1
|
Bala K, Porel P, Aran KR. Emerging roles of cannabinoid receptor CB2 receptor in the central nervous system: therapeutic target for CNS disorders. Psychopharmacology (Berl) 2024; 241:1939-1954. [PMID: 39264450 DOI: 10.1007/s00213-024-06683-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
RATIONALE The endocannabinoid system (ECS) belongs to the G protein-coupled receptor family of cell membranes and is associated with neuropsychiatric conditions, and neurodegenerative diseases. Cannabinoid 2 receptors (CB2) are expressed in the central nervous system (CNS) on microglia and subgroups of neurons and are involved in various behavioural processes via immunological and neural regulation. OBJECTIVE The objective of this paper is to summarize and explore the impact of CB2 receptors on neuronal modulation, their involvement in various neurological disorders, and their influence on mood, behavior, and cognitive function. RESULTS The activation of CB2 appears to protect the brain and its functions from damage under neuroinflammatory actions, making it an attractive target in a variety of neurological conditions such as Parkinson's disease (PD), multiple sclerosis (MS), Alzheimer's disease (AD), and Huntington's disease (HD). During inflammation, there is an overexpression of CB2 receptors, and CB2 agonists show a strong anti-inflammatory effect. These results have sparked interest in the CB2 receptors as a potential target for neurodegenerative and neuroinflammatory disease treatment. CONCLUSION In conclusion, CB2 receptors signalling shows promise for developing targeted interventions that could positively affect both immune and neuronal functions, ultimately influencing behavioral outcomes in both health and disease.
Collapse
Affiliation(s)
- Kanchan Bala
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, India
| | - Pratyush Porel
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Khadga Raj Aran
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
2
|
Kim NY, Mohan CD, Sethi G, Ahn KS. Cannabidiol activates MAPK pathway to induce apoptosis, paraptosis, and autophagy in colorectal cancer cells. J Cell Biochem 2024; 125:e30537. [PMID: 38358093 DOI: 10.1002/jcb.30537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Mitogen-activated protein kinase (MAPK) activation by natural compounds is known to be involved in the induction of apoptosis, paraptosis, and autophagy. Cannabidiol (CBD), a bioactive compound found in Cannabis sativa, is endowed with many pharmacological activities. We investigated the cytotoxic effect of CBD in a panel of colorectal cancer (CRC) cells (HT-29, SW480, HCT-116, and HCT-15). CBD induced significant cytotoxicity as evidenced by the results of MTT assay, live-dead assay, and flow cytometric analysis. Since CBD displayed cytotoxicity against CRC cells, we examined the effect of CBD on apoptosis, paraptosis, and autophagy. CBD decreased the expression of antiapoptotic proteins and increased the Annexin-V-positive as well as TUNEL-positive cells suggesting that CBD induces apoptosis. CBD increased the expression of ATF4 (activating transcription factor 4) and CHOP (CCAAT/enhancer-binding protein homologous protein), elevated endoplasmic reticulum stress, and enhanced reactive oxygen species levels indicating that CBD also promotes paraptosis. CBD also induced the expression of Atg7, phospho-Beclin-1, and LC3 suggesting that CBD also accelerates autophagy. Since, the MAPK pathway is a common cascade that is involved in the regulation of apoptosis, paraptosis, and autophagy, we investigated the effect of CBD on the activation of JNK, p38, and ERK pathways. CBD activated all the forms of MAPK proteins and pharmacological inhibition of these proteins reverted the observed effects. Our findings implied that CBD could induce CRC cell death by activating apoptosis, paraptosis, and autophagy through the activation of the MAPK pathway.
Collapse
Affiliation(s)
- Na Young Kim
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Wittig F, Pannenberg L, Schwarz R, Bekeschus S, Ramer R, Hinz B. Antiangiogenic Action of JZL184 on Endothelial Cells via Inhibition of VEGF Expression in Hypoxic Lung Cancer Cells. Cells 2023; 12:2332. [PMID: 37830546 PMCID: PMC10572003 DOI: 10.3390/cells12192332] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 10/14/2023] Open
Abstract
JZL184, an inhibitor of monoacylglycerol lipase (MAGL) and thus of the degradation of the endocannabinoid 2-arachidonoylglycerol (2-AG), mediates various anticancer effects in preclinical studies. However, studies on the effect of this or other MAGL inhibitors under hypoxia, an important factor in tumor biology and response to cancer therapy, have not yet been performed in cancer cells. In the present study, the impact of the conditioned media (CM) of A549 and H358 lung cancer cells incubated with JZL184 under hypoxic conditions on the angiogenic properties of human umbilical vein endothelial cells (HUVECs) was investigated. Treatment of HUVECs with CM derived from cancer cells cultured for 48 h under hypoxic conditions was associated with a substantial increase in migration and tube formation compared with unconditioned medium, which was inhibited when cancer cells were incubated with JZL184. In this process, JZL184 led to a significant increase in 2-AG levels in both cell lines. Analysis of a panel of proangiogenic factors revealed inhibition of hypoxia-induced vascular endothelial growth factor (VEGF) expression by JZL184. Antiangiogenic and VEGF-lowering effects were also demonstrated for the MAGL inhibitor MJN110. Receptor antagonist experiments suggest partial involvement of the cannabinoid receptors CB1 and CB2 in the antiangiogenic and VEGF-lowering effects induced by JZL184. The functional importance of VEGF for angiogenesis in the selected system is supported by observations showing inhibition of VEGF receptor 2 (VEGFR2) phosphorylation in HUVECs by CM from hypoxic cancer cells treated with JZL184 or when hypoxic cancer cell-derived CM was spiked with a neutralizing VEGF antibody. On the other hand, JZL184 did not exert a direct effect on VEGFR2 activation induced by recombinant VEGF, so there seems to be no downstream effect on already released VEGF. In conclusion, these results reveal a novel mechanism of antiangiogenic action of JZL184 under conditions of hypoxic tumor-endothelial communication.
Collapse
Affiliation(s)
- Felix Wittig
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany; (F.W.); (L.P.); (R.S.); (R.R.)
| | - Liza Pannenberg
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany; (F.W.); (L.P.); (R.S.); (R.R.)
| | - Rico Schwarz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany; (F.W.); (L.P.); (R.S.); (R.R.)
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany;
| | - Robert Ramer
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany; (F.W.); (L.P.); (R.S.); (R.R.)
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany; (F.W.); (L.P.); (R.S.); (R.R.)
| |
Collapse
|
4
|
Osorio-Perez RM, Rodríguez-Manzo G, Espinosa-Riquer ZP, Cruz SL, González-Espinosa C. Endocannabinoid modulation of allergic responses: Focus on the control of FcεRI-mediated mast cell activation. Eur J Cell Biol 2023; 102:151324. [PMID: 37236045 DOI: 10.1016/j.ejcb.2023.151324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Allergic reactions are highly prevalent pathologies initiated by the production of IgE antibodies against harmless antigens (allergens) and the activation of the high-affinity IgE receptor (FcεRI) expressed in the surface of basophils and mast cells (MCs). Research on the mechanisms of negative control of those exacerbated inflammatory reactions has been intense in recent years. Endocannabinoids (eCBs) show important regulatory effects on MC-mediated immune responses, mainly inhibiting the production of pro-inflammatory mediators. However, the description of the molecular mechanisms involved in eCB control of MC activation is far from complete. In this review, we aim to summarize the available information regarding the role of eCBs in the modulation of FcεRI-dependent activation of that cell type, emphasizing the description of the eCB system and the existence of some of its elements in MCs. Unique characteristics of the eCB system and cannabinoid receptors (CBRs) localization and signaling in MCs are mentioned. The described and putative points of cross-talk between CBRs and FcεRI signaling cascades are also presented. Finally, we discuss some important considerations in the study of the effects of eCBs in MCs and the perspectives in the field.
