1
|
Xiao B, Liu Y, Chandrasiri I, Adjei-Sowah E, Mereness J, Yan M, Benoit DSW. Bone-Targeted Nanoparticle Drug Delivery System-Mediated Macrophage Modulation for Enhanced Fracture Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305336. [PMID: 37797180 PMCID: PMC10922143 DOI: 10.1002/smll.202305336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/03/2023] [Indexed: 10/07/2023]
Abstract
Despite decades of progress, developing minimally invasive bone-specific drug delivery systems (DDS) to improve fracture healing remains a significant clinical challenge. To address this critical therapeutic need, nanoparticle (NP) DDS comprised of poly(styrene-alt-maleic anhydride)-b-poly(styrene) (PSMA-b-PS) functionalized with a peptide that targets tartrate-resistant acid phosphatase (TRAP) and achieves preferential fracture accumulation has been developed. The delivery of AR28, a glycogen synthase kinase-3 beta (GSK3β) inhibitor, via the TRAP binding peptide-NP (TBP-NP) expedites fracture healing. Interestingly, however, NPs are predominantly taken up by fracture-associated macrophages rather than cells typically associated with fracture healing. Therefore, the underlying mechanism of healing via TBP-NP is comprehensively investigated herein. TBP-NPAR28 promotes M2 macrophage polarization and enhances osteogenesis in preosteoblast-macrophage co-cultures in vitro. Longitudinal analysis of TBP-NPAR28 -mediated fracture healing reveals distinct spatial distributions of M2 macrophages, an increased M2/M1 ratio, and upregulation of anti-inflammatory and downregulated pro-inflammatory genes compared to controls. This work demonstrates the underlying therapeutic mechanism of bone-targeted NP DDS, which leverages macrophages as druggable targets and modulates M2 macrophage polarization to enhance fracture healing, highlighting the therapeutic benefit of this approach for fractures and bone-associated diseases.
Collapse
Affiliation(s)
- Baixue Xiao
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14623, USA
| | - Yuxuan Liu
- Materials Science Program, University of Rochester, Rochester, NY, 14623, USA
| | - Indika Chandrasiri
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14623, USA
| | - Emmanuela Adjei-Sowah
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14623, USA
| | - Jared Mereness
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14623, USA
| | - Ming Yan
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14623, USA
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14623, USA
- Materials Science Program, University of Rochester, Rochester, NY, 14623, USA
- Department of Chemical Engineering, University of Rochester, Rochester, NY, 14623, USA
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, 97403, USA
| |
Collapse
|
2
|
Bandyopadhyay A, Mitra I, Ciliveri S, Avila JD, Dernell W, Goodman SB, Bose S. Additively manufactured Ti-Ta-Cu alloys for the next-generation load-bearing implants. INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING 2024; 6:015503. [PMID: 38021398 PMCID: PMC10654690 DOI: 10.1088/2631-7990/ad07e7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/19/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
Bacterial colonization of orthopedic implants is one of the leading causes of failure and clinical complexities for load-bearing metallic implants. Topical or systemic administration of antibiotics may not offer the most efficient defense against colonization, especially in the case of secondary infection, leading to surgical removal of implants and in some cases even limbs. In this study, laser powder bed fusion was implemented to fabricate Ti3Al2V alloy by a 1:1 weight mixture of CpTi and Ti6Al4V powders. Ti-Tantalum (Ta)-Copper (Cu) alloys were further analyzed by the addition of Ta and Cu into the Ti3Al2V custom alloy. The biological, mechanical, and tribo-biocorrosion properties of Ti3Al2V alloy were evaluated. A 10 wt.% Ta (10Ta) and 3 wt.% Cu (3Cu) were added to the Ti3Al2V alloy to enhance biocompatibility and impart inherent bacterial resistance. Additively manufactured implants were investigated for resistance against Pseudomonas aeruginosa and Staphylococcus aureus strains of bacteria for up to 48 h. A 3 wt.% Cu addition to Ti3Al2V displayed improved antibacterial efficacy, i.e. 78%-86% with respect to CpTi. Mechanical properties for Ti3Al2V-10Ta-3Cu alloy were evaluated, demonstrating excellent fatigue resistance, exceptional shear strength, and improved tribological and tribo-biocorrosion characteristics when compared to Ti6Al4V. In vivo studies using a rat distal femur model revealed improved early-stage osseointegration for alloys with 10 wt.% Ta addition compared to CpTi and Ti6Al4V. The 3 wt.% Cu-added compositions displayed biocompatibility and no adverse inflammatory response in vivo. Our results establish the Ti3Al2V-10Ta-3Cu alloy's synergistic effect on improving both in vivo biocompatibility and microbial resistance for the next generation of load-bearing metallic implants.
