1
|
Shrestha M, Nguyen TT, Park J, Choi JU, Yook S, Jeong JH. Immunomodulation effect of mesenchymal stem cells in islet transplantation. Biomed Pharmacother 2021; 142:112042. [PMID: 34403963 DOI: 10.1016/j.biopha.2021.112042] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) therapy has brought a great enthusiasm to the treatment of various immune disorders, tissue regeneration and transplantation therapy. MSCs are being extensively investigated for their immunomodulatory actions. MSCs can deliver immunomodulatory signals to inhibit allogeneic T cell immune responses by downregulating pro-inflammatory cytokines and increasing regulatory cytokines and growth factors. Islet transplantation is a therapeutic alternative to the insulin therapy for the treatment of type 1 diabetes mellitus (T1DM). However, the acute loss of islets due to the lack of vasculature and hypoxic milieu in the immediate post-transplantation period may lead to treatment failure. Moreover, despite the use of potent immunosuppressive drugs, graft failure persists because of immunological rejection. Many in vitro and in vivo researches have demonstrated the multipotency of MSCs as a mediator of immunomodulation and a great approach for enhancement of islet engraftment. MSCs can interact with immune cells of the innate and adaptive immune systems via direct cell-cell contact or through secretomes containing numerous soluble growth and immunomodulatory factors or mitochondrial transfer. This review highlights the interactions between MSCs and different immune cells to mediate immunomodulatory functions along with the importance of MSCs therapy for the successful islet transplantation.
Collapse
Affiliation(s)
- Manju Shrestha
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Tiep Tien Nguyen
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Jooho Park
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Republic of Korea
| | - Jeong Uk Choi
- College of Pharmacy, Chonnam University, Gwangju 61186, Republic of Korea
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea.
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
2
|
Bao Y, Zhao Z, Gao H. Effect of hTIMP-1 overexpression in human umbilical cord mesenchymal stem cells on the repair of pancreatic islets in type-1 diabetic mice. Cell Biol Int 2021; 45:1038-1049. [PMID: 33404139 DOI: 10.1002/cbin.11548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 12/23/2020] [Accepted: 01/03/2021] [Indexed: 12/28/2022]
Abstract
Mesenchymal stem cells (MSCs) have been suggested for pancreatic islet repair in Type 1 diabetes mellitus (T1DM). This study aimed to investigate the effect of human umbilical cord MSCs (hUC-MSCs) transfected with tissue inhibitors of matrix metalloproteinase (TIMP)-1 on the regeneration of β-cell islets in vitro and in vivo. hUC-MSCs were isolated, cultured, and transfected with lentiviruses for the overexpression of hTIMP-1. An in vitro coculture system of hUC-MSCs and streptozotocin-induced islets was established to examine the morphology, apoptosis, and insulin secretion of the cocultured islets. Diabetic mouse models were injected with lenti-TIMP-1-enhanced green fluorescent protein (EGFP)-hUC-MSCs to test the effect of hTIMP-1 on insulin levels and glucose tolerance in vivo. The expression of insulin and glucagon was evaluated by immunofluorescence staining. The results showed that coculture with hUC-MSCs or Lenti-TIMP-1-EGFP-hUC-MSCs improved islet viability rates. Lenti-TIMP-1-EGFP-hUC-MSC coculture increased the insulin and C-peptide secretion function of the cultured islets and increased the secretion of tumor necrosis factor-β1, interleukin-6, IL-10, and hTIMP-1. hUC-MSCs, especially those transfected with Lenti-hTIMP-1-EGFP, showed a strong protective effect in diabetic mice by alleviating weight loss and improving glucose and insulin metabolism. In addition, transplantation rescued islet histology and function in vivo. The overexpression of TIMP-1 by hUC-MSCs seems to exert beneficial effects on pancreatic islet cells. In conclusion, this study may provide a new perspective on the development of hUC-MSC-based cell transplantation therapy for T1DM.
Collapse
Affiliation(s)
- Yu Bao
- Department of Nephrology, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhengyan Zhao
- Clinic of Division of Child Health Care, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huihui Gao
- Department of Pediatric and Adolescent Gynaecology, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Lewis PL, Wells JM. Engineering-inspired approaches to study β-cell function and diabetes. Stem Cells 2021; 39:522-535. [PMID: 33497522 DOI: 10.1002/stem.3340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/13/2021] [Indexed: 12/21/2022]
Abstract
Strategies to mitigate the pathologies from diabetes range from simply administering insulin to prescribing complex drug/biologic regimens combined with lifestyle changes. There is a substantial effort to better understand β-cell physiology during diabetes pathogenesis as a means to develop improved therapies. The convergence of multiple fields ranging from developmental biology to microfluidic engineering has led to the development of new experimental systems to better study complex aspects of diabetes and β-cell biology. Here we discuss the available insulin-secreting cell types used in research, ranging from primary human β-cells, to cell lines, to pluripotent stem cell-derived β-like cells. Each of these sources possess inherent strengths and weaknesses pertinent to specific applications, especially in the context of engineered platforms. We then outline how insulin-expressing cells have been used in engineered platforms and how recent advances allow for better mimicry of in vivo conditions. Chief among these conditions are β-cell interactions with other endocrine organs. This facet is beginning to be thoroughly addressed by the organ-on-a-chip community, but holds enormous potential in the development of novel diabetes therapeutics. Furthermore, high throughput strategies focused on studying β-cell biology, improving β-cell differentiation, or proliferation have led to enormous contributions in the field and will no doubt be instrumental in bringing new diabetes therapeutics to the clinic.
