Rofstad EK. Assessment of Intratumor Heterogeneity in Parametric Dynamic Contrast-Enhanced MR Images: A Comparative Study of Novel and Established Methods. Front Oncol 2021; 11:722773. [PMID: 34621674 PMCID: PMC8490776 DOI: 10.3389/fonc.2021.722773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Intratumor heterogeneity is associated with aggressive disease and poor survival rates in several types of cancer. A novel method for assessing intratumor heterogeneity in medical images, named the spatial gradient method, has been developed in our laboratory. In this study, we measure intratumor heterogeneity in Ktrans maps derived by dynamic contrast-enhanced magnetic resonance imaging using the spatial gradient method, and we compare the performance of the novel method with that of histogram analyses and texture analyses using the Haralick method. Ktrans maps of 58 untreated and sunitinib-treated pancreatic ductal adenocaricoma (PDAC) xenografts from two PDAC models were investigated. Intratumor heterogeneity parameters derived by the spatial gradient method were sensitive to tumor line differences as well as sunitinib-induced changes in intratumor heterogeneity. Furthermore, the parameters provided additional information to the median value and were not severely affected by imaging noise. The parameters derived by histogram analyses were insensitive to spatial heterogeneity and were strongly correlated to the median value, and the Haralick features were severely influenced by imaging noise and did not differentiate between untreated and sunitinib-treated tumors. The spatial gradient method was superior to histogram analyses and Haralick features for assessing intratumor heterogeneity in Ktrans maps of untreated and sunitinib-treated PDAC xenografts, and can possibly be used to assess intratumor heterogeneity in other medical images and to evaluate effects of other treatments as well.
Collapse
Affiliation(s)
- Jon-Vidar Gaustad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Einar K Rofstad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
10
|
Gadolinium-labeled affibody-XTEN recombinant vector for detection of HER2+ lesions of ovarian cancer lung metastasis using quantitative MRI. J Control Release 2021; 337:132-143. [PMID: 34284047 PMCID: PMC8440463 DOI: 10.1016/j.jconrel.2021.07.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/01/2021] [Accepted: 07/14/2021] [Indexed: 11/21/2022]
Abstract
Ovarian cancer has the highest mortality rate among all gynecologic malignancies. HER2+ ovarian cancer is a subtype that is aggressive and associated with metastasis to distant sites such as the lungs. Therefore, accurate biological characterization of metastatic lesions is vital as it helps physicians select the most effective treatment strategy. Functional imaging of ovarian cancer with PET/CT is routinely used in the clinic to detect metastatic disease and evaluate treatment response. However, this imaging method does not provide information regarding the presence or absence of cancer-specific cell surface biomarkers such as HER2. As a result, this method does not help physicians decide whether to choose immunotherapy to treat metastasis. To differentiate the HER2+ from HER2¯ lesions in ovarian cancer lung metastasis, AbX50C4:Gd vector composed of a HER2 targeting affibody and XTEN peptide was genetically engineered. It was then labeled with gadolinium (Gd) via a stable linker. The vector was characterized physicochemically and biologically to determine its purity, molecular weight, hydrodynamic size and surface charge, stability in serum, endotoxin levels, relaxivity and ability to target the HER2 antigen. Then, SCID mice were implanted with SKOV-3 (HER2+) and OVASC-1 (HER2¯) tumors in the lungs and injected with the Gd-labeled HER2 targeted AbX50C4:Gd vector. The mice were imaged using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), followed by R1-mapping and quantitative analysis of the images. Our data demonstrate that the developed HER2-targeted vector can differentiate HER2+ lung metastasis from HER2¯ lesions using DCE-MRI. The developed vector could potentially be used in conjunction with other imaging modalities to prescreen patients and identify candidates for immunotherapy while triaging those who may not be considered responsive.
