1
|
Andrique C, Bonnet AL, Dang J, Lesieur J, Krautzberger AM, Baroukh B, Torrens C, Sadoine J, Schmitt A, Rochefort GY, Bardet C, Six I, Houillier P, Tharaux PL, Schrewe H, Gaucher C, Chaussain C. Vasorin as an actor of bone turnover? J Cell Physiol 2024; 239:e31257. [PMID: 38504496 DOI: 10.1002/jcp.31257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
Bone diseases are increasing with aging populations and it is important to identify clues to develop innovative treatments. Vasn, which encodes vasorin (Vasn), a transmembrane protein involved in the pathophysiology of several organs, is expressed during the development in intramembranous and endochondral ossification zones. Here, we studied the impact of Vasn deletion on the osteoblast and osteoclast dialog through a cell Coculture model. In addition, we explored the bone phenotype of Vasn KO mice, either constitutive or tamoxifen-inducible, or with an osteoclast-specific deletion. First, we show that both osteoblasts and osteoclasts express Vasn. Second, we report that, in both KO mouse models but not in osteoclast-targeted KO mice, Vasn deficiency was associated with an osteopenic bone phenotype, due to an imbalance in favor of osteoclastic resorption. Finally, through the Coculture experiments, we identify a dysregulation of the Wnt/β-catenin pathway together with an increase in RANKL release by osteoblasts, which led to an enhanced osteoclast activity. This study unravels a direct role of Vasn in bone turnover, introducing a new biomarker or potential therapeutic target for bone pathologies.
Collapse
Affiliation(s)
| | - Anne Laure Bonnet
- Université Paris Cité, Montrouge, France
- AP-HP, Services de médecine bucco-dentaire: GH Nord - Université Paris Cité, GH Sorbonne Université, GH Henri Mondor, Paris, France
| | - Julien Dang
- Paris Cardiovascular Research Centre - PARCC, Université Paris Cité, Inserm, Paris, France
| | | | - A Michaela Krautzberger
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | | | | | - Alain Schmitt
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
| | | | | | - Isabelle Six
- URP 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Jules Verne University of Picardie, Amiens, France
| | - Pascal Houillier
- Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, Université Paris Cité, Paris, France
- AP-HP, Explorations fonctionnelles rénales, Physiologie, Hôpital européen Georges-Pompidou, Paris, France
| | - Pierre Louis Tharaux
- Paris Cardiovascular Research Centre - PARCC, Université Paris Cité, Inserm, Paris, France
| | - Heinrich Schrewe
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Celine Gaucher
- Université Paris Cité, Montrouge, France
- AP-HP, Services de médecine bucco-dentaire: GH Nord - Université Paris Cité, GH Sorbonne Université, GH Henri Mondor, Paris, France
| | - Catherine Chaussain
- Université Paris Cité, Montrouge, France
- AP-HP, Services de médecine bucco-dentaire: GH Nord - Université Paris Cité, GH Sorbonne Université, GH Henri Mondor, Paris, France
- APHP, Centre de reference des maladies rares du phosphate et du calcium (filière OSCAR, ERN BOND), Hôpital Bretonneau, Paris, France
| |
Collapse
|
2
|
Cao C, Cai Y, Li Y, Li T, Zhang J, Hu Z, Zhang J. Characterization and comparative transcriptomic analysis of skeletal muscle in female Pekin duck and Hanzhong Ma duck during different growth stages using RNA-seq. Poult Sci 2023; 102:103122. [PMID: 37832186 PMCID: PMC10568565 DOI: 10.1016/j.psj.2023.103122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023] Open
Abstract