Collapse
Affiliation(s)
- Amit Bandyopadhyay
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States of America
| | - Indranath Mitra
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States of America
| | - Sushant Ciliveri
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States of America
| | - Jose D Avila
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States of America
| | - William Dernell
- Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, United States of America
| | - Stuart B Goodman
- Department of Orthopedic Surgery, Stanford University Medical Center, Redwood City, CA 94063, United States of America
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States of America
| |
Collapse
|
3
|
Ciliveri S, Bandyopadhyay A. Additively Manufactured SiO 2 and Cu-Added Ti Implants for Synergistic Enhancement of Bone Formation and Antibacterial Efficacy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3106-3115. [PMID: 38214659 DOI: 10.1021/acsami.3c14994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Commercially pure titanium (CpTi), a bioinert metal, is used as an implant material at low load-bearing sites and as a porous coating on Ti6Al4V at high load-bearing sites. There is an unmet need for metallic biomaterials to improve osseointegration and inherent antimicrobial resistance. In this study, we have added 1 wt % SiO2 and 3 wt % Cu to the CpTi matrix and processed via metal additive manufacturing (AM). Si4+ ions promote angiogenesis and osteogenesis. CpTi-SiO2 composition exhibited 4.5 times higher bone formation at the bone-implant interface over CpTi in an in vivo study with a rat distal femur model. In vitro bacterial studies with Gram-positive Staphylococcus aureus bacterium revealed 85% antibacterial efficacy by CpTi-SiO2-3Cu than CpTi. CpTi-SiO2-3Cu did not show any inflammatory markers in vivo, indicating the absence of cytotoxicity, but displayed delayed osseointegration compared to CpTi-SiO2. CpTi-SiO2-3Cu displayed 3-fold higher mineralized bone formation than CpTi. Our results emphasize the synergistic effect of SiO2 and Cu addition in CpTi, promoting enhanced early stage osseointegration and inherent antibacterial efficacy, contributing toward implant longevity and stability in vivo.
Collapse
Affiliation(s)
- Sushant Ciliveri
- W. M. Keck Biomedical Materials Research Laboratory School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Amit Bandyopadhyay
- W. M. Keck Biomedical Materials Research Laboratory School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
4
|
Ciliveri S, Bandyopadhyay A. Enhanced osteogenesis and bactericidal performance with additively manufactured MgO and Cu-added CpTi for load-bearing implants. Int J Bioprint 2023; 9:1167. [PMID: 38116397 PMCID: PMC10730012 DOI: 10.36922/ijb.1167] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Titanium, being the ultimate choice of metallic material for implant applications, its bio-inertness causes delayed bone-tissue integration at the implant site and prevents expedited healing for the patient. This can cause a severe issue for patients with immunocompromised bone health. Infections at the implant site are another concern; titanium does not offer inherent antimicrobial properties. Current strategies addressing the issues above include using cemented implants as a coating on Ti6Al4V bulk material for orthopedic applications. Roadblock arises with coating failure due to weak interfacial bond at the Ti-cement interface, resulting in revision surgeries. We have added osteogenic MgO and antibacterial Cu to CpTi and processed them using metal additive manufacturing (AM) to address these issues. Mg, an essential trace element in the body, has been proven to enhance osseointegration in vivo. Cu has been popular for its bactericidal capabilities. With 1 wt.% of MgO addition in the CpTi matrix, we have observed a four-fold increase in the mineralized bone formation at the bone-implant interface in vivo. The presence of 3 wt.% of Cu showed no cytotoxicity markers, and adding Cu to CpTi-MgO chemical makeup showed similar in vivo performance to CpTi-MgO. In vitro bacterial studies with gram-positive Staphylococcus aureus bacteria showed 81% bacterial efficiency displayed by CpTi-MgO-Cu at the end of 72 h of culture. Our findings highlight the synergistic benefits of CpTi-MgO-Cu, which exhibit superior early-stage osseointegration and antimicrobial capabilities.
