1
|
Li C, Xing X, Huang S, Zhu T, Yan B. Circular RNA LDLRAD3 promotes gastric cancer progression by upregulating COL4A5 through sponging miR-h37. J Chin Med Assoc 2024; 87:1018-1028. [PMID: 39161132 DOI: 10.1097/jcma.0000000000001153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Circular RNAs play an important role in the development of gastric cancer (GC). circ-low-density lipoprotein receptor class A domain containing 3 (LDLRAD3) has been confirmed to be related to GC progression. miR-137 is also a suppressor in GC. However, the impact of the interaction between circ-LDLRAD3 and miR-137 on the progression of GC remains unclear at present. METHODS The study identified expression level differences of circ-LDLRAD3, miR-137, and COL4A5 in GC pathological specimens compared to normal tissue samples. Furthermore, through in vitro experiments, including flow cytometry, cell counting kit-8 (CCK-8) assays, wound healing, Western blotting, and colony formation assays, we further explored the molecular regulatory mechanisms by which these factors promote the progression of GC. RESULTS In this study, circ-LDLRAD3 was confirmed to have higher expression, and miR-137 had lower expression in GC tissues and cell lines. circ-LDLRAD3 knockdown and miR-137 overexpression promoted apoptosis and inhibited proliferation, migration, and invasion in GC cell lines. Further experiments validated that COL4A5 had a positive relationship with GC and that circ-LDLRAD3 promoted the expression of COL4A5. circ-LDLRAD3 could be sponged and inhibited by miR-137 in GC cells. As a result, the promotional effect of circ-LDLRAD3 on COL4A5 was counteracted by miR-137. CONCLUSION Our study showed that the knockdown of circ-LDLRAD3 suppressed the development of GC by regulating the miR-137/COL4A5 axis.
Collapse
Affiliation(s)
- Chenghui Li
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xiao Xing
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Sinian Huang
- Department of Pathology Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Ting Zhu
- Department of Pathology Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Bin Yan
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
2
|
Zhou F, Pan L, Ma X, Ye J, Xu Z, Yuan C, Shi C, Yang D, Luo Y, Li M, Wang P. In Situ, Fusion-Free, Multiplexed Detection of Small Extracellular Vesicle miRNAs for Cancer Diagnostics. Anal Chem 2024; 96:15665-15673. [PMID: 39298294 DOI: 10.1021/acs.analchem.4c03129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Tumor-derived small extracellular vesicle (sEV) microRNAs (miRNAs) are emerging biomarkers for cancer diagnostics. Conventional sEV miRNA detection methods necessitate the lysis of sEVs, rendering them laborious and time-consuming and potentially leading to damage or loss of miRNAs. Membrane fusion-based in situ detection of sEV miRNAs involves the preparation of probe-loaded vesicles (e.g., liposomes or cellular vesicles), which are typically sophisticated and require specialist equipment. Membrane perforation methods employ chemical treatments that can induce severe miRNA degradation or leaks. Inspired by previous studies that loaded nucleic acids into EVs or cells using hydrophobic tethers for therapeutic applications, herein, we repurposed this strategy by conjugating a hydrophobic tether onto molecular beacons to aid their transportation into sEVs, allowing for in situ detection of miRNAs in a fusion-free and multiplexing manner. This method enables simultaneous detection of multiple miRNA species within serum-derived sEVs for the diagnosis of prostate cancer, breast cancer, and gastric cancer with an accuracy of 83.3%, 81.8%, and 100%, respectively, in a cohort of 66 individuals, indicating that it holds a high application potential in clinical diagnostics.
Collapse
Affiliation(s)
- Fei Zhou
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Li Pan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaowei Ma
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jing Ye
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhihao Xu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Caiqing Yuan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chenzhi Shi
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Donglei Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yang Luo
- Center of Clinical Laboratory Medicine, Chongqing People's Hospital, School of Medicine, Chongqing University, Chongqing 400044, China
- College of Life Science and Laboratory Medicine, Kunming Medical University, Kunming 650050, Yunnan, China
| | - Min Li
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Pengfei Wang
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
3
|
Sheng M, Qi Y, Gao Z, Lin X. Analyzing omics data based on sample network. J Bioinform Comput Biol 2024; 22:2450002. [PMID: 38567387 DOI: 10.1142/s0219720024500021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Identifying valuable features from complex omics data is of great significance for disease diagnosis study. This paper proposes a new feature selection algorithm based on sample network (FS-SN) to mine important information from omics data. The sample network is constructed according to the sample neighbor relationship at the molecular (feature) expression level, and the distinguishing ability of the feature is evaluated based on the topology of the sample network. The sample network established on a feature with a strong discriminating ability tends to have many edges between the same group samples and few edges between the different group samples. At the same time, FS-SN removes redundant features according to the gravitational interaction between features. To show the validation of FS-SN, it was compared on ten public datasets with ERGS, mRMR, ReliefF, ATSD-DN, and INDEED which are efficient in omics data analysis. Experimental results show that FS-SN performed better than the compared methods in accuracy, sensitivity and specificity in most cases. Hence, FS-SN making use of the topology of the sample network is effective for analyzing omics data, it can identify key features that reflect the occurrence and development of diseases, and reveal the underlying biological mechanism.
Collapse
Affiliation(s)
- Meizhen Sheng
- School of Computer Science & Technology, Dalian University of Technology, No. 2 Linggong Road, Dalian, Liaoning Province 116024, P. R. China
| | - Yanpeng Qi
- School of Computer Science & Technology, Dalian University of Technology, No. 2 Linggong Road, Dalian, Liaoning Province 116024, P. R. China
| | - Zhenbo Gao
- School of Computer Science & Technology, Dalian University of Technology, No. 2 Linggong Road, Dalian, Liaoning Province 116024, P. R. China
| | - Xiaohui Lin
- School of Computer Science & Technology, Dalian University of Technology, No. 2 Linggong Road, Dalian, Liaoning Province 116024, P. R. China
| |
Collapse
|
4
|
Brogaard L, Lyngby JG, Kristensen AT, Fredholm M, Bjørnvad CR, Salavati Schmitz S, Skancke E, Morris JS, Dupont N, Argyle D, Sánchez A, Spohr A, Graarup‐Hansen K, Nielsen LN, Cirera S. Association of serum and fecal microRNA profiles in cats with gastrointestinal cancer and chronic inflammatory enteropathy. J Vet Intern Med 2023; 37:1738-1749. [PMID: 37486176 PMCID: PMC10473000 DOI: 10.1111/jvim.16813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Differentiation of gastrointestinal cancer (GIC) from chronic inflammatory enteropathies (CIE) in cats can be challenging and often requires extensive diagnostic testing. MicroRNAs (miRNAs) have promise as non-invasive biomarkers in serum and feces for diagnosis of GIC. HYPOTHESIS/OBJECTIVES Cats with GIC will have serum and fecal miRNA profiles that differ significantly from healthy cats and cats with CIE. Identify serum and fecal miRNAs with diagnostic potential for differentiation between cats with GIC and CIE as compared to healthy cats. ANIMALS Ten healthy cats, 9 cats with CIE, and 10 cats with GIC; all client-owned. METHODS Cats were recruited for an international multicenter observational prospective case-control study. Serum and feces were screened using small RNA sequencing for miRNAs that differed in abundance between cats with GIC and CIE, and healthy cats. Diagnostic biomarker potential of relevant miRNAs from small RNA sequencing and the literature was confirmed using reverse transcription quantitative real-time PCR (RT-qPCR). RESULTS Serum miR-223-3p was found to distinguish between cats with GIC and CIE with an area under the curve (AUC) of 0.9 (95% confidence interval [CI], 0.760-1.0), sensitivity of 90% (95% CI, 59.6-99.5%), and specificity of 77.8% (95% CI, 45.3-96.1%). Serum miR-223-3p likewise showed promise in differentiating a subgroup of cats with small cell lymphoma (SCL) from those with CIE. No fecal miRNAs could distinguish between cats with GIC and CIE. CONCLUSION AND CLINICAL IMPORTANCE Serum miR-223-3p potentially may serve as a noninvasive diagnostic biomarker of GIC in cats, in addition to providing a much needed tool for the differentiation of CIE and SCL.
Collapse
Affiliation(s)
- Louise Brogaard
- Department of Veterinary and Animal SciencesUniversity of CopenhagenFrederiksbergDenmark
- Present address:
Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | - Janne G. Lyngby
- Department of Veterinary Clinical SciencesUniversity of CopenhagenFrederiksbergDenmark
| | | | - Merete Fredholm
- Department of Veterinary and Animal SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Charlotte R. Bjørnvad
- Department of Veterinary Clinical SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Silke Salavati Schmitz
- Hospital for Small Animals, Royal (Dick) School of Veterinary Studies, The Roslin Institute, College of Medicine and Veterinary Medicine, University of EdinburghMidlothianUK
| | - Ellen Skancke
- Department of Companion Animal Clinical SciencesNorwegian University of the Life SciencesOsloNorway
| | - Joanna S. Morris
- College of Medical, Veterinary, and Life Sciences, School of Veterinary Medicine, University of GlasgowGlasgowUK
| | - Nana Dupont
- Department of Veterinary Clinical SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - David Argyle
- Hospital for Small Animals, Royal (Dick) School of Veterinary Studies, The Roslin Institute, College of Medicine and Veterinary Medicine, University of EdinburghMidlothianUK
| | - Armand Sánchez
- Department of Animal Medicine and Surgery, School of Veterinary SciencesUniversitat Autònoma de Barcelona, Cerdanyola del VallèsBarcelonaSpain
- Centre for Research in Agricultural Genomics, The Spanish National Research Council (CSIC)Institute of Agrifood Research and Technology (IRTA), Autonomous University of Barcelona (UAB), and University of Barcelona (UB)BarcelonaSpain
| | | | | | - Lise N. Nielsen
- Department of Veterinary Clinical SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Susanna Cirera
- Department of Veterinary and Animal SciencesUniversity of CopenhagenFrederiksbergDenmark
| |
Collapse
|
5
|
Ashraf NS, Mahjabeen I, Hussain MZ, Rizwan M, Arshad M, Mehmood A, Haris MS, Kayani MA. Role of exosomal miRNA-19a/ 19b and PTEN in brain tumor diagnosis. Future Oncol 2023; 19:1563-1576. [PMID: 37577782 DOI: 10.2217/fon-2023-0234] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Aim: The current study was designed to evaluate the diagnostic significance of the exosomal miRNAs miR-19a and miR-19b and the PTEN gene in brain tumor patients versus controls. Methods: Exosomes were extracted from the serum samples of 400 brain tumor patients and 400 healthy controls. The exosomes were characterized by scanning electron microscopy, dynamic light scattering and ELISA. Quantitative PCR was used to analyze selected exosome miRNAs and gene expression levels. Results: Analysis showed significant deregulated expression of miR-19a (p < 0.0001), miR-19b (p < 0.0001) and PTEN (p < 0.001) in patients versus controls. Spearman correlation showed a significant correlation among the selected exosomal miRNAs and the PTEN gene. Conclusion: Receiver operating characteristic curve analysis showed the good diagnostic value of exosomal miRNAs and the PTEN gene in brain tumor patients.
Collapse
Affiliation(s)
- Nida Sarosh Ashraf
- Department of Biosciences, Cancer Genetics & Epigenetics Research Group, COMSATS University Islamabad, Pakistan
| | - Ishrat Mahjabeen
- Department of Biosciences, Cancer Genetics & Epigenetics Research Group, COMSATS University Islamabad, Pakistan
| | - Muhammad Zahid Hussain
- Department of Rheumatology, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Muhammad Rizwan
- Department of Biosciences, Cancer Genetics & Epigenetics Research Group, COMSATS University Islamabad, Pakistan
| | - Maryam Arshad
- Department of Biosciences, Cancer Genetics & Epigenetics Research Group, COMSATS University Islamabad, Pakistan
| | - Azhar Mehmood
- Department of Biosciences, Cancer Genetics & Epigenetics Research Group, COMSATS University Islamabad, Pakistan
| | - Muhammad Shahbaz Haris
- Department of Biosciences, Cancer Genetics & Epigenetics Research Group, COMSATS University Islamabad, Pakistan
| | - Mahmood Akhtar Kayani
- Department of Biosciences, Cancer Genetics & Epigenetics Research Group, COMSATS University Islamabad, Pakistan
| |
Collapse
|
6
|
MicroRNA-483-5p Inhibits Hepatocellular Carcinoma Cell Proliferation, Cell Steatosis, and Fibrosis by Targeting PPARα and TIMP2. Cancers (Basel) 2023; 15:cancers15061715. [PMID: 36980601 PMCID: PMC10046356 DOI: 10.3390/cancers15061715] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that bind with the 3′ untranslated regions (UTRs) of genes to regulate expression. Downregulation of miR-483-5p (miR-483) is associated with the progression of hepatocellular carcinoma (HCC). However, the significant roles of miR-483 in nonalcoholic fatty liver disease (NAFLD), alcoholic fatty liver diseases (AFLD), and HCC remain elusive. In the current study, we investigated the biological significance of miR-483 in NAFLD, AFLD, and HCC in vitro and in vivo. The downregulation of miR-483 expression in HCC patients’ tumor samples was associated with Notch 3 upregulation. Overexpression of miR-483 in a human bipotent progenitor liver cell line HepaRG and HCC cells dysregulated Notch signaling, inhibited cell proliferation/migration, induced apoptosis, and increased sensitivity towards antineoplastic agents sorafenib/regorafenib. Interestingly, the inactivation of miR-483 upregulated cell steatosis and fibrosis signaling by modulation of lipogenic and fibrosis gene expression. Mechanistically, miR-483 targets PPARα and TIMP2 gene expression, which leads to the suppression of cell steatosis and fibrosis. The downregulation of miR-483 was observed in mice liver fed with a high-fat diet (HFD) or a standard Lieber-Decarli liquid diet containing 5% alcohol, leading to increased hepatic steatosis/fibrosis. Our data suggest that miR-483 inhibits cell steatosis and fibrogenic signaling and functions as a tumor suppressor in HCC. Therefore, miR-483 may be a novel therapeutic target for NAFLD/AFLD/HCC management in patients with fatty liver diseases and HCC.
