1
|
Chen A, Li X, Zhao J, Zhou J, Xie C, Chen H, Wang Q, Wang R, Miao D, Li J, Jin J. Chronic alcohol reduces bone mass through inhibiting proliferation and promoting aging of endothelial cells in type-H vessels. Stem Cells Dev 2022; 31:541-554. [DOI: 10.1089/scd.2021.0337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ao Chen
- Nanjing Medical University, 12461, Research Centre for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing, Jiangsu, China
| | - Xiaoting Li
- Nanjing Medical University, 12461, Department of Nutrition and Food Safety, School of Public Health, Nanjing, Jiangsu, China
| | - Jingyu Zhao
- Nanjing Medical University, 12461, Research Centre for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing, Jiangsu, China
| | - Jiawen Zhou
- Nanjing Medical University, 12461, Research Centre for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing, Jiangsu, China
| | - Chunfeng Xie
- Nanjing Medical University, 12461, Department of Nutrition and Food Safety, School of Public Health, Nanjing, Jiangsu, China
| | - Haiyun Chen
- Nanjing Medical University, 12461, Anti-aging Research Laboratory, Friendship Plastic Surgery Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiuyi Wang
- Nanjing Medical University, 12461, Research Centre for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing, Jiangsu, China
| | - Rong Wang
- Nanjing Medical University, 12461, Research Centre for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing, Jiangsu, China
| | - Dengshun Miao
- Nanjing Medical University, Nanjing, Jiangsu, China, 210029, ,
| | - Jie Li
- Xuzhou Medical University, 38044, Department of Orthopaedics, Xuzhou Central Hospital; The Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jianliang Jin
- Nanjing Medical University, 12461, Nanjing, China, 211166
- No.101,Longmian Avenue,Jiangning DistrictChina
| |
Collapse
|
2
|
Li H, Ziemer M, Stojanovic I, Saksida T, Maksimovic-Ivanic D, Mijatovic S, Djmura G, Gajic D, Koprivica I, Krajnovic T, Draca D, Simon JC, Lethaus B, Savkovic V. Mesenchymal Stem Cells From Mouse Hair Follicles Reduce Hypertrophic Scarring in a Murine Wound Healing Model. Stem Cell Rev Rep 2022; 18:2028-2044. [PMID: 35080748 PMCID: PMC9391240 DOI: 10.1007/s12015-021-10288-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2021] [Indexed: 12/11/2022]
Abstract
Wound healing of acute full-thickness injuries and chronic non-healing ulcers leads to delayed wound closure, prolonged recovery period and hypertrophic scarring, generating a demand for an autologous cell therapy and a relevant pre-clinical research models for wound healing. In this study, an immunocompetent model for wound healing was employed using a syngeneic murine cell line of mesenchymal stem cells cultured from the mouse whisker hair follicle outer root sheath (named moMSCORS). moMSCORS were isolated using an air-liquid interface method, expanded in vitro and characterized according to the MSC definition criteria - cell viability, in vitro proliferation, MSC phenotype and multi-lineage differentiations. Moreover, upon applying moMSCORS in an in vivo full-thickness wound model in the syngeneic C57BL/6 mice, the treated wounds displayed different morphology to that of the untreated wound beds. Quantitative evaluation of angiogenesis, granulation and wound closure involving clinical scoring and software-based quantification indicated a lower degree of inflammation in the treated wounds. Histological staining of treated wounds by the means of H&E, Alcian Blue, PicroSirius Red and αSMA immune labelling showed lower cellularity, less collagen filaments as well as thinner dermal and epidermal layers compared with the untreated wounds, indicating a general reduction of hypertrophic scars. The decreased inflammation, accelerated wound closure and non-hypertrophic scarring, which were facilitated by moMSCORS, hereby address a common problem of hypertrophic scars and non-physiological tissue properties upon wound closure, and additionally offer an in vivo model for the autologous cell-based wound healing.
Collapse
Affiliation(s)
- Hanluo Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, 430068, Hubei Province, China.,Department of Cranial Maxillofacial Plastic Surgery, University Clinic Leipzig, 04103, Leipzig, Germany
| | - Mirjana Ziemer
- Clinic for Dermatology, Venereology and Allergology, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Ivana Stojanovic
- Institute for Biological Research "Sinisa Stankovic" (IBISS) - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tamara Saksida
- Institute for Biological Research "Sinisa Stankovic" (IBISS) - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Danijela Maksimovic-Ivanic
- Institute for Biological Research "Sinisa Stankovic" (IBISS) - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sanja Mijatovic
- Institute for Biological Research "Sinisa Stankovic" (IBISS) - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Goran Djmura
- Clinic for Dermatology, Venereology and Allergology, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Dragica Gajic
- Institute for Biological Research "Sinisa Stankovic" (IBISS) - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivan Koprivica
- Institute for Biological Research "Sinisa Stankovic" (IBISS) - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tamara Krajnovic
- Institute for Biological Research "Sinisa Stankovic" (IBISS) - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Dijana Draca
- Institute for Biological Research "Sinisa Stankovic" (IBISS) - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jan-Christoph Simon
- Clinic for Dermatology, Venereology and Allergology, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Bernd Lethaus
- Department of Cranial Maxillofacial Plastic Surgery, University Clinic Leipzig, 04103, Leipzig, Germany
| | - Vuk Savkovic
- Department of Cranial Maxillofacial Plastic Surgery, University Clinic Leipzig, 04103, Leipzig, Germany.
| |
Collapse
|
3
|
Zhou J, Chen A, Wang Z, Zhang J, Chen H, Zhang H, Wang R, Miao D, Jin J. Bmi-1 determines the stemness of renal stem or progenitor cells. Biochem Biophys Res Commun 2020; 529:1165-1172. [PMID: 32819581 DOI: 10.1016/j.bbrc.2020.06.140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/26/2020] [Indexed: 12/24/2022]
Abstract
Renal stem or progenitor cells (RSCs), labeled with CD24 and CD133, play an important role during the repair of renal injury. Bmi-1 is a critical factor in regulating stemness of adult stem cells or progenitor cells. To investigate whether Bmi-1 determines the stemness of RSCs by inhibiting p16 and p53, and/or maintaining redox balance, RSCs were isolated, cultured and analyzed for stemness characterizations. In RSCs from Bmi-1-deficient (Bmi-1-/-) mice and wild type (WT) littermates, self-renewal, stemness, and expressions of molecules for regulating redox balance and cell cycle progression were compared. Self-renewal of RSCs from Bmi-1 and p16 double-knockout (Bmi-1-/-p16-/-), Bmi-1 and p53 double-knockout (Bmi-1-/-p53-/-) and N-acetylcysteine (NAC)-treated Bmi-1-/- mice were further analyzed for amelioration. Human renal proximal tubular epithelial cells (HK2) were also used for signaling analysis. Our results showed that third-passage RSCs from WT mice had good stemness; Bmi-1 deficiency led to the decreased stemness, and the increased apoptosis for RSCs; NAC treatment or p16/p53 deletion ameliorated the decreased self-renewal of RSCs in Bmi-1 deficiency mice by maintaining redox balance or inhibiting cell cycle arrest respectively; Oxidative stress (OS) could negatively feedback regulate the mRNA expressions of Bmi-1, p16 and p53. In conclusion, Bmi-1 determined the stemness of RSCs through maintaining redox balance and preventing cell cycle arrest. Thus, Bmi-1 signaling molecules would be novel therapeutic targets for maintaining RSCs and hampering the progression of kidney diseases to prevent renal failure.