Collapse
Affiliation(s)
- Rubi Monserrat Osorio-Perez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico
| | - Gabriela Rodríguez-Manzo
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico
| | - Zyanya P Espinosa-Riquer
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico
| | - Silvia L Cruz
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico
| | - Claudia González-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico.
| |
Collapse
|
5
|
Aliya S, Farani MR, Kim E, Kim S, Gupta VK, Kumar K, Huh YS. Therapeutic targeting of the tumor microenvironments with cannabinoids and their analogs: Update on clinical trials. ENVIRONMENTAL RESEARCH 2023; 231:115862. [PMID: 37146933 DOI: 10.1016/j.envres.2023.115862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/07/2023]
Abstract
Cancer is a major global public health concern that affects both industrialized and developing nations. Current cancer chemotherapeutic options are limited by side effects, but plant-derived alternatives and their derivatives offer the possibilities of enhanced treatment response and reduced side effects. A plethora of recently published articles have focused on treatments based on cannabinoids and cannabinoid analogs and reported that they positively affect healthy cell growth and reverse cancer-related abnormalities by targeting aberrant tumor microenvironments (TMEs), lowering tumorigenesis, preventing metastasis, and/or boosting the effectiveness of chemotherapy and radiotherapy. Furthermore, TME modulating systems are receiving much interest in the cancer immunotherapy field because it has been shown that TMEs have significant impacts on tumor progression, angiogenesis, invasion, migration, epithelial to mesenchymal transition, metastasis and development of drug resistance. Here, we have reviewed the effective role of cannabinoids, their analogs and cannabinoid nano formulations on the cellular components of TME (endothelial cells, pericytes, fibroblast and immune cells) and how efficiently it retards the progression of carcinogenesis is discussed. The article summarizes the existing research on the molecular mechanisms of cannabinoids regulation of the TME and finally highlights the human studies on cannabinoids' active interventional clinical trials. The conclusion outlines the need for future research involving clinical trials of cannabinoids to demonstrate their efficacy and activity as a treatment/prevention for various types of human malignancies.
Collapse
Affiliation(s)
- Sheik Aliya
- Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea
| | | | - Eunsu Kim
- Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Suheon Kim
- Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Vivek Kumar Gupta
- Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Krishan Kumar
- Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Yun Suk Huh
- Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
6
|
Conte C, Longobardi G, Barbieri A, Palma G, Luciano A, Dal Poggetto G, Avitabile C, Pecoraro A, Russo A, Russo G, Laurienzo P, Romanelli A, Quaglia F. Non-covalent strategies to functionalize polymeric nanoparticles with NGR peptides for targeting breast cancer. Int J Pharm 2023; 633:122618. [PMID: 36657553 DOI: 10.1016/j.ijpharm.2023.122618] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
Surface functionalization of nanoparticles (NPs) with tumor-targeting peptides is an emerging approach with a huge potential to translate in the clinic and ameliorate the efficacy of nano-oncologicals. One major challenge is to find straightforward strategies for anchoring peptides on the surface of biodegradable NPs and ensuring their correct exposure and orientation to bind the target receptor. Here, we propose a non-covalent strategy to functionalize polyester aminic NPs based on the formation of either electrostatic or lipophilic interactions between NPs and the peptide modified with an anchoring moiety. We selected an iNGRt peptide containing a CendR motif (CRNGR) targeting neuropilin receptor 1 (NRP-1), which is upregulated in several cancers. iNGRt was linked with either a short poly(glutamic acid) chain (polyE) or a palmitoyl chain (Palm) and used to functionalize the surface of NPs made of a diamine poly(ε-caprolactone). iNGRt-PolyE was adsorbed on preformed cationic NPs through electrostatic interaction, whereas iNGRt-Palm was integrated into the forming NPs through interactions. In both cases, peptides were strongly associated with NPs of ∼100 nm, low polydispersity indexes, and positive zeta potential values. NPs entered MDA-MB231 breast cancer cells overexpressing NRP-1 via receptor-mediated endocytosis and showed a different cell localization depending on the mode of peptide anchoring. When loaded with the lipophilic anticancer drug docetaxel (DTX), NPs functionalized with the iNGRt-Palm variant exerted a time- and dose-dependent cytotoxicity similar to DTX in MDA-MB-231 cells but were less toxic than DTX toward control MRC-5 human fibroblasts, not expressing NRP-1. In a heterotopic mouse model of triple negative breast cancer, iNGRt-Palm NPs were tolerated better than free DTX and demonstrated superior anticancer activity and survival compared to both free DTX and NPs without peptide functionalization. We foresee that the functionalization strategy with palmitoylated peptides proposed here can be extended to other biodegradable NPs and peptide sequences designed for therapeutic or targeting purposes.
Collapse
Affiliation(s)
- Claudia Conte
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy.
| | - Giuseppe Longobardi
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Antonio Barbieri
- Animal Facility Unit, Istituto Nazionale Tumori "Fondazione Pascale", Via M. Semmola, 52, 80131 (NA) Naples, Italy
| | - Giuseppe Palma
- Animal Facility Unit, Istituto Nazionale Tumori "Fondazione Pascale", Via M. Semmola, 52, 80131 (NA) Naples, Italy
| | - Antonio Luciano
- Animal Facility Unit, Istituto Nazionale Tumori "Fondazione Pascale", Via M. Semmola, 52, 80131 (NA) Naples, Italy
| | - Giovanni Dal Poggetto
- Institute for Polymers, Composites and Biomaterials, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | | | - Annalisa Pecoraro
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Annapina Russo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Giulia Russo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Paola Laurienzo
- Institute for Polymers, Composites and Biomaterials, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | | | - Fabiana Quaglia
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; Institute for Polymers, Composites and Biomaterials, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| |
Collapse
|
7
|
Khoury M, Cohen I, Bar-Sela G. “The Two Sides of the Same Coin”—Medical Cannabis, Cannabinoids and Immunity: Pros and Cons Explained. Pharmaceutics 2022; 14:pharmaceutics14020389. [PMID: 35214123 PMCID: PMC8877666 DOI: 10.3390/pharmaceutics14020389] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 02/01/2023] Open
Abstract
Cannabis, as a natural medicinal remedy, has long been used for palliative treatment to alleviate the side effects caused by diseases. Cannabis-based products isolated from plant extracts exhibit potent immunoregulatory properties, reducing chronic inflammatory processes and providing much needed pain relief. They are a proven effective solution for treatment-based side effects, easing the resulting symptoms of the disease. However, we discuss the fact that cannabis use may promote the progression of a range of malignancies, interfere with anti-cancer immunotherapy, or increase susceptibility to viral infections and transmission. Most cannabis preparations or isolated active components cause an overall potent immunosuppressive impact among users, posing a considerable hazard to patients with suppressed or compromised immune systems. In this review, current knowledge and perceptions of cannabis or cannabinoids and their impact on various immune-system components will be discussed as the “two sides of the same coin” or “double-edged sword”, referring to something that can have both favorable and unfavorable consequences. We propose that much is still unknown about adverse reactions to its use, and its integration with medical treatment should be conducted cautiously with consideration of the individual patient, effector cells, microenvironment, and the immune system.
Collapse
Affiliation(s)
- Mona Khoury
- Cancer Center, Emek Medical Center, 21 Yitzhak Rabin Blvd, Afula 1834111, Israel; (M.K.); (I.C.)
- Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3200002, Israel
| | - Idan Cohen
- Cancer Center, Emek Medical Center, 21 Yitzhak Rabin Blvd, Afula 1834111, Israel; (M.K.); (I.C.)
| | - Gil Bar-Sela
- Cancer Center, Emek Medical Center, 21 Yitzhak Rabin Blvd, Afula 1834111, Israel; (M.K.); (I.C.)
- Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3200002, Israel
- Oncology & Hematology Division, Emek Medical Center, Yitshak Rabin Boulevard 21, Afula 1834111, Israel
- Correspondence: ; Tel.: +972-4-6495725; Fax: +972-4-6163992
| |
Collapse
|
8
|
The Interplay between the Immune and the Endocannabinoid Systems in Cancer. Cells 2021; 10:cells10061282. [PMID: 34064197 PMCID: PMC8224348 DOI: 10.3390/cells10061282] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
The therapeutic potential of Cannabis sativa has been recognized since ancient times. Phytocannabinoids, endocannabinoids and synthetic cannabinoids activate two major G protein-coupled receptors, subtype 1 and 2 (CB1 and CB2). Cannabinoids (CBs) modulate several aspects of cancer cells, such as apoptosis, autophagy, proliferation, migration, epithelial-to-mesenchymal transition and stemness. Moreover, agonists of CB1 and CB2 receptors inhibit angiogenesis and lymphangiogenesis in vitro and in vivo. Low-grade inflammation is a hallmark of cancer in the tumor microenvironment (TME), which contains a plethora of innate and adaptive immune cells. These cells play a central role in tumor initiation and growth and the formation of metastasis. CB2 and, to a lesser extent, CB1 receptors are expressed on a variety of immune cells present in TME (e.g., T cells, macrophages, mast cells, neutrophils, NK cells, dendritic cells, monocytes, eosinophils). The activation of CB receptors modulates a variety of biological effects on cells of the adaptive and innate immune system. The expression of CB2 and CB1 on different subsets of immune cells in TME and hence in tumor development is incompletely characterized. The recent characterization of the human cannabinoid receptor CB2-Gi signaling complex will likely aid to design potent and specific CB2/CB1 ligands with therapeutic potential in cancer.