Collapse
|
11
|
Gaustad JV, Rofstad EK. Assessment of Hypoxic Tissue Fraction and Prediction of Survival in Cervical Carcinoma by Dynamic Contrast-Enhanced MRI. Front Oncol 2021; 11:668916. [PMID: 34094964 PMCID: PMC8173130 DOI: 10.3389/fonc.2021.668916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/26/2021] [Indexed: 01/11/2023] Open
Abstract
Tumor hypoxia is a major cause of treatment resistance and poor survival in locally-advanced cervical carcinoma (LACC). It has been suggested that Ktrans and ve maps derived by dynamic contrast-enhanced magnetic resonance imaging can provide information on the oxygen supply and oxygen consumption of tumors, but it is not clear whether and how these maps can be combined to identify tumor hypoxia. The aim of the current study was to find the optimal strategy for calculating hypoxic fraction and predicting survival from Ktrans and ve maps in cervical carcinoma. Ktrans and ve maps of 98 tumors of four patient-derived xenograft models of cervical carcinoma as well as 80 patients with LACC were investigated. Hypoxic fraction calculated by using Ktrans maps correlated strongly (P < 0.0001) to hypoxic fraction assessed with immunohistochemistry using pimonidazole as a hypoxia marker and was associated with disease-free and overall survival in LACC patients. Maps of ve did not provide information on hypoxic fraction and patient outcome, and combinations of Ktrans and ve were not superior to Ktrans alone for calculating hypoxic fraction. These observations imply that Ktrans maps reflect oxygen supply and may be used to identify hypoxia and predict outcome in cervical carcinoma, whereas ve is a poor parameter of oxygen consumption and does not provide information on tumor oxygenation status.
Collapse
Affiliation(s)
- Jon-Vidar Gaustad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Einar K Rofstad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
12
|
Carmona-Bozo JC, Manavaki R, Woitek R, Torheim T, Baxter GC, Caracò C, Provenzano E, Graves MJ, Fryer TD, Patterson AJ, Gilbert FJ. Hypoxia and perfusion in breast cancer: simultaneous assessment using PET/MR imaging. Eur Radiol 2021; 31:333-344. [PMID: 32725330 PMCID: PMC7755870 DOI: 10.1007/s00330-020-07067-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/12/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Hypoxia is associated with poor prognosis and treatment resistance in breast cancer. However, the temporally variant nature of hypoxia can complicate interpretation of imaging findings. We explored the relationship between hypoxia and vascular function in breast tumours through combined 18F-fluoromisonidazole (18 F-FMISO) PET/MRI, with simultaneous assessment circumventing the effect of temporal variation in hypoxia and perfusion. METHODS Women with histologically confirmed, primary breast cancer underwent a simultaneous 18F-FMISO-PET/MR examination. Tumour hypoxia was assessed using influx rate constant Ki and hypoxic fractions (%HF), while parameters of vascular function (Ktrans, kep, ve, vp) and cellularity (ADC) were derived from dynamic contrast-enhanced (DCE) and diffusion-weighted (DW)-MRI, respectively. Additional correlates included histological subtype, grade and size. Relationships between imaging variables were assessed using Pearson correlation (r). RESULTS Twenty-nine women with 32 lesions were assessed. Hypoxic fractions > 1% were observed in 6/32 (19%) cancers, while 18/32 (56%) tumours showed a %HF of zero. The presence of hypoxia in lesions was independent of histological subtype or grade. Mean tumour Ktrans correlated negatively with Ki (r = - 0.38, p = 0.04) and %HF (r = - 0.33, p = 0.04), though parametric maps exhibited intratumoural heterogeneity with hypoxic regions colocalising with both hypo- and hyperperfused areas. No correlation was observed between ADC and DCE-MRI or PET parameters. %HF correlated positively with lesion size (r = 0.63, p = 0.001). CONCLUSION Hypoxia measured by 18F-FMISO-PET correlated negatively with Ktrans from DCE-MRI, supporting the hypothesis of perfusion-driven hypoxia in breast cancer. Intratumoural hypoxia-perfusion relationships were heterogeneous, suggesting that combined assessment may be needed for disease characterisation, which could be achieved using simultaneous multimodality imaging. KEY POINTS • At the tumour level, hypoxia measured by 18F-FMISO-PET was negatively correlated with perfusion measured by DCE-MRI, which supports the hypothesis of perfusion-driven hypoxia in breast cancer. • No associations were observed between 18F-FMISO-PET parameters and tumour histology or grade, but tumour hypoxic fractions increased with lesion size. • Intratumoural hypoxia-perfusion relationships were heterogeneous, suggesting that the combined hypoxia-perfusion status of tumours may need to be considered for disease characterisation, which can be achieved via simultaneous multimodality imaging as reported here.