Collapse
Affiliation(s)
- Jiawen Zhou
- Research Centre for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Ao Chen
- Research Centre for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Ziyang Wang
- Research Centre for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jin'ge Zhang
- School of Nursing, Shanxi Medical University, Jinzhong, Shanxi, 030001, China
| | - Haiyun Chen
- Anti-aging Research Laboratory, Friendship Plastic Surgery Hospital, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Hengzhi Zhang
- Research Centre for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Rong Wang
- Research Centre for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Dengshun Miao
- Research Centre for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jianliang Jin
- Research Centre for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
4
|
Vigil D, Konstantinov NK, Barry M, Harford AM, Servilla KS, Kim YH, Sun Y, Ganta K, Tzamaloukas AH. BK nephropathy in the native kidneys of patients with organ transplants: Clinical spectrum of BK infection. World J Transplant 2016; 6:472-504. [PMID: 27683628 PMCID: PMC5036119 DOI: 10.5500/wjt.v6.i3.472] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/25/2016] [Accepted: 09/08/2016] [Indexed: 02/05/2023] Open
Abstract
Nephropathy secondary to BK virus, a member of the Papoviridae family of viruses, has been recognized for some time as an important cause of allograft dysfunction in renal transplant recipients. In recent times, BK nephropathy (BKN) of the native kidneys has being increasingly recognized as a cause of chronic kidney disease in patients with solid organ transplants, bone marrow transplants and in patients with other clinical entities associated with immunosuppression. In such patients renal dysfunction is often attributed to other factors including nephrotoxicity of medications used to prevent rejection of the transplanted organs. Renal biopsy is required for the diagnosis of BKN. Quantitation of the BK viral load in blood and urine are surrogate diagnostic methods. The treatment of BKN is based on reduction of the immunosuppressive medications. Several compounds have shown antiviral activity, but have not consistently shown to have beneficial effects in BKN. In addition to BKN, BK viral infection can cause severe urinary bladder cystitis, ureteritis and urinary tract obstruction as well as manifestations in other organ systems including the central nervous system, the respiratory system, the gastrointestinal system and the hematopoietic system. BK viral infection has also been implicated in tumorigenesis. The spectrum of clinical manifestations from BK infection and infection from other members of the Papoviridae family is widening. Prevention and treatment of BK infection and infections from other Papovaviruses are subjects of intense research.
Collapse
|
5
|
Wei Y, Fang J, Cai S, Lv C, Zhang S, Hua J. Primordial germ cell-like cells derived from canine adipose mesenchymal stem cells. Cell Prolif 2016; 49:503-11. [PMID: 27374854 PMCID: PMC6496567 DOI: 10.1111/cpr.12271] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/30/2016] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Previous studies have shown that adipose mesenchymal stem cells (AMSCs) share the potency of typical bone marrow mesenchymal stem cells (MSCs); however, there is little information concerning characteristics of canine AMSCs (CAMSCs); it has not previously been made clear whether CAMSCs would be able to differentiate into other cell types. MATERIALS AND METHODS In this study, typical AMSC lines were established, and their characteristics including morphology, typical markers and differentiation potentiality were tested. RESULTS The cells exhibited typical MSC morphology and were positive for CD90, CD44 and CD166, considered to be MSCs surface markers. They were negative for CD34 and CD45. The CAMSCs also exhibited embryonic stem cell (ESC) markers, including Oct4 and Sox2, at passage 2. In an appropriate microenvironment, CAMSCs differentiated into EBs and were able to produce cells of the three germ layers. These results indicate that established cells were putative adipocyte-derived MSCs, which also displayed properties of ESCs. Moreover, when the CAMSCs were induced by bone morphogenetic protein 4 (BMP4), they differentiated into PGC-like cells (PGCLCs) and male germ-like cells, which were positive for PR domain-containing 1 (Prdm1), PR domain-containing 14 (Prdm14), doublesex and mab-3 related transcription factor (Dmrt1), as well as for promyelocytic leukaemia zinc finger (Plzf). Quantitative real-time PCR (qRT-PCR) and western blotting analysis verified higher expression levels of these markers. CONCLUSION This study provides an efficient approach to study germ cell development using CAMSCs.
Collapse
Affiliation(s)
- Yudong Wei
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYangling Shaanxi 712100China
| | - Jia Fang
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYangling Shaanxi 712100China
| | - Shufang Cai
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYangling Shaanxi 712100China
| | - Changrong Lv
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYangling Shaanxi 712100China
| | - Shiqiang Zhang
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYangling Shaanxi 712100China
| | - Jinlian Hua
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYangling Shaanxi 712100China
| |
Collapse
|
6
|
Xie C, Jin J, Lv X, Tao J, Wang R, Miao D. Anti-aging Effect of Transplanted Amniotic Membrane Mesenchymal Stem Cells in a Premature Aging Model of Bmi-1 Deficiency. Sci Rep 2015; 5:13975. [PMID: 26370922 PMCID: PMC4570627 DOI: 10.1038/srep13975] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 08/12/2015] [Indexed: 02/01/2023] Open
Abstract
To determine whether transplanted amniotic membrane mesenchymal stem cells (AMSCs) ameliorated the premature senescent phenotype of Bmi-1-deficient mice, postnatal 2-day-old Bmi-1(-/-) mice were injected intraperitoneally with the second-passage AMSCs from amniotic membranes of β-galactosidase (β-gal) transgenic mice or wild-type (WT) mice labeled with DiI. Three reinjections were given, once every seven days. Phenotypes of 5-week-old β-gal(+) AMSC-transplanted or 6-week-old DiI(+) AMSC-transplanted Bmi-1(-/-) mice were compared with vehicle-transplanted Bmi-1(-/-) and WT mice. Vehicle-transplanted Bmi-1(-/-) mice displayed growth retardation and premature aging with decreased cell proliferation and increased cell apoptosis; a decreased ratio and dysmaturity of lymphocytic series; premature osteoporosis with reduced osteogenesis and increased adipogenesis; redox imbalance and DNA damage in multiple organs. Transplanted AMSCs carried Bmi-1 migrated into multiple organs, proliferated and differentiated into multiple tissue cells, promoted growth and delayed senescence in Bmi-1(-/-) transplant recipients. The dysmaturity of lymphocytic series were ameliorated, premature osteoporosis were rescued by promoting osteogenesis and inhibiting adipogenesis, the oxidative stress and DNA damage in multiple organs were inhibited by the AMSC transplantation in Bmi-1(-/-) mice. These findings indicate that AMSC transplantation ameliorated the premature senescent phenotype of Bmi-1-deficient mice and could be a novel therapy to delay aging and prevent aging-associated degenerative diseases.