Collapse
Affiliation(s)
- Sushant Ciliveri
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Amit Bandyopadhyay
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
5
|
Brent MB, Emmanuel T. Contemporary Advances in Computer-Assisted Bone Histomorphometry and Identification of Bone Cells in Culture. Calcif Tissue Int 2023; 112:1-12. [PMID: 36309622 DOI: 10.1007/s00223-022-01035-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/13/2022] [Indexed: 01/07/2023]
Abstract
Static and dynamic bone histomorphometry and identification of bone cells in culture are labor-intensive and highly repetitive tasks. Several computer-assisted methods have been proposed to ease these tasks and to take advantage of the increased computational power available today. The present review aimed to provide an overview of contemporary methods utilizing specialized computer software to perform bone histomorphometry or identification of bone cells in culture. In addition, a brief historical perspective on bone histomorphometry is included. We identified ten publications using five different computer-assisted approaches (1) ImageJ and BoneJ; (2) Histomorph: OsteoidHisto, CalceinHisto, and TrapHisto; (3) Fiji/ImageJ2 and Trainable Weka Segmentation (TWS); (4) Visiopharm and artificial intelligence (AI); and (5) Osteoclast identification using deep learning with Single Shot Detection (SSD) architecture, Darknet and You Only Look Once (YOLO), or watershed algorithm (OC_Finder). The review also highlighted a substantial need for more validation studies that evaluate the accuracy of the new computational methods to the manual and conventional analyses of histological bone specimens and cells in culture using microscopy. However, a substantial evolution has occurred during the last decade to identify and separate bone cells and structures of interest. Most early studies have used simple image segmentation to separate structures of interest, whereas the most recent studies have utilized AI and deep learning. AI has been proposed to substantially decrease the amount of time needed for analyses and enable unbiased assessments. Despite the clear advantages of highly sophisticated computational methods, the limited nature of existing validation studies, particularly those that assess the accuracy of the third-generation methods compared to the second-generation methods, appears to be an important reason that these techniques have failed to gain wide acceptance.
Collapse
Affiliation(s)
- Mikkel Bo Brent
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, 8000, Aarhus, Denmark.
| | - Thomas Emmanuel
- Department of Dermatology, Aarhus University Hospital, 8200, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, 8200, Aarhus, Denmark
| |
Collapse
|
6
|
Mastrolia I, Giorgini A, Murgia A, Loschi P, Petrachi T, Rasini V, Pinelli M, Pinto V, Lolli F, Chiavelli C, Grisendi G, Baschieri MC, Santis GD, Catani F, Dominici M, Veronesi E. Autologous Marrow Mesenchymal Stem Cell Driving Bone Regeneration in a Rabbit Model of Femoral Head Osteonecrosis. Pharmaceutics 2022; 14:pharmaceutics14102127. [PMID: 36297562 PMCID: PMC9610232 DOI: 10.3390/pharmaceutics14102127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a progressive degenerative disease that ultimately requires a total hip replacement. Mesenchymal stromal/stem cells (MSCs), particularly the ones isolated from bone marrow (BM), could be promising tools to restore bone tissue in ONFH. Here, we established a rabbit model to mimic the pathogenic features of human ONFH and to challenge an autologous MSC-based treatment. ON has been originally induced by the synergic combination of surgery and steroid administration. Autologous BM-MSCs were then implanted in the FH, aiming to restore the damaged tissue. Histological analyses confirmed bone formation in the BM-MSC treated rabbit femurs but not in the controls. In addition, the model also allowed investigations on BM-MSCs isolated before (ON-BM-MSCs) and after (ON+BM-MSCs) ON induction to dissect the impact of ON damage on MSC behavior in an affected microenvironment, accounting for those clinical approaches foreseeing MSCs generally isolated from affected patients. BM-MSCs, isolated before and after ON induction, revealed similar growth rates, immunophenotypic profiles, and differentiation abilities regardless of the ON. Our data support the use of ON+BM-MSCs as a promising autologous therapeutic tool to treat ON, paving the way for a more consolidated use into the clinical settings.