Collapse
Affiliation(s)
- Phillip L Lewis
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
4
|
Hu W, Song X, Yu H, Sun J, Wang H, Zhao Y. Clinical Translational Potentials of Stem Cell-Derived Extracellular Vesicles in Type 1 Diabetes. Front Endocrinol (Lausanne) 2021; 12:682145. [PMID: 35095751 PMCID: PMC8789747 DOI: 10.3389/fendo.2021.682145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes (T1D) is an organ-specific disease characterized by the deficiency of insulin caused by the autoimmune destruction of pancreatic islet β cells. Stem cell-based therapies play essential roles in immunomodulation and tissue regeneration, both of which hold great promise for treating many autoimmune dysfunctions. However, their clinical translational potential has been limited by ethical issues and cell transplant rejections. Exosomes are small extracellular vesicles (EVs) released by almost all types of cells, performing a variety of cell functions through the delivery of their molecular contents such as proteins, DNAs, and RNAs. Increasing evidence suggests that stem cell-derived EVs exhibit similar functions as their parent cells, which may represent novel therapeutic agents for the treatment of autoimmune diseases including T1D. In this review, we summarize the current research progresses of stem cell-derived EVs for the treatment of T1D.
Collapse
Affiliation(s)
- Wei Hu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Xiang Song
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Haibo Yu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Jingyu Sun
- Department of Chemistry and Chemistry Biology, Stevens Institute of Technology, Hoboken, NJ, United States
| | - Hongjun Wang
- Department of Chemistry and Chemistry Biology, Stevens Institute of Technology, Hoboken, NJ, United States
| | - Yong Zhao
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
- Throne Biotechnologies Inc., Paramus, NJ, United States
- *Correspondence: Yong Zhao,
| |
Collapse
|
5
|
Brandhorst H, Brandhorst D, Abraham A, Acreman S, Schive SW, Scholz H, Johnson PR. Proteomic Profiling Reveals the Ambivalent Character of the Mesenchymal Stem Cell Secretome: Assessing the Effect of Preconditioned Media on Isolated Human Islets. Cell Transplant 2020; 29:963689720952332. [PMID: 33150790 PMCID: PMC7784517 DOI: 10.1177/0963689720952332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/23/2020] [Accepted: 08/03/2020] [Indexed: 12/23/2022] Open
Abstract
Previous studies in rodents have indicated that function and survival of transplanted islets can be substantially improved by mesenchymal stem cells (MSC). The few human islet studies to date have confirmed these findings but have not determined whether physical contact between MSC and islets is required or whether the benefit to islets results from MSC-secreted proteins. This study aimed to investigate the protective capacity of MSC-preconditioned media for human islets. MSC were cultured for 2 or 5 days in normoxia or hypoxia before harvesting the cell-depleted media for human islet culture in normoxia or hypoxia for 6-8 or 3-4 days, respectively. To characterize MSC-preconditioned media, proteomic secretome profiling was performed to identify angiogenesis- and inflammation-related proteins. A protective effect of MSC-preconditioned media on survival and in vitro function of hypoxic human islets was observed irrespective of the atmosphere used for MSC preconditioning. Islet morphology changed markedly when media from hypoxic MSC were used for culture. However, PDX-1 and insulin gene expression did not confirm a change in the genetic phenotype of these islets. Proteomic profiling of preconditioned media revealed the heterogenicity of the secretome comprising angiogenic and antiapoptotic as well as angiostatic or proinflammatory mediators released at an identical pattern regardless whether MSC had been cultured in normoxic or hypoxic atmosphere. These findings do not allow a clear discrimination between normoxia and hypoxia as stimulus for protective MSC capabilities but indicate an ambivalent character of the MSC angiogenesis- and inflammation-related secretome. Nevertheless, culture of human islets in acellular MSC-preconditioned media resulted in improved morphological and functional islet integrity suggesting a disbalance in favor of protective factors. Further approaches should aim to eliminate potentially detrimental factors to enable the production of advanced clinical grade islet culture media with higher protective qualities.
