1
|
Caldeira IDS, Giovanini G, Adorno LF, Fernandes D, Ramos CR, Cruz-Visalaya SR, Pacheco-Otalora LF, Siqueira FRD, Nunes VA, Belizário JE, Garay-Malpartida HM. Antiapoptotic and Prometastatic Roles of Cytokine FAM3B in Triple-Negative Breast Cancer. Clin Breast Cancer 2024; 24:e633-e644.e2. [PMID: 38997857 DOI: 10.1016/j.clbc.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/28/2024] [Accepted: 06/13/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. FAM3B, a secreted protein, has been extensively studied in various types of tumors. However, its function in breast cancer remains poorly understood. METHODS We analyzed FAM3B expression data from breast cancer patients available at TCGA database and overall survival was analyzed by using the Kaplan-Meier plotter. MDA-MB-231 TNBC tumor cell line and hormone-responsive MCF-7 cell lines were transfected to overexpress FAM3B. We assessed cell death, tumorigenicity, and invasiveness in vitro through MTT analysis, flow cytometry assays, anchorage-independent tumor growth, and wound healing assays, respectively. We performed in vivo evaluation by tumor xenograft in nude mice. RESULTS In silico analysis revealed that FAM3B expression was lower in all breast tumors. However, TNBC patients with high FAM3B expression had a poor prognosis. FAM3B overexpression protected MDA-MB-231 cells from cell death, with increased expression of Bcl-2 and Bcl-xL, and reduced caspase-3 activity. MDA-MB-231 cells overexpressing FAM3B also exhibited increased tumorigenicity and migration rates in vitro, displaying increased tumor growth and reduced survival rates in xenotransplanted nude mice. This phenotype is accompanied by the upregulation of EMT-related genes Slug, Snail, TGFBR2, vimentin, N-cadherin, MMP-2, MMP-9, and MMP-14. However, these effects were not observed in the MCF-7 cells overexpressing FAM3B. CONCLUSION FAM3B overexpression contributes to tumor growth, promotion of metastasis, and, consequently, leads to a poor prognosis in the most aggressive forms of breast cancer. Future clinical research is necessary to validate FAM3B as both a diagnostic and a therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Izabela Daniel Sardinha Caldeira
- Multidisciplinary Research Center, School of Arts, Sciences and Humanities, University of São Paulo, CEP 03828000, Sao Paulo, Brazil
| | - Guilherme Giovanini
- Center for Translational Research in Oncology (LIM24), Instituto do Câncer do Estado de São Paulo (ICESP), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, CEP 01246-000, Sao Paulo, Brazil
| | - Lissandra Ferreira Adorno
- Multidisciplinary Research Center, School of Arts, Sciences and Humanities, University of São Paulo, CEP 03828000, Sao Paulo, Brazil
| | - Debora Fernandes
- Multidisciplinary Research Center, School of Arts, Sciences and Humanities, University of São Paulo, CEP 03828000, Sao Paulo, Brazil
| | - Celso Romero Ramos
- Laboratório de Esquistossomose Experimental. Instituto Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, CEP 21040-360, Rio de Janerio, Brasil
| | | | | | - Flavia Ramos de Siqueira
- Multidisciplinary Research Center, School of Arts, Sciences and Humanities, University of São Paulo, CEP 03828000, Sao Paulo, Brazil
| | - Viviane Abreu Nunes
- Multidisciplinary Research Center, School of Arts, Sciences and Humanities, University of São Paulo, CEP 03828000, Sao Paulo, Brazil
| | - José Ernesto Belizário
- Multidisciplinary Research Center, School of Arts, Sciences and Humanities, University of São Paulo, CEP 03828000, Sao Paulo, Brazil
| | - Humberto Miguel Garay-Malpartida
- Multidisciplinary Research Center, School of Arts, Sciences and Humanities, University of São Paulo, CEP 03828000, Sao Paulo, Brazil.