Collapse
Affiliation(s)
- Chunfeng Xie
- The State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Jianliang Jin
- The State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Xianhui Lv
- The State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Jianguo Tao
- The State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Rong Wang
- The State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Dengshun Miao
- The State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Hematopoietic Origin of Murine Lung Fibroblasts. Stem Cells Int 2015; 2015:159713. [PMID: 26185498 PMCID: PMC4491389 DOI: 10.1155/2015/159713] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 05/21/2015] [Accepted: 05/25/2015] [Indexed: 12/14/2022] Open
Abstract
Multiple origins, including the bone marrow, have been suggested to contribute to fibroblast populations in the lung. Using bone marrow reconstitution strategies, the present study tested the hypothesis that the bone marrow hematopoietic stem cell (HSC) gives rise to lung tissue fibroblasts in vivo. Data demonstrate that the nonadherent bone marrow fraction is enriched for CD45+ HSC-derived cells and was able to reconstitute hematopoiesis in lethally irradiated animals. Analysis of peripheral blood and lung tissues from engrafted mice demonstrated the ability of this population to give rise to CD45+/Discoidin-Domain Receptor-2+ (DDR2) circulating fibroblast precursors (CFPs) in blood and fibroblast populations in lung. An HSC origin for lung fibroblasts was confirmed using a novel clonal cell transplantation method in which the bone marrow is reconstituted by a clonal population derived from a single HSC. Together, these findings provide evidence for an HSC contribution to lung fibroblasts and demonstrate a circulating intermediate through the CD45+/DDR2+ HSC-derived CFP.
Collapse
|
8
|
Stoddart MJ, Bara J, Alini M. Cells and secretome--towards endogenous cell re-activation for cartilage repair. Adv Drug Deliv Rev 2015; 84:135-45. [PMID: 25174306 DOI: 10.1016/j.addr.2014.08.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/26/2014] [Accepted: 08/20/2014] [Indexed: 01/01/2023]
Abstract
Regenerative medicine approaches to cartilage tissue repair have mainly been concerned with the implantation of a scaffold material containing monolayer expanded cells into the defect, with the aim to differentiate the cells into chondrocytes. While this may be a valid approach, the secretome of the implanted cells and its effects on the endogenous resident cells, is gaining in interest. This review aims to summarize the knowledge on the secretome of mesenchymal stem cells, including knowledge from other tissues, in order to indicate how these mechanisms may be of value in repairing articular cartilage defects. Potential therapies and their effects on the repair of articular cartilage defects will be discussed, with a focus on the transition from classical cell therapy to the implantation of cell free matrices releasing specific cytokines.
Collapse
|
9
|
Zanetti A, Grata M, Etling EB, Panday R, Villanueva FS, Toma C. Suspension-Expansion of Bone Marrow Results in Small Mesenchymal Stem Cells Exhibiting Increased Transpulmonary Passage Following Intravenous Administration. Tissue Eng Part C Methods 2015; 21:683-92. [PMID: 25567723 DOI: 10.1089/ten.tec.2014.0344] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been extensively explored in a variety of regenerative medicine applications. The relatively large size of MSCs expanded in tissue culture flasks leads to retention in the microcirculation of the lungs following intravenous delivery, reducing their capacity to reach target sites. We explored whether the expansion of whole marrow in suspension cultures would yield smaller MSCs with increased capacity to traverse the pulmonary microcirculation compared with traditional monolayer cultures. We tested this hypothesis using rat marrow in a suspension bioreactor culture with fibronectin-coated microcarriers, leading to sustained expansion of both the microbead-adherent cells, as well as of a nonadherent cell fraction. Magnetic depletion of CD45(+) cells from the bioreactor cultures after 5 weeks led to a highly enriched CD73(+)/CD90(+)/CD105(+) MSC population. The bioreactor-grown MSCs were significantly smaller than parallel monolayer MSCs (15.1 ± 0.9 μm vs. 18.5 ± 2.3 μm diameter, p<0.05). When fluorescently labeled bioreactor-grown MSCs were intravenously injected into rats, the peak cell concentration in the arterial circulation was an order of magnitude higher than similarly delivered monolayer-grown MSCs (94.8 ± 29.6 vs. 8.2 ± 5.6/10(6) nucleated blood cells, respectively, p<0.05). At 24 h after intravenous injection of the LacZ-labeled bioreactor-grown MSCs, there was a significant threefold decrease in the LacZ-labeled MSCs trapped in the lungs, with a significant increase in the cells reaching the spleen and liver in comparison to their monolayer MSC counterparts. Bioreactor-grown whole marrow cell cultures yielded smaller MSCs with increased capacity to traverse the pulmonary microcirculation compared with traditionally expanded monolayer MSCs. This may significantly improve the capacity and efficiency of these cells to home to injury sites downstream of the lungs.
Collapse
Affiliation(s)
- Andrea Zanetti
- 1 Heart and Vascular Institute, University of Pittsburgh and University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - Michelle Grata
- 1 Heart and Vascular Institute, University of Pittsburgh and University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - Emily B Etling
- 1 Heart and Vascular Institute, University of Pittsburgh and University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - Regeant Panday
- 1 Heart and Vascular Institute, University of Pittsburgh and University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - Flordeliza S Villanueva
- 1 Heart and Vascular Institute, University of Pittsburgh and University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania.,2 The McGowan Center for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Catalin Toma
- 1 Heart and Vascular Institute, University of Pittsburgh and University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania.,2 The McGowan Center for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
10
|
Current perspectives in mesenchymal stem cell therapies for osteoarthritis. Stem Cells Int 2014; 2014:194318. [PMID: 25548573 PMCID: PMC4274908 DOI: 10.1155/2014/194318] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease most commonly occurring in the ageing population. It is a slow progressive condition resulting in the destruction of hyaline cartilage followed by pain and reduced activity. Conventional treatments have little effects on the progression of the condition often leaving surgery as the last option. In the last 10 years tissue engineering utilising mesenchymal stem cells has been emerging as an alternative method for treating OA. Mesenchymal stem cells (MSCs) are multipotent progenitor cells found in various tissues, most commonly bone marrow and adipose tissue. MSCs are capable of differentiating into osteocytes, adipocytes, and chondrocytes. Autologous MSCs can be easily harvested and applied in treatment, but allogenic cells can also be employed. The early uses of MSCs focused on the implantations of cell rich matrixes during open surgeries, resulting in the formation of hyaline-like durable cartilage. More recently, the focus has completely shifted towards direct intra-articular injections where a great number of cells are suspended and injected into affected joints. In this review the history and early uses of MSCs in cartilage regeneration are reviewed and different approaches in current trends are explained and evaluated.
