1
|
Abstract
Osteoclasts are the only cells that can efficiently resorb bone. They do so by sealing themselves on to bone and removing the mineral and organic components. Osteoclasts are essential for bone homeostasis and are involved in the development of diseases associated with decreased bone mass, like osteoporosis, or abnormal bone turnover, like Paget's disease of bone. In addition, compromise of their development or resorbing machinery is pathogenic in multiple types of osteopetrosis. However, osteoclasts also have functions other than bone resorption. Like cells of the innate immune system, they are derived from myeloid precursors and retain multiple immune cell properties. In addition, there is now strong evidence that osteoclasts regulate osteoblasts through a process known as coupling, which coordinates rates of bone resorption and bone formation during bone remodeling. In this article we review the non-resorbing functions of osteoclasts and highlight their importance in health and disease.
Collapse
Affiliation(s)
- Kyung-Hyun Park-Min
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Joseph Lorenzo
- The Departments of Medicine and Orthopaedics, UConn Health, Farmington, CT 06030, USA.
| |
Collapse
|
2
|
Zeytin IC, Alkan B, Ozdemir C, Cetinkaya DU, Okur FV. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:310-321. [PMID: 35356978 PMCID: PMC8969067 DOI: 10.1093/stcltm/szab019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/07/2021] [Indexed: 11/22/2022] Open
Abstract
Osteopetrosis is a rare inherited disease characterized by impaired osteoclast activity causing defective bone resorption and bone marrow aplasia. It is fatal in early childhood unless hematopoietic stem cell transplantation is performed. But, the transplant course is complicated with engraftment failure. Recently, osteoclasts have been described as the potential regulators of hematopoietic stem cell (HSC) niche. Here we investigated the alterations in the HSC and mesenchymal stromal cell (MSC) components of osteopetrotic niche and their interactions to mimic the stem cell dynamics/trafficking in the BM niche after HSC transplantation. Induced pluripotent stem cells were generated from peripheral blood mononuclear cells of patients with osteopetrosis carrying TCIRG1 mutation. iPSC lines were differentiated into hematopoietic and myeloid progenitors, then into osteoclasts using a step-wise protocol. We first demonstrated a shift toward monocyte-macrophages lineage regarding hematopoietic differentiation potential of osteopetrotic iPSC-derived hematopoietic progenitors (HPCs) and phenotypically normal and functionally defective osteoclast formation. The expression of the genes involved in HSC homing and maintenance (Sdf-1, Jagged-1, Kit-L, and Opn) in osteopetrotic MSCs recovered significantly after coculture with healthy HPCs. Similarly, the restoration of phenotype, impaired differentiation, and migratory potential of osteopetrotic iHPCs were observed upon interaction with healthy MSCs. Our results establish significant alterations in both MSC and HPC compartments of the osteopetrotic niche, and support the impact of functionally impaired osteoclasts in defective niche formation.
Collapse
Affiliation(s)
- Inci Cevher Zeytin
- Center for Stem Cell Research and Development PEDI-STEM, Hacettepe University, Ankara, Turkey
- Department of Stem Cell Sciences, Institute of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Berna Alkan
- Center for Stem Cell Research and Development PEDI-STEM, Hacettepe University, Ankara, Turkey
- Department of Stem Cell Sciences, Institute of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Cansu Ozdemir
- Center for Stem Cell Research and Development PEDI-STEM, Hacettepe University, Ankara, Turkey
| | - Duygu Uckan Cetinkaya
- Center for Stem Cell Research and Development PEDI-STEM, Hacettepe University, Ankara, Turkey
- Department of Stem Cell Sciences, Institute of Health Sciences, Hacettepe University, Ankara, Turkey
- Department of Pediatrics, Division of Pediatric Hematology and Bone Marrow Transplantation Unit, Faculty of Medicine, Hacettepe University, Ankara, Turkey
- Corresponding authors: Duygu Uckan Cetinkaya and Fatma Visal Okur, Center for Stem Cell Research and Development (PEDI-STEM), Hacettepe University, Ankara, Turkey, (F.V.O.), (D.U.C.)