| |
Collapse
|
2
|
Ding X, Zhu Z, Lapek J, McMillan EA, Zhang A, Chung CY, Dubbury S, Lapira J, Firdaus S, Kang X, Gao J, Oyer J, Chionis J, Rollins RA, Li L, Niessen S, Bagrodia S, Zhang L, VanArsdale T. PARP1-SNAI2 transcription axis drives resistance to PARP inhibitor, Talazoparib. Sci Rep 2022; 12:12501. [PMID: 35864202 PMCID: PMC9304387 DOI: 10.1038/s41598-022-16623-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
The synthetic lethal association between BRCA deficiency and poly (ADP-ribose) polymerase (PARP) inhibition supports PARP inhibitor (PARPi) clinical efficacy in BRCA-mutated tumors. PARPis also demonstrate activity in non-BRCA mutated tumors presumably through induction of PARP1-DNA trapping. Despite pronounced clinical response, therapeutic resistance to PARPis inevitably develops. An abundance of knowledge has been built around resistance mechanisms in BRCA-mutated tumors, however, parallel understanding in non-BRCA mutated settings remains insufficient. In this study, we find a strong correlation between the epithelial-mesenchymal transition (EMT) signature and resistance to a clinical PARPi, Talazoparib, in non-BRCA mutated tumor cells. Genetic profiling demonstrates that SNAI2, a master EMT transcription factor, is transcriptionally induced by Talazoparib treatment or PARP1 depletion and this induction is partially responsible for the emerging resistance. Mechanistically, we find that the PARP1 protein directly binds to SNAI2 gene promoter and suppresses its transcription. Talazoparib treatment or PARP1 depletion lifts PARP1-mediated suppression and increases chromatin accessibility around SNAI2 promoters, thus driving SNAI2 transcription and drug resistance. We also find that depletion of the chromatin remodeler CHD1L suppresses SNAI2 expression and reverts acquired resistance to Talazoparib. The PARP1/CHD1L/SNAI2 transcription axis might be therapeutically targeted to re-sensitize Talazoparib in non-BRCA mutated tumors.
Collapse
Affiliation(s)
- Xia Ding
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA.
| | - Zhou Zhu
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA.,AstraZeneca, Inc., Gaithersburg, MD, 20878, USA
| | - John Lapek
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA.,Belharra Therapeutics, Inc., San Diego, CA, 92121, USA
| | - Elizabeth A McMillan
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA.,Odyssey Therapeutics., San Diego, CA, 92121, USA
| | - Alexander Zhang
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA
| | - Chi-Yeh Chung
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA
| | - Sara Dubbury
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA.,Bristol Myers Squibb., San Diego, CA, 92121, USA
| | - Jennifer Lapira
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA
| | - Sarah Firdaus
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA
| | - Xiaolin Kang
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA
| | - Jingjin Gao
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA.,Turning Point Therapeutics., San Diego, CA, 92121, USA
| | - Jon Oyer
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA
| | - John Chionis
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA.,Genesis Therapeutics., San Diego, CA, 92121, USA
| | | | - Lianjie Li
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA.,Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | - Sherry Niessen
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA.,Belharra Therapeutics, Inc., San Diego, CA, 92121, USA
| | - Shubha Bagrodia
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA
| | - Lianglin Zhang
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA.
| | - Todd VanArsdale
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA.
| |
Collapse
|
3
|
Myer PA, Kim H, Blümel AM, Finnegan E, Kel A, Thompson TV, Greally JM, Prehn JHM, O’Connor DP, Friedman RA, Floratos A, Das S. Master Transcription Regulators and Transcription Factors Regulate Immune-Associated Differences Between Patients of African and European Ancestry With Colorectal Cancer. GASTRO HEP ADVANCES 2022; 1:328-341. [PMID: 35711675 PMCID: PMC9151447 DOI: 10.1016/j.gastha.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/20/2022] [Indexed: 11/21/2022]
Abstract
Background and Aims Individuals of African (AFR) ancestry have a higher incidence of colorectal cancer (CRC) than those of European (EUR) ancestry and exhibit significant health disparities. Previous studies have noted differences in the tumor microenvironment between AFR and EUR patients with CRC. However, the molecular regulatory processes that underpin these immune differences remain largely unknown. Methods Multiomics analysis was carried out for 55 AFR and 456 EUR patients with microsatellite-stable CRC using The Cancer Genome Atlas. We evaluated the tumor microenvironment by using gene expression and methylation data, transcription factor, and master transcriptional regulator analysis to identify the cell signaling pathways mediating the observed phenotypic differences. Results We demonstrate that downregulated genes in AFR patients with CRC showed enrichment for canonical pathways, including chemokine signaling. Moreover, evaluation of the tumor microenvironment showed that cytotoxic lymphocytes and neutrophil cell populations are significantly decreased in AFR compared with EUR patients, suggesting AFR patients have an attenuated immune response. We further demonstrate that molecules called "master transcriptional regulators" (MTRs) play a critical role in regulating the expression of genes impacting key immune processes through an intricate signal transduction network mediated by disease-associated transcription factors (TFs). Furthermore, a core set of these MTRs and TFs showed a positive correlation with levels of cytotoxic lymphocytes and neutrophils across both AFR and EUR patients with CRC, thus suggesting their role in driving the immune infiltrate differences between the two ancestral groups. Conclusion Our study provides an insight into the intricate regulatory landscape of MTRs and TFs that orchestrate the differences in the tumor microenvironment between patients with CRC of AFR and EUR ancestry.