Duck is an economically important poultry, and there is currently a major focus on improving its meat quality through breeding. There are wide variations in the growth regulation mechanisms of different duck breeds, that fundamental research on skeletal muscle growth is essential for understanding the regulation of unknown genes. The study aimed to broaden the understanding the duck skeletal muscle development and thereby to improve the performance of domestic ducks. In this study, RNA-seq data from skeletal muscles (breast muscle and leg muscle) of Pekin duck and Hanzhong Ma duck sampled at d 17, 21, and 27 of embryo (E17d, E21d, and E27d), as well as at 6-mo-old following birth (M6), to investigate and compare the mRNA temporal expression profiles and associated pathways that regulate skeletal myogenesis of different duck breeds. There were 331 to 1,440 annotated differentially expressed genes (DEGs) in breast muscle and 380 to 1,790 annotated DEGs in leg muscle from different databases between 2 duck breeds. Gene ontology (GO) enrichment in skeletal muscles indicated that these DEGs were mainly involved in biosynthetic process, developmental process, regulation of protein metabolic process and regulation of gene expression. KEGG analysis in skeletal muscles showed that a total of 41 DEGs were mapped to 7 KEGG pathways, including ECM-receptor interaction, focal adhesion, carbon metabolism, regulation of actin cytoskeleton, calcium signaling pathway, biosynthesis of amino acids and PPAR signaling pathway. The differential expression of 8 selected DEGs was verified by qRT-PCR, and the results were consistent with RNA-seq data. The identified DEGs, such as SDC, SPP1, PAK1, MYL9, PGK1, NOS1, PHGDH, TNNT2, FN1, and AQP4, were specially highlighted, indicating their associations with muscle development in the Pekin duck and Hanzhong Ma duck. This study provides a basis for revealing the differences in skeletal muscle development between Pekin duck and Hanzhong Ma duck.
Collapse
Affiliation(s)
- Chang Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Yingjie Cai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Yuxiao Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Tao Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Jiqiao Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Zhigang Hu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Jianqin Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China.
| |
Collapse
|
3
|
You L, Dou Y, Zhang Y, Xiao H, Lv H, Wei GH, Xu D. SDC2 Stabilization by USP14 Promotes Gastric Cancer Progression through Co-option of PDK1. Int J Biol Sci 2023; 19:3483-3498. [PMID: 37496999 PMCID: PMC10367555 DOI: 10.7150/ijbs.84331] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Gastric cancer (GC) is a common malignancy and remains the fourth-leading cause of cancer-related deaths worldwide. Oncogenic potential of SDC2 has been implicated in multiple types of cancers, yet its role and underlying molecular mechanisms in GC remain unknown. Here, we found that SDC2 was highly expressed in GC and its upregulation correlated with poor prognosis in GC patients. Depletion of SDC2 significantly suppressed the growth and invasive capability of GC cells, while overexpressing SDC2 exerts opposite effects. Combined bioinformatics and experimental analyses substantiated that overexpression of SDC2 activated the AKT signaling pathway in GC, mechanistically through the interaction between SDC2 and PDK1-PH domain, thereby facilitating PDK1 membrane translocation to promote AKT activation. Moreover, SDC2 could also function as a co-receptor for FGF2 and was profoundly involved in the FGF2-AKT signaling axis in GC. Lastly, we revealed a mechanism on the USP14-mediated stabilization of SDC2 that is likely to contribute to SDC2 upregulation in GC tissues. Furthermore, we showed that IU1, a potent USP14 inhibitor, decreased the abundance of SDC2 in GC cells. Our findings indicate that SDC2 functions as a novel GC oncogene and has potential utility as a diagnostic marker and therapeutic target for GC.
