1
|
Li Z, Rosen CJ. The Multifaceted Roles of Bone Marrow Adipocytes in Bone and Hematopoietic Homeostasis. J Clin Endocrinol Metab 2023; 108:e1465-e1472. [PMID: 37315208 DOI: 10.1210/clinem/dgad355] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
Bone marrow adipose tissue (BMAT) makes up a significant portion of the marrow space, ranging from 50% to 70%, in healthy adults. It expands with aging, obesity, anorexia nervosa, and irradiation, which are conditions associated with skeletal complications or hematopoietic disorders. Therefore, BMAT has been viewed as a negative component of the bone marrow niche for decades, although the mechanisms and causative relationships have not been well-addressed. Of note, recent studies have revealed that BMAT is a multifaceted tissue that can serve as an energy reservoir to fuel osteoblasts and hematopoietic cells under stressful situations, and also acts as an endocrine/paracrine organ to suppress bone formation and support hematopoiesis at steady-state conditions. In this review, we summarize the uniqueness of BMAT, the complex findings of previous studies, and update our understanding of the physiological roles of BMAT in bone and hematopoietic metabolism based on a newly established bone marrow adipocyte-specific mouse model.
Collapse
Affiliation(s)
- Ziru Li
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME 04074, USA
| | - Clifford J Rosen
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME 04074, USA
| |
Collapse
|
2
|
Peters IJA, de Pater E, Zhang W. The role of GATA2 in adult hematopoiesis and cell fate determination. Front Cell Dev Biol 2023; 11:1250827. [PMID: 38033856 PMCID: PMC10682726 DOI: 10.3389/fcell.2023.1250827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
The correct maintenance and differentiation of hematopoietic stem cells (HSC) in bone marrow is vital for the maintenance and operation of the human blood system. GATA2 plays a critical role in the maintenance of HSCs and the specification of HSCs into the different hematopoietic lineages, highlighted by the various defects observed in patients with heterozygous mutations in GATA2, resulting in cytopenias, bone marrow failure and increased chance of myeloid malignancy, termed GATA2 deficiency syndrome. Despite this, the mechanisms underlying GATA2 deficiency syndrome remain to be elucidated. The detailed description of how GATA2 regulates HSC maintenance and blood lineage determination is crucial to unravel the pathogenesis of GATA2 deficiency syndrome. In this review, we summarize current advances in elucidating the role of GATA2 in hematopoietic cell fate determination and discuss the challenges of modeling GATA2 deficiency syndrome.
Collapse
Affiliation(s)
| | | | - Wei Zhang
- *Correspondence: Wei Zhang, ; Emma de Pater,
| |
Collapse
|
3
|
Stocco TD, Bassous N, Oliveira Lobo A. Nanostructured materials for bone tissue replacement. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
4
|
Abstract
Bone is a living organ that exhibits active metabolic processes, presenting constant bone formation and resorption. The bone cells that maintain local homeostasis are osteoblasts, osteoclasts, osteocytes and bone marrow stem cells, their progenitor cells. Osteoblasts are the main cells that govern bone formation, osteoclasts are involved in bone resorption, and osteocytes, the most abundant bone cells, also participate in bone remodeling. All these cells have active metabolic activities, are interconnected and influence each other, having both autocrine and paracrine effects. Ageing is associated with multiple and complex bone metabolic changes, some of which are currently incompletely elucidated. Ageing causes important functional changes in bone metabolism, influencing all resident cells, including the mineralization process of the extracellular matrix. With advancing age, a decrease in bone mass, the appearance of specific changes in the local microarchitecture, a reduction in mineralized components and in load-bearing capacity, as well as the appearance of an abnormal response to different humoral molecules have been observed. The present review points out the most important data regarding the formation, activation, functioning, and interconnection of these bone cells, as well as data on the metabolic changes that occur due to ageing.