Collapse
|
11
|
Wu Y, Zhang J, Ben X. Neuronal-like cell differentiation of non-adherent bone marrow cell-derived mesenchymal stem cells. Neural Regen Res 2014; 8:2078-85. [PMID: 25206516 PMCID: PMC4146062 DOI: 10.3969/j.issn.1673-5374.2013.22.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 06/30/2013] [Indexed: 01/08/2023] Open
Abstract
Non-adherent bone marrow cell-derived mesenchymal stem cells from C57BL/6J mice were separated and cultured using the “pour-off” method. Non-adherent bone marrow cell-derived mesenchymal stem cells developed colony-forming unit-fibroblasts, and could be expanded by supplementation with epidermal growth factor. Immunocytochemistry showed that the non-adherent bone marrow cell-derived mesenchymal stem cells exposed to basic fibroblast growth factor/epidermal growth factor/nerve growth factor expressed the neuron specific markers, neurofilament-200 and NeuN, in vitro. Non-adherent bone marrow cell-derived mesenchymal stem cells from β-galactosidase transgenic mice were also transplanted into focal ischemic brain (right corpus striatum) of C57BL/6J mice. At 8 weeks, cells positive for LacZ and β-galactosidase staining were observed in the ischemic tissues, and cells co-labeled with both β-galactosidase and NeuN were seen by double immunohistochemical staining. These findings suggest that the non-adherent bone marrow cell-derived mesenchymal stem cells could differentiate into neuronal-like cells in vitro and in vivo.
Collapse
Affiliation(s)
- Yuxin Wu
- Department of Neurosurgery, Nanjing Children's Hospital of Nanjing Medical University, Nanjing 210008, Jiangsu Province, China
| | - Jinghan Zhang
- Department of Newborn Medicine, Nanjing Children's Hospital of Nanjing Medical University, Nanjing 210008, Jiangsu Province, China
| | - Xiaoming Ben
- Department of Newborn Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, China
| |
Collapse
|
12
|
Zheng RC, Park YK, Cho JJ, Kim SK, Heo SJ, Koak JY, Lee JH. Bone regeneration at dental implant sites with suspended stem cells. J Dent Res 2014; 93:1005-13. [PMID: 25183420 DOI: 10.1177/0022034514548706] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
During the maintenance of bone marrow-derived mesenchymal stem cells (BMMSCs), suspended cells are discarded normally. We noted the osteogenic potential of these cells to be like that of anchorage-dependent BMMSCs. Therefore, we characterized suspended BMMSCs from rabbit bone marrow by bioengineering and applied the suspended BMMSCs to double-canaled dental implants inserted into rabbits. After primary isolation of BMMSCs, we collected the suspended cells during primary culture on the third day. The cells were transferred and maintained on an extracellular-matrix-coated culture plate. The cells were characterized and compared with BMMSCs by colony-forming-unit fibroblast (CFU-f) and cell proliferation assay, fluorescence-activated cell sorter (FACS), in vitro multipotency, and reverse transcription polymerase chain reaction (RT-PCR). We also analyzed the osteogenic potential of cells mixed with hydroxyapatite/tricalcium phosphate (HA/TCP) and transplanted into immunocompromised mice. We compared the viability and proliferation of the suspended BMMSCs and BMMSCs on the titanium implant surface and observed cell morphology. Then, the cells mixed with HA/TCP were applied to the double-canaled implants during installation into rabbit tibia. Four weeks later, we analyzed bone formation inside the canal by histomorphometry. The suspended cells showed higher CFU-f on the extracellular matrix (ECM)-coated culture plate and similar results of proliferation capacity compared with BMMSCs. The cells also showed osteogenic, adipogenic, and chondrogenic ability. The suspended cells showed levels of attachment survival and proliferation on the surfaces of titanium implant discs to be higher than or similar to those of BMMSCs. The suspended cells as well as BMMSCs showed stronger bone formation ability in both upper and lower canals of the implants compared with controls on double-canaled implants inserted into rabbit tibia. In this study, we showed that suspended cells after primary BMMSC isolation have bone regeneration capacity like that of BMMSCs, not only in vitro but also in vivo. ECM was valuable for propagation of MSCs for cell-based bone regeneration. Therefore, the suspended cells could also be useful tools for bone regeneration after implant surgery.
Collapse
Affiliation(s)
- R C Zheng
- Department of Prosthodontics & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Y K Park
- Department of Dental Research Institute, Brain Korea 21, Seoul National University, Seoul, South Korea
| | - J J Cho
- Department of Dental Regenerative Biotechnology, School of Dentistry, Seoul, South Korea
| | - S K Kim
- Department of Prosthodontics & Dental Research Institute, Seoul National University Dental Hospital, School of Dentistry, Seoul National University, Seoul, South Korea
| | - S J Heo
- Department of Prosthodontics & Dental Research Institute, Seoul National University Dental Hospital, School of Dentistry, Seoul National University, Seoul, South Korea
| | - J Y Koak
- Department of Prosthodontics & Dental Research Institute, Seoul National University Dental Hospital, School of Dentistry, Seoul National University, Seoul, South Korea
| | - J H Lee
- Department of Prosthodontics, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, South Korea
| |
Collapse
|
13
|
Papadimitropoulos A, Piccinini E, Brachat S, Braccini A, Wendt D, Barbero A, Jacobi C, Martin I. Expansion of human mesenchymal stromal cells from fresh bone marrow in a 3D scaffold-based system under direct perfusion. PLoS One 2014; 9:e102359. [PMID: 25020062 PMCID: PMC4096512 DOI: 10.1371/journal.pone.0102359] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 06/18/2014] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stromal/stem cell (MSC) expansion in conventional monolayer culture on plastic dishes (2D) leads to progressive loss of functionality and thus challenges fundamental studies on the physiology of skeletal progenitors, as well as translational applications for cellular therapy and molecular medicine. Here we demonstrate that 2D MSC expansion can be entirely bypassed by culturing freshly isolated bone marrow nucleated cells within 3D porous scaffolds in a perfusion-based bioreactor system. The 3D-perfusion system generated a stromal tissue that could be enzymatically treated to yield CD45- MSC. As compared to 2D-expanded MSC (control), those derived from 3D-perfusion culture after the same time (3 weeks) or a similar extent of proliferation (7-8 doublings) better maintained their progenitor properties, as assessed by a 4.3-fold higher clonogenicity and the superior differentiation capacity towards all typical mesenchymal lineages. Transcriptomic analysis of MSC from 5 donors validated the robustness of the process and indicated a reduced inter-donor variability and a significant upregulation of multipotency-related gene clusters following 3D-perfusion--as compared to 2D-expansion. Interestingly, the differences in functionality and transcriptomics between MSC expanded in 2D or under 3D-perfusion were only partially captured by cytofluorimetric analysis using conventional surface markers. The described system offers a multidisciplinary approach to study how factors of a 3D engineered niche regulate MSC function and, by streamlining conventional labor-intensive processes, is prone to automation and scalability within closed bioreactor systems.