Collapse
Affiliation(s)
- Li You
- Department of Gastric Surgery, Fudan University Shanghai Cancer, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yi Dou
- Department of Gastric Surgery, Fudan University Shanghai Cancer, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yu Zhang
- Department of Gastric Surgery, Fudan University Shanghai Cancer, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hongwei Xiao
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei province, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Hong Lv
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Gong-Hong Wei
- Department of Gastric Surgery, Fudan University Shanghai Cancer, Shanghai 200032, China
- MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Dazhi Xu
- Department of Gastric Surgery, Fudan University Shanghai Cancer, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
Grabowska M, Kuczyński K, Piwecka M, Rabiasz A, Zemła J, Głodowicz P, Wawrzyniak D, Lekka M, Rolle K. miR-218 affects the ECM composition and cell biomechanical properties of glioblastoma cells. J Cell Mol Med 2022; 26:3913-3930. [PMID: 35702951 PMCID: PMC9279592 DOI: 10.1111/jcmm.17428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 11/27/2022] Open
Abstract
Glioblastoma (GBM) is the most common malignant brain tumour. GBM cells have the ability to infiltrate into the surrounding brain tissue, which results in a significant decrease in the patient’s survival rate. Infiltration is a consequence of the low adhesion and high migration of the tumour cells, two features being associated with the highly remodelled extracellular matrix (ECM). In this study, we report that ECM composition is partially regulated at the post‐transcriptional level by miRNA. Particularly, we show that miR‐218, a well‐known miRNA suppressor, is involved in the direct regulation of ECM components, tenascin‐C (TN‐C) and syndecan‐2 (SDC‐2). We demonstrated that the overexpression of miR‐218 reduces the mRNA and protein expression levels of TN‐C and SDC‐2, and subsequently influences biomechanical properties of GBM cells. Atomic force microscopy (AFM) and real‐time migration analysis revealed that miR‐218 overexpression impairs the migration potential and enhances the adhesive properties of cells. AFM analysis followed by F‐actin staining demonstrated that the expression level of miR‐218 has an impact on cell stiffness and cytoskeletal reorganization. Global gene expression analysis showed deregulation of a number of genes involved in tumour cell motility and adhesion or ECM remodelling upon miR‐218 treatment, suggesting further indirect interactions between the cells and ECM. The results demonstrated a direct impact of miR‐218 reduction in GBM tumours on the qualitative ECM content, leading to changes in the rigidity of the ECM and GBM cells being conducive to increased invasiveness of GBM.
Collapse
Affiliation(s)
| | - Konrad Kuczyński
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland.,NanoBioMedical Centre, Adam Mickiewicz University, Poznań, Poland
| | - Monika Piwecka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Alicja Rabiasz
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Joanna Zemła
- Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
| | - Paweł Głodowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Dariusz Wawrzyniak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Małgorzata Lekka
- Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Rolle
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
5
|
Prognostic Bone Metastasis-Associated Immune-Related Genes Regulated by Transcription Factors in Mesothelioma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9940566. [PMID: 35127947 PMCID: PMC8813231 DOI: 10.1155/2022/9940566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/30/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022]
Abstract
Mesothelioma (MESO) is a mesothelial originate neoplasm with high morbidity and mortality. Despite advancement in technology, early diagnosis still lacks effectivity and is full of pitfalls. Approaches of cancer diagnosis and therapy utilizing immune biomarkers and transcription factors (TFs) have attracted more and more attention. But the molecular mechanism of these features in MESO bone metastasis has not been thoroughly studied. Utilizing high-throughput genome sequencing data and lists of specific gene subsets, we performed several data mining algorithm. Single-sample Gene Set Enrichment Analysis (ssGSEA) was applied to identify downstream immune cells. Potential pathways involved in MESO bone metastasis were identified using Gene Oncology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, Gene Set Variation Analysis (GSVA), Gene Set Enrichment Analysis (GSEA), and Cox regression analysis. Ultimately, a model to help early diagnosis and to predict prognosis was constructed based on differentially expressed immune-related genes between bone metastatic and nonmetastatic MESO groups. In conclusion, immune-related gene SDC2, regulated by TFs TCF7L1 and POLR3D, had an important role on immune cell function and infiltration, providing novel biomarkers and therapeutic targets for metastatic MESO.