Collapse
|
7
|
MicroRNA biosensors for detection of gastrointestinal cancer. Clin Chim Acta 2023; 541:117245. [PMID: 36754191 DOI: 10.1016/j.cca.2023.117245] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/27/2022] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
Gastrointestinal (GI) cancers are one of the most common causes of cancer-related mortality. The discovery of microRNAs (miRs) and their unique role in cancer and other diseases has prompted the development of highly sensitive molecular diagnostic tools using nanomaterials as sensitive and specific biosensors. Among these, electrochemical biosensors, which are based on a simple and inexpensive design, make them desirable in clinical applications as well as a mass-produced point-of-care device. We review miR-based electrochemical biosensors in GI cancer and examine the use of nanoparticles in the evolving development of miR-based biosensors. Among these, a number of approaches including redox labeled probes, catalysts, redox intercalating agents and free redox indicators are highlighted for use in electrochemical biosensor technology.
Collapse
|
8
|
Suzuki K, Yamaguchi T, Kohda M, Tanaka M, Takemura H, Wakita M, Tabe Y, Kato S, Nasu M, Hashimoto T, Mine S, Serizawa N, Tomishima K, Nagahara A, Matsuda T, Yamaji T, Tsugane S, Saito Y, Daiko H, Yoshikawa T, Kato K, Okusaka T, Ochiya T, Yamamoto Y, Yotsui S, Yamamoto T, Yamasaki T, Miyata H, Yasui M, Omori T, Ohkawa K, Ikezawa K, Nakabori T, Sugimoto N, Kudo T, Yoshida K, Ohue M, Nishizawa T. Establishment of preanalytical conditions for microRNA profile analysis of clinical plasma samples. PLoS One 2022; 17:e0278927. [PMID: 36516194 PMCID: PMC9750036 DOI: 10.1371/journal.pone.0278927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
The relationship between the expression of microRNAs (miRNAs) in blood and a variety of diseases has been investigated. MiRNA-based liquid biopsy has attracted much attention, and cancer-specific miRNAs have been reported. However, the results of analyses of the expression of these miRNAs vary among studies. The reproduction of results regarding miRNA expression levels could be difficult if there are differences in the data acquisition process. Previous studies have shown that the anticoagulant type used during plasma preparation and sample storage conditions could contribute to differences in measured miRNA levels. Thus, the impact of these preanalytical conditions on comprehensive miRNA expression profiles was examined. First, the miRNA expression profiles of samples obtained from healthy volunteers were analyzed using next-generation sequencing. Based on an analysis of the library concentration, human genome identification rate, ratio of unique sequences and expression profiles, the optimal preanalytical conditions for obtaining highly reproducible miRNA expression profiles were established. The optimal preanalytical conditions were as follows: ethylenediaminetetraacetic acid (EDTA) as the anticoagulant, whole-blood storage at room temperature within 6 hours, and plasma storage at 4°C or -20°C within 30 days. Next, plasma samples were collected from 60 cancer patients (3 facilities × 20 patients/facility), and miRNA expression profiles were analyzed. There were no significant differences in measurements except in the expression of erythrocyte-derived hsa-miR-451a. However, the variation in hsa-miR-451a levels was smaller among facilities than among individuals. This finding suggests that samples obtained from the same facility could show significantly different degrees of hemolysis across individuals. We found that the standardization of anticoagulant use and storage conditions contributed to reducing the variation in sample quality across facilities. The findings from this study could be useful in developing protocols for collecting samples from multiple facilities for cancer screening tests.
Collapse
Affiliation(s)
- Kuno Suzuki
- Healthcare Business Department, PFDeNA, Inc., Tokyo, Japan
- * E-mail:
| | | | - Masakazu Kohda
- Healthcare Business Department, PFDeNA, Inc., Tokyo, Japan
| | - Masami Tanaka
- Healthcare Business Department, PFDeNA, Inc., Tokyo, Japan
| | - Hiroyuki Takemura
- Department of Clinical Laboratory, Juntendo University Hospital, Tokyo, Japan
| | - Mitsuru Wakita
- Department of Clinical Laboratory, Juntendo University Hospital, Tokyo, Japan
| | - Yoko Tabe
- Department of Clinical Laboratory, Juntendo University Hospital, Tokyo, Japan
| | - Shunsuke Kato
- Department of Clinical Oncology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Motomi Nasu
- Department of Esophageal and Gastroenterological Surgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Hashimoto
- Department of Esophageal and Gastroenterological Surgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shinji Mine
- Department of Esophageal and Gastroenterological Surgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobuko Serizawa
- Department of Gastroenterology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ko Tomishima
- Department of Gastroenterology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akihito Nagahara
- Department of Gastroenterology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takahisa Matsuda
- Cancer Screening Center, National Cancer Center Hospital, Tokyo, Japan
| | - Taiki Yamaji
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Shoichiro Tsugane
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Yutaka Saito
- Department of Endoscopy, National Cancer Center Hospital, Tokyo, Japan
| | - Hiroyuki Daiko
- Department of Esophageal Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Takaki Yoshikawa
- Department of Gastric Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Ken Kato
- Department of Head and Neck, Esophageal Medical Oncology / Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Takuji Okusaka
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Takahiro Ochiya
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yusuke Yamamoto
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Shoji Yotsui
- Clinical Laboratory, Osaka International Cancer Institute, Osaka, Japan
| | - Takashi Yamamoto
- Clinical Laboratory, Osaka International Cancer Institute, Osaka, Japan
| | - Tomoyuki Yamasaki
- Clinical Laboratory, Osaka International Cancer Institute, Osaka, Japan
| | - Hiroshi Miyata
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Masayoshi Yasui
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Takeshi Omori
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Kazuyoshi Ohkawa
- Department of Hepatobiliary and Pancreatic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Kenji Ikezawa
- Department of Hepatobiliary and Pancreatic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Tasuku Nakabori
- Department of Hepatobiliary and Pancreatic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Naotoshi Sugimoto
- Department of Medical Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Toshihiro Kudo
- Department of Medical Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Keiichi Yoshida
- Next-generation Precision Medicine Research Center, Osaka International Cancer Institute, Osaka, Japan
| | - Masayuki Ohue
- Next-generation Precision Medicine Research Center, Osaka International Cancer Institute, Osaka, Japan
| | | |
Collapse
|
9
|
miR-196a-5p Correlates with Chronic Atrophic Gastritis Progression to Gastric Cancer and Induces Malignant Biological Behaviors of Gastric Cancer Cells by Targeting ACER2. Mol Biotechnol 2022:10.1007/s12033-022-00589-8. [PMID: 36513872 DOI: 10.1007/s12033-022-00589-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/19/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND As the prognosis of early gastric cancer (EGC) is significantly better than that of advanced gastric cancer (AGC), the development of biomarkers to monitor the progression of chronic atrophic gastritis (CAG) to gastric cancer (GC) is essential. METHODS Stomach tissue miRNA and mRNA sequences from patients with chronic non-atrophic gastritis (CNAG), CAG, precancerous lesions of gastric cancer (PLGC), and GC were analyzed. A publicly available GC-related miRNA microarray dataset was obtained from the Gene Expression Omnibus database. Spearman's correlation and differential gene analyses, and clinical validation were used to identify novel miRNAs correlating with CAG progression to GC. miRNA targets were predicted using weighted gene co-expression analysis and databases. A dual-luciferase reporter assay was performed to check for direct interaction between miR-196a-5p and ACER2. The CCK-8 and wound healing assays, and flow cytometry were performed to evaluate cell proliferation, migration, and apoptosis. RESULTS miR-196a-5p was correlated with CAG progression to GC. Overexpression of miR-196a-5p promoted GC cell proliferation and migration and inhibited apoptosis, whereas suppression of miR-196a-5p exerted the opposite effect. Based on the prediction and luciferase assays, ACER2 was identified as the target of miR-196a-5p. ACER2 was downregulated in GC cell lines. Knockdown of ACER2 increased GC cell proliferation rates and migration ability and inhibited apoptosis, while ACER2 overexpression led to the opposite effect. CONCLUSIONS miR-196a-5p correlated with CAG progression to GC and induced malignant biological behaviors of GC cells by targeting ACER2, providing a novel monitoring biomarker and target for GC prevention.
Collapse
|
10
|
Du Y, Wu T. Heart failure and cancer: From active exposure to passive adaption. Front Cardiovasc Med 2022; 9:992011. [PMID: 36304546 PMCID: PMC9592839 DOI: 10.3389/fcvm.2022.992011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/20/2022] [Indexed: 12/06/2022] Open
Abstract
The human body seems like a "balance integrator." On the one hand, the body constantly actively receives various outside stimuli and signals to induce changes. On the other hand, several internal regulations would be initiated to adapt to these changes. In most cases, the body could keep the balance in vitro and in vivo to reach a healthy body. However, in some cases, the body can only get to a pathological balance. Actively exposed to unhealthy lifestyles and passively adapting to individual primary diseases lead to a similarly inner environment for both heart failure and cancer. To cope with these stimuli, the body must activate the system regulation mechanism and face the mutual interference. This review summarized the association between heart failure and cancer from active exposure to passive adaption. Moreover, we hope to inspire researchers to contemplate these two diseases from the angle of overall body consideration.
Collapse
Affiliation(s)
- Yantao Du
- Ningbo Institute of Medical Science, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Tao Wu
- Department of Cardiovascular Center, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
11
|
Lyngby JG, Gòdia M, Brogaard L, Kristensen AT, Fredholm M, Skancke E, Morris J, Dupont N, Salavati Schmitz S, Argyle D, Sánchez A, Bjørnvad CR, Cirera S, Nielsen LN. Association of fecal and serum microRNA profiles with gastrointestinal cancer and chronic inflammatory enteropathy in dogs. Vet Med (Auckl) 2022; 36:1989-2001. [PMID: 36120988 DOI: 10.1111/jvim.16530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 08/18/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Reliable biomarkers to differentiate gastrointestinal cancer (GIC) from chronic inflammatory enteropathy (CIE) in dogs are needed. Fecal and serum microRNAs (miRNAs) have been proposed as diagnostic and prognostic markers of GI disease in humans and dogs. HYPOTHESIS/OBJECTIVES Dogs with GIC have fecal and serum miRNA profiles that differ from those of dogs with CIE. AIMS (a) identify miRNAs that differentiate GIC from CIE, (b) use high-throughput reverse transcription quantitative real-time PCR (RT-qPCR) to establish fecal and serum miRNA panels to distinguish GIC from CIE in dogs. ANIMALS Twenty-four dogs with GIC, 10 dogs with CIE, and 10 healthy dogs, all client-owned. METHODS An international multicenter observational prospective case-control study. Small RNA sequencing was used to identify fecal and serum miRNAs, and RT-qPCR was used to establish fecal and serum miRNA panels with the potential to distinguish GIC from CIE. RESULTS The best diagnostic performance for distinguishing GIC from CIE was fecal miR-451 (AUC: 0.955, sensitivity: 86.4%, specificity: 100%), miR-223 (AUC: 0.918, sensitivity: 90.9%, specificity: 80%), and miR-27a (AUC: 0.868, sensitivity: 81.8%, specificity: 90%) and serum miR-20b (AUC: 0.905, sensitivity: 90.5%, specificity: 90%), miR-148a-3p (AUC: 0.924, sensitivity: 85.7%, specificity: 90%), and miR-652 (AUC: 0.943, sensitivity: 90.5%, specificity: 90%). Slightly improved diagnostic performance was achieved when combining fecal miR-451 and miR-223 (AUC: 0.973, sensitivity: 95.5%, specificity: 90%). CONCLUSIONS AND CLINICAL IMPORTANCE When used as part of a diagnostic RT-qPCR panel, the abovementioned miRNAs have the potential to function as noninvasive biomarkers for the differentiation of GIC and CIE in dogs.