Collapse
|
9
|
Saviano F, Lovato T, Russo A, Russo G, Bouton CR, Shattock RJ, Alexander C, Quaglia F, Blakney AK, Gurnani P, Conte C. Ornithine-derived oligomers and dendrimers for in vitro delivery of DNA and ex vivo transfection of skin cells via saRNA. J Mater Chem B 2021; 8:4940-4949. [PMID: 32463058 DOI: 10.1039/d0tb00942c] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gene therapies are undergoing a renaissance, primarily due to their potential for applications in vaccination for infectious diseases and cancers. Although the biology of these technologies is rapidly evolving, delivery strategies need to be improved to overcome the poor pharmacokinetics and cellular transport of nucleic acids whilst maintaining patient safety. In this work, we describe the divergent synthesis of biodegradable cationic dendrimers based on the amino acid ornithine as non-viral gene delivery vectors and evaluate their potential as delivery vectors for DNA and RNA. The dendrimers effectively complexed model nucleic acids at lower N/P ratios than polyethyleneimine and outperformed it in DNA transfection experiments with ratios above 5. Remarkably, all dendrimer polyplexes at N/P = 2 achieved up to 7-fold higher protein content over an optimized PEI formulation when used for transfections with self-amplifying RNA (saRNA). Finally, transfection studies utilizing human skin explants revealed an increase of cells producing protein from 2% with RNA alone to 12% with dendrimer polyplexes, attributed to expression enrichment predominantly in epithelial cells, fibroblasts and leukocytes, with minor enrichment in NK cells, T cells, monocytes, and B cells. Overall, this study indicates the clear potential of ornithine dendrimers as safe and effective delivery vectors for both DNA and RNA therapeutics.
Collapse
Affiliation(s)
- Francesca Saviano
- Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy.
| | - Tatiana Lovato
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK.
| | - Annapina Russo
- Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy.
| | - Giulia Russo
- Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy.
| | - Clément R Bouton
- Department of Infectious Disease, Imperial College London, School of Medicine, St Mary's Hospital, Praed Street, London W2 1NY, UK.
| | - Robin J Shattock
- Department of Infectious Disease, Imperial College London, School of Medicine, St Mary's Hospital, Praed Street, London W2 1NY, UK.
| | - Cameron Alexander
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK.
| | - Fabiana Quaglia
- Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy.
| | - Anna K Blakney
- Department of Infectious Disease, Imperial College London, School of Medicine, St Mary's Hospital, Praed Street, London W2 1NY, UK.
| | - Pratik Gurnani
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK.
| | - Claudia Conte
- Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy.
| |
Collapse
|
10
|
Virgilio A, Esposito V, Pecoraro A, Russo A, Vellecco V, Pepe A, Bucci M, Russo G, Galeone A. Structural properties and anticoagulant/cytotoxic activities of heterochiral enantiomeric thrombin binding aptamer (TBA) derivatives. Nucleic Acids Res 2021; 48:12556-12565. [PMID: 33270863 PMCID: PMC7736819 DOI: 10.1093/nar/gkaa1109] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/09/2020] [Accepted: 11/30/2020] [Indexed: 01/31/2023] Open
Abstract
The thrombin binding aptamer (TBA) possesses promising antiproliferative properties. However, its development as an anticancer agent is drastically impaired by its concomitant anticoagulant activity. Therefore, suitable chemical modifications in the TBA sequence would be required in order to preserve its antiproliferative over anticoagulant activity. In this paper, we report structural investigations, based on circular dichroism (CD) and nuclear magnetic resonance spectroscopy (NMR), and biological evaluation of four pairs of enantiomeric heterochiral TBA analogues. The four TBA derivatives of the d-series are composed by d-residues except for one l-thymidine in the small TT loops, while their four enantiomers are composed by l-residues except for one d-thymidine in the same TT loop region. Apart from the left-handedness for the l-series TBA derivatives, CD and NMR measurements have shown that all TBA analogues are able to adopt the antiparallel, monomolecular, ‘chair-like’ G-quadruplex structure characteristic of the natural D-TBA. However, although all eight TBA derivatives are endowed with remarkable cytotoxic activities against colon and lung cancer cell lines, only TBA derivatives of the l-series show no anticoagulant activity and are considerably resistant in biological environments.
Collapse
Affiliation(s)
- Antonella Virgilio
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Veronica Esposito
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Annalisa Pecoraro
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Annapina Russo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Valentina Vellecco
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Antonietta Pepe
- Department of Sciences, University of Basilicata, Viale dell'Ateneo Lucano 10, I-85100 Potenza, Italy
| | - Mariarosaria Bucci
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Giulia Russo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Aldo Galeone
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| |
Collapse
|
11
|
Pecoraro A, Pagano M, Russo G, Russo A. Role of Autophagy in Cancer Cell Response to Nucleolar and Endoplasmic Reticulum Stress. Int J Mol Sci 2020; 21:ijms21197334. [PMID: 33020404 PMCID: PMC7582989 DOI: 10.3390/ijms21197334] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022] Open
Abstract
Eukaryotic cells are exposed to many internal and external stimuli that affect their fate. In particular, the exposure to some of these stimuli induces stress triggering a variety of stress responses aimed to re-establish cellular homeostasis. It is now established that the deregulation of stress response pathways plays a central role in cancer initiation and progression, allowing the adaptation of cells to an altered state in the new environment. Autophagy is a tightly regulated pathway which exerts “housekeeping” role in physiological processes. Recently, a growing amount of evidence highlighted the crucial role of autophagy in the regulation of integrated stress responses, including nucleolar and endoplasmic reticulum. In this review, we attempt to afford an overview of the complex role of nucleolar and endoplasmic reticulum stress-response mechanisms in the regulation of autophagy in cancer and cancer treatment.
Collapse
Affiliation(s)
| | | | - Giulia Russo
- Correspondence: (G.R.); (A.R.); Tel.: +39-081-678415 (G.R.); +39-081-678414 (A.R.)
| | - Annapina Russo
- Correspondence: (G.R.); (A.R.); Tel.: +39-081-678415 (G.R.); +39-081-678414 (A.R.)
| |
Collapse
|
12
|
Braile M, Cristinziano L, Marcella S, Varricchi G, Marone G, Modestino L, Ferrara AL, De Ciuceis A, Scala S, Galdiero MR, Loffredo S. LPS-mediated neutrophil VEGF-A release is modulated by cannabinoid receptor activation. J Leukoc Biol 2020; 109:621-631. [PMID: 32573828 DOI: 10.1002/jlb.3a0520-187r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/14/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022] Open
Abstract
Neutrophils (PMNs) are innate immune cells with primary roles in inflammation and in host defense against infections. Both inflammatory and tumor angiogenesis are modulated by a sequential, coordinated production of angiogenic factors such as vascular endothelial growth factors (VEGFs), angiopoietins, hepatocyte growth factor (HGF), and chemokines. These factors are produced by several immune cells, including PMNs. Activation of cannabinoid receptor type-1 (CB1 ) and -2 (CB2 ) has been suggested as a new strategy to modulate in vitro and in vivo angiogenesis. We sought to investigate whether activation of CB1 and CB2 by CB agonists modulate LPS-mediated angiogenic activity of human PMNs. Highly purified PMNs were isolated from buffy coats of healthy donors. Cells were stimulated with CB1 and CB2 agonists/antagonists alone and/or in combination with LPS. Angiogenic factors in cell-free supernatants were measured by ELISA. The modulation of activation markers of PMNs by CB agonists was evaluated by flow cytometry. Angiogenesis in vitro was measured as tube formation by optical microscopy. Endothelial cell permeability was assessed by an in vitro vascular permeability assay. LPS-activated PMNs released VEGF-A, CXCL8, and HGF. Preincubation of PMNs with low concentrations of CB1 and CB2 agonists inhibited VEGF-A release induced by LPS, but did not affect CXCL8 and HGF production. The effects of CB agonists on VEGF-A release induced by LPS were reversed by preincubation with CB antagonists. CB agonists modulated in vitro angiogenesis and endothelial permeability induced by supernatants of LPS-activated PMNs through the reduction of VEGF-A. Neutrophils play a central role in the control of bacterial infections and in the outcome of sepsis. The latter condition is associated with an increase in circulating levels of VEGF-A. We demonstrated that low concentrations of CB agonists inhibit VEGF-A release from LPS-activated PMNs. These results suggest that CB agonists might represent a novel therapeutic strategy in patients with sepsis.