| | - Fatma Visal Okur
- Center for Stem Cell Research and Development PEDI-STEM, Hacettepe University, Ankara, Turkey
- Department of Stem Cell Sciences, Institute of Health Sciences, Hacettepe University, Ankara, Turkey
- Department of Pediatrics, Division of Pediatric Hematology and Bone Marrow Transplantation Unit, Faculty of Medicine, Hacettepe University, Ankara, Turkey
- Corresponding authors: Duygu Uckan Cetinkaya and Fatma Visal Okur, Center for Stem Cell Research and Development (PEDI-STEM), Hacettepe University, Ankara, Turkey, (F.V.O.), (D.U.C.)
| |
Collapse
|
3
|
Crous A, Abrahamse H. The Signalling Effects of Photobiomodulation on Osteoblast Proliferation, Maturation and Differentiation: A Review. Stem Cell Rev Rep 2021; 17:1570-1589. [PMID: 33686595 DOI: 10.1007/s12015-021-10142-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2021] [Indexed: 02/06/2023]
Abstract
Proliferation of osteoblasts is essential for maturation and mineralization of bone matrix. Ossification, the natural phase of bone-forming and hardening is a carefully regulated phase where deregulation of this process may result in insufficient or excessive bone mineralization or ectopic calcification. Osteoblasts can also be differentiated into osteocytes, populating short interconnecting passages within the bone matrix. Over the past few decades, we have seen a significant improvement in awareness and techniques using photobiomodulation (PBM) to stimulate cell function. One of the applications of PBM is the promotion of osteoblast proliferation and maturation. PBM research results on osteoblasts showed increased mitochondrial ATP production, increased osteoblast activity and proliferation, increased and pro-osteoblast expression in the presence of red and NIR radiation. Osteocyte differentiation was also accomplished using blue and green light, showing that different light parameters have various signalling effects. The current review addresses osteoblast function and control, a new understanding of PBM on osteoblasts and its therapeutic impact using various parameters to optimize osteoblast function that may be clinically important. Graphical Abstract.
Collapse
Affiliation(s)
- Anine Crous
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Johannesburg, 2028, South Africa.
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Johannesburg, 2028, South Africa
| |
Collapse
|
4
|
Sadvakassova G, Tiedemann K, Steer KJD, Mikolajewicz N, Stavnichuk M, In-Kyung Lee I, Sabirova Z, Schranzhofer M, Komarova SV. Active hematopoiesis triggers exosomal release of PRDX2 that promotes osteoclast formation. Physiol Rep 2021; 9:e14745. [PMID: 33587325 PMCID: PMC7883842 DOI: 10.14814/phy2.14745] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/17/2022] Open
Abstract
Hematopoietic disorders, particularly hemolytic anemias, commonly lead to bone loss. We have previously reported that actively proliferating cancer cells stimulate osteoclastogenesis from late precursors in a RANKL-independent manner. We theorized that cancer cells exploit the physiological role of bone resorption to support expanding hematopoietic bone marrow and examined if hematopoietic cells can trigger osteoclastogenesis. Using phlebotomy-induced acute anemia in mice, we found strong correlation between augmented erythropoiesis and increased osteoclastogenesis. Conditioned medium (CM) from K562 erythroleukemia cells and primary mouse erythroblasts stimulated osteoclastogenesis when added to RANKL-primed precursors from mouse bone marrow or RAW264.7 cells. Using immunoblotting and mass spectrometry, PRDX2 was identified as a factor produced by erythroid cells in vitro and in vivo. PRDX2 was detected in K562-derived exosomes, and inhibiting exosomal release significantly decreased the osteoclastogenic capacity of K562 CM. Recombinant PRDX2 induced osteoclast formation from RANKL-primed primary or RAW 264.7 precursors to levels comparable to achieved with continuous RANKL treatment. Thus, increased bone marrow erythropoiesis secondary to anemia leads to upregulation of PRDX2, which is released in the exosomes and acts to induce osteoclast formation. Increased bone resorption by the osteoclasts expands bone marrow cavity, which likely plays a supporting role to increase blood cell production.