Collapse
Affiliation(s)
- Anca Cardoneanu
- Department of Rheumatology, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
- Clinical Rehabilitation Hospital, 1st Rheumatology Clinic, Iasi, Romania
| | - Ciprian Rezus
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
- IIIrd Medical Clinic, "Saint Spiridon" Clinic Emergency County Hospital, Iasi, Romania
| | - Bogdan Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Elena Rezus
- Department of Rheumatology, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
- Clinical Rehabilitation Hospital, 1st Rheumatology Clinic, Iasi, Romania
| |
Collapse
|
5
|
Yuan W, Song C. Crosstalk between bone and other organs. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:331-348. [PMID: 37724328 PMCID: PMC10471111 DOI: 10.1515/mr-2022-0018] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/06/2022] [Indexed: 09/20/2023]
Abstract
Bone has long been considered as a silent organ that provides a reservoir of calcium and phosphorus, traditionally. Recently, further study of bone has revealed additional functions as an endocrine organ connecting systemic organs of the whole body. Communication between bone and other organs participates in most physiological and pathological events and is responsible for the maintenance of homeostasis. Here, we present an overview of the crosstalk between bone and other organs. Furthermore, we describe the factors mediating the crosstalk and review the mechanisms in the development of potential associated diseases. These connections shed new light on the pathogenesis of systemic diseases and provide novel potential targets for the treatment of systemic diseases.
Collapse
Affiliation(s)
- Wanqiong Yuan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Chunli Song
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| |
Collapse
|
6
|
Wawrzyniak A, Balawender K. Structural and Metabolic Changes in Bone. Animals (Basel) 2022; 12:ani12151946. [PMID: 35953935 PMCID: PMC9367262 DOI: 10.3390/ani12151946] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Bone is an extremely metabolically active tissue that is regenerated and repaired over its lifetime by bone remodeling. Most bone diseases are caused by abnormal restructure processes that undermine bone structure and mechanical strength and trigger clinical symptoms, such as pain, deformity, fracture, and abnormalities of calcium and phosphate homoeostasis. The article examines the main aspects of bone development, anatomy, structure, and the mechanisms of cell and molecular regulation of bone remodeling. Abstract As an essential component of the skeleton, bone tissue provides solid support for the body and protects vital organs. Bone tissue is a reservoir of calcium, phosphate, and other ions that can be released or stored in a controlled manner to provide constant concentration in body fluids. Normally, bone development or osteogenesis occurs through two ossification processes (intra-articular and intra-chondral), but the first produces woven bone, which is quickly replaced by stronger lamellar bone. Contrary to commonly held misconceptions, bone is a relatively dynamic organ that undergoes significant turnover compared to other organs in the body. Bone metabolism is a dynamic process that involves simultaneous bone formation and resorption, controlled by numerous factors. Bone metabolism comprises the key actions. Skeletal mass, structure, and quality are accrued and maintained throughout life, and the anabolic and catabolic actions are mostly balanced due to the tight regulation of the activity of osteoblasts and osteoclasts. This activity is also provided by circulating hormones and cytokines. Bone tissue remodeling processes are regulated by various biologically active substances secreted by bone tissue cells, namely RANK, RANKL, MMP-1, MMP-9, or type 1 collagen. Bone-derived factors (BDF) influence bone function and metabolism, and pathophysiological conditions lead to bone dysfunction. This work aims to analyze and evaluate the current literature on various local and systemic factors or immune system interactions that can affect bone metabolism and its impairments.
Collapse
|
7
|
Corrado A, Cici D, Rotondo C, Maruotti N, Cantatore FP. Molecular Basis of Bone Aging. Int J Mol Sci 2020; 21:ijms21103679. [PMID: 32456199 PMCID: PMC7279376 DOI: 10.3390/ijms21103679] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/16/2022] Open
Abstract
A decline in bone mass leading to an increased fracture risk is a common feature of age-related bone changes. The mechanisms underlying bone senescence are very complex and implicate systemic and local factors and are the result of the combination of several changes occurring at the cellular, tissue and structural levels; they include alterations of bone cell differentiation and activity, oxidative stress, genetic damage and the altered responses of bone cells to various biological signals and to mechanical loading. The molecular mechanisms responsible for these changes remain greatly unclear and many data derived from in vitro or animal studies appear to be conflicting and heterogeneous, probably due to the different experimental approaches; nevertheless, understanding the main physio-pathological processes that cause bone senescence is essential for the development of new potential therapeutic options for treating age-related bone loss. This article reviews the current knowledge concerning the molecular mechanisms underlying the pathogenesis of age-related bone changes.