Collapse
|
6
|
Zhang L, Dong L, Lu C, Huang W, Yang C, Wang Q, Wang Q, Lei R, Sun R, Wan K, Li T, Sun F, Gan T, Lin J, Yin L. Methylation of SDC2/ TFPI2 and Its Diagnostic Value in Colorectal Tumorous Lesions. Front Mol Biosci 2022; 8:706754. [PMID: 35004840 PMCID: PMC8729808 DOI: 10.3389/fmolb.2021.706754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 11/30/2021] [Indexed: 01/04/2023] Open
Abstract
Background:SDC2 methylation is a feasible biomarker for colorectal cancer detection. Its specificity for colorectal cancer is higher than 90%, but the sensitivity is normally lower than 90%. This study aims to improve the sensitivity of SDC2 detection through finding a high positive target from the false-negative samples of SDC2 detection based on analysis of the bowel subsite difference in methylation. Methods: Hypermethylated TFPI2 was identified in SDC2 hypomethylated colorectal cancer samples retrieved from TCGA database with the methylation level lower than 0.2. The methylation-specific PCR assay was developed and then evaluated using tissue samples (184 cancer and 54 healthy control samples) and stool samples (289 cancer, 190 adenoma, and 217 healthy control samples). Results:TFPI2 was hypermethylated in most SDC2 hypomethylated colorectal cancer samples. When the SDC2/TFPI2-combined PCR assay was performed in stool specimens, the AUC value of cancer vs. control was 0.98, with the specificity of 96.40% and sensitivity of 96.60%, and the AUC value of adenoma vs. control was 0.87, with the specificity of 95.70% and the sensitivity of 80.00%. The improvement in sensitivity was the most momentous in the left colon. As the detection index, the Ct value was better in improving the sensitivity of detection than the methylation level based on the 2−ΔΔCt value. Conclusion:TFPI2 can improve the sensitivity of SDC2 methylation–specific detection of colorectal tumorous lesions while maintaining high specificity, in particular reducing the missed detection of left colon cancer and adenoma.
Collapse
Affiliation(s)
- Lianglu Zhang
- Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan, China.,Wuhan Ammunition Life-tech Company, Ltd., Wuhan, China.,Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,The Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Lanlan Dong
- Wuhan Ammunition Life-tech Company, Ltd., Wuhan, China
| | - Changming Lu
- Wuhan Ammunition Life-tech Company, Ltd., Wuhan, China
| | - Wenxian Huang
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Cuiping Yang
- Department of Gastroenterology, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qian Wang
- Department of Colorectal and Anal Surgery, The Eighth Hospital of Wuhan, Hubei University of Chinese Medicine, Wuhan, China
| | - Qian Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ruixue Lei
- Department of Pathology, The Fourth Affiliated Hospital of Henan University of Science and Technology (Anyang Tumor Hospital), Anyang, China
| | - Rui Sun
- Department of Oncology, Wuhan Fourth Hospital (Puai Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kangkang Wan
- Wuhan Ammunition Life-tech Company, Ltd., Wuhan, China
| | - Tingting Li
- Wuhan Ammunition Life-tech Company, Ltd., Wuhan, China
| | - Fan Sun
- Wuhan Ammunition Life-tech Company, Ltd., Wuhan, China
| | - Tian Gan
- Wuhan Ammunition Life-tech Company, Ltd., Wuhan, China
| | - Jun Lin
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lei Yin
- Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Sadoughi F, Hallajzadeh J, Mirsafaei L, Asemi Z, Zahedi M, Mansournia MA, Yousefi B. Cardiac fibrosis and curcumin: a novel perspective on this natural medicine. Mol Biol Rep 2021; 48:7597-7608. [PMID: 34648140 DOI: 10.1007/s11033-021-06768-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/10/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND According to WHO statistics, cardiovascular disease are the leading causes of death in the world. One of the main factors which is causing heart failure, systolic and diastolic dysfunction, and arrythmias is a condition named cardiac fibrosis. This condition is defined by the accumulation of fibroblast-produced ECM in myocardium layer of the heart. OBJECTIVE Accordingly, the current review aims to depict the role of curcumin in the regulation of different signaling pathways that are involved in cardiac fibrosis. RESULTS A great number of cellular and molecular mechanisms such as oxidative stress, inflammation, and mechanical stress are acknowledged to be involved in cardiac fibrosis. Despite the available therapeutic procedures which are designed to target these mechanisms in order to prevent cardiac fibrosis, still, effective therapeutic methods are needed. Curcumin is a natural Chinese medicine which currently has been declared to have therapeutic properties such as anti-oxidant and immunomodulatory activities. In this review, we have gathered several experimental studies in order to represent diverse impacts of this turmeric derivative on pathogenic factors of cardiac fibrosis. CONCLUSION Curcumin might open new avenues in the field of cardiovascular treatment.