Collapse
Key Words
- AFR, African
- African Americans.
- CMA, Composite Module Analyst
- CRC, colorectal cancer
- ChAMP, Chip Analysis Methylation Pipeline
- Colorectal Cancer
- DEGs, differentially expressed genes
- DMPs, differentially methylated CpG positions
- EUR, European
- FDR, false discovery rate
- Genomic Profiling
- Health Disparities
- MCP, microenvironment cell population
- MSI-H, microsatellite high
- MSI-L, microsatellite low
- MSS, microsatellite stable
- MTRs, master transcriptional regulators
- TCGA, The Cancer Genome Atlas
- TFBS, TF binding site
- TFs, transcription factors
- TMB, tumor mutation burden
- TSS, transcription start site
Collapse
Affiliation(s)
- Parvathi A. Myer
- Montefiore Medical Center, Albert Einstein Cancer Center, Bronx, NY
| | - Hyunjin Kim
- St. Jude’s Children’s Research Hospital, Memphis, Tennessee TN
| | - Anna M. Blümel
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons, Dublin, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ellen Finnegan
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons, Dublin, Ireland
| | - Alexander Kel
- GeneXplain GmbH, Wolfenbuettel, Germany
- BIOSOFT.RU, LLC, Novobirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine SBRAS, Novobirsk, Russia
| | | | | | - Jochen HM. Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Darran P. O’Connor
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons, Dublin, Ireland
| | - Richard A. Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, and Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY
| | - Aris Floratos
- Department of Systems Biology, Columbia University, New York, NY
- Department of Biomedical Informatics, Columbia University, New York, NY
| | - Sudipto Das
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons, Dublin, Ireland
| |
Collapse
|
4
|
Lagerwall C, Shahin H, Abdallah S, Steinvall I, Elmasry M, Sjöberg F, El-Serafi AT. Xeno-free workflow exhibits comparable efficiency and quality of keratinocytes isolated from human skin biopsies. Regen Ther 2021; 18:401-407. [PMID: 34722836 PMCID: PMC8531849 DOI: 10.1016/j.reth.2021.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/05/2021] [Accepted: 09/15/2021] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Regenerative solutions of the skin represent a hope for burn victims with extensive skin loss and chronic wound patients. The development of xeno-free workflow is crucial for clinical application in compliance with the directives of the European Medicines Agency. This study aimed at evaluating the outcome of the xeno-free isolation workflow of keratinocytes from human skin biopsy. METHODS Skin biopsies were obtained from volunteers. The epidermis was digested with TrypLE™ Select, which was deactivated by dilution or with trypsin, deactivated by media with fetal bovine serum. Freshly isolated cells were compared for total cell number, viability, activity of caspase 3, gene expression and the presence of the keratinocyte surface markers cytokeratin 14. The cells were cultured in xeno-free conditions for one week and characterized regarding the number and viability as well as the metalloproteinase secretion. RESULTS The number of obtained cells was similar in both workflows. The cell viability was less in the TrypLE group, with slight reduction of the cell surface marker cytokeratin 14. Caspase 3 activity was comparable as well as the gene expression of the apoptotic markers BAX, BCL2 and SLUG, as well as the keratinocyte markers cytokeratin 14, stratifin and filaggrin. Upon culture, the number of keratinocytes, their viability and secretion of matrix metalloproteinases 1 and 10 were equal in both groups. CONCLUSION This study reports the possibility of isolating functioning and viable keratinocytes through a xeno-free workflow for clinical application.