Collapse
Affiliation(s)
- Janne G Lyngby
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marta Gòdia
- Department of Animal Medicine and Surgery, School of Veterinary Sciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia, Spain.,Centre for Research in Agricultural Genomics, The Spanish National Research Council (CSIC), Institute of Agrifood Research and Technology (IRTA), Autonomous University of Barcelona (UAB), and University of Barcelona (UB), Cerdanyola del Vallès, Catalonia, Spain.,Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Louise Brogaard
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Annemarie T Kristensen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Merete Fredholm
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ellen Skancke
- Department of Companion Animal Clinical Sciences, Norwegian University of the Life Sciences, Oslo, Norway
| | - Joanna Morris
- College of Medical, Veterinary and Life Sciences, School of Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Nana Dupont
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Silke Salavati Schmitz
- Hospital for Small Animals, Royal (Dick) School of Veterinary Studies, The Roslin Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - David Argyle
- Hospital for Small Animals, Royal (Dick) School of Veterinary Studies, The Roslin Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Armand Sánchez
- Department of Animal Medicine and Surgery, School of Veterinary Sciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia, Spain.,Centre for Research in Agricultural Genomics, The Spanish National Research Council (CSIC), Institute of Agrifood Research and Technology (IRTA), Autonomous University of Barcelona (UAB), and University of Barcelona (UB), Cerdanyola del Vallès, Catalonia, Spain
| | - Charlotte R Bjørnvad
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Susanna Cirera
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lise N Nielsen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Rhim J, Baek W, Seo Y, Kim JH. From Molecular Mechanisms to Therapeutics: Understanding MicroRNA-21 in Cancer. Cells 2022; 11:cells11182791. [PMID: 36139366 PMCID: PMC9497241 DOI: 10.3390/cells11182791] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that play an important role in regulating gene expression at a posttranscriptional level. As one of the first discovered oncogenic miRNAs, microRNA-21 (miR-21) has been highlighted for its critical role in cancers, such as glioblastoma, pancreatic adenocarcinoma, non-small cell lung cancer, and many others. MiR-21 targets many vital components in a wide range of cancers and acts on various cellular processes ranging from cancer stemness to cell death. Expression of miR-21 is elevated within cancer tissues and circulating miR-21 is readily detectable in biofluids, making it valuable as a cancer biomarker with significant potential for use in diagnosis and prognosis. Advances in RNA-based therapeutics have revealed additional avenues by which miR-21 can be utilized as a promising target in cancer. The purpose of this review is to outline the roles of miR-21 as a key modulator in various cancers and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Jiho Rhim
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea
- Department of Cancer Biomedical Science, National Cancer Center, Graduate School of Cancer Science and Policy, Goyang 10408, Korea
| | - Woosun Baek
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea
- Department of Cancer Biomedical Science, National Cancer Center, Graduate School of Cancer Science and Policy, Goyang 10408, Korea
| | - Yoona Seo
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea
- Department of Cancer Biomedical Science, National Cancer Center, Graduate School of Cancer Science and Policy, Goyang 10408, Korea
| | - Jong Heon Kim
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea
- Department of Cancer Biomedical Science, National Cancer Center, Graduate School of Cancer Science and Policy, Goyang 10408, Korea
- Correspondence: ; Tel.: +82-31-920-2204
| |
Collapse
|
13
|
Niture S, Tricoli L, Qi Q, Gadi S, Hayes K, Kumar D. MicroRNA-99b-5p targets mTOR/AR axis, induces autophagy and inhibits prostate cancer cell proliferation. Tumour Biol 2022; 44:107-127. [DOI: 10.3233/tub-211568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES: MicroRNAs (miRNAs) are the small non-coding regulatory RNA molecules involved in gene regulation via base-pairing with complementary sequences in mRNAs. The dysregulation of specific miRNAs, such as miR-99b-5p (miR-99b), is associated with prostate cancer (PCa) progression. However, the mechanistic role of miR-99b in PCa remains to be determined. In this study, we aimed to investigate the functional and clinical significance of miR-99b in PCa. STUDY DESIGN: The expression of miR-99b and its downstream targets mTOR/AR in the PCa samples were analyzed by RT/qPCR. The effects of miR-99b overexpression/inhibition on PCa cell survival/proliferation, spheroid formation, and cell migration were examined by specific assays. Luciferase reporter assays were performed to determine the binding of miR-99b to 3′ untranslated region (UTR) of the mTOR gene. The effects of miR-99b on the expression of mTOR, AR, and PSA proteins, as well as on AKT/mTOR signaling, autophagy, and neuroendocrine differentiation markers were analyzed by western blotting. The expression of miR-99b, mTOR, AR, PSA in AR-negative PC3 and AR-positive LNCaP cells was analyzed by RT/qPCR. The effect of miR-99b on global gene expression in PC3 cells was analyzed by RNA-seq. RESULTS: The expression of miR-99b was downregulated in tumor samples from PCa patients, whereas the expression of mTOR and AR was upregulated. In PCa cell lines, overexpression of miR-99b inhibited cell proliferation and cell colony/spheroid formation; induced apoptosis, and increased sensitivity towards docetaxel (DTX). In contrast, inhibition of miR-99b by miR-99b inhibitor resulted in increased cell growth in PCa cells. Mechanistically, miR-99b inhibited the expression of the mammalian target of the rapamycin (mTOR) gene by binding to its 3′ UTR and induced autophagy. Furthermore, miR-99b inhibited androgen receptor (AR) activity in LNCaP cells and induced apoptosis. Activation of AR signaling by dihydrotestosterone (DHT) downregulated miR-99b expression and promoted cell PCa cell growth/survival, whereas inactivation of mTOR by rapamycin or AR by enzalutamide decreased miR-99b mediated PCa cell growth. CONCLUSION: Our data suggest that miR-99b functions as a tumor suppressor by targeting the mTOR/AR axis in PCa cells, implicating miR-99b as a novel biomarker and therapeutic target for PCa management.
Collapse
Affiliation(s)
- Suryakant Niture
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, NC, USA
| | - Lucas Tricoli
- Children’s Hospital of Philadelphia Research Institute, Pennsylvania, PA, USA
| | - Qi Qi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, NC, USA
| | - Sashi Gadi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, NC, USA
| | - Kala Hayes
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, NC, USA
| | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, NC, USA
| |
Collapse
|
14
|
Ahmad E, Ali A, Nimisha, Kumar Sharma A, Apurva, Kumar A, Dar GM, Sumayya Abdul Sattar R, Verma R, Mahajan B, Singh Saluja S. Molecular markers in cancer. Clin Chim Acta 2022; 532:95-114. [DOI: https:/doi.org/10.1016/j.cca.2022.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
|
15
|
Ahmad E, Ali A, Nimisha, Kumar Sharma A, Apurva, Kumar A, Mehdi G, Sumayya Abdul Sattar R, Verma R, Mahajan B, Singh Saluja S. Molecular markers in cancer. Clin Chim Acta 2022; 532:95-114. [DOI: 10.1016/j.cca.2022.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 12/01/2022]
|
16
|
Mocan LP, Ilieș M, Melincovici CS, Spârchez M, Crăciun R, Nenu I, Horhat A, Tefas C, Spârchez Z, Iuga CA, Mocan T, Mihu CM. Novel approaches in search for biomarkers of cholangiocarcinoma. World J Gastroenterol 2022; 28:1508-1525. [PMID: 35582128 PMCID: PMC9048460 DOI: 10.3748/wjg.v28.i15.1508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/12/2021] [Accepted: 03/06/2022] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) arises from the ductular epithelium of the biliary tree, either within the liver (intrahepatic CCA) or more commonly from the extrahepatic bile ducts (extrahepatic CCA). This disease has a poor prognosis and a growing worldwide prevalence. The poor outcomes of CCA are partially explained by the fact that a final diagnosis is challenging, especially the differential diagnosis between hepatocellular carcinoma and intrahepatic CCA, or distal CCA and pancreatic head adenocarcinoma. Most patients present with an advanced disease, unresectable disease, and there is a lack in non-surgical therapeutic modalities. Not least, there is an acute lack of prognostic biomarkers which further complicates disease management. Therefore, there is a dire need to find alternative diagnostic and follow-up pathways that can lead to an accurate result, either singlehandedly or combined with other methods. In the "-omics" era, this goal can be attained by various means, as it has been successfully demonstrated in other primary tumors. Numerous variants can reach a biomarker status ranging from circulating nucleic acids to proteins, metabolites, extracellular vesicles, and ultimately circulating tumor cells. However, given the relatively heterogeneous data, extracting clinical meaning from the inconsequential noise might become a tall task. The current review aims to navigate the nascent waters of the non-invasive approach to CCA and provide an evidence-based input to aid clinical decisions and provide grounds for future research.
Collapse
Affiliation(s)
- Lavinia-Patricia Mocan
- Department of Histology, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| | - Maria Ilieș
- Department of Proteomics and Metabolomics, MedFUTURE Research Center for Advanced Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400349, Romania
| | - Carmen Stanca Melincovici
- Department of Histology, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| | - Mihaela Spârchez
- 2nd Pediatrics Department, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| | - Rareș Crăciun
- 3rd Medical Department, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
- Department of Gastroenterology, "Prof. dr. Octavian Fodor" Institute for Gastroenterology and Hepatology, Cluj-Napoca 400162, Romania
| | - Iuliana Nenu
- 3rd Medical Department, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
- Department of Gastroenterology, "Prof. dr. Octavian Fodor" Institute for Gastroenterology and Hepatology, Cluj-Napoca 400162, Romania
| | - Adelina Horhat
- 3rd Medical Department, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
- Department of Gastroenterology, "Prof. dr. Octavian Fodor" Institute for Gastroenterology and Hepatology, Cluj-Napoca 400162, Romania
| | - Cristian Tefas
- 3rd Medical Department, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
- Department of Gastroenterology, "Prof. dr. Octavian Fodor" Institute for Gastroenterology and Hepatology, Cluj-Napoca 400162, Romania
| | - Zeno Spârchez
- 3rd Medical Department, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
- Department of Gastroenterology, "Prof. dr. Octavian Fodor" Institute for Gastroenterology and Hepatology, Cluj-Napoca 400162, Romania
| | - Cristina Adela Iuga
- Department of Proteomics and Metabolomics, MedFUTURE Research Center for Advanced Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400349, Romania
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| | - Tudor Mocan
- 3rd Medical Department, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
- Department of Gastroenterology, "Prof. dr. Octavian Fodor" Institute for Gastroenterology and Hepatology, Cluj-Napoca 400162, Romania
| | - Carmen Mihaela Mihu
- Department of Histology, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| |
Collapse
|
17
|
Qi Y, Su B, Lin X, Zhou H. A New Feature Selection Method Based on Feature Distinguishing Ability and Network Influence. J Biomed Inform 2022; 128:104048. [DOI: 10.1016/j.jbi.2022.104048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 02/04/2022] [Accepted: 03/01/2022] [Indexed: 12/18/2022]
|
18
|
Suzuki K, Igata H, Abe M, Yamamoto Y. Multiple cancer type classification by small RNA expression profiles with plasma samples from multiple facilities. Cancer Sci 2022; 113:2144-2166. [PMID: 35218669 PMCID: PMC9207371 DOI: 10.1111/cas.15309] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 11/29/2022] Open
Abstract
Liquid biopsy is expected to be a promising cancer screening method because of its low invasiveness and the possibility of detecting multiple types in a single test. In the last decade, many studies on cancer detection using small RNAs in blood have been reported. To put small RNA tests into practical use as a multiple cancer type screening test, it is necessary to develop a method that can be applied to multiple facilities. We collected samples of eight cancer types and healthy controls from 20 facilities to evaluate the performance of cancer type classification. A total of 2,475 cancer samples and 496 healthy control samples were collected using a standardized protocol. After obtaining a small RNA expression profile, we constructed a classification model and evaluated its performance. First, we investigated the classification performance using samples from five single facilities. Each model showed areas under the receiver curve (AUC) ranging from 0.67 to 0.89. Second, we performed principal component analysis (PCA) to examine the characteristics of the facilities. The degree of hemolysis and the data acquisition period affected the expression profiles. Finally, we constructed the classification model by reducing the influence of these factors, and its performance had an AUC of 0.76. The results reveal that small RNA can be used for the classification of cancer types in samples from a single facility. However, interfacility biases will affect the classification of samples from multiple facilities. These findings will provide important insights to improve the performance of multiple cancer type classifications using small RNA expression profiles acquired from multiple facilities.
Collapse
Affiliation(s)
- Kuno Suzuki
- Healthcare Business Department, PFDeNA, Inc, Tokyo, Japan
| | | | | | - Yusuke Yamamoto
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | | |
Collapse
|
19
|
Saliminejad K, Mahmoodzadeh H, Soleymani Fard S, Yaghmaie M, Khorram Khorshid HR, Mousavi SA, Vaezi M, Ghaffari SH. A Panel of Circulating microRNAs as a Potential Biomarker for the Early Detection of Gastric Cancer. Avicenna J Med Biotechnol 2022; 14:278-286. [PMID: 36504565 PMCID: PMC9706247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 07/02/2022] [Indexed: 12/15/2022] Open
Abstract
Background The high mortality rate of Gastric Cancer (GC) is a consequence of delayed diagnosis. The early diagnosis of GC could increase the five-year survival rate among patients. We aimed to find a panel of microRNAs (miRNA) for the detection of GC in the early stages. Methods In this case-control study, we selected consistently upregulated miRNAs from the results of 12 high-throughput miRNA profiling studies in GC. In the profiling phase, the differential expressions of 13 candidate miRNAs were analyzed by quantitative reverse-transcription PCR (qRT-PCR) in two pooled RNA samples prepared from the plasma of eight GC patients and eight matched controls. In the validation phase, significantly upregulated miRNAs from the profiling phase were further evaluated in the plasma samples of 97 patients with stage I-IV gastric adenocarcinoma and 100 healthy controls. Results In the profiling phase, six miRNAs (miR-18a, 21, 25, 92a, 125b and 221) were significantly upregulated in the GC patients compared to the controls (p<0.05). However, in the validation phase, only significant up-regulation of miR-18a, 21 and 125b was confirmed (p<0.05). A panel of miR-18a/21/125b was able to detect GC patients with stage I-IV from the controls (p<0.001; AUC=0.92, sensitivity=86%; specificity=85%). In addition, the panel could distinguish the early-stage GC (I+II) from the control group with an AUC of 0.83, a sensitivity of 83%, and a specificity of 75%. Conclusion A panel of circulating miR18a/21/125b could be suggested as a potential biomarker for the early detection of GC.