Collapse
Affiliation(s)
- Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Medicinal Plants Research Center, Maragheh University of Medical Sciences, Maragheh, Iran.
| | - Liaosadat Mirsafaei
- Department of Cardiology, Ramsar Campus, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Mahdi Zahedi
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgān, Iran.
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Toyama N, Tsuchiya S, Kamio H, Okabe K, Kuroda K, Okido M, Hibi H. The effect of macrophages on an atmospheric pressure plasma-treated titanium membrane with bone marrow stem cells in a model of guided bone regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:70. [PMID: 32705350 DOI: 10.1007/s10856-020-06412-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Guided bone regeneration (GBR) is an established treatment. However, the mechanisms of GBR are not fully understood. Recently, a GBR membrane was identified that acts as a passive barrier to regenerate bone via activation and migration of macrophages (Mps) and bone marrow stem cells (BMSCs). Atmospheric pressure plasma treatment of the titanium membrane (APP-Ti) activated macrophages. The purpose of this study was to analyze whether macrophages attached to an APP-Ti membrane affected differentiation of BMSCs in a GBR model. Human THP-1 macrophages (hMps) were cultured on non-treated Ti (N-Ti) and APP-Ti membrane. Macrophage polarization was analyzed by RT-PCR and immunocytochemistry. Secreted proteins from hMps on N-Ti and APP-Ti were detected by LC/MS/MS. hBMSCs were co-cultured with hMps on N-Ti or APP-Ti and analyzed by osteogenic differentiation, Alizarin red S staining, and alkaline phosphatase (ALP) activity. N-Ti and APP-Ti membrane were also implanted into bone defects of rat calvaria. hMps on APP-Ti were polarized M2-like macrophages. hMps on N-Ti secreted plasminogen activator inhibitor-1 and syndecan-2, but hMps on APP-Ti did not. hBMSCs co-cultured with hMps on APP-Ti increased cell migration and gene expression of osteogenic markers, but suppressed mineralization, while ALP activity was similar to that of hMps on N-Ti in vitro. The volume of newly formed bone was not significantly different between N-Ti and APP-Ti membrane in vivo. M2 polarized hMps on APP-Ti suppressed osteogenic induction of hBMSCs in vitro. The indirect role of hMps on APP-Ti in newly formed bone was limited.