Collapse
Affiliation(s)
- Cathrine Lagerwall
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, Sweden
| | - Hady Shahin
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, Sweden
- The Department of Biomedical and Clinical Sciences (BKV), Linköping University, Sweden
- Faculty of Biotechnology, Modern Sciences and Arts University, Cairo, Egypt
| | - Sallam Abdallah
- The Department of Biomedical and Clinical Sciences (BKV), Linköping University, Sweden
| | - Ingrid Steinvall
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, Sweden
- The Department of Biomedical and Clinical Sciences (BKV), Linköping University, Sweden
| | - Moustafa Elmasry
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, Sweden
- The Department of Biomedical and Clinical Sciences (BKV), Linköping University, Sweden
| | - Folke Sjöberg
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, Sweden
- The Department of Biomedical and Clinical Sciences (BKV), Linköping University, Sweden
| | - Ahmed T. El-Serafi
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, Sweden
- The Department of Biomedical and Clinical Sciences (BKV), Linköping University, Sweden
- Medical Biochemistry Department, Faculty of Medicine, Suez Canal University, Egypt
| |
Collapse
|
5
|
Fudalej MM, Badowska-Kozakiewicz AM. Improved understanding of gastrointestinal stromal tumors biology as a step for developing new diagnostic and therapeutic schemes. Oncol Lett 2021; 21:417. [PMID: 33841578 DOI: 10.3892/ol.2021.12678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
A gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor of the human gastrointestinal tract, with an estimated incidence of 10-15 per 1 million per year. While preparing holistic care for patients with GIST diagnosis, scientists might face several difficulties - insufficient risk stratification, acquired or secondary resistance to imatinib, or the need for an exceptional therapy method associated with wild-type tumors. This review summarizes recent advances associated with GIST biology that might enhance diagnostic and therapeutic strategies. New molecules might be incorporated into risk stratification schemes due to their proven association with outcomes; however, further research is required. Therapies based on the significant role of angiogenesis, immunology, and neural origin in the GIST biology could become a valuable enhancement of currently implemented treatment schemes. Generating miRNA networks that would predict miRNA regulatory functions is a promising approach that might help in better selection of potential biomarkers and therapeutical targets in cancer, including GISTs.
Collapse
Affiliation(s)
- Marta Magdalena Fudalej
- Department of Cancer Prevention, Medical University of Warsaw, 02-091 Warsaw, Poland.,Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | | |
Collapse
|
6
|
Yoon H, Tang CM, Banerjee S, Yebra M, Noh S, Burgoyne AM, Torre JDL, Siena MD, Liu M, Klug LR, Choi YY, Hosseini M, Delgado AL, Wang Z, French RP, Lowy A, DeMatteo RP, Heinrich MC, Molinolo AA, Gutkind JS, Harismendy O, Sicklick JK. Cancer-associated fibroblast secretion of PDGFC promotes gastrointestinal stromal tumor growth and metastasis. Oncogene 2021; 40:1957-1973. [PMID: 33603171 PMCID: PMC7979540 DOI: 10.1038/s41388-021-01685-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/13/2021] [Accepted: 01/27/2021] [Indexed: 01/30/2023]
Abstract
Targeted therapies for gastrointestinal stromal tumor (GIST) are modestly effective, but GIST cannot be cured with single agent tyrosine kinase inhibitors. In this study, we sought to identify new therapeutic targets in GIST by investigating the tumor microenvironment. Here, we identified a paracrine signaling network by which cancer-associated fibroblasts (CAFs) drive GIST growth and metastasis. Specifically, CAFs isolated from human tumors were found to produce high levels of platelet-derived growth factor C (PDGFC), which activated PDGFC-PDGFRA signal transduction in GIST cells that regulated the expression of SLUG, an epithelial-mesenchymal transition (EMT) transcription factor and downstream target of PDGFRA signaling. Together, this paracrine induce signal transduction cascade promoted tumor growth and metastasis in vivo. Moreover, in metastatic GIST patients, SLUG expression positively correlated with tumor size and mitotic index. Given that CAF paracrine signaling modulated GIST biology, we directly targeted CAFs with a dual PI3K/mTOR inhibitor, which synergized with imatinib to increase tumor cell killing and in vivo disease response. Taken together, we identified a previously unappreciated cellular target for GIST therapy in order to improve disease control and cure rates.
Collapse
Affiliation(s)
- Hyunho Yoon
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Chih-Min Tang
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Sudeep Banerjee
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, CA, USA
- Department of Surgery, University of California, Los Angeles, CA, USA
| | - Mayra Yebra
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Sangkyu Noh
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Adam M Burgoyne
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Jorge De la Torre
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Martina De Siena
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, CA, USA
- Gastroenterology and Digestive Endoscopy, Fondazione Policlinico A.Gemelli Catholic University of Rome, Rome, Italy
| | - Mengyuan Liu
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Lillian R Klug
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, OR, USA
- Portland VA Health Care System, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Yoon Young Choi
- Division of Biomedical Informatics, Moores Cancer Center, University of California, San Diego, CA, USA
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Mojgan Hosseini
- Department of Pathology, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Antonio L Delgado
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Zhiyong Wang
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Randall P French
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Andrew Lowy
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Ronald P DeMatteo
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael C Heinrich
- Portland VA Health Care System, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Alfredo A Molinolo
- Department of Pathology, Moores Cancer Center, University of California, San Diego, CA, USA
| | - J Silvio Gutkind
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Olivier Harismendy
- Division of Biomedical Informatics, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Jason K Sicklick
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, CA, USA.