Collapse
Affiliation(s)
- Julia C Carmona-Bozo
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Roido Manavaki
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Ramona Woitek
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Turid Torheim
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Gabrielle C Baxter
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Corradina Caracò
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Elena Provenzano
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- Cambridge Breast Unit, Cambridge University Hospitals NHS Foundation Trust, Box 97, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Martin J Graves
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- MRIS Unit, Cambridge University Hospitals NHS Foundation Trust, Box 162, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Tim D Fryer
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Box 65, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Andrew J Patterson
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- MRIS Unit, Cambridge University Hospitals NHS Foundation Trust, Box 162, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Fiona J Gilbert
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
13
|
Zheng X, Guo W, Dong J, Qian L. Prediction of early response to concurrent chemoradiotherapy in cervical cancer: Value of multi-parameter MRI combined with clinical prognostic factors. Magn Reson Imaging 2020; 72:159-166. [PMID: 32621877 DOI: 10.1016/j.mri.2020.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/28/2020] [Accepted: 06/24/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE This study aimed to investigate the prediction of early response to concurrent chemoradiotherapy (CCRT) through a combination of pretreatment multi-parametric magnetic resonance imaging (MRI) with clinical prognostic factors (CPF) in cervical cancer patients. METHODS Eighty-five patients with pathologically confirmed cervical cancer underwent conventional MRI, intravoxel incoherent motion diffusion weighted imaging (IVIM-DWI), and dynamic contrast-enhanced MRI (DCE-MRI) before CCRT. The patients were divided into non- and residual tumor groups according to post-treatment MRI. Univariable and multivariable analyses were performed to pretreatment MRI parameters and CPF between the two groups, and optimal thresholds and predictive performance for post-treatment residual tumor occurrence were estimated by drawing the receiver operating characteristic (ROC) curve. RESULTS There were 52 patients in non- and 33 in residual group. The residual group showed a lower perfusion fraction (f) value and volume transfer constant (Ktrans) value, a higher apparent diffusion coefficient (ADC) value, diffusion coefficient (D) value and volume fraction of extravascular extracellular space (Ve) value, and a higher stage than the non-residual tumor group (all P < .05). D, Ktrans, Ve and stage were independent prognostic factors. The combination of D, Ktrans and Ve improved the diagnostic performance compared with individual MRI parameters. A further combination of these three MRI parameters with stage exhibited the highest predictive performance. CONCLUSIONS Pretreatment D, Ktrans, Ve and stage were independent prognostic factors for cervical cancer. The predictive capacity of multi-parametric MRI was superior to individual MRI parameters. The combination of multi-parametric MRI with CPF further improved the predictive performance.
Collapse
Affiliation(s)
- Xiaomin Zheng
- Department of Radiation Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China
| | - Weiqian Guo
- Department of Radiation Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China
| | - Jiangning Dong
- Department of Radiology, First Affiliated Hospital of University of Science and Technology of China, Hefei 230031, China.
| | - Liting Qian
- Department of Radiation Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China; Department of Radiation Oncology, First Affiliated Hospital of University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
14
|
van Houdt PJ, Kallehauge JF, Tanderup K, Nout R, Zaletelj M, Tadic T, van Kesteren ZJ, van den Berg CAT, Georg D, Côté JC, Levesque IR, Swamidas J, Malinen E, Telliskivi S, Brynolfsson P, Mahmood F, van der Heide UA. Phantom-based quality assurance for multicenter quantitative MRI in locally advanced cervical cancer. Radiother Oncol 2020; 153:114-121. [PMID: 32931890 DOI: 10.1016/j.radonc.2020.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND PURPOSE A wide variation of MRI systems is a challenge in multicenter imaging biomarker studies as it adds variation in quantitative MRI values. The aim of this study was to design and test a quality assurance (QA) framework based on phantom measurements, for the quantitative MRI protocols of a multicenter imaging biomarker trial of locally advanced cervical cancer. MATERIALS AND METHODS Fifteen institutes participated (five 1.5 T and ten 3 T scanners). Each institute optimized protocols for T2, diffusion-weighted imaging, T1, and dynamic contrast-enhanced (DCE-)MRI according to system possibilities, institutional preferences and study-specific constraints. Calibration phantoms with known values were used for validation. Benchmark protocols, similar on all systems, were used to investigate whether differences resulted from variations in institutional protocols or from system variations. Bias, repeatability (%RC), and reproducibility (%RDC) were determined. Ratios were used for T2 and T1 values. RESULTS The institutional protocols showed a range in bias of 0.88-0.98 for T2 (median %RC = 1%; %RDC = 12%), -0.007 to 0.029 × 10-3 mm2/s for the apparent diffusion coefficient (median %RC = 3%; %RDC = 18%), and 0.39-1.29 for T1 (median %RC = 1%; %RDC = 33%). For DCE a nonlinear vendor-specific relation was observed between measured and true concentrations with magnitude data, whereas the relation was linear when phase data was used. CONCLUSION We designed a QA framework for quantitative MRI protocols and demonstrated for a multicenter trial for cervical cancer that measurement of consistent T2 and apparent diffusion coefficient values is feasible despite protocol differences. For DCE-MRI and T1 mapping with the variable flip angle method, this was more challenging.