Collapse
|
8
|
Assessment of the human bone lacuno-canalicular network at the nanoscale and impact of spatial resolution. Sci Rep 2020; 10:4567. [PMID: 32165649 PMCID: PMC7067834 DOI: 10.1038/s41598-020-61269-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 02/17/2020] [Indexed: 11/09/2022] Open
Abstract
Recently, increasing attention has been given to the study of osteocytes, the cells that are thought to play an important role in bone remodeling and in the mechanisms of bone fragility. The interconnected osteocyte system is deeply embedded inside the mineralized bone matrix and lies within a closely fitted porosity known as the lacuno-canalicular network. However, quantitative data on human samples remain scarce, mostly measured in 2D, and there are gaps to be filled in terms of spatial resolution. In this work, we present data on femoral samples from female donors imaged with isotropic 3D spatial resolution by magnified X-ray phase nano computerized-tomography. We report quantitative results on the 3D structure of canaliculi in human femoral bone imaged with a voxel size of 30 nm. We found that the lacuno-canalicular porosity occupies on average 1.45% of the total tissue volume, the ratio of the canalicular versus lacunar porosity is about 37.7%, and the primary number of canaliculi stemming from each lacuna is 79 on average. The examination of this number at different distances from the surface of the lacunae demonstrates branching in the canaliculi network. We analyzed the impact of spatial resolution on quantification by comparing parameters extracted from the same samples imaged with 120 nm and 30 nm voxel sizes. To avoid any bias related to the analysis region, the volumes at 120 nm and 30 nm were registered and cropped to the same field of view. Our results show that the measurements at 120 and 30 nm are strongly correlated in our data set but that the highest spatial resolution provides more accurate information on the canaliculi network and its branching properties.
Collapse
|
9
|
Wakahashi K, Katayama Y. Bone: a key aspect to understand phenomena in clinical hematology. J Bone Miner Metab 2020; 38:145-150. [PMID: 31897749 DOI: 10.1007/s00774-019-01075-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/12/2019] [Indexed: 01/22/2023]
Abstract
The bone marrow (BM) is located inside the bone. Now, it appears that bone tissue functionally communicates with the BM hematopoietic system. Osteoblast lineage cells serve as a part of the microenvironment for immature hematopoietic (stem/progenitor) cells. In contrast, mature hematopoietic cells such as neutrophils and macrophages play a critical role to regulate osteoblast activity. A progressive distortion of this precise inter-organ communication between hematopoietic and skeletal systems may lead to hematologic disorders. Recent studies have revealed that vitamin D receptor is a pivotal bridging molecule for this network and for the pathogenesis of myelofibrosis.
Collapse
Affiliation(s)
- Kanako Wakahashi
- Hematology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yoshio Katayama
- Hematology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| |
Collapse
|
10
|
Katayama Y. Vitamin D receptor: A critical regulator of inter-organ communication between skeletal and hematopoietic systems. J Steroid Biochem Mol Biol 2019; 190:281-283. [PMID: 30731117 DOI: 10.1016/j.jsbmb.2019.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 02/01/2019] [Accepted: 02/03/2019] [Indexed: 11/28/2022]
Abstract
The functions of vitamin D receptor (VDR) have been extensively studied, for example, in the bone biology field. It is widely known that VDR knockout mice display the characteristic features of rickets type II. However, the contribution of VDR signaling to bone marrow (BM) hematopoiesis in association with the phenomena observed in clinical hematology has not been evaluated thoroughly. Hematopoietic stem cells (HSCs) can be mobilized from the BM into and harvested from peripheral blood as a BM transplantation source for the curable treatment of hematologic malignancies. This HSC mobilization can be achieved by the administration of cytokine granulocyte colony-stimulating factor (G-CSF) for several consecutive days. We have reported that, using the murine model, G-CSF induces the high sympathetic tone in the BM and a β2-adrenergic signal into osteoblasts induces a rapid and drastic increase of VDR, which is critical for the subsequent cascade for HSC mobilization. This is an example of the transient deviation of the inter-organ communication in three different systems (nervous, skeletal, and hematopoietic) bridged by VDR in osteoblasts. It would be important to reconsider VDR as a pivotal molecule that mediates inter-organ communication to broaden the application of vitamin D signal modulators.