Collapse
Affiliation(s)
- Kioomars Saliminejad
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Habibollah Mahmoodzadeh
- Department of Surgery, Cancer Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Soleymani Fard
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Yaghmaie
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Seyed Asadollah Mousavi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Vaezi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hamidollah Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran,Corresponding author: Seyed Hamidollah Ghaffari, Ph.D., Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran, Tel: +98 21 84902665, Fax: +98 21 88004140, E-mail:,
| |
Collapse
|
20
|
Yue Y, Lin X, Qiu X, Yang L, Wang R. The Molecular Roles and Clinical Implications of Non-Coding RNAs in Gastric Cancer. Front Cell Dev Biol 2021; 9:802745. [PMID: 34966746 PMCID: PMC8711095 DOI: 10.3389/fcell.2021.802745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 01/19/2023] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies in the world. It is also the fifth most common cancer in China. In recent years, a large number of studies have proved that non-coding RNAs (ncRNAs) can regulate cell proliferation, invasion, metastasis, apoptosis, and angiogenesis. NcRNAs also influence the therapeutic resistance of gastric cancer. NcRNAs mainly consist of miRNAs, lncRNAs and circRNAs. In this paper, we summarized ncRNAs as biomarkers and therapeutic targets for gastric cancer, and also reviewed their role in clinical trials and diagnosis. We sum up different ncRNAs and related moleculars and signaling pathway in gastric cancer, like Bcl-2, PTEN, Wnt signaling. In addition, the potential clinical application of ncRNAs in overcoming chemotherapy and radiotherapy resistance in GC in the future were also focused on.
Collapse
Affiliation(s)
- Yanping Yue
- Department of Medical Oncology, Affiliated Cancer Hospital, Nantong University, Nantong, China
| | - Xinrong Lin
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xinyue Qiu
- Department of Medical Oncology, Affiliated Cancer Hospital, Nantong University, Nantong, China
| | - Lei Yang
- Department of Medical Oncology, Affiliated Cancer Hospital, Nantong University, Nantong, China
| | - Rui Wang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
21
|
MicroRNA in refined diagnosis of choroidal melanoma. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.6-1.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Epigenetic studies of the level of microRNAs in human oncogenesis indicate their signifi cant role in the development and growth of malignant tumors of various origins. The fi rst works on the role of microRNAs in patients with uveal melanoma appeared in 2008.The aim: to analyze the expression level of miRNA-126 and miRNA-223 in the plasma blood of patients and to determine their signifi cance in the refi ned diagnosis of choroidal melanoma. Materials and methods. We examined 84 patients with choroidal melanoma (CM), mean age – 63.4 ± 1.2 (35–86 y.o.). Localization – a single CM node with a thickness of 0.77–17.19 mm. The control group consisted of 28 volunteers, age – 62.9 ± 1.42 (45–78 y.o.). Plasma miRNA expression levels were determined by real-time PCR.Results. An increase in the level of expression of miRNA-223 and miRNA-126 in blood plasma was confi rmed in all 84 patients with choroidal melanoma N0M0 compared with the control group. An increase in the expression of miRNA-223 and miRNA-126 was proved with an increase in tumor prominence.Conclusion. The obtained results of an increase in the expression of miRNA-223 indicate an increase in cell proliferation, and an increase in the expression of miRNA-126 on the activation of angiogenesis in a growing tumor, which makes it possible to recommend a study of the level of miRNA-223 and miRNA-126 for a more accurate diagnosis of small CM in cases of difficulty of differential diagnosis with other tumor-like diseases of the choroid.
Collapse
|
22
|
Hu S, Liu H, Zhang J, Li S, Zhou H, Gao Y. Effects and prognostic values of miR-30c-5p target genes in gastric cancer via a comprehensive analysis using bioinformatics. Sci Rep 2021; 11:20584. [PMID: 34663825 PMCID: PMC8523699 DOI: 10.1038/s41598-021-00043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/30/2021] [Indexed: 12/02/2022] Open
Abstract
Gastric cancer (GC) is a common cancer and the leading cause of cancer-related death worldwide. To improve the diagnosis and treatment of GC, it is necessary to identify new biomarkers by investigating the cellular and molecular mechanisms. In this study, miR-30c-5p expression was significantly down-regulated in GC tissues by comprehensive analysis using multiple databases. The target genes of miR-30c-5p with up-regulated expression level in GC were identified, including ADAM12 (a disintegrin and metalloproteinase12), EDNRA (the Endothelin receptor type A), STC1 (stanniocalcin 1), and CPNE8 (the calcium-dependent protein, copine 8). The expression level of ADAM12 was significantly related to depth of invasion (p = 0.036) in GC patients. The expression level of EDNRA was significantly related to grade (P = 0.003), depth of invasion (P = 0.019), and lymphatic metastasis (P = 0.001). The expression level of CPNE8 was significantly related to grade (P = 0.043) and TNM stage (P = 0.027).Gene set enrichment analysis showed that they might participate in GC progression through cancer-related pathways. CIBERSORT algorithm analysis showed that their expressions were related to a variety of tumor-infiltrating immune cells. The higher expression of those target genes might be the independent risk factor for poor survival of GC patients, and they might be potential prognostic markers in GC patients.
Collapse
Affiliation(s)
- Shangshang Hu
- Research Center of Clinical Laboratory Science, School of Laboratory Medicine, Bengbu Medical College, Bengbu, 233030, Anhui, China
| | - Huaifeng Liu
- School of Life Science, Bengbu Medical College, Bengbu, 233030, Anhui, China
| | - Jinyan Zhang
- School of Life Science, Bengbu Medical College, Bengbu, 233030, Anhui, China.,Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, 233030, Anhui, China
| | - Shujing Li
- School of Life Science, Bengbu Medical College, Bengbu, 233030, Anhui, China
| | - Huadong Zhou
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, Anhui, China.,Department of Neurology, Army Medical Center of PLA, Chongqing, 400038, China
| | - Yu Gao
- School of Life Science, Bengbu Medical College, Bengbu, 233030, Anhui, China. .,Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, 233030, Anhui, China. .,School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, No. 2600 Donghai Road, Bengbu, 233030, Anhui, China.
| |
Collapse
|
23
|
Wang G, Yang L, Hu M, Hu R, Wang Y, Chen B, Jiang X, Cui R. Comprehensive Analysis of the Prognostic Significance of Hsa-miR-100-5p and Its Related Gene Signature in Stomach Adenocarcinoma. Front Cell Dev Biol 2021; 9:736274. [PMID: 34604236 PMCID: PMC8484799 DOI: 10.3389/fcell.2021.736274] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/27/2021] [Indexed: 12/23/2022] Open
Abstract
Stomach adenocarcinoma (STAD) is one of the most common cancers in the world. However, the prognosis of STAD remains poor, and the therapeutic effect of chemotherapy and immunotherapy varies from person to person. MicroRNAs (miRNAs) play vital roles in tumor development and metastasis and can be used for cancer diagnosis and prognosis. In this study, hsa-miR-100-5p was identified as the only dysregulated miRNA in STAD samples through an analysis of three miRNA expression matrices. A weighted gene co-expression network analysis (WGCNA) was performed to select hsa-miR-100-5p-related genes. A least absolute shrinkage and selection operator (LASSO) Cox regression analysis was performed to establish a miR-100-5p-related prognostic signature. Kaplan–Meier analyses, nomograms, and univariate and multivariate Cox regression analyses were used to evaluate the prognostic signature, which was subsequently identified as an independent risk factor for STAD patients. We investigated the tumor immune environment between low- and high-risk groups and found that, among component types, M2 macrophages contributed the most to the difference between these groups. A drug sensitivity analysis suggested that patients with high-risk scores may be more sensitive to docetaxel and cisplatin chemotherapy and that patients in the low-risk group may be more likely to benefit from immunotherapy. Finally, external cohorts were evaluated to validate the robustness of the prognostic signature. In summary, this study may provide new ideas for developing more individualized therapeutic strategies for STAD patients.
Collapse
Affiliation(s)
- Gaoming Wang
- Department of Hepatopancreatobiliary Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ludi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai, China
| | - Miao Hu
- Department of Hepatopancreatobiliary Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Renhao Hu
- Department of Hepatopancreatobiliary Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yongkun Wang
- Department of Hepatopancreatobiliary Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bo Chen
- Department of Hepatopancreatobiliary Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaohua Jiang
- Department of Hepatopancreatobiliary Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ran Cui
- Department of Hepatopancreatobiliary Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
24
|
Prediction of Blood miRNA-mRNA Regulatory Network in Gastric Cancer. Rep Biochem Mol Biol 2021; 10:243-256. [PMID: 34604414 DOI: 10.52547/rbmb.10.2.243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/13/2020] [Indexed: 01/15/2023]
Abstract
Background The aim of the study was to suggest a high specific and sensitive blood biomarker for early GC diagnosis. Methods the expression data of miRNAs and mRNAs were collected from the blood samples of the GC patients based on literature mining. Bioinformatics tools and databases (PANTHER, TargetScan, miRTarBase, miRDB, STRING, and Cytoscape) were used to predict the regulatory relationship. Subsequently, expression level of the selected miRNA was evaluated in the blood samples of gastritis patients to recognize the common miRNA between the GC and gastritis patients. Results Analysis of 40 target genes by MCODE (installed in Cytoscape software) indicated 4 hub genes (WWP1, SKP2, KLHL42, and FBXO11) as a significant cluster in the PPI network related to miR-21, with Node Score Cutoff: 0.2, Degree Cutoff: 2 and K-Core: 2. In addition, the miRNA RT-qPCR results showed that, the expression level of miR-21 was significantly higher in gastritis group compared to the healthy group (p< 0.05). Conclusion the present study clearly demonstrated the increasing level of blood miR-21 among the gastritis patients infected by H. pylori. Therefore, the altered miRNAs, especially overexpression of onco-miRs, may identify a potential link between miRNAs and pathogenesis of the H. pylori-related complications.
Collapse
|
25
|
Jin FE, Xie B, Xian HZ, Wang JH. Knockdown of miR-125b-5p inhibits the proliferation and invasion of gastric carcinoma cells by targeting RYBP. Kaohsiung J Med Sci 2021; 37:863-871. [PMID: 34337862 DOI: 10.1002/kjm2.12425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/12/2021] [Accepted: 06/14/2021] [Indexed: 11/08/2022] Open
Abstract
Gastric carcinoma, one of the most aggressive and lethal human malignancies, is associated with poor prognosis despite progress in therapeutic strategies. This study examined the potential function and mechanism of action of microRNA-125b-5p (miR-125b-5p) in the pathogenesis of gastric carcinoma. We recognized that miR-125b-5p was elevated in gastric carcinoma, and its decreased expression was associated with a better prognosis. Loss-of-function assays showed that miR-125b-5p suppression inhibited the proliferative and invasive abilities of gastric cancer cells. Furthermore, RING1 and YY1-binding protein (RYBP) was found to be target gene for miR-125b-5p action; miR-125b-5p negatively regulates RYBP expression. According to the results of rescue experiments, RYBP downregulation partially counteracted the miR-125b-5p silence-mediated inhibitory function in gastric cancer progression. Collectively, these data elucidated the molecular mechanisms of the miR-125b-5p/RYBP axis in gastric cancer invasion and growth.