Collapse
Affiliation(s)
- Petra J van Houdt
- Department of Radiation Oncology, the Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | | | - Kari Tanderup
- Department of Clinical Medicine, Aarhus University Hospital, Denmark
| | - Remi Nout
- Department of Radiation Oncology, Leiden University Medical Center, the Netherlands
| | - Marko Zaletelj
- Department of Radiotherapy, Institute of Oncology Ljubljana, Slovenia
| | - Tony Tadic
- Radiation Medicine Program, Princess Margaret Cancer Center, Toronto, Canada
| | - Zdenko J van Kesteren
- Department of Radiation Oncology, Amsterdam University Medical Center, the Netherlands
| | | | - Dietmar Georg
- Division of Medical Radiation Physics, Department of Radiation Oncology, Medical University Of Vienna, Austria
| | - Jean-Charles Côté
- Department of Radiation Oncology, Centre Hospitalier de l'Universite de Montreal, Canada
| | - Ives R Levesque
- Medical Physics Unit and Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada
| | - Jamema Swamidas
- Department of Radiation Oncology, Tata Memorial Centre, Mumbai, India
| | - Eirik Malinen
- Department of Medical Physics, Oslo University Hospital, Norway
| | - Sven Telliskivi
- Department of Radiation Oncology, North-Estonia Medical Centre, Tallinn, Estonia
| | - Patrik Brynolfsson
- Department of Translational Sciences, Skåne University Hospital, Lund, Sweden
| | - Faisal Mahmood
- Department of Oncology, Odense University Hospital, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Uulke A van der Heide
- Department of Radiation Oncology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | |
Collapse
|
15
|
Gulati P, Agarwal A, Gulati V. Cervical Malignancies: Status of MRI. INDIAN JOURNAL OF GYNECOLOGIC ONCOLOGY 2020. [DOI: 10.1007/s40944-020-00437-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Lund KV, Simonsen TG, Kristensen GB, Rofstad EK. DCE-MRI of locally-advanced carcinoma of the uterine cervix: Tofts analysis versus non-model-based analyses. Radiat Oncol 2020; 15:79. [PMID: 32293487 PMCID: PMC7158049 DOI: 10.1186/s13014-020-01526-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) may provide biomarkers of the outcome of locally-advanced cervical carcinoma (LACC). There is, however, no agreement on how DCE-MR recordings should be analyzed. Previously, we have analyzed DCE-MRI data of LACC using non-model-based strategies. In the current study, we analyzed DCE-MRI data of LACC using the Tofts pharmacokinetic model, and the biomarkers derived from this analysis were compared with those derived from the non-model-based analyses. METHODS Eighty LACC patients given cisplatin-based chemoradiotherapy with curative intent were included in the study. Treatment outcome was recorded as disease-free survival (DFS) and overall survival (OS). DCE-MRI series were analyzed voxelwise to produce Ktrans and ve frequency distributions, and ROC analysis was used to identify the parameters of the frequency distributions having the greatest potential as biomarkers. The prognostic power of these parameters was compared with that of the non-model-based parameters LETV (low-enhancing tumor volume) and TVIS (tumor volume with increasing signal). RESULTS Poor DFS and OS were associated with low values of Ktrans, whereas there was no association between treatment outcome and ve. The Ktrans parameters having the greatest prognostic value were p35-Ktrans (the Ktrans value at the 35 percentile of a frequency distribution) and RV-Ktrans (the tumor subvolume with Ktrans values below 0.13 min- 1). Multivariate analysis including clinical parameters and p35-Ktrans or RV-Ktrans revealed that RV-Ktrans was the only independent prognostic factor of DFS and OS. There were significant correlations between RV-Ktrans and LETV and between RV-Ktrans and TVIS, and the prognostic power of RV-Ktrans was similar to that of LETV and TVIS. CONCLUSIONS Biomarkers of the outcome of LACC can be provided by analyzing DCE-MRI series using the Tofts pharmacokinetic model. However, these biomarkers do not appear to have greater prognostic value than biomarkers determined by non-model-based analyses.