| |
Collapse
|
7
|
Li D, Li L, Yang W, Chen L, Chen X, Wang Q, Hao B, Jin W, Cao Y. Prognostic values of SNAI family members in breast cancer patients. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:922. [PMID: 32953722 PMCID: PMC7475426 DOI: 10.21037/atm-20-681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Breast cancer (BC) is one of the most lethal malignant tumors and the leading cause of cancer-related death worldwide. Although early diagnostic techniques for BC have been well developed, 40% of cases are still diagnosed at the advanced stage, while for BC patients with distant metastases, the 5-year survival rate is usually lower than 30%. The Snail family, generally regarded as transcriptional repressors, has been indicated to be an essential prognostic factor in malignant tumors. However, limited data exist on public databases concerning the prognostic value of individual Snail family members in BC, especially SNAI3. Methods Data from public databases including cBioPortal for Cancer Genomics, Gene Expression Omnibus, UCSC Xena Browser, and Human Protein Atlas (HPA) were downloaded. Based on the Kaplan¬–Meier plotter platform, correlation of the three members of the Snail family and prognosis in BC were analyzed. Individual Snail family members and their co-expressed genes were respectively enriched on different pathways and biological processes via the functional enrichment analysis (FunRich) tool. Results High SNAI1 mRNA expression was associated with shorter distant metastasis-free survival (DMFS) in all BC patients regardless of PAM50 subtype. Conversely, high SNAI3 mRNA expression was associated with longer DMFS. Although the presence of SNAI2 expression was significantly associated with DMFS in the whole cohort, no significant correlation was found in patients with luminal A or HER2 subtype. For patients with the most diverse clinicopathological features, high SNAI1 expression was associated with poor survival, with the converse being true for SNAI3. However, the impact on prognosis of patients with different clinicopathological features produced by SNAI2 expression was inconclusive. Furthermore, we discovered that SNAI1 or SNAI2 and their co-expressed genes frequently enriched receptor tyrosine kinase (RTK) signaling and integrin-related pathways which mainly functioned on epithelial-mesenchymal transition and were further involved in several processes of signal transduction and cell communication. Furthermore, as SNAI3, along with its co-expressed genes, enriched immune-related pathways, it may thus play a role in mediating the immune system. Conclusions Our analysis revealed that SNAI1 mRNA expression may potentially be a negative prognostic factor, whereas SNAI3 mRNA was associated with positive prognosis in BC. Therefore, the assessment of SNAI1 and SNAI3 expression may be valuable for predicting prognosis in BC patients.
Collapse
Affiliation(s)
- Deheng Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liangdong Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wentao Yang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lei Chen
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Chen
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qifeng Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Bin Hao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Jin
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yiqun Cao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Micati DJ, Radhakrishnan K, Young JC, Rajpert‐De Meyts E, Hime GR, Abud HE, Loveland KL. ‘Snail factors in testicular germ cell tumours and their regulation by the BMP4 signalling pathway’. Andrology 2020; 8:1456-1470. [DOI: 10.1111/andr.12823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 04/20/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Diana J. Micati
- Centre for Reproductive Health Hudson Institute of Medical Research Clayton Victoria Australia
- Department of Molecular and Translational Sciences Monash University Clayton Victoria Australia
| | - Karthika Radhakrishnan
- Centre for Reproductive Health Hudson Institute of Medical Research Clayton Victoria Australia
- Department of Molecular and Translational Sciences Monash University Clayton Victoria Australia
| | - Julia C. Young
- Centre for Reproductive Health Hudson Institute of Medical Research Clayton Victoria Australia
- Department of Molecular and Translational Sciences Monash University Clayton Victoria Australia
- Department of Anatomy and Developmental Biology Monash Biomedicine Discovery Institute Monash University Clayton Victoria Australia
| | - Ewa Rajpert‐De Meyts
- Department of Growth and Reproduction, Rigshospitalet University of Copenhagen Copenhagen Denmark
| | - Gary R. Hime
- Department of Anatomy and Neuroscience University of Melbourne Melbourne Victoria Australia
| | - Helen E. Abud
- Department of Anatomy and Developmental Biology Monash Biomedicine Discovery Institute Monash University Clayton Victoria Australia
- Stem Cells and Development Program Monash Biomedicine Discovery Institute Monash University Clayton Victoria Australia
| | - Kate L. Loveland
- Centre for Reproductive Health Hudson Institute of Medical Research Clayton Victoria Australia
- Department of Molecular and Translational Sciences Monash University Clayton Victoria Australia
- Department of Anatomy and Developmental Biology Monash Biomedicine Discovery Institute Monash University Clayton Victoria Australia
| |
Collapse
|
9
|