Collapse
Affiliation(s)
- Naoto Toyama
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Shuhei Tsuchiya
- Nagoya University Hospital Oral and Maxillofacial Surgery, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| | - Hisanobu Kamio
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Kazuto Okabe
- Nagoya University Hospital Oral and Maxillofacial Surgery, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Kensuke Kuroda
- Institute of Materials and Systems for sustainability (IMaSS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Masazumi Okido
- Institute of Materials and Systems for sustainability (IMaSS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Hideharu Hibi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
9
|
Yu C, Peall IW, Pham SH, Okolicsanyi RK, Griffiths LR, Haupt LM. Syndecan-1 Facilitates the Human Mesenchymal Stem Cell Osteo-Adipogenic Balance. Int J Mol Sci 2020; 21:ijms21113884. [PMID: 32485953 PMCID: PMC7312587 DOI: 10.3390/ijms21113884] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022] Open
Abstract
Bone marrow-derived human mesenchymal stems cells (hMSCs) are precursors to adipocyte and osteoblast lineage cells. Dysregulation of the osteo-adipogenic balance has been implicated in pathological conditions involving bone loss. Heparan sulfate proteoglycans (HSPGs) such as cell membrane-bound syndecans (SDCs) and glypicans (GPCs) mediate hMSC lineage differentiation and with syndecan-1 (SDC-1) reported in both adipogenesis and osteogenesis, these macromolecules are potential regulators of the osteo-adipogenic balance. Here, we disrupted the HSPG profile in primary hMSC cultures via temporal knockdown (KD) of SDC-1 using RNA interference (RNAi) in undifferentiated, osteogenic and adipogenic differentiated hMSCs. SDC-1 KD cultures were examined for osteogenic and adipogenic lineage markers along with changes in HSPG profile and common signalling pathways implicated in hMSC lineage fate. Undifferentiated hMSC SDC-1 KD cultures exhibited a pro-adipogenic phenotype with subsequent osteogenic differentiation demonstrating enhanced maturation of osteoblasts. In cultures where SDC-1 KD was performed following initiation of differentiation, increased adipogenic gene and protein marker expression along with increased Oil Red O staining identified enhanced adipogenesis, with impaired osteogenesis also observed in these cultures. These findings implicate SDC-1 as a facilitator of the hMSC osteo-adipogenic balance during early induction of lineage differentiation.
Collapse
|
10
|
Heparanase: A Potential Therapeutic Target in Sarcomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:405-431. [PMID: 32274719 DOI: 10.1007/978-3-030-34521-1_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sarcomas comprise a heterogeneous group of rare malignancies of mesenchymal origin including more than 70 subtypes. They may arise in muscle, bone, cartilage and other connective tissues. Their high histological and genetic heterogeneity makes diagnosis and treatment very challenging. Deregulation of heparanase has been found in several sarcoma subtypes and high expression levels have been correlated with poor prognosis in Ewing's sarcoma and osteosarcoma. Altered expression of specific heparan sulfate proteoglycans and heparan sulfate biosynthetic enzymes has also been observed. Advances in molecular pathogenesis of sarcomas have evidenced the critical role of several heparan sulfate binding growth factors and receptor tyrosine kinases, highly interconnected with the microenvironment, in sustaining tumor growth and progression. Interference with heparanase/heparan sulfate functions represents a potential therapeutic approach in sarcoma. In this chapter, we summarize the current knowledge about the biological significance of heparanase expression and its potential as a therapeutic target in subtypes of both soft tissue and bone sarcomas. Particular emphasis is given to the involvement of heparan sulfate proteoglycans and their synthesizing and modifying enzymes in bone physiology and disorders leading up to the pathobiology of bone sarcomas. The chapter also describes the cooperation between exostin loss-of-function and heparanase upregulation in hereditary Multiple Osteochondroma syndrome as a paradigmatic example of constitutive alteration of the heparanase/heparan sulfate proteoglycan system which may contribute to progression to malignant secondary chondrosarcoma. Preclinical evidence of the role of heparanase as a promising therapeutic target in various sarcoma subtypes is finally resumed.
Collapse
|
11
|
Staehlke S, Rebl H, Nebe B. Phenotypic stability of the human MG-63 osteoblastic cell line at different passages. Cell Biol Int 2019; 43:22-32. [PMID: 30444078 DOI: 10.1002/cbin.11073] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 11/11/2018] [Indexed: 12/19/2022]
Abstract
One of the most popular cell lines in osteogenesis studies is the human osteoblastic line MG-63. For cell biological investigation, it is important that the cells remain stable in their phenotype over several passages in cell culture. MG-63 cells can be used to provide fundamental insights into cell--material interaction. The aim of this study is to present a systematic characterization of the physiological behavior of MG-63 cells in the range of passages 5-30. Significant cell physiology processes during the first 24 h, including cell morphology, availability of adhesion receptors, cell cycle phases, as well as the expression of the signaling proteins Akt, GSK3a/b, IkB-α, ERK1/2, p38-MAPK, and intracellular calcium ion mobilization, remained stable over the entire range of passages P5-P30. Due to these stable characteristics in a wide range of cell culture passages, MG-63 cells can be considered as a suitable in vitro model to analyze the biocompatibility and biofunctionality of implant materials.