Collapse
Affiliation(s)
- Mariantonia Braile
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Leonardo Cristinziano
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Simone Marcella
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,CNR Institute of Experimental Endocrinology and Oncology "G. Salvatore", Naples, Italy
| | - Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Italy.,Azienda Ospedaliera Ospedali dei Colli-Monaldi Hospital Pharmacy, Naples, Italy
| | - Luca Modestino
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Agnese De Ciuceis
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Sara Scala
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,CNR Institute of Experimental Endocrinology and Oncology "G. Salvatore", Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,CNR Institute of Experimental Endocrinology and Oncology "G. Salvatore", Naples, Italy
| |
Collapse
|
13
|
uL3 Mediated Nucleolar Stress Pathway as a New Mechanism of Action of Antiproliferative G-quadruplex TBA Derivatives in Colon Cancer Cells. Biomolecules 2020; 10:biom10040583. [PMID: 32290083 PMCID: PMC7226491 DOI: 10.3390/biom10040583] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/28/2020] [Accepted: 04/05/2020] [Indexed: 12/29/2022] Open
Abstract
The antiproliferative G-quadruplex aptamers are a promising and challenging subject in the framework of the anticancer therapeutic oligonucleotides research field. Although several antiproliferative G-quadruplex aptamers have been identified and proven to be effective on different cancer cell lines, their mechanism of action is still unexplored. We have recently described the antiproliferative activity of a heterochiral thrombin binding aptamer (TBA) derivative, namely, LQ1. Here, we investigate the molecular mechanisms of LQ1 activity and the structural and antiproliferative properties of two further TBA derivatives, differing from LQ1 only by the small loop base-compositions. We demonstrate that in p53 deleted colon cancer cells, LQ1 causes nucleolar stress, impairs ribosomal RNA processing, leading to the accumulation of pre-ribosomal RNAs, arrests cells in the G2/M phase and induces early apoptosis. Importantly, the depletion of uL3 abrogates all these effects, indicating that uL3 is a crucial player in the mechanism of action of LQ1. Taken together, our findings identify p53-independent and uL3-dependent nucleolar stress as a novel stress response pathway activated by a specific G-quadruplex TBA derivative. To the best of our knowledge, this investigation reveals, for the first time, the involvement of the nucleolar stress pathway in the mechanism of action of antiproliferative G-quadruplex aptamers.
Collapse
|
14
|
Role of uL3 in the Crosstalk between Nucleolar Stress and Autophagy in Colon Cancer Cells. Int J Mol Sci 2020; 21:ijms21062143. [PMID: 32244996 PMCID: PMC7139652 DOI: 10.3390/ijms21062143] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 12/22/2022] Open
Abstract
The nucleolus is the site of ribosome biogenesis and has been recently described as important sensor for a variety of cellular stressors. In the last two decades, it has been largely demonstrated that many chemotherapeutics act by inhibiting early or late rRNA processing steps with consequent alteration of ribosome biogenesis and activation of nucleolar stress response. The overall result is cell cycle arrest and/or apoptotic cell death of cancer cells. Our previously data demonstrated that ribosomal protein uL3 is a key sensor of nucleolar stress activated by common chemotherapeutic agents in cancer cells lacking p53. We have also demonstrated that uL3 status is associated to chemoresistance; down-regulation of uL3 makes some chemotherapeutic drugs ineffective. Here, we demonstrate that in colon cancer cells, the uL3 status affects rRNA synthesis and processing with consequent activation of uL3-mediated nucleolar stress pathway. Transcriptome analysis of HCT 116p53−/− cells expressing uL3 and of a cell sub line stably depleted of uL3 treated with Actinomycin D suggests a new extra-ribosomal role of uL3 in the regulation of autophagic process. By using confocal microscopy and Western blotting experiments, we demonstrated that uL3 acts as inhibitory factor of autophagic process; the absence of uL3 is associated to increase of autophagic flux and to chemoresistance. Furthermore, experiments conducted in presence of chloroquine, a known inhibitor of autophagy, indicate a role of uL3 in chloroquine-mediated inhibition of autophagy. On the basis of these results and our previous findings, we hypothesize that the absence of uL3 in cancer cells might inhibit cancer cell response to drug treatment through the activation of cytoprotective autophagy. The restoration of uL3 could enhance the activity of many drugs thanks to its pro-apoptotic and anti-autophagic activity.
Collapse
|
15
|
Carotenuto P, Pecoraro A, Palma G, Russo G, Russo A. Therapeutic Approaches Targeting Nucleolus in Cancer. Cells 2019; 8:E1090. [PMID: 31527430 PMCID: PMC6770360 DOI: 10.3390/cells8091090] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/08/2019] [Accepted: 09/13/2019] [Indexed: 01/08/2023] Open
Abstract
The nucleolus is a distinct sub-cellular compartment structure in the nucleus. First observed more than 200 years ago, the nucleolus is detectable by microscopy in eukaryotic cells and visible during the interphase as a sub-nuclear structure immersed in the nucleoplasm, from which it is not separated from any membrane. A huge number of studies, spanning over a century, have identified ribosome biogenesis as the main function of the nucleolus. Recently, novel functions, independent from ribosome biogenesis, have been proposed by several proteomic, genomic, and functional studies. Several works have confirmed the non-canonical role for nucleoli in regulating important cellular processes including genome stability, cell-cycle control, the cellular senescence, stress responses, and biogenesis of ribonucleoprotein particles (RNPs). Many authors have shown that both canonical and non-canonical functions of the nucleolus are associated with several cancer-related processes. The association between the nucleolus and cancer, first proposed by cytological and histopathological studies showing that the number and shape of nucleoli are commonly altered in almost any type of cancer, has been confirmed at the molecular level by several authors who demonstrated that numerous mechanisms occurring in the nucleolus are altered in tumors. Recently, therapeutic approaches targeting the nucleolus in cancer have started to be considered as an emerging "hallmark" of cancer and several therapeutic interventions have been developed. This review proposes an up-to-date overview of available strategies targeting the nucleolus, focusing on novel targeted therapeutic approaches. Finally, a target-based classification of currently available treatment will be proposed.
Collapse
Affiliation(s)
- Pietro Carotenuto
- The Institute of Cancer Research, Cancer Therapeutic Unit, London SM2 5NG, UK.
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy.
| | - Annalisa Pecoraro
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Gaetano Palma
- Department of Advanced Biomedical Science, School of Medicine, University of Naples Federico II, 80131 Naples, Italy.
| | - Giulia Russo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Annapina Russo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| |
Collapse
|
16
|
Badal S, Smith KN, Rajnarayanan R. Analysis of natural product regulation of cannabinoid receptors in the treatment of human disease. Pharmacol Ther 2017; 180:24-48. [PMID: 28583800 DOI: 10.1016/j.pharmthera.2017.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The organized, tightly regulated signaling relays engaged by the cannabinoid receptors (CBs) and their ligands, G proteins and other effectors, together constitute the endocannabinoid system (ECS). This system governs many biological functions including cell proliferation, regulation of ion transport and neuronal messaging. This review will firstly examine the physiology of the ECS, briefly discussing some anomalies in the relay of the ECS signaling as these are consequently linked to maladies of global concern including neurological disorders, cardiovascular disease and cancer. While endogenous ligands are crucial for dispatching messages through the ECS, there are also commonalities in binding affinities with copious exogenous ligands, both natural and synthetic. Therefore, this review provides a comparative analysis of both types of exogenous ligands with emphasis on natural products given their putative safer efficacy and the role of Δ9-tetrahydrocannabinol (Δ9-THC) in uncovering the ECS. Efficacy is congruent to both types of compounds but noteworthy is the effect of a combination therapy to achieve efficacy without unideal side-effects. An example is Sativex that displayed promise in treating Huntington's disease (HD) in preclinical models allowing for its transition to current clinical investigation. Despite the in vitro and preclinical efficacy of Δ9-THC to treat neurodegenerative ailments, its psychotropic effects limit its clinical applicability to treating feeding disorders. We therefore propose further investigation of other compounds and their combinations such as the triterpene, α,β-amyrin that exhibited greater binding affinity to CB1 than CB2 and was more potent than Δ9-THC and the N-alkylamides that exhibited CB2 selective affinity; the latter can be explored towards peripherally exclusive ECS modulation. The synthetic CB1 antagonist, Rimonabant was pulled from commercial markets for the treatment of diabetes, however its analogue SR144528 maybe an ideal lead molecule towards this end and HU-210 and Org27569 are also promising synthetic small molecules.