Lin WC, Chen LH, Hsieh YC, Yang PW, Lai LC, Chuang EY, Lee JM, Tsai MH. miR-338-5p inhibits cell proliferation, colony formation, migration and cisplatin resistance in esophageal squamous cancer cells by targeting FERMT2. Carcinogenesis 2020; 40:883-892. [PMID: 30576425 DOI: 10.1093/carcin/bgy189] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/13/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022] Open
Abstract
Esophageal cancer is one of the leading causes of cancer death in the male population of Eastern Asia. In addition, esophageal squamous cell carcinoma (ESCC) is the major type of esophageal cancer among the world. Owing to the poor overall 5-year survival rate, novel effective treatment strategies are needed. MicroRNAs are important gene regulators that are dysregulated in many cancer types. In our previous study, we applied next-generation sequencing to demonstrate that miR-338-5p was downregulated in the tumor tissue of patients with versus without recurrence. In this study, we further studied the roles of miR-338-5p in ESCC. The expression of endogenous miR-338-5p was at lower levels in ESCC cells compared with normal cells. Functional assays showed that miR-338-5p reduced cell proliferation, colony formation, migration and cisplatin resistance in an ESCC cell line, CE-81T. Potential target genes of miR-338-5p were identified by microarray and prediction tools, and 31 genes were selected. Among these, Fermitin family homolog 2 (FERMT2) plays an oncogenic role in ESCC, so it was chosen for further study. Luciferase assays showed the direct binding between miR-338-5p and the 3' untranslated region of FERMT2. Silencing of FERMT2 inhibited cell proliferation, colony formation, migration and cisplatin resistance. Pathway analysis revealed that the integrin-linked protein kinase signaling pathway, in which FERMT2 participates, was significantly affected by a miR-338-5p mimic. Our results suggest that miR-338-5p may play an antioncogenic role in ESCC via repressing FERMT2.
Collapse
Affiliation(s)
- Wen-Chun Lin
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan.,Genome and Systems Biology Degree Program, Academia Sinica, Taipei, Taiwan
| | - Li-Han Chen
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Yao-Chin Hsieh
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Pei-Wen Yang
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine
| | - Liang-Chuan Lai
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan.,Bioinformatics and Biostatistics Core, NTU Center of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Eric Y Chuang
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan.,Genome and Systems Biology Degree Program, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.,Bioinformatics and Biostatistics Core, NTU Center of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan.,Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jang-Ming Lee
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine
| | - Mong-Hsun Tsai
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan.,Genome and Systems Biology Degree Program, Academia Sinica, Taipei, Taiwan.,Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.,Bioinformatics and Biostatistics Core, NTU Center of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan.,Center for Biotechnology, National Taiwan University, Taipei, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
10
|
Ding J, Xia Y, Yu Z, Wen J, Zhang Z, Zhang Z, Liu Z, Jiang Z, Liu H, Liao G. Identification of upstream miRNAs of SNAI2 and their influence on the metastasis of gastrointestinal stromal tumors. Cancer Cell Int 2019; 19:289. [PMID: 31749661 PMCID: PMC6852720 DOI: 10.1186/s12935-019-1006-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022] Open
Abstract
Background SNAI2, a member of the snail zinc finger protein family, plays an important role in the metastasis of several types of carcinoma. Objective This study aims to investigate the upstream miRNAs of SNAI2 and their influence on the metastasis of gastrointestinal stromal tumors (GISTs). Methods The expression levels of SNAI2, CDH1, and CDH2 in GISTs were determined by immunohistochemistry, and the correlations with their clinicopathologic characteristics were analyzed. Subsequently, the miRNAs involved in regulating SNAI2 expression were predicted by bioinformatics technique, screened by miRNA microarray tests, and verified by real-time PCR, dual luciferase reporter assay, and invasion assay. The influence of SNAI2 and miRNAs on the invasive ability of the GIST cells and the related mechanism were detected. Outcomes SNAI2 expression significantly increased and CDH1 expression markedly decreased in the cases of GISTs with distant metastasis. Silencing of the SNAI2 gene impaired the invasiveness of GIST cells in vitro. MiR-200b-3p, miR-30c-1-3P, and miR-363-3P were verified as the upstream metastasis-associated miRNAs of SNAI2 in GISTs by miRNA microarray, real-time PCR, dual luciferase reporter assay, and invasion assay. They bound to the 3′-UTR of SNAI2, downregulated SNAI2 expression, and inhibited the invasiveness of GIST cells. SNAI2 targetedly bound to the promoter of the CDH1 gene, downregulated the expression of CDH1, and contributed to the metastasis of GISTs. Conclusion SNAI2 and CDH1 correlated with the metastasis of GISTs, and silencing of the SNAI2 gene impaired the invasiveness of GIST cells. MiR-200b-3p, miR-30c-1-3P, and miR-363-3P contribute to the metastasis of GISTs in vitro by mediating the SNAI2/CDH1 axis. SNAI2 may be a potential target for the treatment of GISTs in the future.