Collapse
Affiliation(s)
- Kjersti V Lund
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Trude G Simonsen
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Gunnar B Kristensen
- Department of Gynecological Cancer, Oslo University Hospital, Oslo, Norway.,Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Einar K Rofstad
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
17
|
Qin Y, Yu X, Hou J, Hu Y, Li F, Wen L, Lu Q, Liu S. Prognostic Value of the Pretreatment Primary Lesion Quantitative Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Nasopharyngeal Carcinoma. Acad Radiol 2019; 26:1473-1482. [PMID: 30772137 DOI: 10.1016/j.acra.2019.01.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
Abstract
RATIONALE AND OBJECTIVES Early identifying the long-term outcome of chemoradiotherapy is helpful for personalized treatment in nasopharyngeal carcinoma (NPC). This study aimed to investigate the prognostic significance of pretreatment quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for NPC. MATERIALS AND METHODS The relationships between the prognosis and pretreatment quantitative DCE-MRI (Ktrans, Kep, Ve, and fpv) values of the primary tumors were analyzed in 134 NPC patients who received chemoradiotherapy. Kaplan-Meier analysis was performed to calculate the local-regional relapse-free survival (LRRFS), local relapse-free survival (LRFS), regional relapse-free survival, distant metastasis-free survival (DMFS), progression-free survival, and overall survival rates. Cox proportional hazards model was used to explore the independent predictors for prognosis. RESULTS The local-failure group had significantly higher Ve (p = 0.033) and fpv values (p = 0.005) than the non-local-failure group. The Ve-high group showed significantly lower LRRFS (p = 0.015) , LRFS (p = 0.013) , DMFS (p = 0.027) and progression-free survival (p = 0.035) rates than the Ve-low group. The fpv-high group exhibited significantly lower LRRFS (p = 0.004) and LRFS (p = 0.005) rates than the fpv-low group. Ve was the independent predictor for LRRFS (p = 0.008), LRFS (p = 0.007), DMFS (p = 0.041), and overall survival (p = 0.022). fpv was the independent indicator for LRRFS (p = 0.003) and LRFS (p = 0.001). CONCLUSION Baseline quantitative DCE-MRI may be valuable in predicting the prognosis for NPC.
Collapse
Affiliation(s)
- Yuhui Qin
- Department of Diagnostic Radiology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, 283 Tongzipo Road, Changsha 410013, Hunan, PR China
| | - Xiaoping Yu
- Department of Diagnostic Radiology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, 283 Tongzipo Road, Changsha 410013, Hunan, PR China.
| | - Jing Hou
- Department of Diagnostic Radiology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, 283 Tongzipo Road, Changsha 410013, Hunan, PR China
| | - Ying Hu
- Department of Radiotherapy, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
| | - Feiping Li
- Department of Diagnostic Radiology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, 283 Tongzipo Road, Changsha 410013, Hunan, PR China
| | - Lu Wen
- Department of Diagnostic Radiology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, 283 Tongzipo Road, Changsha 410013, Hunan, PR China
| | - Qiang Lu
- Department of Diagnostic Radiology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, 283 Tongzipo Road, Changsha 410013, Hunan, PR China
| | - Siye Liu
- Department of Diagnostic Radiology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, 283 Tongzipo Road, Changsha 410013, Hunan, PR China
| |
Collapse
|
18
|
Dynamic contrast-enhanced perfusion parameters in ovarian cancer: Good accuracy in identifying high HIF-1α expression. PLoS One 2019; 14:e0221340. [PMID: 31437208 DOI: 10.1371/journal.pone.0221340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/05/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Hypoxia significantly influences treatment response and clinical outcome in solid tumors. A noninvasive marker for hypoxia will help physicians in treatment planning and encourage the efficient use of hypoxia targeted therapies. The purpose of this study was to investigate whether pharmacokinetic dynamic contrast-enhanced (DCE) perfusion parameters are associated with a specific marker of hypoxia, hypoxia-inducible factor 1 alpha (HIF-1α) in ovarian cancer (OC). MATERIALS AND METHODS Thirty-eight patients with primary OC were enrolled in this prospective study approved by the local ethical committee. Patients underwent dynamic gadolinium-enhanced 3.0 T MRI as part of their staging investigations. Pharmacokinetic perfusion parameters, including a rate constant for transfer of contrast agent from plasma to extravascular extracellular space (EES) (Ktrans) and a rate constant from EES to plasma (Kep), were measured by drawing two types of regions of interest (ROIs): a large solid lesion (L-ROI) and a solid, most enhancing small area (S-ROI) (NordicICE platform). Tissue samples for immunohistochemical analysis were collected during surgery. Kruskal-Wallis, Mann-Whitney U and Chi-square tests were used in statistical analyses. Receiver Operating Characteristic curve analyzes were done for DCE parameters to discriminate high HIF-1α expression. RESULTS Pharmacokinetic perfusion parameters Ktrans and Kep were inversely associated with HIF-1α expression (Ktrans L-ROI P = 0.021; Ktrans S-ROI P = 0.018 and Kep L-ROI P = 0.032; Kep S-ROI P = 0.033). Ktrans and Kep showed good accuracy in identifying high HIF-1α expression (AUC = 0.832 Ktrans L-ROI; 0.840 Ktrans S-ROI; 0.808 Kep L-ROI and 0.808 Kep L-ROI). CONCLUSION This preliminary study demonstrated that pharmacokinetic DCE-MRI perfusion parameters are associated with the hypoxia specific marker, HIF-1α in OC. DCE-MRI may be a useful supplementary tool in the characterization of OC tumors in a staging investigation.