Collapse
Affiliation(s)
- Heide Brandhorst
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Daniel Brandhorst
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Anju Abraham
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Samuel Acreman
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Simen W. Schive
- Department of Transplantation Medicine and Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
| | - Hanne Scholz
- Department of Transplantation Medicine and Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub, Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Paul R.V. Johnson
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Xiang C, Xie QP. Protection of mouse pancreatic islet function by co‑culture with hypoxia pre‑treated mesenchymal stromal cells. Mol Med Rep 2018; 18:2589-2598. [PMID: 30015882 DOI: 10.3892/mmr.2018.9235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 04/19/2018] [Indexed: 11/05/2022] Open
Abstract
Ectogenic pancreatic islet transplantation has long been discussed as having the potential to reverse diabetes. The aim of the present study was to evaluate the therapeutic efficacy of co‑transplantation with hypoxia pretreated mesenchymal stem cells (MSCs) and islets in a diabetic mouse model. MSCs were isolated from femoral and tibial bone marrow aspirates from female BALB/c donor mice. MSC proliferation rates and the expression levels of vascular endothelial growth factor A (VEGFA), interleukin (IL)‑6, monocyte chemoattractant protein (MCP)‑1 and matrix metalloproteinase (MMP)‑9 were measured in hypoxic conditions. Subsequently, a streptozotocin‑induced diabetic model was established in BALB/c mice. Glucose tolerance and diabetes reversal rate following co‑transplantation of hypoxia pre‑cultured MSCs and islets were demonstrated at different conditions during transplantation. The present study results demonstrated that MSCs increased their proliferation rate and the secretion of growth‑related cytokines, including VEGFA, IL‑6, MCP‑1 and MMP‑9 in a hypoxic environment. In the diabetes animal model, fewer islets (~250) were required to reverse the impaired glucose tolerance condition in Islets + Hypoxia cultured MSCs transplant group compared with the Islets‑only group (~400 islets) and the Islets + Normal cultured MSCs group (~300 islets). Hypoxia‑cultured MSC co‑transplantation accelerated glycemic utilization following glucose intake. In subjects with hyperglycemia control for islet only transplantation group, MSCs pre‑cultured in hypoxic condition prior to co‑transplantation may potentially improve islet tissue regeneration.
Collapse
Affiliation(s)
- Cheng Xiang
- Department of Surgery, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Qiu-Ping Xie
- Department of Surgery, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
7
|
Newton WC, Kim JW, Luo JZQ, Luo L. Stem cell-derived exosomes: a novel vector for tissue repair and diabetic therapy. J Mol Endocrinol 2017; 59:R155-R165. [PMID: 28835418 DOI: 10.1530/jme-17-0080] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 08/23/2017] [Indexed: 12/15/2022]
Abstract
Exosomes are extracellular vesicles (EVs) secreted from a majority of cell types. Exosomes play a role in healthy and pathogenic intercellular interactions via the transfer of proteins, lipids and RNA. The contents and effects of exosomes vary depending on the properties of the originating cell. Exosomes secreted from some cell types, including stem cells, carry biological factors implicated in the protection, regeneration and angiogenesis of damaged tissues. Due to these properties, exosomes have attracted attention as a novel vector for regenerative therapies. Exosomes as a therapeutic tool could have applications for the treatment of many disorders characterized by chronic tissue damage. Exosomes derived from stem cells could be applied to repair or prevent damage from the complications of diabetes mellitus. The immunomodulatory and reparative properties of stem cell-derived exosomes could protect or even restore an early-stage type 1 diabetic patient's original islets from autoimmune destruction. Exosomes could also possibly suppress graft rejection of pancreatic islet transplants. Therefore, it is our recommendation that the treatment of diabetes mellitus using exosome-based therapies be further explored. Development of novel therapies using exosomes is slowed by a limited understanding of their mechanisms. This hurdle must be overcome to pave the way for clinical trials and ultimately the adaptation of exosomes as a therapeutic vector.
Collapse
Affiliation(s)
- William C Newton
- Department of MedicineThe Center of Stem Cell Biology, Roger Williams Hospital, Boston University, School of Medicine, Providence, Rhode Island, USA
| | - Joseph W Kim
- Department of MedicineThe Center of Stem Cell Biology, Roger Williams Hospital, Boston University, School of Medicine, Providence, Rhode Island, USA
| | - John Z Q Luo
- Department of MedicineThe Center of Stem Cell Biology, Roger Williams Hospital, Boston University, School of Medicine, Providence, Rhode Island, USA
- Insure HealthInc., Warwick, Rhode Island, USA
| | - LuGuang Luo
- Department of MedicineThe Center of Stem Cell Biology, Roger Williams Hospital, Boston University, School of Medicine, Providence, Rhode Island, USA
| |
Collapse
|
8
|
Kuljanin M, Bell GI, Sherman SE, Lajoie GA, Hess DA. Proteomic characterisation reveals active Wnt-signalling by human multipotent stromal cells as a key regulator of beta cell survival and proliferation. Diabetologia 2017; 60:1987-1998. [PMID: 28710530 DOI: 10.1007/s00125-017-4355-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/23/2017] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS Novel strategies to stimulate the expansion of beta cell mass in situ are warranted for diabetes therapy. The aim of this study was to elucidate the secretome of human bone marrow (BM)-derived multipotent stromal cells (MSCs) with documented islet regenerative paracrine function. We hypothesised that regenerative MSCs will secrete a unique combination of protein factors that augment islet regeneration. METHODS Human BM-derived MSCs were examined for glucose-lowering capacity after transplantation into streptozotocin-treated NOD/severe combined immunodeficiency (SCID) mice and segregated into samples with regenerative (MSCR) vs nonregenerative (MSCNR) capacity. Secreted proteins associated with islet regenerative function were identified using stable isotope labelling with amino acids in cell culture (SILAC)-based quantitative proteomics. To functionally validate the importance of active Wnt signalling, we stimulated the Wnt-signalling pathway in MSCNR samples during ex vivo expansion using glycogen synthase kinase 3 (GSK3) inhibition (CHIR99201), and the conditioned culture media (CM) generated was tested for the capacity to support cultured human islet cell survival and proliferation in vitro. RESULTS MSCR showed increased secretion of proteins associated with cell growth, matrix remodelling, immunosuppressive and proangiogenic properties. In contrast, MSCNR uniquely secreted proteins known to promote inflammation and negatively regulate angiogenesis. Most notably, MSCR maintained Wnt signalling via Wnt5A/B (~2.5-fold increase) autocrine activity during ex vivo culture, while MSCNR repressed Wnt signalling via Dickkopf-related protein (DKK)1 (~2.5-fold increase) and DKK3 secretion. Inhibition of GSK3 activity in MSCNR samples increased the accumulation of nuclear β-catenin and generated CM that augmented beta cell survival (13% increases) and proliferation when exposed to cultured human islets. CONCLUSIONS/INTERPRETATION Maintenance of active Wnt signalling within human MSCs promotes the secretion of matricellular and proangiogenic proteins that formulate a niche for islet regeneration.