Collapse
Affiliation(s)
- S Badal
- Department of Basic Medical Sciences, Faculty of Medical Sciences, University of the West Indies, Mona, Jamaica.
| | - K N Smith
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R Rajnarayanan
- Jacobs School of Medicine and Biomedical Sciences, Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14228, USA
| |
Collapse
|
17
|
Russo A, Saide A, Smaldone S, Faraonio R, Russo G. Role of uL3 in Multidrug Resistance in p53-Mutated Lung Cancer Cells. Int J Mol Sci 2017; 18:ijms18030547. [PMID: 28273808 PMCID: PMC5372563 DOI: 10.3390/ijms18030547] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/21/2017] [Accepted: 03/01/2017] [Indexed: 01/23/2023] Open
Abstract
Cancer is one of the most common causes of death among adults. Chemotherapy is crucial in determining patient survival and quality of life. However, the development of multidrug resistance (MDR) continues to pose a significant challenge in the management of cancer. In this study, we analyzed the role of human ribosomal protein uL3 (formerly rpL3) in multidrug resistance. Our studies revealed that uL3 is a key determinant of multidrug resistance in p53-mutated lung cancer cells by controlling the cell redox status. We established and characterized a multidrug resistant Calu-6 cell line. We found that uL3 down-regulation correlates positively with multidrug resistance. Restoration of the uL3 protein level re-sensitized the resistant cells to the drug by regulating the reactive oxygen species (ROS) levels, glutathione content, glutamate release, and cystine uptake. Chromatin immunoprecipitation experiments and luciferase assays demonstrated that uL3 coordinated the expression of stress-response genes acting as transcriptional repressors of solute carrier family 7 member 11 (xCT) and glutathione S-transferase α1 (GST-α1), independently of Nuclear factor erythroid 2-related factor 2 (Nrf2). Altogether our results describe a new function of uL3 as a regulator of oxidative stress response genes and advance our understanding of the molecular mechanisms underlying multidrug resistance in cancers.
Collapse
Affiliation(s)
- Annapina Russo
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Assunta Saide
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Silvia Smaldone
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Raffaella Faraonio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via Sergio Pansini 5, 80131 Naples, Italy.
| | - Giulia Russo
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Naples, Italy.
| |
Collapse
|
18
|
Ribosomal Proteins Control or Bypass p53 during Nucleolar Stress. Int J Mol Sci 2017; 18:ijms18010140. [PMID: 28085118 PMCID: PMC5297773 DOI: 10.3390/ijms18010140] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/12/2016] [Accepted: 01/05/2017] [Indexed: 12/20/2022] Open
Abstract
The nucleolus is the site of ribosome biogenesis, a complex process that requires the coordinate activity of all three RNA polymerases and hundreds of non-ribosomal factors that participate in the maturation of ribosomal RNA (rRNA) and assembly of small and large subunits. Nevertheless, emerging studies have highlighted the fundamental role of the nucleolus in sensing a variety of cellular stress stimuli that target ribosome biogenesis. This condition is known as nucleolar stress and triggers several response pathways to maintain cell homeostasis, either p53-dependent or p53-independent. The mouse double minute (MDM2)-p53 stress signaling pathways are activated by multiple signals and are among the most important regulators of cellular homeostasis. In this review, we will focus on the role of ribosomal proteins in p53-dependent and p53-independent response to nucleolar stress considering novel identified regulators of these pathways. We describe, in particular, the role of ribosomal protein uL3 (rpL3) in p53-independent nucleolar stress signaling pathways.
Collapse
|
19
|
Russo A, Saide A, Cagliani R, Cantile M, Botti G, Russo G. rpL3 promotes the apoptosis of p53 mutated lung cancer cells by down-regulating CBS and NFκB upon 5-FU treatment. Sci Rep 2016; 6:38369. [PMID: 27924828 PMCID: PMC5141482 DOI: 10.1038/srep38369] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/08/2016] [Indexed: 02/06/2023] Open
Abstract
5-FU is a chemotherapy drug commonly used for the treatment of human cancers; however drug resistance represents a major challenge for its clinical application. In the present study, we reporte that rpL3 induced by 5-FU treatment in Calu-6 cells represses CBS transcription and reduces CBS protein stability leading to a decrease of CBS protein levels. rpL3 also regulates negatively the activation of NFκB by preventing NFκB nuclear translocation through IκB-α up-regulation. Furthermore, we demonstrate that rpL3 significantly enhances the apoptosis of 5-FU treated Calu-6 cells promoting the overexpression of the pro-apoptotic proteins Bax and the inhibition of the anti-apoptotic protein Bcl-2. We finally demonstrate that rpL3 potentiates 5-FU efficacy inhibiting cell migration and invasion. Our results suggest that combination of rpL3 and 5-FU is a promising strategy for chemotherapy of lung cancers lacking functional p53 that are resistant to 5-FU.
Collapse
Affiliation(s)
- Annapina Russo
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Naples, Italy
| | - Assunta Saide
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Naples, Italy
| | - Roberta Cagliani
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Naples, Italy
| | - Monica Cantile
- Department of Pathology, Istituto Nazionale Tumori "Fondazione Pascale"-IRCCS via Mariano Semmola, Napoli 80131, Italy
| | - Gerardo Botti
- Department of Pathology, Istituto Nazionale Tumori "Fondazione Pascale"-IRCCS via Mariano Semmola, Napoli 80131, Italy
| | - Giulia Russo
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Naples, Italy
| |
Collapse
|
20
|
Russo A, Pagliara V, Albano F, Esposito D, Sagar V, Loreni F, Irace C, Santamaria R, Russo G. Regulatory role of rpL3 in cell response to nucleolar stress induced by Act D in tumor cells lacking functional p53. Cell Cycle 2016; 15:41-51. [PMID: 26636733 DOI: 10.1080/15384101.2015.1120926] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Many chemotherapeutic drugs cause nucleolar stress and p53-independent pathways mediating the nucleolar stress response are emerging. Here, we demonstrate that ribosomal stress induced by Actinomycin D (Act D) is associated to the up-regulation of ribosomal protein L3 (rpL3) and its accumulation as ribosome-free form in lung and colon cancer cell lines devoid of p53. Free rpL3 regulates p21 expression at transcriptional and post-translational levels through a molecular mechanism involving extracellular-signal-regulated kinases1/2 (ERK1/2) and mouse double minute-2 homolog (MDM2). Our data reveal that rpL3 participates to cell response acting as a critical regulator of apoptosis and cell migration. It is noteworthy that silencing of rpL3 abolishes the cytotoxic effects of Act D suggesting that the loss of rpL3 makes chemotherapy drugs ineffective while rpL3 overexpression associates to a strong increase of Act D-mediated inhibition of cell migration. Taking together our results show that the efficacy of Act D chemotherapy depends on rpL3 status revealing new specific targets involved in the molecular pathways activated by Act D in cancers lacking of p53. Hence, the development of treatments aimed at upregulating rpL3 may be beneficial for the treatment of these cancers.
Collapse
Affiliation(s)
- Annapina Russo
- a Department of Pharmacia , University of Naples "Federico II," ; Naples , Italy
| | - Valentina Pagliara
- a Department of Pharmacia , University of Naples "Federico II," ; Naples , Italy
| | - Francesco Albano
- a Department of Pharmacia , University of Naples "Federico II," ; Naples , Italy
| | - Davide Esposito
- b Department of Molecular Medicine and Medical Biotechnology , University of Naples "Federico II," Naples , Italy.,c Department of Oncological Sciences , Icahn School of Medicine at Mount Sinai , New York , NY , USA
| | - Vinay Sagar
- d Department of Biology , University of Rome "Tor Vergata," Rome , Italy
| | - Fabrizio Loreni
- d Department of Biology , University of Rome "Tor Vergata," Rome , Italy
| | - Carlo Irace
- a Department of Pharmacia , University of Naples "Federico II," ; Naples , Italy
| | - Rita Santamaria
- a Department of Pharmacia , University of Naples "Federico II," ; Naples , Italy
| | - Giulia Russo
- a Department of Pharmacia , University of Naples "Federico II," ; Naples , Italy
| |
Collapse
|
21
|
Vaia M, Petrosino S, De Filippis D, Negro L, Guarino A, Carnuccio R, Di Marzo V, Iuvone T. Palmitoylethanolamide reduces inflammation and itch in a mouse model of contact allergic dermatitis. Eur J Pharmacol 2016; 791:669-674. [PMID: 27720681 DOI: 10.1016/j.ejphar.2016.10.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 10/01/2016] [Accepted: 10/04/2016] [Indexed: 12/25/2022]
Abstract
In mice, 2,4-dinitrofluorobenzene (DNFB) induces contact allergic dermatitis (CAD), which, in a late phase, is characterized by mast cell (MC) infiltration and angiogenesis. Palmitoylethanolamide (PEA), an endogenous anti-inflammatory molecule, acts by down-modulating MCs following activation of the cannabinoid CB2 receptor and peroxisome proliferator-activated receptor-α (PPAR-α). We have previously reported the anti-inflammatory effect of PEA in the early stage of CAD. Here, we examined whether PEA reduces the features of the late stage of CAD including MC activation, angiogenesis and itching. After sensitization to DNFB, female C57BL/6J mice underwent to three DNFB challenges at days 5, 12 and 19 and treatments were given at each challenge and for two more days. CAD was expressed as Δ increase in ear thickness between challenged and un-challenged mice. PEA (5mg/kg/i.p.) reduced: i) the DNFB-induced Δ increase; ii) the number of MCs per tissue area; iii) the expression of VEGF and its receptor Flk-1. These effects were reversed by co-administration of AM630 (1mg/kg/i.p.), a CB2 antagonist, but not GW6471 (1mg/kg/i.p.), a PPAR-α antagonist. Finally, PEA reduced the number of ear scratchings 48h after DNFB challenge and this effect was reversed by both CB2 and PPAR-α antagonists, suggesting the involvement of both receptors. PEA, by reducing the features of late stage CAD in mice, may be beneficial in this pathological condition.