Collapse
|
19
|
Haldorsen IS, Lura N, Blaakær J, Fischerova D, Werner HMJ. What Is the Role of Imaging at Primary Diagnostic Work-Up in Uterine Cervical Cancer? Curr Oncol Rep 2019; 21:77. [PMID: 31359169 PMCID: PMC6663927 DOI: 10.1007/s11912-019-0824-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW For uterine cervical cancer, the recently revised International Federation of Gynecology and Obstetrics (FIGO) staging system (2018) incorporates imaging and pathology assessments in its staging. In this review we summarize the reported staging performances of conventional and novel imaging methods and provide an overview of promising novel imaging methods relevant for cervical cancer patient care. RECENT FINDINGS Diagnostic imaging during the primary diagnostic work-up is recommended to better assess tumor extent and metastatic disease and is now reflected in the 2018 FIGO stages 3C1 and 3C2 (positive pelvic and/or paraaortic lymph nodes). For pretreatment local staging, imaging by transvaginal or transrectal ultrasound (TVS, TRS) and/or magnetic resonance imaging (MRI) is instrumental to define pelvic tumor extent, including a more accurate assessment of tumor size, stromal invasion depth, and parametrial invasion. In locally advanced cervical cancer, positron emission tomography-computed tomography (PET-CT) or computed tomography (CT) is recommended, since the identification of metastatic lymph nodes and distant metastases has therapeutic consequences. Furthermore, novel imaging techniques offer visualization of microstructural and functional tumor characteristics, reportedly linked to clinical phenotype, thus with a potential for further improving risk stratification and individualization of treatment. Diagnostic imaging by MRI/TVS/TRS and PET-CT/CT is instrumental for pretreatment staging in uterine cervical cancer and guides optimal treatment strategy. Novel imaging techniques may also provide functional biomarkers with potential relevance for developing more targeted treatment strategies in cervical cancer.
Collapse
Affiliation(s)
- Ingfrid S Haldorsen
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Jonas Liesvei 65, Postbox 7800, 5021, Bergen, Norway.
- Section for Radiology, Department of Clinical Medicine, University of Bergen, 5020, Bergen, Norway.