Collapse
Affiliation(s)
- Ilenia Mastrolia
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
- Correspondence:
| | - Andrea Giorgini
- Division of Orthopedics, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Alba Murgia
- Technopole of Mirandola TPM, Mirandola, 41037 Modena, Italy
| | | | | | - Valeria Rasini
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Massimo Pinelli
- Division of Plastic Surgery, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Valentina Pinto
- Division of Plastic Surgery, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Francesca Lolli
- Division of Plastic Surgery, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Chiara Chiavelli
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Giulia Grisendi
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Maria Cristina Baschieri
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Giorgio De Santis
- Division of Plastic Surgery, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Fabio Catani
- Division of Orthopedics, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
- Technopole of Mirandola TPM, Mirandola, 41037 Modena, Italy
| | - Elena Veronesi
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
- Technopole of Mirandola TPM, Mirandola, 41037 Modena, Italy
| |
Collapse
|
7
|
Konnaris MA, Brendel M, Fontana MA, Otero M, Ivashkiv LB, Wang F, Bell RD. Computational pathology for musculoskeletal conditions using machine learning: advances, trends, and challenges. Arthritis Res Ther 2022; 24:68. [PMID: 35277196 PMCID: PMC8915507 DOI: 10.1186/s13075-021-02716-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/29/2021] [Indexed: 11/21/2022] Open
Abstract
Histopathology is widely used to analyze clinical biopsy specimens and tissues from pre-clinical models of a variety of musculoskeletal conditions. Histological assessment relies on scoring systems that require expertise, time, and resources, which can lead to an analysis bottleneck. Recent advancements in digital imaging and image processing provide an opportunity to automate histological analyses by implementing advanced statistical models such as machine learning and deep learning, which would greatly benefit the musculoskeletal field. This review provides a high-level overview of machine learning applications, a general pipeline of tissue collection to model selection, and highlights the development of image analysis methods, including some machine learning applications, to solve musculoskeletal problems. We discuss the optimization steps for tissue processing, sectioning, staining, and imaging that are critical for the successful generalizability of an automated image analysis model. We also commenting on the considerations that should be taken into account during model selection and the considerable advances in the field of computer vision outside of histopathology, which can be leveraged for image analysis. Finally, we provide a historic perspective of the previously used histopathological image analysis applications for musculoskeletal diseases, and we contrast it with the advantages of implementing state-of-the-art computational pathology approaches. While some deep learning approaches have been used, there is a significant opportunity to expand the use of such approaches to solve musculoskeletal problems.
Collapse
Affiliation(s)
- Maxwell A Konnaris
- Research Institute, Hospital for Special Surgery, New York, USA.,Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, USA
| | - Matthew Brendel
- Department of Population Health Sciences, Weill Cornell Medical College, New York, USA.,Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Mark Alan Fontana
- Department of Population Health Sciences, Weill Cornell Medical College, New York, USA.,Center for Analytics, Modeling, & Performance, Hospital for Special Surgery, New York, USA
| | - Miguel Otero
- Research Institute, Hospital for Special Surgery, New York, USA.,Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, USA
| | - Lionel B Ivashkiv
- Research Institute, Hospital for Special Surgery, New York, USA.,Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, USA.,Rosenweig Genomics Center, Hospital for Special Surgery, New York, USA
| | - Fei Wang
- Department of Population Health Sciences, Weill Cornell Medical College, New York, USA
| | - Richard D Bell
- Research Institute, Hospital for Special Surgery, New York, USA. .,Center for Analytics, Modeling, & Performance, Hospital for Special Surgery, New York, USA. .,Rosenweig Genomics Center, Hospital for Special Surgery, New York, USA.
| |
Collapse
|
8
|
Medeiros Savi F, Mieszczanek P, Revert S, Wille ML, Bray LJ. A New Automated Histomorphometric MATLAB Algorithm for Immunohistochemistry Analysis Using Whole Slide Imaging. Tissue Eng Part C Methods 2021; 26:462-474. [PMID: 32729382 DOI: 10.1089/ten.tec.2020.0153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The use of animal models along with the employment of advanced and sophisticated stereological methods for assessing bone quality combined with the use of statistical methods to evaluate the effectiveness of bone therapies has made it possible to investigate the pathways that regulate bone responses to medical devices. Image analysis of histomorphometric measurements remains a time-consuming task, as the image analysis software currently available does not allow for automated image segmentation. Such a feature is usually obtained by machine learning and with software platforms that provide image-processing tools such as MATLAB. In this study, we introduce a new MATLAB algorithm to quantify immunohistochemically stained critical-sized bone defect samples and compare the results with the commonly available Aperio Image Scope Positive Pixel Count (PPC) algorithm. Bland and Altman analysis and Pearson correlation showed that the measurements acquired with the new MATLAB algorithm were in excellent agreement with the measurements obtained with the Aperio PPC algorithm, and no significant differences were found within the histomorphometric measurements. The ability to segment whole slide images, as well as defining the size and the number of regions of interest to be quantified, makes this MATLAB algorithm a potential histomorphometric tool for obtaining more objective, precise, and reproducible quantitative assessments of entire critical-sized bone defect image data sets in an efficient and manageable workflow.