Collapse
Affiliation(s)
- Adam Papadimitropoulos
- Departments of Surgery and of Biomedicine, Institute for Surgical Research and Hospital Management, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Elia Piccinini
- Departments of Surgery and of Biomedicine, Institute for Surgical Research and Hospital Management, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sophie Brachat
- MusculoSkeletal Diseases, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Alessandra Braccini
- Departments of Surgery and of Biomedicine, Institute for Surgical Research and Hospital Management, University Hospital Basel, University of Basel, Basel, Switzerland
| | - David Wendt
- Departments of Surgery and of Biomedicine, Institute for Surgical Research and Hospital Management, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Andrea Barbero
- Departments of Surgery and of Biomedicine, Institute for Surgical Research and Hospital Management, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Carsten Jacobi
- MusculoSkeletal Diseases, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Ivan Martin
- Departments of Surgery and of Biomedicine, Institute for Surgical Research and Hospital Management, University Hospital Basel, University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
14
|
Rabbani-Chadegani A, Paydar P, Amirshenava M, Aramvash A. An in vitro study on the effect of vinca alkaloid, vinorelbine, on chromatin histone, HMGB proteins and induction of apoptosis in mice non-adherent bone marrow cells. Drug Chem Toxicol 2014; 38:220-6. [PMID: 25004144 DOI: 10.3109/01480545.2014.933347] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Vinoreline is a vinca alkaloid anticancer drug widely used in cancer therapy. Drugs are not target specific, therefore might affect normal tissues/cells, in which bone marrow is the important one. OBJECTIVE To elucidate the cytotoxic and genotoxic effect of vinca alkaloid anti cancer drug, vinorelbine, on mice non-adherent bone marrow cells in vitro. MATERIALS AND METHODS Non-adherent bone marrow cells were isolated and exposed to various concentrations (0-160 µg/ml) for 4 h at 23 °C. The chromatin proteins were analyzed by SDS PAGE and western blot. Fluorescent dye staining of the cells, anion superoxide and DNA fragmentations assays were also employed. RESULT The results from MTT and trypan blue exclusion assays represented reduction of the cells viability. Extractability of histones and HMG proteins contrasted with difficulty as their content was decreased on SDS-gel upon increasing drug concentration as western blots confirmed it. The amount of degradation form of PARP (89 KD) increased significantly in a dose dependent manner. Increase in anion superoxide production and DNA fragmentation together with cytological detection of chromatin condensation and cellular damage upon exposure of the cells to vinorelbine were indicative of apoptosis induction in these normal cells. CONCLUSION Vinorelbine is genotoxic in non-adherent bone marrow cells as affects chromatin components, DNA, histone and HMGB1 proteins and induces apoptosis.
Collapse
Affiliation(s)
- Azra Rabbani-Chadegani
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran , Tehran , Iran
| | | | | | | |
Collapse
|
15
|
Bara JJ, Richards RG, Alini M, Stoddart MJ. Concise Review: Bone Marrow-Derived Mesenchymal Stem Cells Change Phenotype Following In Vitro Culture: Implications for Basic Research and the Clinic. Stem Cells 2014; 32:1713-23. [DOI: 10.1002/stem.1649] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/12/2013] [Accepted: 12/21/2013] [Indexed: 12/18/2022]
Affiliation(s)
| | | | - Mauro Alini
- AO Research Institute Davos; Davos Platz 7270 Davos Switzerland
| | | |
Collapse
|
16
|
Schaap-Oziemlak AM, Kühn PT, van Kooten TG, van Rijn P. Biomaterial–stem cell interactions and their impact on stem cell response. RSC Adv 2014. [DOI: 10.1039/c4ra07915a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In this review, current research in the field of biomaterial properties for directing stem cells are discussed and placed in a critical perspective.
Collapse
Affiliation(s)
- Aneta M. Schaap-Oziemlak
- Department of Biomedical Engineering-FB40
- W.J. Kolff Institute for Biomedical Engineering and Materials Science
- University of Groningen
- University Medical Center Groningen
- 9713 AVGroningen, The Netherlands
| | - Philipp T. Kühn
- Department of Biomedical Engineering-FB40
- W.J. Kolff Institute for Biomedical Engineering and Materials Science
- University of Groningen
- University Medical Center Groningen
- 9713 AVGroningen, The Netherlands
| | - Theo G. van Kooten
- Department of Biomedical Engineering-FB40
- W.J. Kolff Institute for Biomedical Engineering and Materials Science
- University of Groningen
- University Medical Center Groningen
- 9713 AVGroningen, The Netherlands
| | - Patrick van Rijn
- Department of Biomedical Engineering-FB40
- W.J. Kolff Institute for Biomedical Engineering and Materials Science
- University of Groningen
- University Medical Center Groningen
- 9713 AVGroningen, The Netherlands
| |
Collapse
|
17
|
Mesenchymal stromal/stem cells markers in the human bone marrow. Cytotherapy 2013; 15:292-306. [PMID: 23312449 DOI: 10.1016/j.jcyt.2012.11.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 10/17/2012] [Accepted: 11/19/2012] [Indexed: 12/16/2022]
Abstract
BACKGROUND AIMS Mesenchymal stromal/stem cells (MSCs) can be isolated from human bone marrow (BM), expanded ex vivo and identified via numerous surface antigens. Despite the importance of these cells in regenerative therapy programs, it is unclear whether the cell membrane signature defining MSC preparations ex vivo is determined during culture or may reflect an in vivo counterpart. BM-MSC phenotype in vivo requires further investigation. METHODS To characterize cells in their natural BM environment, we performed multi-parametric immunohistochemistry on trabecular bone biopsy specimens from multiple donors and described cells by different morphology and micro-anatomic localization in relationship to a precise pattern of MSC antigen expression. RESULTS Microscopically examined high-power field marrow sections revealed an overlapping in vivo expression of antigens characterizing ex vivo expanded BM-MSCs, including CD10, CD73, CD140b, CD146, GD2 and CD271. Expanding this panel to proteins associated with pluripotency, such as Oct4, Nanog and SSEA-4, we were able to identify different cellular populations in the human trabecular bone and BM expressing different progenitor cell markers. CONCLUSIONS Targeting several multipotency and pluripotency markers, we found that the BM contains identifiable and distinct progenitor cells further justifying their introduction for a wide range of applications in regenerative medicine.
Collapse
|
18
|
|
19
|
Comparative study of in vitro expansion of bone marrow-derived mesenchymal stem cells. Biotechnol Lett 2012; 35:463-9. [DOI: 10.1007/s10529-012-1083-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/31/2012] [Indexed: 10/27/2022]
|
20
|
Akiyama K, You YO, Yamaza T, Chen C, Tang L, Jin Y, Chen XD, Gronthos S, Shi S. Characterization of bone marrow derived mesenchymal stem cells in suspension. Stem Cell Res Ther 2012; 3:40. [PMID: 23083975 PMCID: PMC3580431 DOI: 10.1186/scrt131] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/25/2012] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Bone marrow mesenchymal stem cells (BMMSCs) are a heterogeneous population of postnatal precursor cells with the capacity of adhering to culture dishes generating colony-forming unit-fibroblasts (CFU-F). Here we identify a new subset of BMMSCs that fail to adhere to plastic culture dishes and remain in culture suspension (S-BMMSCs). METHODS To catch S-BMMSCs, we used BMMSCs-produced extracellular cell matrix (ECM)-coated dishes. Isolated S-BMMSCs were analyzed by in vitro stem cell analysis approaches, including flow cytometry, inductive multiple differentiation, western blot and in vivo implantation to assess the bone regeneration ability of S-BMMSCs. Furthermore, we performed systemic S-BMMSCs transplantation to treat systemic lupus erythematosus (SLE)-like MRL/lpr mice. RESULTS S-BMMSCs are capable of adhering to ECM-coated dishes and showing mesenchymal stem cell characteristics with distinction from hematopoietic cells as evidenced by co-expression of CD73 or Oct-4 with CD34, forming a single colony cluster on ECM, and failure to differentiate into hematopoietic cell lineage. Moreover, we found that culture-expanded S-BMMSCs exhibited significantly increased immunomodulatory capacities in vitro and an efficacious treatment for SLE-like MRL/lpr mice by rebalancing regulatory T cells (Tregs) and T helper 17 cells (Th17) through high NO production. CONCLUSIONS These data suggest that it is feasible to improve immunotherapy by identifying a new subset BMMSCs.