Collapse
Affiliation(s)
- Miljan Kuljanin
- Don Rix Protein Identification Facility, Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N5A 6C1, Canada
| | - Gillian I Bell
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Stephen E Sherman
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Molecular Medicine Laboratories, Krembil Centre for Stem Cell Biology, Robarts Research Institute, 100 Perth Drive, London, ON, N6A 5K8, Canada
| | - Gilles A Lajoie
- Don Rix Protein Identification Facility, Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N5A 6C1, Canada.
| | - David A Hess
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Molecular Medicine Laboratories, Krembil Centre for Stem Cell Biology, Robarts Research Institute, 100 Perth Drive, London, ON, N6A 5K8, Canada.
| |
Collapse
|
9
|
Kim JW, Vang S, Luo JZ, Newton WC, Luo L. Effects of bone marrow on the microenvironment of the human pancreatic islet: A Protein Profile Approach. Mol Cell Endocrinol 2017; 450:32-42. [PMID: 28428043 DOI: 10.1016/j.mce.2017.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/07/2017] [Accepted: 04/12/2017] [Indexed: 12/11/2022]
Abstract
Stem cells are a new therapeutic modality that may support the viability and function of human organs and tissue. Our previous studies have revealed that human allogeneic bone marrow (BM) sustains pancreatic β cell function and survival. This paper examines whether BM creates a microenvironment that supports human pancreatic islets in vitro by evaluating 107 proteins in culture media from BM, islet, and islet/bone marrow (IB) with mass spectrometry. Proteins were considered up- or down-regulated if p-values < 0.05 and fold change was greater than 2 fold I VS. IB. In addition, proteins identified that were uniquely found in islets co-cultured with bone marrow, but not in islets or bone marrow. A 95% protein probability was used as a threshold. Twenty three proteins were upregulated, and sixteen proteins were downregulated. The function of each protein is listed based on the protein database, which include structural proteins (9 upregulated, 4 downregulated); anti-protease and anti-endopeptidase enzymes (8 upregulated); cation binding proteins (6 up-regulated). Six proteins were uniquely identified in islet co-cultured with bone marrow. Three are anti-proteases or anti-endopeptidases, and 1 is a structural protein. These findings suggest that BM, by changing culture media proteins, may be one of mechanisms to maintain human islet function and survival.
Collapse
Affiliation(s)
- Joseph W Kim
- The Center of Stem Cell Biology, Department of Medicine, Roger Williams Hospital, Boston University, School of Medicine, Providence, RI 02908, USA
| | - Souriya Vang
- The Center of Stem Cell Biology, Department of Medicine, Roger Williams Hospital, Boston University, School of Medicine, Providence, RI 02908, USA
| | - John Zq Luo
- The Center of Stem Cell Biology, Department of Medicine, Roger Williams Hospital, Boston University, School of Medicine, Providence, RI 02908, USA; Insure Health, Inc, 30 Quaker Lane Suite 35, Warwick, RI 02886, USA
| | - William C Newton
- The Center of Stem Cell Biology, Department of Medicine, Roger Williams Hospital, Boston University, School of Medicine, Providence, RI 02908, USA
| | - Luguang Luo
- The Center of Stem Cell Biology, Department of Medicine, Roger Williams Hospital, Boston University, School of Medicine, Providence, RI 02908, USA.
| |
Collapse
|
10
|
Ilgun H, Kim JW, Luo L. Adult Stem Cells and Diabetes Therapy. JOURNAL OF STEM CELL RESEARCH AND TRANSPLANTATION 2015; 2:1020. [PMID: 27123495 PMCID: PMC4844026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The World Health Organization estimates that diabetes will be the fourth most prevalent disease by 2050. Developing a new therapy for diabetes is a challenge for researchers and clinicians in field. Many medications are being used for treatment of diabetes however with no conclusive and effective results therefore alternative therapies are required. Stem cell therapy is a promising tool for diabetes therapy, and it has involved embryonic stem cells, adult stem cells, and pluripotent stem cells. In this review, we focus on adult stem cells, especial human bone marrow stem cells (BM) for diabetes therapy, its history, and current development. We discuss prospects for future diabetes therapy such as induced pluripotent stem cells which have popularity in stem cell research area.