Collapse
Affiliation(s)
- Massimo Vaia
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Stefania Petrosino
- Istituto di Chimica Biomolecolare (ICB), Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy; Endocannabinoid Research Group, Italy; Epitech Group S.p.A., Via Luigi Einaudi 13, 35030 Saccolongo, PD, Italy
| | - Daniele De Filippis
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Luana Negro
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Andrea Guarino
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Rosa Carnuccio
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Vincenzo Di Marzo
- Istituto di Chimica Biomolecolare (ICB), Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy; Endocannabinoid Research Group, Italy.
| | - Teresa Iuvone
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy; Endocannabinoid Research Group, Italy
| |
Collapse
|
22
|
Staiano RI, Loffredo S, Borriello F, Iannotti FA, Piscitelli F, Orlando P, Secondo A, Granata F, Lepore MT, Fiorelli A, Varricchi G, Santini M, Triggiani M, Di Marzo V, Marone G. Human lung-resident macrophages express CB1 and CB2 receptors whose activation inhibits the release of angiogenic and lymphangiogenic factors. J Leukoc Biol 2016; 99:531-40. [PMID: 26467187 PMCID: PMC4787289 DOI: 10.1189/jlb.3hi1214-584r] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 07/28/2015] [Accepted: 09/02/2015] [Indexed: 01/03/2023] Open
Abstract
Macrophages are pivotal effector cells in immune responses and tissue remodeling by producing a wide spectrum of mediators, including angiogenic and lymphangiogenic factors. Activation of cannabinoid receptor types 1 and 2 has been suggested as a new strategy to modulate angiogenesis in vitro and in vivo. We investigated whether human lung-resident macrophages express a complete endocannabinoid system by assessing their production of endocannabinoids and expression of cannabinoid receptors. Unstimulated human lung macrophage produce 2-arachidonoylglycerol,N-arachidonoyl-ethanolamine,N-palmitoyl-ethanolamine, and N-oleoyl-ethanolamine. On LPS stimulation, human lung macrophages selectively synthesize 2-arachidonoylglycerol in a calcium-dependent manner. Human lung macrophages express cannabinoid receptor types 1 and 2, and their activation induces ERK1/2 phosphorylation and reactive oxygen species generation. Cannabinoid receptor activation by the specific synthetic agonists ACEA and JWH-133 (but not the endogenous agonist 2-arachidonoylglycerol) markedly inhibits LPS-induced production of vascular endothelial growth factor-A, vascular endothelial growth factor-C, and angiopoietins and modestly affects IL-6 secretion. No significant modulation of TNF-α or IL-8/CXCL8 release was observed. The production of vascular endothelial growth factor-A by human monocyte-derived macrophages is not modulated by activation of cannabinoid receptor types 1 and 2. Given the prominent role of macrophage-assisted vascular remodeling in many tumors, we identified the expression of cannabinoid receptors in lung cancer-associated macrophages. Our results demonstrate that cannabinoid receptor activation selectively inhibits the release of angiogenic and lymphangiogenic factors from human lung macrophage but not from monocyte-derived macrophages. Activation of cannabinoid receptors on tissue-resident macrophages might be a novel strategy to modulate macrophage-assisted vascular remodeling in cancer and chronic inflammation.
Collapse
Affiliation(s)
- Rosaria I Staiano
- Departments of *Translational Medical Sciences and Center for Basic and Clinical Immunology Research and Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy; Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy; Endocannabinoid Research Group, Institute of Protein Biochemistry, Consiglio Nazionale delle Ricerche, Naples, Italy; Thoracic Surgery Unit, Second University of Naples, Naples, Italy; Division of Allergy and Clinical Immunology, University of Salerno, Salerno, Italy; and Consiglio Nazionale delle Ricerche Institute of Experimental Endocrinology and Oncology "G. Salvatore," Naples, Italy
| | - Stefania Loffredo
- Departments of *Translational Medical Sciences and Center for Basic and Clinical Immunology Research and Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy; Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy; Endocannabinoid Research Group, Institute of Protein Biochemistry, Consiglio Nazionale delle Ricerche, Naples, Italy; Thoracic Surgery Unit, Second University of Naples, Naples, Italy; Division of Allergy and Clinical Immunology, University of Salerno, Salerno, Italy; and Consiglio Nazionale delle Ricerche Institute of Experimental Endocrinology and Oncology "G. Salvatore," Naples, Italy
| | - Francesco Borriello
- Departments of *Translational Medical Sciences and Center for Basic and Clinical Immunology Research and Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy; Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy; Endocannabinoid Research Group, Institute of Protein Biochemistry, Consiglio Nazionale delle Ricerche, Naples, Italy; Thoracic Surgery Unit, Second University of Naples, Naples, Italy; Division of Allergy and Clinical Immunology, University of Salerno, Salerno, Italy; and Consiglio Nazionale delle Ricerche Institute of Experimental Endocrinology and Oncology "G. Salvatore," Naples, Italy
| | - Fabio Arturo Iannotti
- Departments of *Translational Medical Sciences and Center for Basic and Clinical Immunology Research and Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy; Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy; Endocannabinoid Research Group, Institute of Protein Biochemistry, Consiglio Nazionale delle Ricerche, Naples, Italy; Thoracic Surgery Unit, Second University of Naples, Naples, Italy; Division of Allergy and Clinical Immunology, University of Salerno, Salerno, Italy; and Consiglio Nazionale delle Ricerche Institute of Experimental Endocrinology and Oncology "G. Salvatore," Naples, Italy
| | - Fabiana Piscitelli
- Departments of *Translational Medical Sciences and Center for Basic and Clinical Immunology Research and Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy; Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy; Endocannabinoid Research Group, Institute of Protein Biochemistry, Consiglio Nazionale delle Ricerche, Naples, Italy; Thoracic Surgery Unit, Second University of Naples, Naples, Italy; Division of Allergy and Clinical Immunology, University of Salerno, Salerno, Italy; and Consiglio Nazionale delle Ricerche Institute of Experimental Endocrinology and Oncology "G. Salvatore," Naples, Italy
| | - Pierangelo Orlando
- Departments of *Translational Medical Sciences and Center for Basic and Clinical Immunology Research and Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy; Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy; Endocannabinoid Research Group, Institute of Protein Biochemistry, Consiglio Nazionale delle Ricerche, Naples, Italy; Thoracic Surgery Unit, Second University of Naples, Naples, Italy; Division of Allergy and Clinical Immunology, University of Salerno, Salerno, Italy; and Consiglio Nazionale delle Ricerche Institute of Experimental Endocrinology and Oncology "G. Salvatore," Naples, Italy
| | - Agnese Secondo
- Departments of *Translational Medical Sciences and Center for Basic and Clinical Immunology Research and Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy; Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy; Endocannabinoid Research Group, Institute of Protein Biochemistry, Consiglio Nazionale delle Ricerche, Naples, Italy; Thoracic Surgery Unit, Second University of Naples, Naples, Italy; Division of Allergy and Clinical Immunology, University of Salerno, Salerno, Italy; and Consiglio Nazionale delle Ricerche Institute of Experimental Endocrinology and Oncology "G. Salvatore," Naples, Italy
| | - Francescopaolo Granata
- Departments of *Translational Medical Sciences and Center for Basic and Clinical Immunology Research and Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy; Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy; Endocannabinoid Research Group, Institute of Protein Biochemistry, Consiglio Nazionale delle Ricerche, Naples, Italy; Thoracic Surgery Unit, Second University of Naples, Naples, Italy; Division of Allergy and Clinical Immunology, University of Salerno, Salerno, Italy; and Consiglio Nazionale delle Ricerche Institute of Experimental Endocrinology and Oncology "G. Salvatore," Naples, Italy
| | - Maria Teresa Lepore
- Departments of *Translational Medical Sciences and Center for Basic and Clinical Immunology Research and Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy; Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy; Endocannabinoid Research Group, Institute of Protein Biochemistry, Consiglio Nazionale delle Ricerche, Naples, Italy; Thoracic Surgery Unit, Second University of Naples, Naples, Italy; Division of Allergy and Clinical Immunology, University of Salerno, Salerno, Italy; and Consiglio Nazionale delle Ricerche Institute of Experimental Endocrinology and Oncology "G. Salvatore," Naples, Italy
| | - Alfonso Fiorelli
- Departments of *Translational Medical Sciences and Center for Basic and Clinical Immunology Research and Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy; Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy; Endocannabinoid Research Group, Institute of Protein Biochemistry, Consiglio Nazionale delle Ricerche, Naples, Italy; Thoracic Surgery Unit, Second University of Naples, Naples, Italy; Division of Allergy and Clinical Immunology, University of Salerno, Salerno, Italy; and Consiglio Nazionale delle Ricerche Institute of Experimental Endocrinology and Oncology "G. Salvatore," Naples, Italy