Collapse
|
21
|
Baglio SR, Pegtel DM, Baldini N. Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front Physiol 2012; 3:359. [PMID: 22973239 PMCID: PMC3434369 DOI: 10.3389/fphys.2012.00359] [Citation(s) in RCA: 387] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 08/21/2012] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are adult multipotent cells that give rise to various cell types of the mesodermal germ layer. MSCs are of great interest in the field of regenerative medicine and cancer therapy because of their unique ability to home to damaged and cancerous tissue. These cells also regulate the immune response and contribute to reparative processes in different pathological conditions, including musculoskeletal and cardiovascular diseases. The use of MSCs for tissue repair was initially based on the hypothesis that these cells home to and differentiate within the injured tissue into specialized cells. However, it now appears that only a small proportion of transplanted MSCs actually integrate and survive in host tissues. Thus, the predominant mechanism by which MSCs participate in tissue repair seems to be related to their paracrine activity. Indeed, MSCs provide the microenvironment with a multitude of trophic and survival signals including growth factors and cytokines. Recent discoveries suggest that lipid microvesicles released by MSCs may also be important in the physiological function of these cells. Over the past few years the biological relevance of micro- and nano-vesicles released by cells in intercellular communication has been established. Alongside the conventional mediators of cell secretome, these sophisticated nanovesicles transfer proteins, lipids and, most importantly, various forms of RNAs to neighboring cells, thereby mediating a variety of biological responses. The physiological role of MSC-derived vesicles (MSC-MVs) is currently not well understood. Nevertheless, encouraging results indicate that MSC-MVs have similar protective and reparative properties as their cellular counterparts in tissue repair and possibly anti-cancer therapy. Thus, MSC-MVs represent a promising opportunity to develop novel cell-free therapy approaches that might overcome the obstacles and risks associated with the use of native or engineered stem cells.
Collapse
Affiliation(s)
- Serena Rubina Baglio
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli Bologna, Italy
| | | | | |
Collapse
|
22
|
Stolzing A, Bauer E, Scutt A. Suspension cultures of bone-marrow-derived mesenchymal stem cells: effects of donor age and glucose level. Stem Cells Dev 2012; 21:2718-23. [PMID: 22462498 DOI: 10.1089/scd.2011.0406] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Both ageing and diabetes are associated with reduced numbers and functional viability of mesenchymal stem cells (MSCs) in vivo which in turn lead to degenerative pathologies of the musculoskeletal system. The overall aim of this study was to elucidate the effects of age and raised glucose levels on the proliferation and self-renewal of rat nonadherent bone marrow MSCs (Na-BM-MSCs) in suspension cultures. MSC cultures isolated from 3- and 12-month-old rats were maintained using the "pour-off" method for up to 14 days in media containing different glucose levels and the phenotype, growth characteristics, colony forming unit-fibroblastic (CFU-f) numbers, and pluripotency characteristics of these cells were determined. This study indicates that rat adult bone marrow harbors pluripotent Na-BM-MSCs that seem to be unaffected by ageing during in vitro expansion. The Na-BM-MSCs express the pluripotency markers Oct4, Sox2, and Nanog. It was found that culture in high-glucose-containing medium had a negative effect on colony formation and differentiation. In contrast to classical MSC cultures, the generation of colonies by Na-BM-MSCs in suspension culture was not reduced in the older animals. The Na-BM-MSCs were found to express the pluripotency markers Oct4, Sox2, and Nanog, suggesting a more primitive stage of differentiation as compared with adherent MSCs. These data indicate that rat adult bone marrow harbors a population of pluripotent Na-BM-MSCs that appear to be relatively unaffected by ageing during in vitro expansion in suspension.
Collapse
Affiliation(s)
- Alexandra Stolzing
- Fraunhofer Institute for Cell Therapy & Immunology (IZI), Department of Cell Therapy, Leipzig, Germany.
| | | | | |
Collapse
|
23
|
Hinze A, Stolzing A. Microglia differentiation using a culture system for the expansion of mice non-adherent bone marrow stem cells. JOURNAL OF INFLAMMATION-LONDON 2012; 9:12. [PMID: 22471998 PMCID: PMC3495406 DOI: 10.1186/1476-9255-9-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 04/02/2012] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Studying primary adult microglia is hampered because of the difficult isolation procedure and the low cell yield. We therefore established a differentiation protocol using a culture system developed for the expansion of non-adherent bone marrow cells. METHODS Non-adherent bone marrow derived stem cells (NA-BMC) are derived by selective adhesion ('preplating') and are non adhesive adult stem cells. We investigated the changes in bone marrow cell populations by this repeated selective adhesion and compared the potential of the derived cells to differentiate towards microglia. Cells were differentiated with astrocyte conditioned medium (ACM) and granulocyte-monocyte colony stimulating factor (GM-CSF). RESULTS NA-BMC cultures show a steep raise in the fraction of stem cells during the cultivation time and the differentiation potential is of the same quality as established protocols. Around 70% of the cells are microglia defined as being positive for CD11b/CD45 and show phagocytosis activity and oxidative bursts. CONCLUSION The non-adherent cell system has the advantage that is produces stem cell progenitors during expansion and provides good microglial differentiation.