Collapse
Affiliation(s)
- Handenur Ilgun
- Department of Internal Medicine, Roger Williams Hospital, Boston University School of Medicine, Providence, RI, USA; Sifa University School of Medicine, Izmir, Turkey
| | - Joseph William Kim
- Department of Internal Medicine, Roger Williams Hospital, Boston University School of Medicine, Providence, RI, USA
| | - LuGuang Luo
- Department of Internal Medicine, Roger Williams Hospital, Boston University School of Medicine, Providence, RI, USA
| |
Collapse
|
11
|
Luo LG, Xiong F, Ravassard P, Luo JZ. Human Bone Marrow Subpopulations Sustain Human Islet Function and Viability In vitro. ACTA ACUST UNITED AC 2015; 8:576-587. [PMID: 27110541 PMCID: PMC4837454 DOI: 10.9734/bjmmr/2015/17536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
AIMS Allogeneic bone marrow (BM) has been shown to support human islet survival and function in long-term culture by initiating human islet vascularization and β-cell regeneration. Various BM subpopulations may play different roles in human islet functions and survival. In this paper we investigated the effects of BM and its subpopulations, endothelial progenitor cells (E) and mesenchymal (M) cells on human islet's β-cell function and regeneration. STUDY DESIGN Isolation and identification of subpopulations from human bone marrow and culture with allogeneic human islet to investigate effects of different cell population on human islet function and regeneration. PLACE AND DURATION OF STUDY Department of Medicine, Center for Stem Cell & Diabetes Research, RWMC, Providence, RI, USA, between 2010 - 2014. METHODOLOGY Human islets were distributed from Integrated Islet Distribution Program (IIDP) and human bone marrow (BM) was harvested by Bone marrow transplantation center at Roger Williams Hospital. BM subpopulation was identified cell surface markers through Fluorescence-activated cell sorting, applied in flow cytometry (FACS), islet function was evaluated by human ELISA kit and β cell regeneration was evaluated by three methods of Cre-Loxp cell tracing, β cell sorting and RT-PCR for gene expression. RESULTS Four different BM and seven different islet donates contributed human tissues. We observed islet β-cell having self regeneration capability in short term culture (3∼5 days) using a Cre-Loxp cell tracing. BM and its subtype E, M have similar benefits on β cell function during co-culture with human islet comparison to islet only. However, only whole BM enables to sustain the capability of islet β-cell self regeneration resulting in increasing β cell population while single E and M individual do not significantly affect on that. Mechanism approach to explore β-cell self regeneration by evaluating transcription factor expressions, we found that BM significantly increases the activations of β-cell regeneration relative transcription factors, the LIM homeodomain protein (Isl1), homologue to zebrafish somite MAF1 (MAFa), the NK-homeodomain factor 6.1 (NKX6.1), the paired box family factors 6 (PAX6), insulin promoter factor 1 (IPF1) and kinesin family member 4A (KIF4a). CONCLUSION These results suggest that BM and its derived M and E cells enable to support human islet β-cell function. However, only BM can sustain the capability of β-cell self regeneration through initiating β-cell transcriptional factors but not individual E and M cells suggesting pure E and M cells less supportive for islet long-term survival in vitro.
Collapse
Affiliation(s)
- Lu Guang Luo
- Department of Medicine/Research, Roger Williams Medical Center, Boston University, USA
| | - Fang Xiong
- Department of Medicine/Research, Roger Williams Medical Center, Boston University, USA
| | - Philippe Ravassard
- Department of Molecular Biology, ICM, Biotechnology & Biotherapy Group 47 Bd de Hospital, Paris France
| | - John Zq Luo
- Department of Medicine/Research, Roger Williams Medical Center, Boston University, USA; Department of Medicine, Brown University, Alpert Medical School, Providence, Rhode Island, USA
| |
Collapse
|
12
|
Abstract
Apoptosis is one of the major factors contributing to the failure of human islet transplantation. Contributors to islet apoptosis exist in both the pre-transplantation and post transplantation stages. Factors include the islet isolation process, deterioration in vitro prior to transplantation, and immune rejection post transplantation. Previous studies have demonstrated that co-cultured bone marrow cells with human islets not only significantly enhanced the longevity of human islets but also maintained function. We hypothesized that the protective effects of bone marrow cells on human islets are through mechanisms related to preventing apoptosis. This study observed the levels of inflammatory factors such as interleukin-1β (IL-1β), the release of extracellular ATP in vitro, and expression levels of P2X7 ATP receptor (P2X7R), all of which lead to the occurrence of apoptosis in human islets. When human islets were co-cultured with human bone marrow, there was a reduction in the rate of apoptosis correlated with the reduction in inflammatory factors, extra cellular ATP accumulation, and ATP receptor P2X7R expression versus human islets cultured alone. These results suggest that co-culturing bone marrow cells with human islets inhibits inflammation and reduces apoptosis, thus protecting islets from self-deterioration.