Collapse
Affiliation(s)
- Susanne Staehlke
- Department of Cell Biology, University Medical Center Rostock, Rostock, Germany
| | - Henrike Rebl
- Department of Cell Biology, University Medical Center Rostock, Rostock, Germany
| | - Barbara Nebe
- Department of Cell Biology, University Medical Center Rostock, Rostock, Germany
| |
Collapse
|
12
|
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) are expressed throughout all stages of skeletal development. In the limb bud and in cranial mesenchyme, FGF signaling is important for formation of mesenchymal condensations that give rise to bone. Once skeletal elements are initiated and patterned, FGFs regulate both endochondral and intramembranous ossification programs. In this chapter, we review functions of the FGF signaling pathway during these critical stages of skeletogenesis, and explore skeletal malformations in humans that are caused by mutations in FGF signaling molecules.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States.
| | - Pierre J Marie
- UMR-1132 Inserm (Institut national de la Santé et de la Recherche Médicale) and University Paris Diderot, Sorbonne Paris Cité, Hôpital Lariboisière, Paris, France
| |
Collapse
|
13
|
Zhao F, Pu Y, Cui M, Wang H, Cai S. MiR-20a-5p represses the multi-drug resistance of osteosarcoma by targeting the SDC2 gene. Cancer Cell Int 2017; 17:100. [PMID: 29118673 PMCID: PMC5668954 DOI: 10.1186/s12935-017-0470-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/24/2017] [Indexed: 12/21/2022] Open
Abstract
Background As one of the hallmarks of cancer, chemoresistance hinders curative cancer chemotherapy in osteosarcoma (OS). MicroRNAs (miRNAs) act as key regulators of gene expression in diverse biological processes including the multi-chemoresistance of cancers. Methods Based on the CCK8 experiments, we performed an RNA-seq-based miR-omic analysis of osteosarcoma (OS) cells (a multi-chemosensitive OS cell line G-292 and a multi-chemoresistant OS cell line SJSA-1) to detect the levels of miR-20a-5p. We predicted Homo sapiens syndecan 2 (SDC2) as one of the target genes of miR-20a-5p via several websites, which was further validated by detecting their expression of both mRNA and protein level in both the miR-20a-5p-mimic transfected G-292 and miR-20a-5p-antagomiR transfected SJSA-1 cells. The involvement of SDC2 with OS chemoresistance was checked by siRNA-mediated repression or overexpression of SDC2 gene. Cell viability was assessed by CCK8 assay. Results We found that the miR-20a-5p level was higher in G-292 cells than in SJSA-1 cells. Forced expression of miR-20a-5p counteracted OS chemoresistance in both cell culture and tumor xenografts in nude mice. As one of miR-20a-5p’s targets, SDC2 was found to mediate the miR-20a-5p-induced repression of OS chemoresistance. Conclusions Our results suggest that miR-20a-5p and SDC2 contribute to OS chemoresistance. The key players in the miR-20a-5p/SDC2 axis may be a potential diagnostic biomarker and therapeutic target for OS patients.