Collapse
Affiliation(s)
- Fu-E Jin
- Department of Health Management, Qingdao Huangdao District Center Hospital, Qingdao, China
| | - Bo Xie
- Gastrointestinal Surgery, Liaocheng People's Hospital, Liaocheng, China
| | - Hong-Zhen Xian
- Department of Gastroenterology, Jimo People's Hospital of Qingdao City, Qingdao, China
| | - Ji-Hai Wang
- Surgery Staff Room, Shandong Medical College, Linyi, China
| |
Collapse
|
26
|
Next-Generation Biomarkers for Cholangiocarcinoma. Cancers (Basel) 2021; 13:cancers13133222. [PMID: 34203269 PMCID: PMC8269024 DOI: 10.3390/cancers13133222] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Early and non-invasive diagnosis of cholangiocarcinoma (CCA) is still challenging, thus largely contributing to the increased mortality rates observed worldwide. Consequently, several efforts have been made in order to report novel biomarkers for CCA, that would aid on diagnosis and also to predict prognosis and therapy response. We herein aim to provide an in-depth and critical revision on the next-generation biomarkers for CCA that have been recently proposed. Abstract The increasing mortality rates of cholangiocarcinoma (CCA) registered during the last decades are, at least in part, a result of the lack of accurate non-invasive biomarkers for early disease diagnosis, making the identification of patients who might benefit from potentially curative approaches (i.e., surgery) extremely challenging. The obscure CCA pathogenesis and associated etiological factors, as well as the lack of symptoms in patients with early tumor stages, highly compromises CCA identification and to predict tumor development in at-risk populations. Currently, CCA diagnosis is accomplished by the combination of clinical/biochemical features, radiological imaging and non-specific serum tumor biomarkers, although a tumor biopsy is still needed to confirm disease diagnosis. Furthermore, prognostic and predictive biomarkers are still lacking and urgently needed. During the recent years, high-throughput omics-based approaches have identified novel circulating biomarkers (diagnostic and prognostic) that might be included in large, international validation studies in the near future. In this review, we summarize and discuss the most recent advances in the field of biomarker discovery in CCA, providing new insights and future research directions.
Collapse
|
27
|
Favero A, Segatto I, Perin T, Belletti B. The many facets of miR-223 in cancer: Oncosuppressor, oncogenic driver, therapeutic target, and biomarker of response. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1659. [PMID: 33951281 PMCID: PMC8518860 DOI: 10.1002/wrna.1659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022]
Abstract
Given their intrinsic pleiotropism, microRNAs (miR) play complex biological roles, in both normal and pathological conditions. Often the same miR can act as oncogene or oncosuppressor, depending on the biological process dysregulated in each specific tissue. miR‐223 does not represent an exception to this rule and its functions greatly differ in different contexts. miR‐223 has been widely studied in the hematopoietic compartment, where it plays a central role in innate immune response, regulating myeloid differentiation and granulocytes function. Accordingly, dysregulated expression of miR‐223 has been associated to different inflammatory disorders and tumors arising from the immune compartment. Most carcinomas, breast cancer being the most studied, display loss of miR‐223. However, in gastro‐esophageal cancers miR‐223 is frequently overexpressed and correlates with worse prognosis. A link between miR‐223 and response to CDK4/6‐inhibitors has been recently proposed, suggesting a role as biomarker of therapeutic response. The notion that one of the most commonly mutated protein in cancer, mutant p53, binds the promoter of miR‐223 and suppresses its transcription, adds a further level of complexity to the full understanding of miR‐223 in cancer. In this review, we will summarize the current knowledge on the molecular networks that alter or are altered by miR‐223, in different cancer types. We will discuss if the times are ready for the exploitation of miR‐223 as predictive biomarker of treatment response or, even, as therapeutic target, in specific settings. Finally, we will suggest which could be the next steps to be taken for a realistic clinical application of miR‐223. This article is categorized under:RNA in Disease and Development > RNA in Disease
Collapse
Affiliation(s)
- Andrea Favero
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO Aviano), IRCCS, National Cancer Institute, Aviano, Italy
| | - Ilenia Segatto
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO Aviano), IRCCS, National Cancer Institute, Aviano, Italy
| | - Tiziana Perin
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO Aviano), IRCCS, National Cancer Institute, Aviano, Italy
| | - Barbara Belletti
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO Aviano), IRCCS, National Cancer Institute, Aviano, Italy
| |
Collapse
|
28
|
Role of miRNA-19a in Cancer Diagnosis and Poor Prognosis. Int J Mol Sci 2021; 22:ijms22094697. [PMID: 33946718 PMCID: PMC8125123 DOI: 10.3390/ijms22094697] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/30/2022] Open
Abstract
Cancer is a multifactorial disease that affects millions of people every year and is one of the most common causes of death in the world. The high mortality rate is very often linked to late diagnosis; in fact, nowadays there are a lack of efficient and specific markers for the early diagnosis and prognosis of cancer. In recent years, the discovery of new diagnostic markers, including microRNAs (miRNAs), has been an important turning point for cancer research. miRNAs are small, endogenous, non-coding RNAs that regulate gene expression. Compelling evidence has showed that many miRNAs are aberrantly expressed in human carcinomas and can act with either tumor-promoting or tumor-suppressing functions. miR-19a is one of the most investigated miRNAs, whose dysregulated expression is involved in different types of tumors and has been potentially associated with the prognosis of cancer patients. The aim of this review is to investigate the role of miR-19a in cancer, highlighting its involvement in cell proliferation, cell growth, cell death, tissue invasion and migration, as well as in angiogenesis. On these bases, miR-19a could prove to be truly useful as a potential diagnostic, prognostic, and therapeutic marker.
Collapse
|
29
|
Liu J, Yoo J, Ho JY, Jung Y, Lee S, Hur SY, Choi YJ. Plasma-derived exosomal miR-4732-5p is a promising noninvasive diagnostic biomarker for epithelial ovarian cancer. J Ovarian Res 2021; 14:59. [PMID: 33910598 PMCID: PMC8082916 DOI: 10.1186/s13048-021-00814-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Exosomal miRNAs regulate gene expression and play important roles in several diseases. We used exosomal miRNA profiling to investigate diagnostic biomarkers of epithelial ovarian cancer (EOC). METHODS In total, 55 individuals were enrolled, comprising healthy (n = 21) and EOC subjects (n = 34). Small mRNA (smRNA) sequencing and real-time PCR (RT-PCR) were performed to identify potential biomarkers. Receiver operating characteristic (ROC) curves were conducted to determine biomarker sensitivity and specificity. RESULTS Using smRNA sequencing, we identified seven up-regulated (miR-4732-5p, miR-877-5p, miR-574-3p, let-7a-5p, let-7b-5p, let-7c-5p, and let-7f-5p) and two down-regulated miRNAs (miR-1273f and miR-342-3p) in EOC patients when compared with healthy subjects. Of these, miR-4732-5p and miR-1273f were the most up-regulated and down-regulated respectively, therefore they were selected for RT-PCR analysis. Plasma derived exosomal miR-4732-5p had an area under the ROC curve of 0.889, with 85.7% sensitivity and 82.4% specificity in distinguishing EOC patients from healthy subjects (p<0.0001) and could be a potential biomarker for monitoring the EOC progression from early stage to late stage (p = 0.018). CONCLUSIONS Plasma derived exosomal miR-4732-5p may be a promising candidate biomarker for diagnosing EOC.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Obstetrics and Gynecology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jigeun Yoo
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Yoon Ho
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yuyeon Jung
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sanha Lee
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Soo Young Hur
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Youn Jin Choi
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
30
|
Fang X, Bai Y, Zhang L, Ding S. MicroRNA-665 regulates the proliferation, apoptosis and adhesion of gastric cancer cells by binding to cadherin 3. Oncol Lett 2021; 21:494. [PMID: 33968210 PMCID: PMC8100969 DOI: 10.3892/ol.2021.12755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Numerous studies have reported that abnormal cadherin 3 (CDH3) and microRNA (miRNA/miR)-665 expression can induce the progression of gastric cancer (GC). However, the mechanism of interaction between miR-665 and CDH3 in GC requires further investigation. The present study aimed to investigate the influence of miR-665 and CDH3 in GC development. The effect of miR-665 and CDH3 on GC tissues and cell lines was examined using reverse transcription-quantitative PCR. Subsequently, CDH3 protein expression in GC cell lines was detected using western blotting. To confirm the association between miR-665 and CDH3, a dual-luciferase reporter assay system was employed. Cell proliferation and adhesion were analyzed using BrdU ELISA, MTT and cell adhesion assays. Finally, caspase-3 activity assay kit and FITC apoptosis detection kit were used for the determination of apoptosis of GC cells. The current findings confirmed the upregulation of CDH3 expression in GC cell lines and tissues. Experimental results indicated that CDH3 overexpression increased cell proliferation and adhesion, but decreased the apoptosis level of the cells. Similarly, the miR-665 inhibitor enhanced cell proliferation and adhesion, but inhibited apoptosis of GC cells. Additionally, it was observed that CDH3 was a direct target of miR-665 in GC cells and that miR-665 inhibited CDH3 expression, thereby repressing the progression of GC. In conclusion, the present study suggested that by targeting CDH3, miR-665 suppressed the progression of GC. These findings may provide a significant theoretical basis for future GC clinical therapy.
Collapse
Affiliation(s)
- Xinhui Fang
- Department of Gastroenterology and Hepatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, P.R. China
| | - Yangqiu Bai
- Department of Gastroenterology and Hepatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, P.R. China
| | - Lida Zhang
- Department of Gastroenterology and Hepatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, P.R. China
| | - Songze Ding
- Department of Gastroenterology and Hepatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
31
|
Qi W, Zhang Q. Development and clinical validation of a 3-miRNA signature to predict prognosis of gastric cancer. PeerJ 2021; 9:e10462. [PMID: 33604158 PMCID: PMC7866890 DOI: 10.7717/peerj.10462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 11/10/2020] [Indexed: 02/03/2023] Open
Abstract
Aims Identification of miRNA signature to predict the prognosis of gastric cancer (GC) patients by integrating bioinformatics and experimental validation. Methods The miRNA expression profile and clinical data of GC were collected. The univariable and LASSO-Cox regression were used to construct the risk signature. The receiver operating characteristic (ROC) curve analysis confirmed the good performance of the prognostic model. Results A 3-miRNA prognostic signature was constructed, which included hsa-miR-126-3p, hsa-miR-143-5p, and hsa-miR-1275. A nomogram, including the prognostic signature to predict the overall survival, was established, and internal validation in the The Cancer Genome Atlas (TCGA) cohort was performed. We found that compared with the traditional pathological stage, the nomogram was the best at predicting the prognosis. Conclusions The predictive model and the nomogram will enable patients with GC to be more accurately managed in clinical practice.
Collapse
Affiliation(s)
- Wenqian Qi
- Department of Gastroenterology, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Qian Zhang
- Department of Gastroenterology, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
32
|
Identification of Potential Serum Protein Biomarkers and Pathways for Pancreatic Cancer Cachexia Using an Aptamer-Based Discovery Platform. Cancers (Basel) 2020; 12:cancers12123787. [PMID: 33334063 PMCID: PMC7765482 DOI: 10.3390/cancers12123787] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/20/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Patients with pancreatic cancer and other advanced cancers suffer from progressive weight loss that reduces treatment response and quality of life and increases treatment toxicity and mortality. Effective interventions to prevent such weight loss, known as cachexia, require molecular markers to diagnose, stage, and monitor cachexia. No such markers are currently validated or in clinical use. This study used a discovery platform to measure changes in plasma proteins in patients with pancreatic cancer compared with normal controls. We found proteins specific to pancreatic cancer and cancer stage, as well as proteins that correlate with cachexia. These include some previously known proteins along with novel ones and implicates both well-known and new molecular mechanisms. Thus, this study provides novel insights into the molecular processes underpinning cancer and cachexia and affords a basis for future validation studies in larger numbers of patients with pancreatic cancer and cachexia. Abstract Patients with pancreatic ductal adenocarcinoma (PDAC) suffer debilitating and deadly weight loss, known as cachexia. Development of therapies requires biomarkers to diagnose, and monitor cachexia; however, no such markers are in use. Via Somascan, we measured ~1300 plasma proteins in 30 patients with PDAC vs. 11 controls. We found 60 proteins specific to local PDAC, 46 to metastatic, and 67 to presence of >5% cancer weight loss (FC ≥ |1.5|, p ≤ 0.05). Six were common for cancer stage (Up: GDF15, TIMP1, IL1RL1; Down: CCL22, APP, CLEC1B). Four were common for local/cachexia (C1R, PRKCG, ELANE, SOST: all oppositely regulated) and four for metastatic/cachexia (SERPINA6, PDGFRA, PRSS2, PRSS1: all consistently changed), suggesting that stage and cachexia status might be molecularly separable. We found 71 proteins that correlated with cachexia severity via weight loss grade, weight loss, skeletal muscle index and radiodensity (r ≥ |0.50|, p ≤ 0.05), including some known cachexia mediators/markers (LEP, MSTN, ALB) as well as novel proteins (e.g., LYVE1, C7, F2). Pathway, correlation, and upstream regulator analyses identified known (e.g., IL6, proteosome, mitochondrial dysfunction) and novel (e.g., Wnt signaling, NK cells) mechanisms. Overall, this study affords a basis for validation and provides insights into the processes underpinning cancer cachexia.