Collapse
Affiliation(s)
- Gulzhakhan Sadvakassova
- Faculty of Dentistry, McGill University, Montréal, QC, Canada.,Shriners Hospital for Children - Canada, Montréal, QC, Canada
| | - Kerstin Tiedemann
- Faculty of Dentistry, McGill University, Montréal, QC, Canada.,Shriners Hospital for Children - Canada, Montréal, QC, Canada
| | - Kieran J D Steer
- Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Nicholas Mikolajewicz
- Faculty of Dentistry, McGill University, Montréal, QC, Canada.,Shriners Hospital for Children - Canada, Montréal, QC, Canada
| | - Mariya Stavnichuk
- Shriners Hospital for Children - Canada, Montréal, QC, Canada.,Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montréal, QC, Canada
| | | | - Zarina Sabirova
- Shriners Hospital for Children - Canada, Montréal, QC, Canada
| | - Matthias Schranzhofer
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Svetlana V Komarova
- Faculty of Dentistry, McGill University, Montréal, QC, Canada.,Shriners Hospital for Children - Canada, Montréal, QC, Canada.,Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montréal, QC, Canada
| |
Collapse
|
5
|
Abstract
Bone and marrow are the two facets of the same organ, in which bone and hematopoietic cells coexist and interact. Marrow and skeletal tissue influence each-other and a variety of genetic disorders directly targets both of them, which may result in combined hematopoietic failure and skeletal malformations. Other conditions primarily affect one organ with secondary influences on the other. For instance, various forms of congenital anemias reduce bone mass and induce osteoporosis, while osteoclast failure in osteopetrosis prevents marrow development reducing medullary cavities and causing anemia and pancytopenia. Understanding the pathophysiology of these conditions may facilitate diagnosis and management, although many disorders are presently incurable. This article describes several congenital bone diseases and their relationship to hematopoietic tissue.
Collapse
Affiliation(s)
- Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Steven L Teitelbaum
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Division of Anatomic and Molecular Pathology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
6
|
Eltoukhy HS, Sinha G, Moore CA, Gergues M, Rameshwar P. Secretome within the bone marrow microenvironment: A basis for mesenchymal stem cell treatment and role in cancer dormancy. Biochimie 2018; 155:92-103. [PMID: 29859990 DOI: 10.1016/j.biochi.2018.05.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/29/2018] [Indexed: 02/07/2023]
Abstract
The secretome produced by cells within the bone marrow is significant to homeostasis. The bone marrow, a well-studied organ, has multiple niches with distinct roles for supporting stem cell functions. Thus, an understanding of mediators involved in the regulation of stem cells could serve as a model for clinical problems and solutions such as tissue repair and regeneration. The exosome secretome of bone marrow stem cells is a developing area of research with respect to the regenerative potential by bone marrow cell, particularly the mesenchymal stem cells. The bone marrow niche regulates endogenous processes such as hematopoiesis but could also support the survival of tumors such as facilitating the cancer stem cells to exist in dormancy for decades. The bone marrow-derived secretome will be critical to future development of therapeutic strategies for oncologic diseases, in addition to regenerative medicine. This article discusses the importance for parallel studies to determine how the same secretome may compromise safety during the use of stem cells in regenerative medicine.