Collapse
Affiliation(s)
- Lu-Guang Luo
- Roger Williams Medical Center, Boston University, USA
| | - John Zq Luo
- Brown University, Alpert Medical School, Providence, Rhode Island, USA
| |
Collapse
|
13
|
Battiston KG, Cheung JWC, Jain D, Santerre JP. Biomaterials in co-culture systems: towards optimizing tissue integration and cell signaling within scaffolds. Biomaterials 2014; 35:4465-76. [PMID: 24602569 DOI: 10.1016/j.biomaterials.2014.02.023] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 02/12/2014] [Indexed: 02/07/2023]
Abstract
Most natural tissues consist of multi-cellular systems made up of two or more cell types. However, some of these tissues may not regenerate themselves following tissue injury or disease without some form of intervention, such as from the use of tissue engineered constructs. Recent studies have increasingly used co-cultures in tissue engineering applications as these systems better model the natural tissues, both physically and biologically. This review aims to identify the challenges of using co-culture systems and to highlight different approaches with respect to the use of biomaterials in the use of such systems. The application of co-culture systems to stimulate a desired biological response and examples of studies within particular tissue engineering disciplines are summarized. A description of different analytical co-culture systems is also discussed and the role of biomaterials in the future of co-culture research are elaborated on. Understanding the complex cell-cell and cell-biomaterial interactions involved in co-culture systems will ultimately lead the field towards biomaterial concepts and designs with specific biochemical, electrical, and mechanical characteristics that are tailored towards the needs of distinct co-culture systems.
Collapse
Affiliation(s)
- Kyle G Battiston
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 124 Edward Street, Room 461, Toronto, Ontario, Canada M5G 1G6
| | - Jane W C Cheung
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 124 Edward Street, Room 461, Toronto, Ontario, Canada M5G 1G6
| | - Devika Jain
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 124 Edward Street, Room 461, Toronto, Ontario, Canada M5G 1G6
| | - J Paul Santerre
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 124 Edward Street, Room 461, Toronto, Ontario, Canada M5G 1G6; Department of Biomaterials, Faculty of Dentistry, University of Toronto, 124 Edward Street, Room 464D, Toronto, Ontario, Canada M5G 1G6.
| |
Collapse
|
14
|
Chhabra P, Brayman KL. Overcoming barriers in clinical islet transplantation: current limitations and future prospects. Curr Probl Surg 2014; 51:49-86. [PMID: 24411187 DOI: 10.1067/j.cpsurg.2013.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
Iskovich S, Goldenberg-Cohen N, Sadikov T, Yaniv I, Stein J, Askenasy N. Two distinct mechanisms mediate the involvement of bone marrow cells in islet remodeling: neogenesis of insulin-producing cells and support of islet recovery. Cell Transplant 2013; 24:879-90. [PMID: 24380400 DOI: 10.3727/096368913x676899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We have recently reported that small-sized bone marrow cells (BMCs) isolated by counterflow centrifugal elutriation and depleted of lineage markers (Fr25lin(-)) have the capacity to differentiate and contribute to regeneration of injured islets. In this study, we assess some of the characteristics of these cells compared to elutriated hematopoietic progenitors (R/O) and whole BMCs in a murine model of streptozotocin-induced chemical diabetes. The GFP(bright)CD45(+) progeny of whole BMCs and R/O progenitors progressively infiltrate the pancreas with evolution of donor chimerism; are found at islet perimeter, vascular, and ductal walls; and have a modest impact on islet recovery from injury. In contrast, Fr25lin(-) cells incorporate in the islets, convert to GFP(dim)CD45(-)PDX-1(+) phenotypes, produce proinsulin, and secrete insulin with significant contribution to stabilization of glucose homeostasis. The elutriated Fr25lin(-) cells express low levels of CD45 and are negative for SCA-1 and c-kit, as removal of cells expressing these markers did not impair conversion to produce insulin. BMCs mediate two synergistic mechanisms that contribute to islet recovery from injury: support of islet remodeling by hematopoietic cells and neogenesis of insulin-producing cells from stem cells.