Collapse
|
33
|
Abstract
OBJECTIVES: Barrett's esophagus (BE) is the precursor lesion and a major risk factor for esophageal adenocarcinoma (EAC). Although patients with BE undergo routine endoscopic surveillance, current screening methodologies have proven ineffective at identifying individuals at risk of EAC. Since microRNAs (miRNAs) have potential diagnostic and prognostic value as disease biomarkers, we sought to identify an miRNA signature of BE and EAC. METHODS: High-throughput sequencing of miRNAs was performed on serum and tissue biopsies from 31 patients identified either as normal, gastroesophageal reflux disease (GERD), BE, BE with low-grade dysplasia (LGD), or EAC. Logistic regression modeling of miRNA profiles with Lasso regularization was used to identify discriminating miRNA. Quantitative reverse transcription polymerase chain reaction was used to validate changes in miRNA expression using 46 formalin-fixed, paraffin-embedded specimens obtained from normal, GERD, BE, BE with LGD or HGD, and EAC subjects. RESULTS: A 3-class predictive model was able to classify tissue samples into normal, GERD/BE, or LGD/EAC classes with an accuracy of 80%. Sixteen miRNAs were identified that predicted 1 of the 3 classes. Our analysis confirmed previous reports indicating that miR-29c-3p and miR-193b-5p expressions are altered in BE and EAC and identified miR-4485-5p as a novel biomarker of esophageal dysplasia. Quantitative reverse transcription polymerase chain reaction validated 11 of 16 discriminating miRNAs. DISCUSSION: Our data provide an miRNA signature of normal, precancerous, and cancerous tissue that may stratify patients at risk of progressing to EAC. We found that serum miRNAs have a limited ability to distinguish between disease states, thus limiting their potential utility in early disease detection.
Collapse
|
34
|
Abdi E, Latifi-Navid S, Abdi F, Taherian-Esfahani Z. Emerging circulating MiRNAs and LncRNAs in upper gastrointestinal cancers. Expert Rev Mol Diagn 2020; 20:1121-1138. [DOI: 10.1080/14737159.2020.1842199] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Esmat Abdi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Fatemeh Abdi
- Department of Engineering Sciences, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran
| | - Zahra Taherian-Esfahani
- Medical Genetics Laboratory, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
35
|
Mir-20a-5p induced WTX deficiency promotes gastric cancer progressions through regulating PI3K/AKT signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:212. [PMID: 33032635 PMCID: PMC7545863 DOI: 10.1186/s13046-020-01718-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The X-linked gene WTX (also called AMER1) has been reported to function as a tumour suppressor gene in Wilms' tumour. In our previous study, WTX expression was shown to be significantly reduced in gastric cancer (GC), but the function and mechanism associated with WTX loss had yet to be fully elucidated. METHODS WTX expression and clinical significance were father analyzed in GC and control normal gastric tissues, and validated in public databases. The candidate pathway which was regulated by WTX during GC progression was searched by KEGG pathway analysis. The miRNA which monitored WTX expression was screened by miRNA microarray. After verified the pathway and miRNA both in vitro and in vivo, the relationship of miRNA, WTX and the downstream pathway were analyzed by Western blot, immunohistochemistry, RT-PCR, Co-immunoprecipitation (Co-IP), and luciferase analyses. RESULTS The results showed that WTX serves as a tumour suppressor gene in GC. The loss of WTX which is associated with the aggressiveness of GC by promoting GC cell proliferation in vitro and high metastasis in vivo. Furthermore, WTX expression was positively correlated with the overall survival of GC patients. Microarray assays, bioinformatics analysis, and verification experiments showed that WTX loss activates the PI3K/AKT/mTOR pathway and promotes GC cell proliferation and invasion. And the aberrant miR-20a-5p upregulation contributes to WTX loss in GC, which stimulates PI3K phosphorylation to activate PI3K/AKT/mTOR signaling pathway and promoted GC progression. CONCLUSIONS The results of the present study elucidated the mechanism of GC progression, which is at least partially caused by aberrant miR-20a-5p upregulation leading to the inhibition of WTX expression and PI3K/AKT/mTOR signaling pathway activation. These findings provide a comprehensive understanding of the action of the miR-20a-5p/WTX/PI3K/AKT/mTOR signaling pathway in the progression and metastasis of GC.
Collapse
|
36
|
Kronstein-Wiedemann R, Nowakowska P, Milanov P, Gubbe K, Seifried E, Bugert P, Chavakis T, Tonn T. Regulation of ABO blood group antigen expression by miR-331-3p and miR-1908-5p during hematopoietic stem cell differentiation. Stem Cells 2020; 38:1348-1362. [PMID: 32621650 DOI: 10.1002/stem.3251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022]
Abstract
The ABO blood group system is the most important factor in clinical transfusion medicine and is implicated in a number of human diseases. ABO antigens are not confined to red blood cells (RBCs) and are widely expressed in a variety of human cells and tissues. To date, many alleles with variant ABO expression have been identified and in many cases traced to one of the >250 reported genetic variations in the respective glycosyltransferase. The role of microRNAs (miRNAs) in the regulation of blood group antigens during erythropoiesis has not been addressed, however. Here, we show that miR-331-3p and miR-1908-5p directly target the mRNA of glycosyltransferases A and B. Expression levels of miR-331-3p and miR-1908-5p inversely correlated with levels of blood group A antigen. In addition, we found that overexpression of these miRNAs in hematopoietic stem cells led to a significantly reduced number of blood group A antigens per RBC. Simultaneous targeting of the transcription factor (TF) SP1 by miR-331-3p further enhanced these effects. The targeting rendered SP1 incapable of binding to the ABO gene promoter, causing further downregulation of blood group A antigen expression by up to 70%. Taken together, expression changes in these miRNAs may account for rare cases of weak A/B phenotypes that genetic variations in the glycosyltransferase coding region cannot explain. These results also suggest an explanation for the disappearance of ABH antigens during carcinogenesis and point to new therapeutic targets in ABO mismatched organ transplantation.
Collapse
Affiliation(s)
- Romy Kronstein-Wiedemann
- Department of Experimental Transfusion Medicine, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Paulina Nowakowska
- German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany
| | - Peter Milanov
- German Red Cross Blood Donation Service Baden-Württemberg/Hessen, Institute for Transfusion Medicine and Immunohematology, Clinics of the Johann Wolfgang Goethe University Frankfurt/M, Frankfurt/M, Germany
| | - Knut Gubbe
- German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany
| | - Erhard Seifried
- German Red Cross Blood Donation Service Baden-Württemberg/Hessen, Institute for Transfusion Medicine and Immunohematology, Clinics of the Johann Wolfgang Goethe University Frankfurt/M, Frankfurt/M, Germany
| | - Peter Bugert
- German Red Cross Blood Donation Service Baden-Württemberg/Hessen, Institute for Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Triantafyllos Chavakis
- German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany.,Institute for Clinical Chemistry and Laboratory Medicine, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Torsten Tonn
- Department of Experimental Transfusion Medicine, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany
| |
Collapse
|
37
|
Xu W, Zhao M, Lin Z, Liu H, Ma H, Hong Q, Gui D, Feng J, Liu Y, Zhou W, Liu H. Increased expression of plasma hsa-miR-181a in male patients with heroin addiction use disorder. J Clin Lab Anal 2020; 34:e23486. [PMID: 32748469 PMCID: PMC7676194 DOI: 10.1002/jcla.23486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Drug addiction is an uncontrolled, chronic, and recurrent encephalopathy that presently lacks specific and characteristic biomarkers for diagnosis and treatment. As regulators of gene expression, microRNAs (miRNAs) are increasingly used for diagnostic and prognostic purposes in various disease states. Previous studies indicated that miRNAs play important roles in the development and progression of drug addictions, including addiction to methamphetamine, cocaine, alcohol, and heroin. METHODS We identified significant miRNAs using the microarray method and then validated the hsa-miR-181a expression levels in 53 heroin addiction patients and 49 normal controls using quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). Finally, the potential associations between transcriptional levels in heroin addiction patients and their clinicopathological features were analyzed. RESULTS A total of 2006 miRNAs were differentially expressed between heroin addiction patients and normal controls. The top 10 up-regulated miRNAs in patients were hsa-miR-21a, hsa-miR-181a, hsa-miR-4459, hsa-miR-4430, hsa-miR-4306, hsa-miR-22-3P, hsa-miR-486-5P, hsa-miR-371b-5P, hsa-miR-92a-3P, and hsa-miR-5001-5P. The top 10 down-regulated miRNAs in patients were hsa-miR-3195, hsa-miR-4767, hsa-miR-3135b, hsa-miR-6087, hsa-miR-1181, hsa-miR-4785, hsa-miR-718, hsa-miR-3141, hsa-miR-652-5P, and hsa-miR-6126. The expression level of hsa-miR-181a in heroin addiction patients was significantly increased compared with that in normal controls (P < .001). The area under the receiver operating characteristic curve of hsa-miR-181a was 0.783, the sensitivity was 0.867, and the specificity was 0.551. CONCLUSIONS The increased expression of hsa-miR-181a in the plasma of heroin patients may be a consequence of the pathological process of heroin abuse. This study highlights the potential of hsa-miR-181a as a novel biomarker for the diagnosis of heroin addiction.
Collapse
Affiliation(s)
- Wenjin Xu
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Key Laboratory of Addiction Research of Zhejiang Province, School of Medicine, Ningbo Institute of Microcirculation and Henbane, Ningbo University, Ningbo, China
| | - Ming Zhao
- Department of Medical Services, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Zi Lin
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Key Laboratory of Addiction Research of Zhejiang Province, School of Medicine, Ningbo Institute of Microcirculation and Henbane, Ningbo University, Ningbo, China
| | - Haixiong Liu
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Key Laboratory of Addiction Research of Zhejiang Province, School of Medicine, Ningbo Institute of Microcirculation and Henbane, Ningbo University, Ningbo, China
| | - Hong Ma
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China
| | - Qingxiao Hong
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Key Laboratory of Addiction Research of Zhejiang Province, School of Medicine, Ningbo Institute of Microcirculation and Henbane, Ningbo University, Ningbo, China
| | - Donghui Gui
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Key Laboratory of Addiction Research of Zhejiang Province, School of Medicine, Ningbo Institute of Microcirculation and Henbane, Ningbo University, Ningbo, China
| | - Jiying Feng
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Key Laboratory of Addiction Research of Zhejiang Province, School of Medicine, Ningbo Institute of Microcirculation and Henbane, Ningbo University, Ningbo, China
| | - Yue Liu
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Key Laboratory of Addiction Research of Zhejiang Province, School of Medicine, Ningbo Institute of Microcirculation and Henbane, Ningbo University, Ningbo, China
| | - Wenhua Zhou
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Key Laboratory of Addiction Research of Zhejiang Province, School of Medicine, Ningbo Institute of Microcirculation and Henbane, Ningbo University, Ningbo, China
| | - Huifen Liu
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Key Laboratory of Addiction Research of Zhejiang Province, School of Medicine, Ningbo Institute of Microcirculation and Henbane, Ningbo University, Ningbo, China
| |
Collapse
|
38
|
Xie S, Chang Y, Jin H, Yang F, Xu Y, Yan X, Lin A, Shu Q, Zhou T. Non-coding RNAs in gastric cancer. Cancer Lett 2020; 493:55-70. [PMID: 32712234 DOI: 10.1016/j.canlet.2020.06.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022]
Abstract
Non-coding RNAs (ncRNAs) are functional RNA molecules that play crucial regulatory roles in many fundamental biological processes. The dysregulation of ncRNAs is significantly associated with the progression of human cancers, including gastric cancer. In this review, we have summarized the oncogenic or tumor-suppressive roles and the regulatory mechanisms of lncRNAs, miRNAs, circRNAs and piRNAs, and have discussed their potential as biomarkers or therapeutic targets in gastric cancer.
Collapse
Affiliation(s)
- Shanshan Xie
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China; Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yongxia Chang
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Hao Jin
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Feng Yang
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Yanjun Xu
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Xiaoyi Yan
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Qiang Shu
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| | - Tianhua Zhou
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
39
|
Kong L, Wu P, Li J. miR-331 inhibits CLDN2 expression and may alleviate the vascular endothelial injury induced by sepsis. Exp Ther Med 2020; 20:1343-1352. [PMID: 32742369 PMCID: PMC7388277 DOI: 10.3892/etm.2020.8854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 03/11/2020] [Indexed: 12/26/2022] Open
Abstract
The present study aimed to determine the expression level of claudin-2 (CLDN2) in the peripheral blood of patients with sepsis, and to investigate its potential function and mechanism of action in vascular endothelial injury. A total of 25 patients with sepsis were included in the present study. Reverse transcription-quantitative PCR was used to determine CLDN2 levels in peripheral blood. HUVECs stably expressing CLDN2 were prepared and Cell Counting Kit-8, flow cytometry and Transwell assays were performed to study the proliferation, apoptosis and migration of HUVECs, respectively. Using bioinformatics, microRNA (miR) molecules that interact with CLDN2 were predicted. A dual luciferase reporter assay was used to test whether miR-331 regulated CLDN2. Western blotting was employed to determine CLDN2 protein expression. In addition, in vitro transfection of HUVECs with miR-331 mimics was performed to test the rescue effects of miR-331 on the cell function changes induced by CLDN2. The results indicated that elevated CLDN2 expression altered the proliferation and cell cycle of peripheral vascular endothelial cells. CLDN2 overexpression inhibited HUVEC proliferation via mechanisms not associated with the cell cycle. CLDN2 mRNA levels in the peripheral blood of patients with sepsis were significantly higher than those in healthy subjects. Upregulated CLDN2 expression promoted the apoptosis of HUVECs, but reduced their proliferation and migration. Notably, miR-331 was able to bind with CLDN2 mRNA and regulate its expression. Upregulation of miR-331 expression inhibited the expression of CLDN2 and restored nearly normal proliferation, apoptosis and migration to HUVECs. The present study demonstrated that CLDN2 expression is elevated in peripheral blood from patients with sepsis, and promotes the injury of vascular endothelial cells. In addition, miR-331 participates in the direct regulation of CLDN2, and upregulation of miR-331 expression inhibits the expression of CLDN2 and restores cellular functions to HUVECs.