Collapse
Affiliation(s)
- Yoshio Katayama
- Hematology, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan.
| |
Collapse
|
11
|
Divieti Pajevic P, Krause DS. Osteocyte regulation of bone and blood. Bone 2019; 119:13-18. [PMID: 29458123 PMCID: PMC6095825 DOI: 10.1016/j.bone.2018.02.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 12/19/2022]
Abstract
This past decade has witnessed a renewed interest in the function and biology of matrix-embedded osteocytes and these cells have emerged as master regulators of bone homeostasis. They secrete two very powerful proteins, sclerostin, a Wnt-inhibitor, that suppresses bone formation, and receptor-activator of NF-kB ligand (RANKL), a cytokine required for osteoclastogenesis. Neutralizing antibodies against these proteins are currently used for the treatment of osteoporosis. Recent studies however, ascribed yet another function to osteocytes: the control of hematopoiesis and the HSPC niche, directly and through secreted factors. In the absence of osteocytes there is an increase in HSC mobilization and abnormal lymphopoiesis whereas in the absence of Gsα signaling in these cells there is an increase of myeloid cells. How exactly osteocytes control hematopoiesis or the HSPC niche is still not completely understood. In this review we summarize the actions of osteocytes in bone and then analyze the effects of these cells on hematopoiesis. Future directions and gaps in current knowledge are further discussed.
Collapse
Affiliation(s)
| | - Daniela S Krause
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany
| |
Collapse
|
12
|
Su N, Yang J, Xie Y, Du X, Chen H, Zhou H, Chen L. Bone function, dysfunction and its role in diseases including critical illness. Int J Biol Sci 2019; 15:776-787. [PMID: 30906209 PMCID: PMC6429025 DOI: 10.7150/ijbs.27063] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 01/04/2019] [Indexed: 12/16/2022] Open
Abstract
The skeleton is one of the largest organs in the human body. In addition to its conventional functions such as support, movement and protection, the skeleton also contributes to whole body homeostasis and maintenance of multiple important non-bone organs/systems (extraskeletal functions). Both conventional and extraskeletal functions of the skeleton are defined as bone function. Bone-derived factors (BDFs) are key players regulating bone function. In some pathophysiological situations, including diseases affecting bone and/or other organs/systems, the disorders of bone itself and the subsequently impaired functions of extraskeletal organs/systems caused by abnormal bone (impaired extraskeletal functions of bone) are defined as bone dysfunction. In critical illness, which is a health status characterized by the dysfunction or severe damage of one or multiple important organs or systems, the skeleton shows rapid bone loss resulting from bone hyper-resorption and impaired osteoblast function. In addition, the dysfunctions of the skeleton itself are also closely related to the severity and prognosis of critical illness. Therefore, we propose that there is bone dysfunction in critical illness. Some methods to inhibit osteoclast activity or promote osteoblast function by the treatment of bisphosphonates or PTH1-34 benefit the outcome of critical illness, which indicates that enhancing bone function may be a potential novel strategy to improve prognosis of diseases including critical illness.
Collapse
Affiliation(s)
- Nan Su
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Jing Yang
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Yangli Xie
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xiaolan Du
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Hangang Chen
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Hong Zhou
- Bone Research Program, ANZAC Research Institute, The University of Sydney, Hospital Road, Sydney, NSW 2139, Australia
| | - Lin Chen
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| |
Collapse
|