Collapse
Affiliation(s)
- Hussam S Eltoukhy
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Garima Sinha
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Caitlyn A Moore
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Marina Gergues
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Pranela Rameshwar
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
7
|
Teti A, Econs MJ. Osteopetroses, emphasizing potential approaches to treatment. Bone 2017; 102:50-59. [PMID: 28167345 DOI: 10.1016/j.bone.2017.02.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 02/02/2017] [Accepted: 02/02/2017] [Indexed: 12/22/2022]
Abstract
Osteopetroses are a heterogeneous group of rare genetic bone diseases sharing the common hallmarks of reduced osteoclast activity, increased bone mass and high bone fragility. Osteoclasts are bone resorbing cells that contribute to bone growth and renewal through the erosion of the mineralized matrix. Alongside the bone forming activity by osteoblasts, osteoclasts allow the skeleton to grow harmonically and maintain a healthy balance between bone resorption and formation. Osteoclast impairment in osteopetroses prevents bone renewal and deteriorates bone quality, causing atraumatic fractures. Osteopetroses vary in severity and are caused by mutations in a variety of genes involved in bone resorption or in osteoclastogenesis. Frequent signs and symptoms include osteosclerosis, deformity, dwarfism and narrowing of the bony canals, including the nerve foramina, leading to hematological and neural failures. The disease is autosomal, with only one extremely rare form associated so far to the X-chromosome, and can have either recessive or dominant inheritance. Recessive ostepetroses are generally lethal in infancy or childhood, with a few milder forms clinically denominated intermediate osteopetroses. Dominant osteopetrosis is so far associated only with mutations in the CLCN7 gene and, although described as a benign form, it can be severely debilitating, although not at the same level as recessive forms, and can rarely result in reduced life expectancy. Severe osteopetroses due to osteoclast autonomous defects can be treated by Hematopoietic Stem Cell Transplant (HSCT), but those due to deficiency of the pro-osteoclastogenic cytokine, RANKL, are not suitable for this procedure. Likewise, it is unclear as to whether HSCT, which has high intrinsic risks, results in clinical improvement in autosomal dominant osteopetrosis. Therefore, there is an unmet medical need to identify new therapies and studies are currently in progress to test gene and cell therapies, small interfering RNA approach and novel pharmacologic treatments.
Collapse
Affiliation(s)
- Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, via Vetoio-Coppito 2, 67100 L'Aquila, Italy.
| | - Michael J Econs
- Department of Medicine, Indiana University, 1120 W. Michigan St., Indianapolis, IN 46202, USA; Department of Medical and Molecular Genetics, Indiana University, 1120 W. Michigan St., Indianapolis, IN 46202, USA.
| |
Collapse
|
8
|
Rucci N, Teti A. The "love-hate" relationship between osteoclasts and bone matrix. Matrix Biol 2016; 52-54:176-190. [PMID: 26921625 DOI: 10.1016/j.matbio.2016.02.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/22/2016] [Accepted: 02/22/2016] [Indexed: 01/06/2023]
Abstract
Osteoclasts are unique cells that destroy the mineralized matrix of the skeleton. There is a "love-hate" relationship between the osteoclasts and the bone matrix, whereby the osteoclast is stimulated by the contact with the matrix but, at the same time, it disrupts the matrix, which, in turn, counteracts this disruption by some of its components. The balance between these concerted events brings about bone resorption to be controlled and to contribute to bone tissue integrity and skeletal health. The matrix components released by osteoclasts are also involved in the local regulation of other bone cells and in the systemic control of organismal homeostasis. Disruption of this regulatory loop causes bone diseases, which may end up with either reduced or increased bone mass, often associated with poor bone quality. Expanding the knowledge on osteoclast-to-matrix interaction could help to counteract these diseases and improve the human bone health. In this article, we will present evidence of the physical, molecular and regulatory relationships between the osteoclasts and the mineralized matrix, discussing the underlying mechanisms as well as their pathologic alterations and potential targeting.
Collapse
Affiliation(s)
- Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy
| | - Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy.
| |
Collapse
|
9
|
Asada N, Sato M, Katayama Y. Communication of bone cells with hematopoiesis, immunity and energy metabolism. BONEKEY REPORTS 2015; 4:748. [PMID: 26512322 DOI: 10.1038/bonekey.2015.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/28/2015] [Indexed: 12/20/2022]
Abstract
The bone contains the bone marrow. The functional communication between bone cells and hematopoiesis has been extensively studied in the past decade or so. Osteolineage cells and their modulators, such as the sympathetic nervous system, macrophages and osteoclasts, form a complex unit to maintain the homeostasis of hematopoiesis, called the 'microenvironment'. Recently, bone-embedded osteocytes, the sensors of gravity and mechanical stress, have joined the microenvironment, and they are demonstrated to contribute to whole body homeostasis through the control of immunity and energy metabolism. The inter-organ communication orchestrated by the bone is summarized in this article.