Collapse
Affiliation(s)
- Lingchen Kong
- Department of Critical Care Medicine, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Peng Wu
- Department of Critical Care Medicine, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Jianzhong Li
- Department of Critical Care Medicine, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| |
Collapse
|
40
|
Tavakolian S, Goudarzi H, Faghihloo E. Evaluating the expression level of miR-9-5p and miR-192-5p in gastrointestinal cancer: introducing novel screening biomarkers for patients. BMC Res Notes 2020; 13:226. [PMID: 32307002 PMCID: PMC7168809 DOI: 10.1186/s13104-020-05071-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/12/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE It has been indicated that there is a tight association between cancer and different factors, such as environment and genetics, including aberrantly expressed microRNAs. The crucial role of microRNAs in the regulation of diverse signaling pathways in gastrointestinal cancer has been established in several studies. In this study, we aimed to evaluate the expression of microRNA-9 and -192 in colon and gastric cancers. After extracting the RNA from tissues and serum samples of patients, suffering from colon and gastric cancer, cDNA was synthesized. Then by performing quantitative real-time PCR, we evaluated the expression level of miR-9-5p and miR-192-5p in collected samples. RESULTS Unlike to colon cancer in which the expression level of miR-9-5p remained unchanged, the relative expression of this miRNA decreased remarkably in gastric cancer (with P value < 0.05), in comparison with normal adjacent tissues. In agreement with this finding, we also found that the expression level of miR-192-5p was decreased in gastric cancer tissues, compared to normal gastric tissue. Given the reduction in the expression level of miR-9-5p and miR-192-5p in gastric cancer, it could be postulated to consider these miRNAs as promising diagnostic biomarkers.
Collapse
Affiliation(s)
- Shaian Tavakolian
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 37517, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 37517, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 37517, Iran.
| |
Collapse
|
41
|
Thanh Huong P, Gurshaney S, Thanh Binh N, Gia Pham A, Hoang Nguyen H, Thanh Nguyen X, Pham-The H, Tran PT, Truong Vu K, Xuan Duong N, Pelucchi C, La Vecchia C, Boffetta P, Nguyen HD, Luu HN. Emerging Role of Circulating Tumor Cells in Gastric Cancer. Cancers (Basel) 2020; 12:E695. [PMID: 32183503 PMCID: PMC7140068 DOI: 10.3390/cancers12030695] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023] Open
Abstract
With over 1 million incidence cases and more than 780,000 deaths in 2018, gastric cancer (GC) was ranked as the 5th most common cancer and the 3rd leading cause of cancer deaths worldwide. Though several biomarkers, including carcinoembryonic antigen (CEA), cancer antigen 19-9 (CA19-9), and cancer antigen 72-4 (CA72-4), have been identified, their diagnostic accuracies were modest. Circulating tumor cells (CTCs), cells derived from tumors and present in body fluids, have recently emerged as promising biomarkers, diagnostically and prognostically, of cancers, including GC. In this review, we present the landscape of CTCs from migration, to the presence in circulation, biologic properties, and morphologic heterogeneities. We evaluated clinical implications of CTCs in GC patients, including diagnosis, prognosis, and therapeutic management, as well as their application in immunotherapy. On the one hand, major challenges in using CTCs in GC were analyzed, from the differences of cut-off values of CTC positivity, to techniques used for sampling, storage conditions, and CTC molecular markers, as well as the unavailability of relevant enrichment and detection techniques. On the other hand, we discussed future perspectives of using CTCs in GC management and research, including the use of circulating tumor microembolies; of CTC checkpoint blockade in immunotherapy; and of organoid models. Despite the fact that there are remaining challenges in techniques, CTCs have potential as novel biomarkers and/or a non-invasive method for diagnostics, prognostics, and treatment monitoring of GC, particularly in the era of precision medicine.
Collapse
Affiliation(s)
- Phung Thanh Huong
- Department of Biochemistry, Hanoi University of Pharmacy, Hanoi 10000, Vietnam;
| | - Sanjeev Gurshaney
- Cancer Division, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32827, USA;
| | - Nguyen Thanh Binh
- Department of Pharmaceutical Management and Economics, Hanoi University of Pharmacy, Hanoi 10000, Vietnam;
| | - Anh Gia Pham
- Department of Surgical Oncology, Viet-Duc University Hospital, Hanoi 10000, Vietnam; (A.G.P.); (H.H.N.); (X.T.N.)
| | - Huy Hoang Nguyen
- Department of Surgical Oncology, Viet-Duc University Hospital, Hanoi 10000, Vietnam; (A.G.P.); (H.H.N.); (X.T.N.)
| | - Xuan Thanh Nguyen
- Department of Surgical Oncology, Viet-Duc University Hospital, Hanoi 10000, Vietnam; (A.G.P.); (H.H.N.); (X.T.N.)
| | - Hai Pham-The
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, Hanoi 10000, Vietnam; (H.P.-T.); (P.-T.T.)
| | - Phuong-Thao Tran
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, Hanoi 10000, Vietnam; (H.P.-T.); (P.-T.T.)
| | - Khanh Truong Vu
- Department of Gastroenterology, Bach Mai Hospital, Hanoi 10000, Vietnam;
| | | | - Claudio Pelucchi
- Department of Clinical, Sciences and Community Health, University of Milan, 20133 Milan, Italy; (C.P.); (C.L.V.)
| | - Carlo La Vecchia
- Department of Clinical, Sciences and Community Health, University of Milan, 20133 Milan, Italy; (C.P.); (C.L.V.)
| | - Paolo Boffetta
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, Division of Hematology and Medical Oncology, New York, NY 10029, USA;
| | - Hung D. Nguyen
- Cancer Division, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32827, USA;
| | - Hung N. Luu
- Department of Epidemiology, University of Pittsburg Graduate School of Public Health, Pittsburg, PA 15261, USA
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
42
|
Bie LY, Li N, Deng WY, Lu XY, Guo P, Luo SX. Serum miR-191 and miR-425 as Diagnostic and Prognostic Markers of Advanced Gastric Cancer Can Predict the Sensitivity of FOLFOX Chemotherapy Regimen. Onco Targets Ther 2020; 13:1705-1715. [PMID: 32158234 PMCID: PMC7049268 DOI: 10.2147/ott.s233086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/07/2019] [Indexed: 12/19/2022] Open
Abstract
Purpose miR-191 and miR-425 have been proved to be highly expressed in gastric carcinoma (GC). However, little research has been done on their clinical value in serum of patients with advanced GC. In addition, it is not clear whether they can be used as markers for the response and prognosis of GC patients treated with oxaliplatin combined with 5-fluorouracil and FOLFOX chemotherapy. Patients and Methods A total of 230 patients with advanced GC admitted to our hospital were selected as the study objects, all of whom received FOLFOX chemotherapy regimen. Another 100 cases of healthy subjects were included. QRT-PCR was employed to detect the serum expression of miR-191 and miR-425 in patients. Results Compared with the healthy subjects, the serum expressions of miR-191 and miR-425 in GC patients were significantly upregulated, which were correlated with differentiation degree and TNM staging, respectively. According to the ROC curve, the AUC of miR-191 and miR-425 for GC diagnosis was 0.937 and 0.901, respectively, while the AUC for differentiation degree diagnosis was 0.854 and 0.822, and that for TNM staging diagnosis was 0.860 and 0.829, respectively. The predictive AUC of miR-191 and miR-425 for chemosensitivity was 0.868 and 0.835, respectively, with a combined predictive AUC of 0.935. Low differentiation degree, high TNM staging, high miR-191 and high miR-425 expressions were independent risk factors for chemotherapy insensitivity. Differentiation degree, TNM staging, chemotherapy effect, miR-191 and miR-425 were independent influencing factors for the prognosis of GC patients. Conclusion Up-regulated expression of miR-191 and miR-425 in the serum of patients with advanced GC are effective biomarkers for the diagnosis, chemotherapy and prognosis evaluation of GC.
Collapse
Affiliation(s)
- Liang-Yu Bie
- Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University/Henan Cancer Hospital, Zhengzhou 450008, Henan Province, People's Republic of China
| | - Ning Li
- Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University/Henan Cancer Hospital, Zhengzhou 450008, Henan Province, People's Republic of China
| | - Wen-Ying Deng
- Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University/Henan Cancer Hospital, Zhengzhou 450008, Henan Province, People's Republic of China
| | - Xiao-Yu Lu
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University/Henan Cancer Hospital, Zhengzhou 450008, Henan Province, People's Republic of China
| | - Ping Guo
- Department of Oncology, The First Affiliated Hospital of Nanyang Medical College, Nanyang 473061, People's Republic of China
| | - Su-Xia Luo
- Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University/Henan Cancer Hospital, Zhengzhou 450008, Henan Province, People's Republic of China
| |
Collapse
|
43
|
Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cretoiu D, Suciu N, Cretoiu SM, Voinea SC. miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells 2020; 9:E276. [PMID: 31979244 PMCID: PMC7072450 DOI: 10.3390/cells9020276] [Citation(s) in RCA: 690] [Impact Index Per Article: 172.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) represent a class of small, non-coding RNAs with the main roles of regulating mRNA through its degradation and adjusting protein levels. In recent years, extraordinary progress has been made in terms of identifying the origin and exact functions of miRNA, focusing on their potential use in both the research and the clinical field. This review aims at improving the current understanding of these molecules and their applicability in the medical field. A thorough analysis of the literature consulting resources available in online databases such as NCBI, PubMed, Medline, ScienceDirect, and UpToDate was performed. There is promising evidence that in spite of the lack of standardized protocols regarding the use of miRNAs in current clinical practice, they constitute a reliable tool for future use. These molecules meet most of the required criteria for being an ideal biomarker, such as accessibility, high specificity, and sensitivity. Despite present limitations, miRNAs as biomarkers for various conditions remain an impressive research field. As current techniques evolve, we anticipate that miRNAs will become a routine approach in the development of personalized patient profiles, thus permitting more specific therapeutic interventions.
Collapse
Affiliation(s)
- Carmen Elena Condrat
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Dana Claudia Thompson
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Madalina Gabriela Barbu
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Oana Larisa Bugnar
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Andreea Boboc
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Dragos Cretoiu
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| | - Nicolae Suciu
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
- Division of Obstetrics, Gynecology and Neonatology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
- Department of Obstetrics and Gynecology, Polizu Clinical Hospital, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania
| | - Sanda Maria Cretoiu
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| | - Silviu Cristian Voinea
- Department of Surgical Oncology, Prof. Dr. Alexandru Trestioreanu Oncology Institute, Carol Davila University of Medicine and Pharmacy, 252 Fundeni Rd., 022328 Bucharest, Romania;
| |
Collapse
|
44
|
Matsuoka T, Yashiro M. Precision medicine for gastrointestinal cancer: Recent progress and future perspective. World J Gastrointest Oncol 2020; 12:1-20. [PMID: 31966910 PMCID: PMC6960076 DOI: 10.4251/wjgo.v12.i1.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 10/12/2019] [Accepted: 11/04/2019] [Indexed: 02/05/2023] Open
Abstract
Gastrointestinal (GI) cancer has a high tumor incidence and mortality rate worldwide. Despite significant improvements in radiotherapy, chemotherapy, and targeted therapy for GI cancer over the last decade, GI cancer is characterized by high recurrence rates and a dismal prognosis. There is an urgent need for new diagnostic and therapeutic approaches. Recent technological advances and the accumulation of clinical data are moving toward the use of precision medicine in GI cancer. Here we review the application and status of precision medicine in GI cancer. Analyses of liquid biopsy specimens provide comprehensive real-time data of the tumor-associated changes in an individual GI cancer patient with malignancy. With the introduction of gene panels including next-generation sequencing, it has become possible to identify a variety of mutations and genetic biomarkers in GI cancer. Although the genomic aberration of GI cancer is apparently less actionable compared to other solid tumors, novel informative analyses derived from comprehensive gene profiling may lead to the discovery of precise molecular targeted drugs. These progressions will make it feasible to incorporate clinical, genome-based, and phenotype-based diagnostic and therapeutic approaches and apply them to individual GI cancer patients for precision medicine.