| | - Gilda Varricchi
- Departments of *Translational Medical Sciences and Center for Basic and Clinical Immunology Research and Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy; Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy; Endocannabinoid Research Group, Institute of Protein Biochemistry, Consiglio Nazionale delle Ricerche, Naples, Italy; Thoracic Surgery Unit, Second University of Naples, Naples, Italy; Division of Allergy and Clinical Immunology, University of Salerno, Salerno, Italy; and Consiglio Nazionale delle Ricerche Institute of Experimental Endocrinology and Oncology "G. Salvatore," Naples, Italy
| | - Mario Santini
- Departments of *Translational Medical Sciences and Center for Basic and Clinical Immunology Research and Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy; Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy; Endocannabinoid Research Group, Institute of Protein Biochemistry, Consiglio Nazionale delle Ricerche, Naples, Italy; Thoracic Surgery Unit, Second University of Naples, Naples, Italy; Division of Allergy and Clinical Immunology, University of Salerno, Salerno, Italy; and Consiglio Nazionale delle Ricerche Institute of Experimental Endocrinology and Oncology "G. Salvatore," Naples, Italy
| | - Massimo Triggiani
- Departments of *Translational Medical Sciences and Center for Basic and Clinical Immunology Research and Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy; Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy; Endocannabinoid Research Group, Institute of Protein Biochemistry, Consiglio Nazionale delle Ricerche, Naples, Italy; Thoracic Surgery Unit, Second University of Naples, Naples, Italy; Division of Allergy and Clinical Immunology, University of Salerno, Salerno, Italy; and Consiglio Nazionale delle Ricerche Institute of Experimental Endocrinology and Oncology "G. Salvatore," Naples, Italy
| | - Vincenzo Di Marzo
- Departments of *Translational Medical Sciences and Center for Basic and Clinical Immunology Research and Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy; Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy; Endocannabinoid Research Group, Institute of Protein Biochemistry, Consiglio Nazionale delle Ricerche, Naples, Italy; Thoracic Surgery Unit, Second University of Naples, Naples, Italy; Division of Allergy and Clinical Immunology, University of Salerno, Salerno, Italy; and Consiglio Nazionale delle Ricerche Institute of Experimental Endocrinology and Oncology "G. Salvatore," Naples, Italy
| | - Gianni Marone
- Departments of *Translational Medical Sciences and Center for Basic and Clinical Immunology Research and Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy; Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy; Endocannabinoid Research Group, Institute of Protein Biochemistry, Consiglio Nazionale delle Ricerche, Naples, Italy; Thoracic Surgery Unit, Second University of Naples, Naples, Italy; Division of Allergy and Clinical Immunology, University of Salerno, Salerno, Italy; and Consiglio Nazionale delle Ricerche Institute of Experimental Endocrinology and Oncology "G. Salvatore," Naples, Italy
| |
Collapse
|
23
|
Wang J, Zheng J, Kulkarni A, Wang W, Garg S, Prather PL, Hauer-Jensen M. Palmitoylethanolamide regulates development of intestinal radiation injury in a mast cell-dependent manner. Dig Dis Sci 2014; 59:2693-703. [PMID: 24848354 PMCID: PMC4213290 DOI: 10.1007/s10620-014-3212-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/10/2014] [Indexed: 01/29/2023]
Abstract
BACKGROUND Mast cells and neuroimmune interactions regulate the severity of intestinal radiation mucositis, a dose-limiting toxicity during radiation therapy of abdominal malignancies. AIM Because endocannabinoids (eCB) regulate intestinal inflammation, we investigated the effect of the cannabimimetic, palmitoylethanolamide (PEA), in a mast competent (+/+) and mast cell-deficient (Ws/Ws) rat model. METHODS Rats underwent localized, fractionated intestinal irradiation, and received daily injections with vehicle or PEA from 1 day before until 2 weeks after radiation. Intestinal injury was assessed noninvasively by luminol bioluminescence, and, at 2 weeks, by histology, morphometry, and immunohistochemical analysis, gene expression analysis, and pathway analysis. RESULTS Compared with +/+ rats, Ws/Ws rats sustained more intestinal structural injury (p = 0.01), mucosal damage (p = 0.02), neutrophil infiltration (p = 0.0003), and collagen deposition (p = 0.004). PEA reduced structural radiation injury (p = 0.02), intestinal wall thickness (p = 0.03), collagen deposition (p = 0.03), and intestinal inflammation (p = 0.02) in Ws/Ws rats, but not in +/+ rats. PEA inhibited mast cell-derived cellular immune response and anti-inflammatory IL-6 and IL-10 signaling and activated the prothrombin pathway in +/+ rats. In contrast, while PEA suppressed nonmast cell-derived immune responses, it increased anti-inflammatory IL-10 and IL-6 signaling and decreased activation of the prothrombin pathway in Ws/Ws rats. CONCLUSIONS These data demonstrate that the absence of mast cells exacerbate radiation enteropathy by mechanisms that likely involve the coagulation system, anti-inflammatory cytokine signaling, and the innate immune system; and that these mechanisms are regulated by PEA in a mast cell-dependent manner. The eCB system should be explored as target for mitigating intestinal radiation injury.
Collapse
Affiliation(s)
- Junru Wang
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Junying Zheng
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Ashwini Kulkarni
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Wen Wang
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sarita Garg
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Paul L. Prather
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Martin Hauer-Jensen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas,Surgical Service, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| |
Collapse
|
24
|
Mayol L, De Stefano D, Campani V, De Falco F, Ferrari E, Cencetti C, Matricardi P, Maiuri L, Carnuccio R, Gallo A, Maiuri MC, De Rosa G. Design and characterization of a chitosan physical gel promoting wound healing in mice. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:1483-1493. [PMID: 24584669 DOI: 10.1007/s10856-014-5175-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/10/2014] [Indexed: 06/03/2023]
Abstract
In this study, a sterile and biocompatible chitosan (CHI) gel for wound healing applications was formulated. CHI powder was treated in autoclave (ttCHI) to prepare sterile formulations. The heat treatment modified the CHI molecular weight, as evidenced by GPC analysis, and its physical-chemical features. Differential scanning calorimetry studies indicated that the macromolecules, before and after thermal treatment, differ in the strength of water-polymer interaction leading to different viscoelastic and flow properties. Thermally treated CHI exhibited the following effects: (i) increased the proliferation and migration of human foreskin foetal fibroblasts at 24 h; (ii) accelerated wound healing (measured as area of lesion) at 3 and 10 days in an in vivo model of pressure ulcers. These effects were linked to the increase of the hydroxyproline and haemoglobin content as well as Wnt protein expression. Moreover, we found a reduction of myeloperoxidase activity and TNF-α mRNA expression. These observations suggest the potential of this novel CHI gel in wound healing and other therapeutic applications.
Collapse
Affiliation(s)
- Laura Mayol
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Campora L, Miragliotta V, Ricci E, Cristino L, Di Marzo V, Albanese F, Federica Della Valle M, Abramo F. Cannabinoid receptor type 1 and 2 expression in the skin of healthy dogs and dogs with atopic dermatitis. Am J Vet Res 2012; 73:988-95. [PMID: 22738050 DOI: 10.2460/ajvr.73.7.988] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine the distribution of cannabinoid receptor type 1 (CB1) and cannabinoid receptor type 2 (CB2) in skin (including hair follicles and sweat and sebaceous glands) of clinically normal dogs and dogs with atopic dermatitis (AD) and to compare results with those for positive control samples for CB1 (hippocampus) and CB2 (lymph nodes). SAMPLE Skin samples from 5 healthy dogs and 5 dogs with AD and popliteal lymph node and hippocampus samples from 5 cadavers of dogs. PROCEDURES CB1 and CB2 were immunohistochemically localized in formalin-fixed, paraffin-embedded sections of tissue samples. RESULTS In skin samples of healthy dogs, CB1 and CB2 immunoreactivity was detected in various types of cells in the epidermis and in cells in the dermis, including perivascular cells with mast cell morphology, fibroblasts, and endothelial cells. In skin samples of dogs with AD, CB1 and CB2 immunoreactivity was stronger than it was in skin samples of healthy dogs. In positive control tissue samples, CB1 immunoreactivity was detected in all areas of the hippocampus, and CB2 immunoreactivity was detected in B-cell zones of lymphoid follicles. CONCLUSIONS AND CLINICAL RELEVANCE The endocannabinoid system and cannabimimetic compounds protect against effects of allergic inflammatory disorders in various species of mammals. Results of the present study contributed to knowledge of the endocannabinoid system and indicated this system may be a target for treatment of immune-mediated and inflammatory disorders such as allergic skin diseases in dogs.