Collapse
Affiliation(s)
- Arnd Hinze
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103, Leipzig, Germany.
| | | |
Collapse
|
24
|
Insausti CL, Blanquer Blanquer M, Meseguer Olmo L, López-Martínez MC, Férez Ruiz X, Rodríguez Lozano FJ, Cabañas Perianes V, Funes C, Nicolás FJ, Majado MJ, Moraleda Jiménez JM. Isolation and Characterization of Mesenchymal Stem Cells from the Fat Layer on the Density Gradient Separated Bone Marrow. Stem Cells Dev 2012; 21:260-72. [DOI: 10.1089/scd.2010.0572] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Carmen L. Insausti
- Unidad de Terapia Celular, Servicio de Hematología, Hospital Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - Miguel Blanquer Blanquer
- Unidad de Terapia Celular, Servicio de Hematología, Hospital Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - Luis Meseguer Olmo
- Unidad de Terapia Celular, Servicio de Hematología, Hospital Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - María C. López-Martínez
- Laboratorio de Oncología Molecular and TGFß, Unidad de Investigación, Hospital Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - Xavier Férez Ruiz
- Unidad de Terapia Celular, Servicio de Hematología, Hospital Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - Francisco J. Rodríguez Lozano
- Unidad de Terapia Celular, Servicio de Hematología, Hospital Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - Valentín Cabañas Perianes
- Unidad de Terapia Celular, Servicio de Hematología, Hospital Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - Consuelo Funes
- Unidad de Terapia Celular, Servicio de Hematología, Hospital Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - Francisco J. Nicolás
- Laboratorio de Oncología Molecular and TGFß, Unidad de Investigación, Hospital Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - María J. Majado
- Unidad de Terapia Celular, Servicio de Hematología, Hospital Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - José M. Moraleda Jiménez
- Unidad de Terapia Celular, Servicio de Hematología, Hospital Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
- Universidad de Murcia, Murcia, Spain
| |
Collapse
|
25
|
Effect of age and diabetes on the response of mesenchymal progenitor cells to fibrin matrices. Int J Biomater 2011; 2011:378034. [PMID: 22194749 PMCID: PMC3238389 DOI: 10.1155/2011/378034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 08/23/2011] [Accepted: 09/04/2011] [Indexed: 11/28/2022] Open
Abstract
Mesenchymal stem cells are showing increasing promise in applications such as tissue engineering and cell therapy. MSC are low in number in bone marrow, and therefore in vitro expansion is often necessary. In vivo, stem cells often reside within a niche acting to protect the cells. These niches are composed of niche cells, stem cells, and extracellular matrix. When blood vessels are damaged, a fibrin clot forms as part of the wound healing response. The clot constitutes a form of stem cell niche as it appears to maintain the stem cell phenotype while supporting MSC proliferation and differentiation during healing. This is particularly appropriate as fibrin is increasingly being suggested as a scaffold meaning that fibrin-based tissue engineering may to some extent recapitulate wound healing. Here, we describe how fibrin modulates the clonogenic capacity of MSC derived from young/old human donors and normal/diabetic rats. Fibrin was prepared using different concentrations to modulate the stiffness of the substrate. MSC were expanded on these scaffolds and analysed. MSC showed an increased self-renewal on soft surfaces. Old and diabetic cells lost the ability to react to these signals and can no longer adapt to the changed environment.
Collapse
|
26
|
Jin J, Zhao Y, Tan X, Guo C, Yang Z, Miao D. An improved transplantation strategy for mouse mesenchymal stem cells in an acute myocardial infarction model. PLoS One 2011; 6:e21005. [PMID: 21698117 PMCID: PMC3117862 DOI: 10.1371/journal.pone.0021005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 05/16/2011] [Indexed: 12/28/2022] Open
Abstract
To develop an effective therapeutic strategy for cardiac regeneration using bone marrow mesenchymal stem cells (BM-MSCs), the primary mouse BM-MSCs (1(st) BM-MSCs) and 5(th) passage BM-MSCs from β-galactosidase transgenic mice were respectively intramyocardially transplanted into the acute myocardial infarction (AMI) model of wild type mice. At the 6(th) week, animals/tissues from the 1(st) BM-MSCs group, the 5(th) passage BM-MSCs group, control group were examined. Our results revealed that, compared to the 5(th) passage BM-MSCs, the 1(st) BM-MSCs had better therapeutic effects in the mouse MI model. The 1(st) BM-MSCs maintained greater differentiation potentials towards cardiomocytes or vascular endothelial cells in vitro. This is indicated by higher expressions of cardiomyocyte and vascular endothelial cell mature markers in vitro. Furthermore, we identified that 24 proteins were down-regulated and 3 proteins were up-regulated in the 5(th) BM-MSCs in comparison to the 1(st) BM-MSCs, using mass spectrometry following two-dimensional electrophoresis. Our data suggest that transplantation of the 1(st) BM-MSCs may be an effective therapeutic strategy for cardiac tissue regeneration following AMI, and altered protein expression profiles between the 1(st) BM-MSCs and 5(th) passage BM-MSCs may account for the difference in their maintenance of stemness and their therapeutic effects following AMI.
Collapse
Affiliation(s)
- Jianliang Jin
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, The People's Republic of China
| | - Yingming Zhao
- Department of Cardiology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, The People's Republic of China
| | - Xiao Tan
- Department of Cardiology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, The People's Republic of China
| | - Chun Guo
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, The People's Republic of China
| | - Zhijian Yang
- Department of Cardiology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, The People's Republic of China
| | - Dengshun Miao
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, The People's Republic of China
| |
Collapse
|
27
|
Taichman RS, Wang Z, Shiozawa Y, Jung Y, Song J, Balduino A, Wang J, Patel LR, Havens AM, Kucia M, Ratajczak MZ, Krebsbach PH. Prospective identification and skeletal localization of cells capable of multilineage differentiation in vivo. Stem Cells Dev 2011; 19:1557-70. [PMID: 20446812 DOI: 10.1089/scd.2009.0445] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A prospective in vivo assay was used to identify cells with potential for multiple lineage differentiation. With this assay, it was first determined that the 5-fluorouracil resistant cells capable of osseous tissue formation in vivo also migrated toward stromal derived factor-1 (SDF-1) in vitro. In parallel, an isolation method based on fluorescence-activated cell sorting was employed to identify a very small cell embryonic-like Lin-/Sca-1+CD45- cell that with as few as 500 cells was capable of forming bone-like structures in vivo. Differential marrow fractionation studies determined that the majority of the Lin-Sca-1+CD45- cells reside in the subendosteal regions of marrow. To determine whether these cells were capable of differentiating into multiple lineages, stromal cells harvested from Col2.3 Delta TK mice were implanted with a gelatin sponge into SCID mice to generate thymidine kinase sensitive ossicles. At 1.5 months, 2,000 green fluorescent protein (GFP)+ Lin-Sca-1+CD45- cells were injected into the ossicles. At harvest, colocalization of GFP-expressing cells with antibodies to the osteoblast-specific marker Runx-2 and the adipocyte marker PPAP gamma were observed. Based on the ability of the noncultured cells to differentiate into multiple mesenchymal lineages in vivo and the ability to generate osseous tissues at low density, we propose that this population fulfills many of the characteristics of mesenchymal stem cells.
Collapse
Affiliation(s)
- Russell S Taichman
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, Michigan 48109-1078, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Fricke S, Fricke C, Oelkrug C, Hilger N, Schönfelder U, Kamprad M, Lehmann J, Boltze J, Emmrich F, Sack U. Characterization of murine non-adherent bone marrow cells leading to recovery of endogenous hematopoiesis. Cell Mol Life Sci 2010; 67:4095-106. [PMID: 20556631 PMCID: PMC11115818 DOI: 10.1007/s00018-010-0427-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Revised: 05/04/2010] [Accepted: 06/01/2010] [Indexed: 12/15/2022]
Abstract
Non-adherent bone marrow-derived cells (NA-BMCs) are a mixed cell population that can give rise to multiple mesenchymal phenotypes and that facilitates hematopoietic recovery. We characterized NA-BMCs by flow cytometry, fibroblast colony-forming units (CFU-f), real-time PCR, and in in vivo experiments. In comparison to adherent cells, NA-BMCs expressed high levels of CD11b(+) and CD90(+) within the CD45(+) cell fraction. CFU-f were significantly declining over the cultivation period, but NA-BMCs were still able to form CFU-f after 5 days. Gene expression analysis of allogeneic NA-BMCs compared to bone marrow (BM) indicates that NA-BMCs contain stromal, mesenchymal, endothelial cells and monocytes, but less osteoid, lymphoid, and erythroid cells, and hematopoietic stem cells. Histopathological data and analysis of weight showed an excellent recovery and organ repair of lethally irradiated mice after NA-BMC transplantation with a normal composition of the BM.