Collapse
Affiliation(s)
- Noboru Asada
- Division of Hematology, Department of Medicine, Kobe University Graduate School of Medicine , Kobe, Japan
| | - Mari Sato
- Division of Hematology, Department of Medicine, Kobe University Graduate School of Medicine , Kobe, Japan
| | - Yoshio Katayama
- Division of Hematology, Department of Medicine, Kobe University Graduate School of Medicine , Kobe, Japan ; Department of Hematology, Kobe University Hospital , Kobe, Japan ; PRESTO, Japan Science and Technology Agency , Kawaguchi, Japan
| |
Collapse
|
10
|
Ersek A, Xu K, Antonopoulos A, Butters TD, Santo AE, Vattakuzhi Y, Williams LM, Goudevenou K, Danks L, Freidin A, Spanoudakis E, Parry S, Papaioannou M, Hatjiharissi E, Chaidos A, Alonzi DS, Twigg G, Hu M, Dwek RA, Haslam SM, Roberts I, Dell A, Rahemtulla A, Horwood NJ, Karadimitris A. Glycosphingolipid synthesis inhibition limits osteoclast activation and myeloma bone disease. J Clin Invest 2015; 125:2279-92. [PMID: 25915583 DOI: 10.1172/jci59987] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 03/19/2015] [Indexed: 01/06/2023] Open
Abstract
Glycosphingolipids (GSLs) are essential constituents of cell membranes and lipid rafts and can modulate signal transduction events. The contribution of GSLs in osteoclast (OC) activation and osteolytic bone diseases in malignancies such as the plasma cell dyscrasia multiple myeloma (MM) is not known. Here, we tested the hypothesis that pathological activation of OCs in MM requires de novo GSL synthesis and is further enhanced by myeloma cell-derived GSLs. Glucosylceramide synthase (GCS) inhibitors, including the clinically approved agent N-butyl-deoxynojirimycin (NB-DNJ), prevented OC development and activation by disrupting RANKL-induced localization of TRAF6 and c-SRC into lipid rafts and preventing nuclear accumulation of transcriptional activator NFATc1. GM3 was the prevailing GSL produced by patient-derived myeloma cells and MM cell lines, and exogenous addition of GM3 synergistically enhanced the ability of the pro-osteoclastogenic factors RANKL and insulin-like growth factor 1 (IGF-1) to induce osteoclastogenesis in precursors. In WT mice, administration of GM3 increased OC numbers and activity, an effect that was reversed by treatment with NB-DNJ. In a murine MM model, treatment with NB-DNJ markedly improved osteolytic bone disease symptoms. Together, these data demonstrate that both tumor-derived and de novo synthesized GSLs influence osteoclastogenesis and suggest that NB-DNJ may reduce pathological OC activation and bone destruction associated with MM.
Collapse
|
11
|
Cappariello A, Maurizi A, Veeriah V, Teti A. Reprint of: The Great Beauty of the osteoclast. Arch Biochem Biophys 2014; 561:13-21. [DOI: 10.1016/j.abb.2014.08.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/02/2014] [Accepted: 06/05/2014] [Indexed: 12/17/2022]
|
12
|
Cappariello A, Maurizi A, Veeriah V, Teti A. The Great Beauty of the osteoclast. Arch Biochem Biophys 2014; 558:70-8. [DOI: 10.1016/j.abb.2014.06.017] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/02/2014] [Accepted: 06/05/2014] [Indexed: 12/12/2022]
|
13
|
Blin-Wakkach C, Rouleau M, Wakkach A. Roles of osteoclasts in the control of medullary hematopoietic niches. Arch Biochem Biophys 2014; 561:29-37. [PMID: 24998177 DOI: 10.1016/j.abb.2014.06.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 12/23/2022]
Abstract
Bone marrow is the major site of hematopoiesis in mammals. The bone marrow environment plays an essential role in the regulation of hematopoietic stem and progenitor cells by providing specialized niches in which these cells are maintained. Many cell types participate to the composition and regulation of hematopoietic stem cell (HSC) niches, integrating complex signals from the bone, immune and nervous systems. Among these cells, the bone-resorbing osteoclasts (OCLs) have been described as main regulators of HSC niches. They are not limited to carving space for HSCs, but they also provide signals that affect the molecular and cellular niche components. However, their exact role in HSC niches remains unclear because of the variety of models, signals and conditions used to address the question. The present review will discuss the importance of the implication of OCLs focusing on the formation of HSC niches, the maintenance of HSCs in these niches and the mobilization of HSCs from the bone marrow. It will underline the importance of OCLs in HSC niches.