| | - Njål Lura
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Jonas Liesvei 65, Postbox 7800, 5021, Bergen, Norway
| | - Jan Blaakær
- Department of Obstetrics and Gynaecology, Odense University Hospital, Odense, Denmark
| | - Daniela Fischerova
- Gynecological Oncology Centre, Department of Obstetrics and Gynaecology, First Faculty of Medicine, Charles University, General University Hospital in Prague, Prague, Czech Republic
| | - Henrica M J Werner
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Clinical Science, University of Bergen, 5020, Bergen, Norway
| |
Collapse
|
20
|
Lund KV, Simonsen TG, Kristensen GB, Rofstad EK. Pharmacokinetic analysis of DCE-MRI data of locally advanced cervical carcinoma with the Brix model. Acta Oncol 2019; 58:828-837. [PMID: 30810443 DOI: 10.1080/0284186x.2019.1580386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background: There is significant evidence that DCE-MRI may have the potential to provide clinically useful biomarkers of the outcome of locally advanced cervical carcinoma. However, there is no consensus on how to analyze DCE-MRI data to arrive at the most powerful biomarkers. The purpose of this study was to analyze DCE-MRI data of cervical cancer patients by using the Brix pharmacokinetic model and to compare the biomarkers derived from the Brix analysis with biomarkers determined by non-model-based analysis [i.e., low-enhancing tumor volume (LETV) and tumor volume with increasing signal (TVIS)] of the same patient cohort. Material and methods: DCE-MRI recordings of 80 patients (FIGO stage IB-IVA) treated with concurrent cisplatin-based chemoradiotherapy were analyzed voxel-by-voxel, and frequency distributions of the three parameters of the Brix model (ABrix, kep, and kel) were determined. Moreover, risk volumes were calculated from the Brix parameters and termed RV-ABrix, RV-kep, and RV-kel, where the RVs represent the tumor volume with voxel values below a threshold value determined by ROC analysis. Disease-free survival (DFS) and overall survival (OS) were used as measures of treatment outcome. Results: Significant associations between the median value or any other percentile value of ABrix, kep, or kel and treatment outcome were not found. However, RV-ABrix, RV-kep, and RV-kel correlated with DFS and OS. Multivariate analysis revealed that the prognostic power of RV-ABrix, RV-kep, and RV-kel was independent of well-established clinical prognostic factors. RV-ABrix, RV-kep, and RV-kel correlated with each other as well as with LETV and TVIS. Conclusion: Strong biomarkers of the outcome of locally advanced cervical carcinoma can be provided by subjecting DCE-MRI series to pharmacokinetic analysis using the Brix model. The prognostic power of these biomarkers is not necessarily superior to that of biomarkers identified by non-model-based analyses.
Collapse
Affiliation(s)
- Kjersti V. Lund
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Trude G. Simonsen
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Gunnar B. Kristensen
- Department of Gynecological Cancer, Oslo University Hospital, Oslo, Norway
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Einar K. Rofstad
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
21
|
Prognostic value of preoperative dynamic contrast-enhanced magnetic resonance imaging in epithelial ovarian cancer. Eur J Radiol 2019; 115:66-73. [DOI: 10.1016/j.ejrad.2019.03.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/20/2019] [Accepted: 03/29/2019] [Indexed: 01/24/2023]
|
22
|
Hauge A, Gaustad JV, Huang R, Simonsen TG, Wegner CS, Andersen LMK, Rofstad EK. DCE-MRI and Quantitative Histology Reveal Enhanced Vessel Maturation but Impaired Perfusion and Increased Hypoxia in Bevacizumab-Treated Cervical Carcinoma. Int J Radiat Oncol Biol Phys 2019; 104:666-676. [PMID: 30858145 DOI: 10.1016/j.ijrobp.2019.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/20/2019] [Accepted: 03/02/2019] [Indexed: 02/08/2023]
Abstract
PURPOSE This study had a dual purpose: to investigate (1) whether bevacizumab can change the microvasculature and oxygenation of cervical carcinomas and (2) whether any changes can be detected with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). METHODS AND MATERIALS Two patient-derived xenograft models of cervical cancer (BK-12 and HL-16) were included in the study. Immunostained histologic preparations from untreated and bevacizumab-treated tumors were analyzed with respect to microvascular density, vessel pericyte coverage, and tumor hypoxia using CD31, α-SMA, and pimonidazole as markers, respectively. DCE-MRI was performed at 7.05 T, and parametric images of Ktrans and ve were derived from the data using the Tofts pharmacokinetic model. RESULTS The tumors of both models showed decreased microvascular density, increased vessel pericyte coverage, and increased vessel maturation after bevacizumab treatment. Bevacizumab-treated tumors were more hypoxic and had lower Ktrans values than untreated tumors in the BK-12 model, whereas bevacizumab-treated and untreated HL-16 tumors had similar hypoxic fractions and similar Ktrans values. Significant correlations were found between median Ktrans and hypoxic fraction, and the data for untreated and bevacizumab-treated tumors were well fitted by the same curve in both tumor models. CONCLUSIONS Bevacizumab-treated tumors show less abnormal microvessels than untreated tumors do, but because of treatment-induced vessel pruning, the overall function of the microvasculature might be impaired after bevacizumab treatment, resulting in increased tumor hypoxia. DCE-MRI has great potential for monitoring bevacizumab-induced changes in tumor hypoxia in cervical carcinoma.