Collapse
Affiliation(s)
- Luca Campora
- Department of Animal Pathology Faculty of Veterinary Medicine, University of Pisa, 56124 Pisa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Castro PR, Marques SM, Campos PP, Cardoso CC, Sampaio FP, Ferreira MA, Andrade SP. Kinetics of implant-induced inflammatory angiogenesis in abdominal muscle wall in mice. Microvasc Res 2012; 84:9-15. [DOI: 10.1016/j.mvr.2012.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/09/2012] [Accepted: 04/11/2012] [Indexed: 11/27/2022]
|
27
|
The endocannabinoid system: a revolving plate in neuro-immune interaction in health and disease. Amino Acids 2012; 45:95-112. [PMID: 22367605 DOI: 10.1007/s00726-012-1252-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 02/14/2012] [Indexed: 12/21/2022]
Abstract
Studies of the last 40 years have brought to light an important physiological network, the endocannabinoid system. Endogenous and exogenous cannabinoids mediate their effects through activation of specific cannabinoid receptors. This modulatory homoeostatic system operates in the regulation of brain function and also in the periphery. The cannabinoid system has been shown to be involved in regulating the immune system. Studies examining the effect of cannabinoid-based drugs on immunity have shown that many cellular and cytokine mechanisms are modulated by these agents, thus raising the hypothesis that these compounds may be of value in the management of chronic inflammatory diseases. The special properties of endocannabinoids as neurotransmitters, their pleiotropic effects and the impact on immune function show that the endocannabinoid system represents a revolving plate of neural and immune interactions. In this paper, we outline current information on immune effects of cannabinoids in health and disease.
Collapse
|
28
|
De Filippis D, Esposito G, Cirillo C, Cipriano M, De Winter BY, Scuderi C, Sarnelli G, Cuomo R, Steardo L, De Man JG, Iuvone T. Cannabidiol reduces intestinal inflammation through the control of neuroimmune axis. PLoS One 2011; 6:e28159. [PMID: 22163000 PMCID: PMC3232190 DOI: 10.1371/journal.pone.0028159] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 11/02/2011] [Indexed: 12/12/2022] Open
Abstract
Enteric glial cells (EGC) actively mediate acute and chronic inflammation in the gut; EGC proliferate and release neurotrophins, growth factors, and pro-inflammatory cytokines which, in turn, may amplify the immune response, representing a very important link between the nervous and immune systems in the intestine. Cannabidiol (CBD) is an interesting compound because of its ability to control reactive gliosis in the CNS, without any unwanted psychotropic effects. Therefore the rationale of our study was to investigate the effect of CBD on intestinal biopsies from patients with ulcerative colitis (UC) and from intestinal segments of mice with LPS-induced intestinal inflammation. CBD markedly counteracted reactive enteric gliosis in LPS-mice trough the massive reduction of astroglial signalling neurotrophin S100B. Histological, biochemical and immunohistochemical data demonstrated that S100B decrease was associated with a considerable decrease in mast cell and macrophages in the intestine of LPS-treated mice after CBD treatment. Moreover the treatment of LPS-mice with CBD reduced TNF-α expression and the presence of cleaved caspase-3. Similar results were obtained in ex vivo cultured human derived colonic biopsies. In biopsies of UC patients, both during active inflammation and in remission stimulated with LPS+INF-γ, an increased glial cell activation and intestinal damage were evidenced. CBD reduced the expression of S100B and iNOS proteins in the human biopsies confirming its well documented effect in septic mice. The activity of CBD is, at least partly, mediated via the selective PPAR-gamma receptor pathway. CBD targets enteric reactive gliosis, counteracts the inflammatory environment induced by LPS in mice and in human colonic cultures derived from UC patients. These actions lead to a reduction of intestinal damage mediated by PPARgamma receptor pathway. Our results therefore indicate that CBD indeed unravels a new therapeutic strategy to treat inflammatory bowel diseases.
Collapse
Affiliation(s)
- Daniele De Filippis
- Department of Experimental Pharmacology, University of Naples FEDERICO II, Naples, Italy
- Endocannabinoid Research Group, Pozzuoli, Italy
| | - Giuseppe Esposito
- Department of Human Physiology and Pharmacology V. Erspamer, University of Rome “La Sapienza”, Rome, Italy
| | - Carla Cirillo
- Department of Clinical and Experimental Medicine, University of Naples FEDERICO II, Naples, Italy
| | - Mariateresa Cipriano
- Department of Experimental Pharmacology, University of Naples FEDERICO II, Naples, Italy
- Endocannabinoid Research Group, Pozzuoli, Italy
| | - Benedicte Y. De Winter
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Caterina Scuderi
- Department of Human Physiology and Pharmacology V. Erspamer, University of Rome “La Sapienza”, Rome, Italy
| | - Giovanni Sarnelli
- Department of Clinical and Experimental Medicine, University of Naples FEDERICO II, Naples, Italy
| | - Rosario Cuomo
- Department of Clinical and Experimental Medicine, University of Naples FEDERICO II, Naples, Italy
| | - Luca Steardo
- Department of Human Physiology and Pharmacology V. Erspamer, University of Rome “La Sapienza”, Rome, Italy
| | - Joris G. De Man
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Teresa Iuvone
- Department of Experimental Pharmacology, University of Naples FEDERICO II, Naples, Italy
- Endocannabinoid Research Group, Pozzuoli, Italy
- * E-mail:
| |
Collapse
|
29
|
Oesch S, Gertsch J. Cannabinoid receptor ligands as potential anticancer agents — high hopes for new therapies? J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.61.07.0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Abstract
Objectives
The endocannabinoid system is an endogenous lipid signalling network comprising arachidonic-acid-derived ligands, cannabinoid (CB) receptors, transporters and endocannabinoid degrading enzymes. The CB1 receptor is predominantly expressed in neurons but is also co-expressed with the CB2 receptor in peripheral tissues. In recent years, CB receptor ligands, including Δ9-tetrahydrocannabinol, have been proposed as potential anticancer agents.
Key findings
This review critically discusses the pharmacology of CB receptor activation as a novel therapeutic anticancer strategy in terms of ligand selectivity, tissue specificity and potency. Intriguingly, antitumour effects mediated by cannabinoids are not confined to inhibition of cancer cell proliferation; cannabinoids also reduce angiogenesis, cell migration and metastasis, inhibit carcinogenesis and attenuate inflammatory processes. In the last decade several new selective CB1 and CB2 receptor agents have been described, but most studies in the area of cancer research have used non-selective CB ligands. Moreover, many of these ligands exert prominent CB receptor-independent pharmacological effects, such as activation of the G-protein-coupled receptor GPR55, peroxisome proliferator-activated receptor gamma and the transient receptor potential vanilloid channels.
Summary
The role of the endocannabinoid system in tumourigenesis is still poorly understood and the molecular mechanisms of cannabinoid anticancer action need to be elucidated. The development of CB2-selective anticancer agents could be advantageous in light of the unwanted central effects exerted by CB1 receptor ligands. Probably the most interesting question is whether cannabinoids could be useful in chemoprevention or in combination with established chemotherapeutic agents.
Collapse
Affiliation(s)
- Susanne Oesch
- University Children's Hospital Divisions of Clinical Chemistry and Oncology, University of Zürich, Switzerland
| | - Jürg Gertsch
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
- Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland
| |
Collapse
|
30
|
Endocannabinoids and immune regulation. Pharmacol Res 2009; 60:85-92. [PMID: 19428268 DOI: 10.1016/j.phrs.2009.03.019] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 03/24/2009] [Accepted: 03/31/2009] [Indexed: 12/23/2022]
Abstract
Cannabinoid pharmacology has made important advances in recent years after the discovery of the cannabinoid receptors. These discoveries have added to our understanding of exogenous and endogenous cannabinoid signaling along with exploring the various pathways of their biosynthesis, molecular structure, inactivation, and anatomical distribution of their receptors throughout the body. The endocannabinoid system is involved in immunoregulation and neuroprotection. In this article, we have reviewed the possible mechanisms of the regulation of the immune response by endocannabinoids which include modulation of immune response in different cell types, effect on cytokine network, induction of apoptosis in immune cells and downregulation of innate and adaptive immune response. Studies from our laboratory have suggested that administration of endocannabinoids or use of inhibitors of enzymes that breakdown the endocannabinoids, leads to immunosuppression and recovery from immune-mediated injury to organs such as the liver. Thus, manipulation of endocannabinoids in vivo may constitute a novel treatment modality against inflammatory disorders.
Collapse
|