Collapse
Affiliation(s)
- Claudine Blin-Wakkach
- CNRS UMR7370, LP2M, Faculty of Medicine, 28 Av de Valombrose, 06107 Nice, France; University Nice Sophia Antipolis, Faculty of Sciences, Parc Valrose, 06100 Nice, France.
| | - Matthieu Rouleau
- CNRS UMR7370, LP2M, Faculty of Medicine, 28 Av de Valombrose, 06107 Nice, France; University Nice Sophia Antipolis, Faculty of Sciences, Parc Valrose, 06100 Nice, France
| | - Abdelilah Wakkach
- CNRS UMR7370, LP2M, Faculty of Medicine, 28 Av de Valombrose, 06107 Nice, France; University Nice Sophia Antipolis, Faculty of Sciences, Parc Valrose, 06100 Nice, France
| |
Collapse
|
14
|
Barvencik F, Kurth I, Koehne T, Stauber T, Zustin J, Tsiakas K, Ludwig CF, Beil FT, Pestka JM, Hahn M, Santer R, Supanchart C, Kornak U, Del Fattore A, Jentsch TJ, Teti A, Schulz A, Schinke T, Amling M. CLCN7 and TCIRG1 mutations differentially affect bone matrix mineralization in osteopetrotic individuals. J Bone Miner Res 2014; 29:982-91. [PMID: 24108692 DOI: 10.1002/jbmr.2100] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 09/12/2013] [Accepted: 09/16/2013] [Indexed: 01/10/2023]
Abstract
Osteopetrosis is an inherited disorder of impaired bone resorption, with the most commonly affected genes being CLCN7 and TCIRG1, encoding the Cl(-) /H(+) exchanger CLC-7 and the a3 subunit of the vacuolar H(+) -ATPase, respectively. We and others have previously shown that the disease is frequently accompanied by osteomalacia, and that this additional pathology is also found in Tcirg1-deficient oc/oc mice. The remaining question was whether osteoid enrichment is specifically associated with TCIRG1 inactivation, or whether CLCN7 mutations would also cause skeletal mineralization defects. Here we describe a complete osteologic assessment of one family carrying a novel mutation in CLCN7 (D145G), which impairs the activation and relaxation kinetics of the CLC-7 ion transporter. The two siblings carrying the mutation in the homozygous state displayed high bone mass, increased serum levels of bone formation markers, but no impairment of calcium homeostasis when compared to the other family members. Most importantly, however, undecalcified processing of an iliac crest biopsy from one of the affected children clearly demonstrated a pathological increase of trabecular bone mass, but no signs of osteomalacia. Given the potential relevance of these findings we additionally performed undecalcified histology of iliac crest biopsies from seven additional cases with osteopetrosis caused by a mutation in TNFRSF11A (n=1), CLCN7 (n=3), or TCIRG1 (n=3). Here we observed that all cases with TCIRG1-dependent osteopetrosis displayed severe osteoid accumulation and decreased calcium content within the mineralized matrix. In contrast, there was no detectable bone mineralization defect in the cases with TNFRSF11A-dependent or CLCN7-dependent osteopetrosis. Taken together, our analysis demonstrates that CLCN7 and TCIRG1 mutations differentially affect bone matrix mineralization, and that there is a need to modify the current classification of osteopetrosis.
Collapse
Affiliation(s)
- Florian Barvencik
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|