Collapse
Affiliation(s)
- Tasuku Matsuoka
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 5458585, Japan
| | - Masakazu Yashiro
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 5458585, Japan
- Oncology Institute of Geriatrics and Medical Science, Osaka City University Graduate School of Medicine, Osaka 5458585, Japan
| |
Collapse
|
45
|
Bai SY, Ji R, Wei H, Guo QH, Yuan H, Chen ZF, Wang YP, Liu Z, Yang XY, Zhou YN. Serum miR-551b-3p is a potential diagnostic biomarker for gastric cancer. TURKISH JOURNAL OF GASTROENTEROLOGY 2020; 30:415-419. [PMID: 31060996 DOI: 10.5152/tjg.2019.17875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIMS Gastric cancer (GC) is one of the most common gastrointestinal malignancies. Many studies have demonstrated that serum microRNAs have potential applications as non-invasive biomarkers for cancer diagnosis. The aim of the present study was to investigate the expression of serum miR-551b-3p in patients with GC and to explore its potential as a diagnostic biomarker in GC. MATERIALS AND METHODS The expression of miR-551b-3p was detected using quantitative reverse transcription polymerase chain reaction in preoperative serum samples of 50 patients with GC and 53 healthy individuals. An analysis was performed to determine the correlation between serum miR-551b-3p levels and clinicopathological characteristics of patients with GC. The receiver operating characteristic curve was generated, and the cut-off point of serum miR-551b-3p for the diagnosis of GC was selected. The clinical value of serum miR-551b-3p for GC was analyzed by a consistency test. RESULTS The expression of serum miR-551b-3p was significantly lower in patients with GC than in healthy individuals (p=0.000). Low level was positively associated with tumor size (p=0.014), depth of invasion (p=0.001), and Tumor-Node-Metastasis stage (p=0.022). The area under the curve for serum miR-551b-3p distinguishing patients with GC from healthy individuals was 0.860 (95% CI: 0.787-0.933, p=0.000), with a specificity of 96.2% and a sensitivity of 70%. The kappa consistency test had a kappa value of 0.667 (p=0.000) in GC. CONCLUSION Serum miR-551b-3p may potentially serve as a diagnostic biomarker for GC.
Collapse
Affiliation(s)
- Su-Yang Bai
- Department of Gastroenterology, The First Hospital of Lanzhou University; Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou, Gansu, China
| | - Rui Ji
- Department of Gastroenterology, The First Hospital of Lanzhou University; Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou, Gansu, China
| | - Hui Wei
- Department of Gastroenterology, The First Hospital of Lanzhou University; Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou, Gansu, China
| | - Qing-Hong Guo
- Department of Gastroenterology, The First Hospital of Lanzhou University; Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou, Gansu, China
| | - Hao Yuan
- Department of Gastroenterology, The First Hospital of Lanzhou University; Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou, Gansu, China
| | - Zhao-Feng Chen
- Department of Gastroenterology, The First Hospital of Lanzhou University; Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou, Gansu, China
| | - Yu-Ping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University; Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou, Gansu, China
| | - Zheng Liu
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, China
| | - Xiao-Yan Yang
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, China
| | - Yong-Ning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University; Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou, Gansu, China
| |
Collapse
|
46
|
Konoshenko MY, Lekchnov EA, Bryzgunova OE, Zaporozhchenko IA, Yarmoschuk SV, Pashkovskaya OA, Pak SV, Laktionov PP. The Panel of 12 Cell-Free MicroRNAs as Potential Biomarkers in Prostate Neoplasms. Diagnostics (Basel) 2020; 10:diagnostics10010038. [PMID: 31936850 PMCID: PMC7168237 DOI: 10.3390/diagnostics10010038] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/27/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer is a global biological, medical, and social issue aggravated by the lack of reliable, highly specific, and sensitive non-invasive tests for diagnosis and staging of prostate cancer. One prospective source of biomarkers are the cell-free miRNAs present in various biological fluids. In the present study, we validated the diagnostic potential of cell-free miRNAs: miR-19b, miR-22, miR-92a, miR-378, miR-425, miR-30e, miR-31, miR-125b, miR-200b, miR-205, miR-375, and miR-660; we estimated the required sample size and the minimal miRNA set for a subsequent large-scale validation study. Relative expression of 12 miRNA combined in 31 ratios was investigated in three fractions of biological fluids (urine extracellular vesicles, clarified urine, and plasma) obtained from patients with prostate cancer (n = 10), benign prostate hyperplasia (n = 8), and healthy volunteers (n = 11). Eight of the miRNAs found in urine vesicles (miR-19b, miR-30e, miR-31, miR-92a, miR-125, miR-200, miR-205, and miR-660) showed great promise and when combined into six ratios (miR-125b/miR-30e, miR-200/miR-30e, miR-205/miR-30e, miR-31/miR-30e, miR-660/miR-30e, and miR-19b/miR-92a) could classify patients with prostate cancer, benign prostate hyperplasia, and healthy donors with 100% specificity, 100% sensitivity, and with a high degree of reliability for most donors.
Collapse
Affiliation(s)
- Maria Yu. Konoshenko
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia
- E.N. Meshalkin National Medical Research Center of the Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
- Correspondence: ; Tel.: +89529083390
| | - Evgeniy A. Lekchnov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia
- E.N. Meshalkin National Medical Research Center of the Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Olga E. Bryzgunova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia
- E.N. Meshalkin National Medical Research Center of the Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Ivan A. Zaporozhchenko
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia
- E.N. Meshalkin National Medical Research Center of the Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Sergey V. Yarmoschuk
- E.N. Meshalkin National Medical Research Center of the Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Oksana A. Pashkovskaya
- E.N. Meshalkin National Medical Research Center of the Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Svetlana V. Pak
- E.N. Meshalkin National Medical Research Center of the Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Pavel P. Laktionov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia
- E.N. Meshalkin National Medical Research Center of the Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
| |
Collapse
|
47
|
Tian W, Liu X, Wang G, Liu C. A hyperbranched transcription-activated CRISPR-Cas12a signal amplification strategy for sensitive microRNA sensing. Chem Commun (Camb) 2020; 56:13445-13448. [DOI: 10.1039/d0cc06034h] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A hyperbranched RCA-assisted transcription and CRISPR-Cas12a-based triplex signal amplification strategy is developed for the sensitive detection of microRNA.
Collapse
Affiliation(s)
- Weimin Tian
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
| | - Xiaoling Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
| | - Gaoting Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
| | - Chenghui Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
| |
Collapse
|
48
|
Xu S, Chang Y, Wu Z, Li Y, Yuan R, Chai Y. One DNA circle capture probe with multiple target recognition domains for simultaneous electrochemical detection of miRNA-21 and miRNA-155. Biosens Bioelectron 2019; 149:111848. [PMID: 31726271 DOI: 10.1016/j.bios.2019.111848] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/23/2019] [Accepted: 11/02/2019] [Indexed: 12/18/2022]
Abstract
In this work, a novel DNA circle capture probe with multiple target recognition domains was designed to develop an electrochemical biosensor for ultrasensitive detection of microRNA-21 (miRNA-21) and miRNA-155 simultaneously. The DNA circle capture probe was anchored at the top of the tetrahedron DNA nanostructure (TDN) to simultaneously recognize miRNA-21 and miRNA-155 through multiple target recognition domains under the assistance of Helper strands, which could trigger mimetic proximity ligation assay (mPLA) for capturing the beacons ferrocene (Fc)-A1 and methylene blue (MB)-A2 to achieve multiple miRNAs detection. In this way, the local reaction concentration could be enhanced and avoid the interference of various capture probes compared with the traditional multiplexed electrochemical biosensor with the use of different capture probes, resulting in the significantly improvement of detection sensitivity. As a result, this proposed biosensor showed wide linearity ranging from 0.1 fM to 10 nM with detection limits of miRNA-21 and miRNA-155 as 18.9 aM and 39.6 aM respectively, which also could be applied in the simultaneously detection of miRNA-21 and miRNA-155 from cancer cell lysates. The present strategy paved a new path in the design of capture probes for achieving more efficient and sensitive multiple biomarkers detections and possessed the potential applications in clinical diagnostic of diseases.
Collapse
Affiliation(s)
- Sai Xu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yuanyuan Chang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Zhongyu Wu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yunrui Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Yaqin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
49
|
Luo SS, Liao XW, Zhu XD. Genome-wide analysis to identify a novel microRNA signature that predicts survival in patients with stomach adenocarcinoma. J Cancer 2019; 10:6298-6313. [PMID: 31772663 PMCID: PMC6856753 DOI: 10.7150/jca.33250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 08/30/2019] [Indexed: 12/22/2022] Open
Abstract
Objective: Using genome-wide screening, this study was aimed at identifying prognostic microRNA (miRNA) in those patients suffering from stomach adenocarcinoma (STAD). Methods: A genome-wide miRNA sequencing dataset and relevant STAD clinical information was obtained via The Cancer Genome Atlas (TCGA). Prognostic miRNA selection was carried out through a whole genome multivariate Cox regression model in order to establish a prognostic STAD signature. Results: Eleven miRNAs (hsa-mir-509-2, hsa-mir-3917, hsa-mir-495, hsa-mir-653, hsa-mir-3605, hsa-mir-2115, hsa-mir-1292, hsa-mir-137, hsa-mir-6511b-1, hsa-mir-145, and hsa-mir-138-2) were recognized as prognostic and used for the construction of a STAD prognostic signature. This signature exhibited good performance in predicting prognosis (adjusted P<0.0001, adjusted hazard ratio= 3.047, and 95% confidence interval=2.148-4.323). The time-dependent receiver operating characteristic examination exhibited area under curve values of 0.711, 0.697, 0.716, 0.733, 0.805, and 0.805, for 1-, 2-, 3-, 4-, 5-, and 10-year overall survival (OS) estimation, respectively. Comprehensive survival analysis suggests that the 11-miRNA prognostic signature acts as an independent feature of STAD prognosis and exhibits superior performance in OS prediction when compared to traditional clinical parameters. Furthermore, fourteen miRNA target genes were linked to STAD OS. These included SERPINE1, MLEC, ANGPT2, C5orf38, FZD7, MARCKS, PDGFD, DUSP6, IRS1, PSAT1, TENM3, TMEM127, BLMH, and TIRAP. Functional and gene set enrichment analysis suggested that target genes and the 11-miRNA prognostic signature were both participate in various biological processes and pathways, including the growth factor beta, Wnt, and Notch signaling pathways. Conclusions: By means of a genome-wide analysis, an 11-miRNA expression signature that may serve as an underlying prognostic indicator for those patients suffering from STAD has been identified and described here.
Collapse
Affiliation(s)
- Shan-Shan Luo
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xi-Wen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao-Dong Zhu
- Department of Radiation Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
50
|
Bonelli P, Borrelli A, Tuccillo FM, Silvestro L, Palaia R, Buonaguro FM. Precision medicine in gastric cancer. World J Gastrointest Oncol 2019; 11:804-829. [PMID: 31662821 PMCID: PMC6815928 DOI: 10.4251/wjgo.v11.i10.804] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/11/2019] [Accepted: 09/05/2019] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer (GC) is a complex disease linked to a series of environmental factors and unhealthy lifestyle habits, and especially to genetic alterations. GC represents the second leading cause of cancer-related deaths worldwide. Its onset is subtle, and the majority of patients are diagnosed once the cancer is already advanced. In recent years, there have been innovations in the management of advanced GC including the introduction of new classifications based on its molecular characteristics. Thanks to new technologies such as next-generation sequencing and microarray, the Cancer Genome Atlas and Asian Cancer Research Group classifications have also paved the way for precision medicine in GC, making it possible to integrate diagnostic and therapeutic methods. Among the objectives of the subdivision of GC into subtypes is to select patients in whom molecular targeted drugs can achieve the best results; many lines of research have been initiated to this end. After phase III clinical trials, trastuzumab, anti-Erb-B2 receptor tyrosine kinase 2 (commonly known as ERBB2) and ramucirumab, anti-vascular endothelial growth factor receptor 2 (commonly known as VEGFR2) monoclonal antibodies, were approved and introduced into first- and second-line therapies for patients with advanced/metastatic GC. However, the heterogeneity of this neoplasia makes the practical application of such approaches difficult. Unfortunately, scientific progress has not been matched by progress in clinical practice in terms of significant improvements in prognosis. Survival continues to be low in contrast to the reduction in deaths from many common cancers such as colorectal, lung, breast, and prostate cancers. Although several target molecules have been identified on which targeted drugs can act and novel products have been introduced into experimental therapeutic protocols, the overall approach to treating advanced stage GC has not substantially changed. Currently, surgical resection with adjuvant or neoadjuvant radiotherapy and chemotherapy are the most effective treatments for this disease. Future research should not underestimate the heterogeneity of GC when developing diagnostic and therapeutic strategies aimed toward improving patient survival.
Collapse
Affiliation(s)
- Patrizia Bonelli
- Molecular Biology and Viral Oncology, Istituto Nazionale Tumori - IRCCS - Fondazione G Pascale, Napoli 80131, Italy
| | - Antonella Borrelli
- Molecular Biology and Viral Oncology, Istituto Nazionale Tumori - IRCCS - Fondazione G Pascale, Napoli 80131, Italy
| | - Franca Maria Tuccillo
- Molecular Biology and Viral Oncology, Istituto Nazionale Tumori - IRCCS - Fondazione G Pascale, Napoli 80131, Italy
| | - Lucrezia Silvestro
- Abdominal Medical Oncology, Istituto Nazionale Tumori - IRCCS - Fondazione G Pascale, Napoli 80131, Italy
| | - Raffaele Palaia
- Gastro-pancreatic Surgery Division, Istituto Nazionale Tumori - IRCCS - Fondazione G Pascale, Napoli 80131, Italy
| | - Franco Maria Buonaguro
- Molecular Biology and Viral Oncology, Istituto Nazionale Tumori - IRCCS - Fondazione G Pascale, Napoli 80131, Italy
| |
Collapse
|