Collapse
Affiliation(s)
- Fangfang Zhao
- Cancer Epigenetics Program, Anhui Cancer Hospital, West Branch of Anhui Provincial Hospital, Anhui Medical University, Hefei, 230031 Anhui China
| | - Youguang Pu
- Cancer Epigenetics Program, Anhui Cancer Hospital, West Branch of Anhui Provincial Hospital, Anhui Medical University, Hefei, 230031 Anhui China
| | - Mingda Cui
- Xinxiang Medical University, Xinxiang, 453003 Henan China
| | - Haiyan Wang
- Department of Clinical Geriatrics, Anhui Provincial Hospital, Anhui Medical University, Hefei, 230031 Anhui China
| | - Shanbao Cai
- Cancer Epigenetics Program, Anhui Cancer Hospital, West Branch of Anhui Provincial Hospital, Anhui Medical University, Hefei, 230031 Anhui China.,Xinxiang Medical University, Xinxiang, 453003 Henan China.,Department of Orthopedic Surgery and Cancer Epigenetics Program, Anhui Cancer Hospital, West Branch of Affiliated Provincial Hospital, Anhui Medical University, Hefei, 230031 Anhui China
| |
Collapse
|
14
|
Mytilinaiou M, Nikitovic D, Berdiaki A, Kostouras A, Papoutsidakis A, Tsatsakis AM, Tzanakakis GN. Emerging roles of syndecan 2 in epithelial and mesenchymal cancer progression. IUBMB Life 2017; 69:824-833. [PMID: 28940845 DOI: 10.1002/iub.1678] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/29/2017] [Indexed: 01/04/2023]
Abstract
Syndecan 2 (SDC2) belongs to a four-member family of evolutionary conserved small type I transmembrane proteoglycans consisting of a protein core to which glycosaminoglycan chains are covalently attached. SDC2 is a cell surface heparan sulfate proteoglycan, which is increasingly drawing attention for its distinct characteristics and its participation in numerous cell functions, including those related to carcinogenesis. Increasing evidence suggests that the role of SDC2 in cancer pathogenesis is dependent on cancer tissue origin rendering its use as a biomarker/therapeutic target feasible. This mini review discusses the mechanisms, through which SDC2, in a distinct manner, modulates complex signalling networks to affect cancer progression. © 2017 IUBMB Life, 69(11):824-833, 2017.
Collapse
Affiliation(s)
- Maria Mytilinaiou
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Aikaterini Berdiaki
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Antonis Kostouras
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Antonis Papoutsidakis
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Aristidis M Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, Greece
| | - George N Tzanakakis
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
15
|
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute Northern Sydney Local Health District, St. Leonards, NSW, Australia
- Sydney Medical School, Royal North Shore Hospital, The University of Sydney, Camperdown, NSW, Australia
- School of Biomedical Engineering, The University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
16
|
The heparanase/heparan sulfate proteoglycan axis: A potential new therapeutic target in sarcomas. Cancer Lett 2016; 382:245-254. [PMID: 27666777 DOI: 10.1016/j.canlet.2016.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/08/2016] [Accepted: 09/08/2016] [Indexed: 12/29/2022]
Abstract
Heparanase, the only known mammalian endoglycosidase degrading heparan sulfate (HS) chains of HS proteoglycans (HSPG), is a highly versatile protein affecting multiple events in tumor cells and their microenvironment. In several malignancies, deregulation of the heparanase/HSPG system has been implicated in tumor progression, hence representing a valuable therapeutic target. Currently, multiple agents interfering with the heparanase/HSPG axis are under clinical investigation. Sarcomas are characterized by a high biomolecular complexity and multiple levels of interconnection with microenvironment sustaining their growth and progression. The clinical management of advanced diseases remains a challenge. In several sarcoma subtypes, high levels of heparanase expression have been correlated with poor prognosis associated factors. On the other hand, expression of cell surface-associated HSPGs (i.e. glypicans and syndecans) has been found altered in specific sarcoma subtypes. Recent studies provided the preclinical proof-of-principle of the role of the heparanase/HSPG axis as therapeutic target in various sarcoma subtypes. Although currently there are no clinical trials evaluating agents targeting heparanase and/or HSPGs in sarcomas, we here provide arguments for this strategy as potentially able to implement the therapeutic options for sarcoma patients.
Collapse
|