Collapse
Affiliation(s)
- Anette Hauge
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Jon-Vidar Gaustad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ruixia Huang
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Trude G Simonsen
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Catherine S Wegner
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Lise Mari K Andersen
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Einar K Rofstad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
23
|
Emerging Functional Imaging Biomarkers of Tumour Responses to Radiotherapy. Cancers (Basel) 2019; 11:cancers11020131. [PMID: 30678055 PMCID: PMC6407112 DOI: 10.3390/cancers11020131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 12/11/2022] Open
Abstract
Tumour responses to radiotherapy are currently primarily assessed by changes in size. Imaging permits non-invasive, whole-body assessment of tumour burden and guides treatment options for most tumours. However, in most tumours, changes in size are slow to manifest and can sometimes be difficult to interpret or misleading, potentially leading to prolonged durations of ineffective treatment and delays in changing therapy. Functional imaging techniques that monitor biological processes have the potential to detect tumour responses to treatment earlier and refine treatment options based on tumour biology rather than solely on size and staging. By considering the biological effects of radiotherapy, this review focusses on emerging functional imaging techniques with the potential to augment morphological imaging and serve as biomarkers of early response to radiotherapy.
Collapse
|
24
|
Li X, Wu S, Li D, Yu T, Zhu H, Song Y, Meng L, Fan H, Xie L. Intravoxel Incoherent Motion Combined With Dynamic Contrast-Enhanced Perfusion MRI of Early Cervical Carcinoma: Correlations Between Multimodal Parameters and HIF-1α Expression. J Magn Reson Imaging 2019; 50:918-929. [PMID: 30648775 DOI: 10.1002/jmri.26604] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Xiangsheng Li
- Department of Radiology; Air Force General Hospital, People's Liberation Army; Beijing China
| | - Shandong Wu
- Imaging Research Division Department of Radiology, Biomedical Informatics, and Bioengineering; University of Pittsburgh; Pittsburgh Pennsylvania USA
| | - Dechang Li
- Department of Pathology; Air Force General Hospital, People's Liberation Army; Beijing China
| | - Tao Yu
- Department of Medical Imaging; Cancer Hospital of China Medical University; Liaoning Cancer Hospital & Institute; Shenyang Liaoning Province China
| | - Hongxian Zhu
- Department of Radiology; Air Force General Hospital, People's Liberation Army; Beijing China
| | - Yunlong Song
- Department of Radiology; Air Force General Hospital, People's Liberation Army; Beijing China
| | - Limin Meng
- Department of Radiology; Air Force General Hospital, People's Liberation Army; Beijing China
| | - Hongxia Fan
- Department of Radiology; Air Force General Hospital, People's Liberation Army; Beijing China
| | - Lizhi Xie
- Department of MR Research; GE Healthcare; Beijing China
| |
Collapse
|
25
|
Simonsen TG, Lund KV, Hompland T, Kristensen GB, Rofstad EK. DCE-MRI–Derived Measures of Tumor Hypoxia and Interstitial Fluid Pressure Predict Outcomes in Cervical Carcinoma. Int J Radiat Oncol Biol Phys 2018; 102:1193-1201. [DOI: 10.1016/j.ijrobp.2018.04.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/05/2018] [Accepted: 04/12/2018] [Indexed: 12/25/2022]
|
26
|
Chen H, Zhu G, Liu N, Li Y, Xia Y. Applications and development of permeability imaging in ischemic stroke. Exp Ther Med 2018; 16:2203-2207. [PMID: 30186459 DOI: 10.3892/etm.2018.6454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/06/2017] [Indexed: 12/17/2022] Open
Abstract
Brain permeability imaging techniques are specific for the assessment of blood-brain barrier integrity. The present review article primarily focuses on the application of permeability imaging in cases of ischemic stroke. The permeability maps may be used to predict future hemorrhagic transformation in patients following acute ischemic stroke, that have been treated with tissue plasminogen activator (tPA) or recanalization therapy. The permeability imaging would help make the clinical decision to administer tPA following acute ischemic stroke or not, which is not only due to the current 3-4.5 h time window. Additionally, permeability imaging may also be used to evaluate the collateral circulation in the perfusion and permeability of the ischemic area of the brain.
Collapse
Affiliation(s)
- Hui Chen
- Department of Neurology, Military General Hospital of Beijing PLA, Beijing 100700, P.R. China
| | - Guangming Zhu
- Department of Neurology, Military General Hospital of Beijing PLA, Beijing 100700, P.R. China
| | - Nan Liu
- Department of Neurology, Military General Hospital of Beijing PLA, Beijing 100700, P.R. China
| | - Ying Li
- Department of Neurology, Military General Hospital of Beijing PLA, Beijing 100700, P.R. China
| | - Yonghong Xia
- Department of Critical Care Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| |
Collapse
|