Collapse
Affiliation(s)
- Svetlana Iskovich
- Frankel Laboratory, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | | | | | | | | | | |
Collapse
|
16
|
Mundra V, Wu H, Mahato RI. Genetically modified human bone marrow derived mesenchymal stem cells for improving the outcome of human islet transplantation. PLoS One 2013; 8:e77591. [PMID: 24204883 PMCID: PMC3812220 DOI: 10.1371/journal.pone.0077591] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/05/2013] [Indexed: 12/15/2022] Open
Abstract
The objective of this study was to determine the potential of human bone marrow derived mesenchymal stem cells (hBMSCs) as gene carriers for improving the outcome of human islet transplantation. hBMSCs were characterized for the expression of phenotypic markers and transduced with Adv-hVEGF-hIL-1Ra to overexpress human vascular endothelial growth factor (hVEGF) and human interleukin-1 receptor antagonist (hIL-1Ra). Human islets were co-cultured with hBMSCs overexpressing hVEGF and hIL-1Ra. Islet viability was determined by membrane fluorescent method and glucose stimulation test. Transduced hBMSCs and human islets were co-transplanted under the kidney capsule of NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) diabetic mice and blood glucose levels were measured over time to demonstrate the efficacy of genetically modified hBMSCs. At the end of study, immunofluorescent staining of kidney section bearing islets was performed for insulin and von Willebrand Factor (vWF). hBMSCs were positive for the expression of CD73, CD90, CD105, CD146 and Stro-1 surface markers as determined by flow cytometry. Transduction of hBMSCs with adenovirus did not affect their stemness and differentiation potential as confirmed by mRNA levels of stem cell markers and adipogenic differentiation of transduced hBMSCs. hBMSCs were efficiently transduced with Adv-hVEGF-hIL-1Ra to overexpress hVEGF and hIL-1Ra. Live dead cell staining and glucose stimulation test have shown that transduced hBMSCs improved the viability of islets against cytokine cocktail. Co-transplantation of human islets with genetically modified hBMSCs improved the glycemic control of diabetic NSG mice as determined by mean blood glucose levels and intraperitoneal glucose tolerance test. Immunofluorescent staining of kidney sections was positive for human insulin and vWF. In conclusion, our results have demonstrated that hBMSCs may be used as gene carriers and nursing cells to improve the outcome of islet transplantation.
Collapse
Affiliation(s)
- Vaibhav Mundra
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Hao Wu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Ram I. Mahato
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
17
|
Allogeneic bone marrow cocultured with human islets significantly improves islet survival and function in vivo. Transplantation 2013; 95:801-9. [PMID: 23416682 DOI: 10.1097/tp.0b013e31828235c7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND A significant barrier to islet transplantation is the rapid loss of human islet function in vivo. The present study evaluates whether bone marrow (BM) could be used to support human islet survival and function in vivo. METHODS We cocultured human islets and BM for 3 weeks before transplantation into the left subrenal capsule of diabetic severe combined immunodeficient mice. RESULTS The cocultured human islets before transplantation demonstrated improved viability, increased size, and migration capacity in vitro. After 4 months, animals transplanted with precultured BM/islets exhibited euglycemia and detectable human insulin levels (157 μU/mL), whereas no human insulin was detected in the islet-only transplantation group. Furthermore, the removal of the transplants on day 126 resulted in hyperglycemia, indicating that the reduction of blood glucose was dependent on the transplants. Diabetic mice transplanted with BM/islets demonstrated the longest survival period (130 vs. 40 days for those with islet-only transplants). The transplanted BM/islets showed signs of vascularization and migration from the renal capsule into medulla. CONCLUSIONS Our results suggest that BM precultured with human islets may enhance the survival and function of transplanted islets, thus significantly improving the therapeutic efficacy of islet transplantation for type 1 diabetes.
Collapse
|
18
|
The lack of maturation of Ebola virus-infected dendritic cells results from the cooperative effect of at least two viral domains. J Virol 2013; 87:7471-85. [PMID: 23616668 DOI: 10.1128/jvi.03316-12] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ebola virus (EBOV) infections are characterized by deficient T lymphocyte responses, T lymphocyte apoptosis, and lymphopenia in the absence of direct infection of T lymphocytes. In contrast, dendritic cells (DC) are infected but fail to mature appropriately, thereby impairing the T cell response. We investigated the contributions of EBOV proteins in modulating DC maturation by generating recombinant viruses expressing enhanced green fluorescent protein and carrying mutations affecting several potentially immunomodulating domains. They included envelope glycoprotein (GP) domains, as well as innate response antagonist domains (IRADs) previously identified in the VP24 and VP35 proteins. GP expressed by an unrelated vector, but not the wild-type EBOV, was found to strongly induce DC maturation, and infections with recombinant EBOV carrying mutations disabling GP functional domains did not restore DC maturation. In contrast, each of the viruses carrying mutations disabling any IRAD in VP35 induced a dramatic upregulation of DC maturation markers. This was dependent on infection, but not interaction with GP. Disabling of IRADs also resulted in up to a several hundredfold increase in secretion of cytokines and chemokines. Furthermore, these mutations induced formation of homotypic DC clusters, which represent close correlates of their maturation and presumably facilitate transfer of antigen from migratory DC to lymph node DC. Thus, an individual IRAD is insufficient to suppress DC maturation; rather, the suppression of DC maturation and the "immune paralysis" observed during EBOV infections results from a cooperative effect of two or more individual IRADs.
Collapse
|
19
|
Current world literature. Curr Opin Organ Transplant 2012; 17:688-99. [PMID: 23147911 DOI: 10.1097/mot.0b013e32835af316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
20
|
Stem cells as a tool to improve outcomes of islet transplantation. J Transplant 2012; 2012:736491. [PMID: 22970344 PMCID: PMC3437295 DOI: 10.1155/2012/736491] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 07/02/2012] [Indexed: 12/24/2022] Open
Abstract
The publication of the promising results of the Edmonton protocol in 2000 generated optimism for islet transplantation as a potential cure for Type 1 Diabetes Mellitus. Unfortunately, follow-up data revealed that less than 10% of patients achieved long-term insulin independence. More recent data from other large trials like the Collaborative Islet Transplant Registry show incremental improvement with 44% of islet transplant recipients maintaining insulin independence at three years of follow-up. Multiple underlying issues have been identified that contribute to islet graft failure, and newer research has attempted to address these problems. Stem cells have been utilized not only as a functional replacement for β cells, but also as companion or supportive cells to address a variety of different obstacles that prevent ideal graft viability and function. In this paper, we outline the manners in which stem cells have been applied to address barriers to the achievement of long-term insulin independence following islet transplantation.