Collapse
Affiliation(s)
- Jie Ding
- 1Department of Gastrointestinal Surgery, Guizhou Provincial People's Hospital, 83 East Zhongshan Rd, Guiyang, 550002 Guizhou China
| | - Yu Xia
- 2Department of Stomatology, Guizhou Provincial People's Hospital, Guiyang, 550002 China
| | - Zhaoyan Yu
- 1Department of Gastrointestinal Surgery, Guizhou Provincial People's Hospital, 83 East Zhongshan Rd, Guiyang, 550002 Guizhou China
| | - Jing Wen
- 3Department of Pathology, Guizhou Provincial People's Hospital, Guiyang, 550002 China
| | - Zhuxue Zhang
- 3Department of Pathology, Guizhou Provincial People's Hospital, Guiyang, 550002 China
| | - Zhongmin Zhang
- 1Department of Gastrointestinal Surgery, Guizhou Provincial People's Hospital, 83 East Zhongshan Rd, Guiyang, 550002 Guizhou China
| | - Zhenhua Liu
- 1Department of Gastrointestinal Surgery, Guizhou Provincial People's Hospital, 83 East Zhongshan Rd, Guiyang, 550002 Guizhou China
| | - Zhuan Jiang
- 1Department of Gastrointestinal Surgery, Guizhou Provincial People's Hospital, 83 East Zhongshan Rd, Guiyang, 550002 Guizhou China
| | - Hang Liu
- 1Department of Gastrointestinal Surgery, Guizhou Provincial People's Hospital, 83 East Zhongshan Rd, Guiyang, 550002 Guizhou China
| | - Guoqing Liao
- 4Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, 410008 China
| |
Collapse
|
11
|
Basu R, Kopchick JJ. The effects of growth hormone on therapy resistance in cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:827-846. [PMID: 32382711 PMCID: PMC7204541 DOI: 10.20517/cdr.2019.27] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pituitary derived and peripherally produced growth hormone (GH) is a crucial mediator of longitudinal growth, organ development, metabolic regulation with tissue specific, sex specific, and age-dependent effects. GH and its cognate receptor (GHR) are expressed in several forms of cancer and have been validated as an anti-cancer target through a large body of in vitro, in vivo and epidemiological analyses. However, the underlying molecular mechanisms of GH action in cancer prognosis and therapeutic response had been sparse until recently. This review assimilates the critical details of GH-GHR mediated therapy resistance across different cancer types, distilling the therapeutic implications based on our current understanding of these effects.
Collapse
Affiliation(s)
- Reetobrata Basu
- Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Ohio University, Athens, OH 45701, USA.,Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - John J Kopchick
- Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Ohio University, Athens, OH 45701, USA.,Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
12
|
Kövecsi A, Gurzu S, Szentirmay Z, Kovacs Z, Bara TJ, Jung I. Paradoxical expression pattern of the epithelial mesenchymal transition-related biomarkers CD44, SLUG, N-cadherin and VSIG1/Glycoprotein A34 in gastrointestinal stromal tumors. World J Gastrointest Oncol 2017; 9:436-443. [PMID: 29204252 PMCID: PMC5700385 DOI: 10.4251/wjgo.v9.i11.436] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/31/2017] [Accepted: 09/06/2017] [Indexed: 02/05/2023] Open
Abstract
AIM To evaluate the immunohistochemical (IHC) expression of five biomarkers, commonly involved in epithelial mesenchymal/mesenchymal epithelial transition (EMT/MET), in gastrointestinal stromal tumors (GISTs).