Collapse
Affiliation(s)
- Stephan Fricke
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstraße 01, 04103 Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Defects in mesenchymal stem cell self-renewal and cell fate determination lead to an osteopenic phenotype in Bmi-1 null mice. J Bone Miner Res 2010; 25:640-52. [PMID: 19653817 DOI: 10.1359/jbmr.090812] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In parathyroid hormone-related protein 1-84 [PTHrP(1-84)] knockin mice, expression of the polycomb protein Bmi-1 is reduced and potentially can mediate the phenotypic alterations observed. We have therefore now examined the skeletal phenotype of Bmi-1(-/-) mice in vivo and also assessed the function of bone marrow mesenchymal stem cells (BM-MSCs) from Bmi-1(-/-) mice ex vivo in culture. Neonatal Bmi-1(-/-) mice exhibited skeletal growth retardation, with reduced chondrocyte proliferation and increased apoptosis. Osteoblast numbers; gene expression of alkaline phosphatase, type I collagen, and osteocalcin; the mineral apposition rate; trabecular bone volume; and bone mineral density all were reduced significantly; however, the number of bone marrow adipocytes and Ppar-gamma expression were increased. These changes were consistent with the skeletal phenotype observed in the PTHrP(1-84) knockin mouse. The efficiency of colony-forming unit fibroblast (CFU-F) formation in bone marrow cultures was decreased, and the percentage of alkaline phosphatase-positive CFU-F and Runx2 expression were reduced. In contrast, adipocyte formation and Ppar-gamma expression in cultures were increased, and expression of the polycomb protein sirtuin (Sirt1) was reduced. Reduced proliferation and increased apoptosis of BM-MSCs were associated with upregulation of senescence-associated tumor-suppressor genes, including p16, p19, and p27. Analysis of the skeletal phenotype in Bmi-1(-/-) mice suggests that Bmi-1 functions downstream of PTHrP. Furthermore, our studies indicate that Bmi-1 maintains self-renewal of BM-MSCs by inhibiting the expression of p27, p16, and p19 and alters the cell fate of BM-MSCs by enhancing osteoblast differentiation and inhibiting adipocyte differentiation at least in part by stimulating Sirt1 expression. Bmi-1 therefore plays a critical role in promoting osteogenesis.
Collapse
|
30
|
Leonardi E, Ciapetti G, Baglìo SR, Devescovi V, Baldini N, Granchi D. Osteogenic properties of late adherent subpopulations of human bone marrow stromal cells. Histochem Cell Biol 2009; 132:547-57. [PMID: 19711092 DOI: 10.1007/s00418-009-0633-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2009] [Indexed: 12/17/2022]
Abstract
The nonadherent (NA) population of bone-marrow-derived mononuclear cells (MNC) has been demonstrated to be a source of osteogenic precursors in addition to the plastic-adherent mesenchymal stromal cells (MSC). In the current study, two subpopulations of late adherent (LA) osteoprogenitors were obtained by subsequent replating of NA cells, and their phenotypic, functional, and molecular properties were compared with those of early adherent (EA) MSC. Approximately 35% of MNC were LA cells, and they acquired a homogeneous expression of MSC antigens later than EA cells. In EA-MSC, the alkaline phosphatase (ALP) activity increased significantly from time of seeding to the first confluence, whereas in LA cells it raised later, after the addition of mineralization medium. All subpopulations were able to produce type I collagen and to deposit extracellular matrix with organized collagen fibrils. The proportion of large colonies with more than 50% of ALP positive cells as well as the calcium content was higher in LA than in EA cells. Molecular analysis highlighted the upregulation of bone-related genes in LA-MSC, especially after the addition of mineralization medium. Our results confirm that bone marrow contains LA osteoprogenitors which exhibit a delay in the differentiation process, despite an osteogenic potential similar to or better than EA-MSC. LA cells represent a reservoir of osteoprogenitors to be recruited to gain an adequate bone tissue repair and regeneration when a depletion of the most differentiated component occurs. Bone tissue engineering and cell therapy strategies could take advantage of LA cells, since an adequate amount of osteogenic MSCs may be obtained while avoiding bone marrow manipulation and cell culture expansion.
Collapse
Affiliation(s)
- Elisa Leonardi
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy,
| | | | | | | | | | | |
Collapse
|
31
|
Allogeneic non-adherent bone marrow cells facilitate hematopoietic recovery but do not lead to allogeneic engraftment. PLoS One 2009; 4:e6157. [PMID: 19582154 PMCID: PMC2701999 DOI: 10.1371/journal.pone.0006157] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 06/15/2009] [Indexed: 12/02/2022] Open
Abstract
Background Non adherent bone marrow derived cells (NA-BMCs) have recently been described to give rise to multiple mesenchymal phenotypes and have an impact in tissue regeneration. Therefore, the effects of murine bone marrow derived NA-BMCs were investigated with regard to engraftment capacities in allogeneic and syngeneic stem cell transplantation using transgenic, human CD4+, murine CD4−/−, HLA-DR3+ mice. Methodology/Principal Findings Bone marrow cells were harvested from C57Bl/6 and Balb/c wild-type mice, expanded to NA-BMCs for 4 days and characterized by flow cytometry before transplantation in lethally irradiated recipient mice. Chimerism was detected using flow cytometry for MHC-I (H-2D[b], H-2K[d]), mu/huCD4, and huHLA-DR3). Culturing of bone marrow cells in a dexamethasone containing DMEM medium induced expansion of non adherent cells expressing CD11b, CD45, and CD90. Analysis of the CD45+ showed depletion of CD4+, CD8+, CD19+, and CD117+ cells. Expanded syngeneic and allogeneic NA-BMCs were transplanted into triple transgenic mice. Syngeneic NA-BMCs protected 83% of mice from death (n = 8, CD4+ donor chimerism of 5.8±2.4% [day 40], P<.001). Allogeneic NA-BMCs preserved 62.5% (n = 8) of mice from death without detectable hematopoietic donor chimerism. Transplantation of syngeneic bone marrow cells preserved 100%, transplantation of allogeneic bone marrow cells 33% of mice from death. Conclusions/Significance NA-BMCs triggered endogenous hematopoiesis and induced faster recovery compared to bone marrow controls. These findings may be of relevance in the refinement of strategies in the treatment of hematological malignancies.
Collapse
|