Collapse
|
21
|
Chhabra P, Brayman KL. Current status of immunomodulatory and cellular therapies in preclinical and clinical islet transplantation. J Transplant 2011; 2011:637692. [PMID: 22046502 PMCID: PMC3199196 DOI: 10.1155/2011/637692] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Accepted: 07/11/2011] [Indexed: 02/08/2023] Open
Abstract
Clinical islet transplantation is a β-cell replacement strategy that represents a possible definitive intervention for patients with type 1 diabetes, offering substantial benefits in terms of lowering daily insulin requirements and reducing incidences of debilitating hypoglycemic episodes and unawareness. Despite impressive advances in this field, a limiting supply of islets, inadequate means for preventing islet rejection, and the deleterious diabetogenic and nephrotoxic side effects associated with chronic immunosuppressive therapy preclude its wide-spread applicability. Islet transplantation however allows a window of opportunity for attempting various therapeutic manipulations of islets prior to transplantation aimed at achieving superior transplant outcomes. In this paper, we will focus on the current status of various immunosuppressive and cellular therapies that promote graft function and survival in preclinical and clinical islet transplantation with special emphasis on the tolerance-inducing capacity of regulatory T cells as well as the β-cells regenerative capacity of stem cells.
Collapse
Affiliation(s)
- Preeti Chhabra
- Department of Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Kenneth L. Brayman
- Department of Surgery, University of Virginia, Charlottesville, VA 22908, USA
- Division of Transplantation, Department of Surgery, University of Virginia, Charlottesville, VA 22908, USA
- The Center for Cellular Transplantation and Therapeutics, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
22
|
Grapensparr L, Olerud J, Vasylovska S, Carlsson PO. The therapeutic role of endothelial progenitor cells in Type 1 diabetes mellitus. Regen Med 2011; 6:599-605. [DOI: 10.2217/rme.11.45] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pancreatic β-cells sense and adjust the blood glucose level by secretion of insulin. In Type 1 diabetes mellitus, these insulin-producing cells are destroyed, leaving the patients incapable of regulating blood glucose homeostasis. At the time of diagnosis, most patients still have 20–30% of their original β-cell mass remaining. These residual β-cells are targets for intervention therapies aimed at preventing further autoimmune destruction, in addition to increasing the number of existing β-cells. Such a therapeutic option is highly desirable since it may lead to a full recovery of newly diagnosed patients, with no need for further treatment with immunosuppressant drugs or exogenous insulin administration. In this article, we propose that endothelial progenitor cells, a cell type known to promote and support neovascularization following endothelial injury, may be used as part of a combinational stem cell therapy aimed to improve the vascularization, survival and proliferation of β-cells.
Collapse
Affiliation(s)
- Liza Grapensparr
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Johan Olerud
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Svitlana Vasylovska
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Per-Ola Carlsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
23
|
Wu H, Ye Z, Mahato RI. Genetically modified mesenchymal stem cells for improved islet transplantation. Mol Pharm 2011; 8:1458-70. [PMID: 21707070 DOI: 10.1021/mp200135e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The use of adult stem cells for therapeutic purposes has met with great success in recent years. Among several types of adult stem cells, mesenchymal stem cells (MSCs) derived from bone marrow (BM) and other sources have gained popularity for basic research and clinical applications because of their therapeutic potential in treating a variety of diseases. Because of their tissue regeneration potential and immune modulation effect, MSCs were recently used as cell-based therapy to promote revascularization, increase pancreatic β-cell proliferation, and avoid allograft rejection in islet transplantation. Taking advantage of the recent progress in gene therapy, genetically modified MSCs can further enhance and expand the therapeutic benefit of primary MSCs while retaining their stem-cell-like properties. This review aims to gain a thorough understanding of the current obstacles to successful islet transplantation and discusses the potential role of primary MSCs before or after genetic modification in islet transplantation.
Collapse
Affiliation(s)
- Hao Wu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | | | | |
Collapse
|
24
|
Handschel J, Meyer U. Infection, vascularization, remodelling--are stem cells the answers for bone diseases of the jaws? Head Face Med 2011; 7:5. [PMID: 21332971 PMCID: PMC3055822 DOI: 10.1186/1746-160x-7-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 02/18/2011] [Indexed: 11/30/2022] Open
Abstract
Osteonecrosis after craniofacial radiation (ORN), osteomyelitis and bisphosphonates related necrosis of the jaw (BRONJ) are the predominant bone diseases in Cranio- and Maxillofacial surgery. Although various hypothesis for the pathophysiological mechanisms including infection, altered vascularisation or remodelling exist, the treatment is still a challenge for clinicians. As the classical pharmacological or surgical treatment protocols have only limited success, stem cells might be a promising treatment option, indicated by recently published data.
Collapse
|