METHODS In 80 consecutive GISTs the IHC examinations were performed using the EMT-related antibodies E-cadherin, N-cadherin, SLUG, V-set and immunoglobulin domain containing 1 (VSIG1) and CD44.
RESULTS The positivity rate was 88.75% for SLUG, 83.75% for VSIG1, 36.25% for CD44 and 10% for N-cadherin. No correlation was noted between the examined markers and clinicopathological parameters. Nuclear positivity for SLUG and VSIG1 was observed in all cases with distant metastasis. The extra-gastrointestinal stromal tumors (e-GISTs) expressed nuclear positivity for VSIG1 and SLUG, with infrequent positivity for N-cadherin and CD44. The low overall survival was mainly dependent on VSIG1 negativity (P = 0.01) and nuclear positivity for SLUG and/or CD44.
CONCLUSION GIST aggressivity may be induced by nuclear up-regulation of SLUG and loss or cytoplasm-to-nuclear translocation of VSIG1. SLUG and VSIG1 may act as activated nuclear transcription factors. The CD44, but not N-cadherin, might also have an independent prognostic value in these tumors. The role of the EMT/MET-related transcription factors in the evolution of GISTs, should be revisited with a larger dataset. This is the first study exploring the IHC pattern of VSIG1 in GISTs.
Collapse
Affiliation(s)
- Attila Kövecsi
- Department of Pathology, University of Medicine and Pharmacy, Tirgu Mures 540139, Romania
| | - Simona Gurzu
- Department of Pathology, University of Medicine and Pharmacy, Tirgu Mures 540139, Romania
- Research Center, University of Medicine and Pharmacy, Timi oara 3000041, Romania
| | - Zoltan Szentirmay
- Department of Pathology, National Institute of Oncology, Budapest 1525, Hungary
| | - Zsolt Kovacs
- Department of Pathology, University of Medicine and Pharmacy, Tirgu Mures 540139, Romania
- Department of Biochemistry, University of Medicine and Pharmacy, Timi oara 3000041, Romania
| | - Tivadar Jr Bara
- Department of Surgery, University of Medicine and Pharmacy, Timi oara 3000041, Romania
| | - Ioan Jung
- Department of Pathology, University of Medicine and Pharmacy, Tirgu Mures 540139, Romania
| |
Collapse
|
13
|
Wallesch M, Pachow D, Blücher C, Firsching R, Warnke JP, Braunsdorf WE, Kirches E, Mawrin C. Altered expression of E-Cadherin-related transcription factors indicates partial epithelial-mesenchymal transition in aggressive meningiomas. J Neurol Sci 2017; 380:112-121. [DOI: 10.1016/j.jns.2017.07.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022]
|
14
|
Xiang H, Zhong ZX, Peng YD, Jiang SW. The Emerging Role of Zfp217 in Adipogenesis. Int J Mol Sci 2017; 18:ijms18071367. [PMID: 28653987 PMCID: PMC5535860 DOI: 10.3390/ijms18071367] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/12/2017] [Accepted: 06/21/2017] [Indexed: 12/16/2022] Open
Abstract
Zinc finger protein 217 (Zfp217), a member of the krüppel-type zinc finger protein family, plays diverse roles in cell differentiation and development of mammals. Despite extensive research on the functions of Zfp217 in cancer, pluripotency and reprogramming, its physiological roles in adipogenesis remain unknown. Our previous RNA sequencing data suggest the involvement of Zfp217 in adipogenesis. In this study, the potential function of Zfp217 in adipogenesis was investigated through bioinformatics analysis and a series of experiments. The expression of Zfp217 was found to be gradually upregulated during the adipogenic differentiation in C3H10T1/2 cells, which was consistent with that of the adipogenic marker gene Pparg2. Furthermore, there was a positive, significant relationship between Zfp217 expression and adipocyte differentiation. It was also observed that Zfp217 could not only trigger proliferative defect in C3H10T1/2 cells, but also interact with Ezh2 and suppress the downstream target genes of Ezh2. Besides, three microRNAs (miR-503-5p, miR-135a-5p and miR-19a-3p) which target Zfp217 were found to suppress the process of adipogenesis. This is the first report showing that Zfp217 has the capacity to regulate adipogenesis.
Collapse
Affiliation(s)
- Hong Xiang
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhu-Xia Zhong
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yong-Dong Peng
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Hebei Key Laboratory of Veterinary Preventive Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China.
| | - Si-Wen Jiang
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|