Collapse
Affiliation(s)
- Flavia Medeiros Savi
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.,School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Pawel Mieszczanek
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Sophia Revert
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Marie-Luise Wille
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.,School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia.,ARC ITTC for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Laura Jane Bray
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.,School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
9
|
Mollentze J, Durandt C, Pepper MS. An In Vitro and In Vivo Comparison of Osteogenic Differentiation of Human Mesenchymal Stromal/Stem Cells. Stem Cells Int 2021; 2021:9919361. [PMID: 34539793 PMCID: PMC8443361 DOI: 10.1155/2021/9919361] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/23/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
The use of stem cells in regenerative medicine, including tissue engineering and transplantation, has generated a great deal of enthusiasm. Mesenchymal stromal/stem cells (MSCs) can be isolated from various tissues, most commonly, bone marrow but more recently adipose tissue, dental pulp, and Wharton's jelly, to name a few. MSCs display varying phenotypic profiles and osteogenic differentiating capacity depending and their site of origin. MSCs have been successfully differentiated into osteoblasts both in vitro an in vivo but discrepancies exist when the two are compared: what happens in vitro does not necessarily happen in vivo, and it is therefore important to understand why these differences occur. The osteogenic process is a complex network of transcription factors, stimulators, inhibitors, proteins, etc., and in vivo experiments are helpful in evaluating the various aspects of this osteogenic process without distractions and confounding variables. With that in mind, the results of in vitro experiments need to be carefully considered and interpreted with caution as they do not perfectly replicate the conditions found within living organisms. This is where in vivo experiments help us better understand interactions that might occur in the osteogenic process that cannot be replicated in vitro. Potentially, these differences could also be exploited to develop an optimal MSC cell therapeutic product that can be used for bone disorders. There are many bone disorders, most of which cause a great deal of discomfort. Clinically acceptable protocols could be developed in which MSCs are used to aid in bone regeneration providing relief for patients with chronic pain. The aim of this review is to examine the differences between studies conducted in vitro and in vivo with regard to the osteogenic process to better define the gaps in current osteogenic research. By better understanding osteogenic differentiation, we can better define treatment strategies for various bone disorders.
Collapse
Affiliation(s)
- Jamie Mollentze
- Institute for Cellular and Molecular Medicine, Department of Immunology; SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Chrisna Durandt
- Institute for Cellular and Molecular Medicine, Department of Immunology; SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Michael S. Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology; SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
10
|
DeepHistoClass: A Novel Strategy for Confident Classification of Immunohistochemistry Images Using Deep Learning. Mol Cell Proteomics 2021; 20:100140. [PMID: 34425263 PMCID: PMC8476775 DOI: 10.1016/j.mcpro.2021.100140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 11/20/2022] Open
Abstract
A multitude of efforts worldwide aim to create a single-cell reference map of the human body, for fundamental understanding of human health, molecular medicine, and targeted treatment. Antibody-based proteomics using immunohistochemistry (IHC) has proven to be an excellent technology for integration with large-scale single-cell transcriptomics datasets. The golden standard for evaluation of IHC staining patterns is manual annotation, which is expensive and may lead to subjective errors. Artificial intelligence holds much promise for efficient and accurate pattern recognition, but confidence in prediction needs to be addressed. Here, the aim was to present a reliable and comprehensive framework for automated annotation of IHC images. We developed a multilabel classification of 7848 complex IHC images of human testis corresponding to 2794 unique proteins, generated as part of the Human Protein Atlas (HPA) project. Manual annotation data for eight different cell types was generated as a basis for training and testing a proposed Hybrid Bayesian Neural Network. By combining the deep learning model with a novel uncertainty metric, DeepHistoClass (DHC) Confidence Score, the average diagnostic performance improved from 86.9% to 96.3%. This metric not only reveals which images are reliably classified by the model, but can also be utilized for identification of manual annotation errors. The proposed streamlined workflow can be developed further for other tissue types in health and disease and has important implications for digital pathology initiatives or large-scale protein mapping efforts such as the HPA project. A novel method for automated annotation of immunohistochemistry images. Introduction of an uncertainty metric, the DeepHistoClass (DHC) confidence score. Increased accuracy of automated image predictions. Identification of manual annotation errors.
Collapse
|
11
|
Guo JL, Kim YS, Koons GL, Lam J, Navara AM, Barrios S, Xie VY, Watson E, Smith BT, Pearce HA, Orchard EA, van den Beucken JJJP, Jansen JA, Wong ME, Mikos AG. Bilayered, peptide-biofunctionalized hydrogels for in vivo osteochondral tissue repair. Acta Biomater 2021; 128:120-129. [PMID: 33930575 PMCID: PMC8222183 DOI: 10.1016/j.actbio.2021.04.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/01/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Osteochondral defects present a unique clinical challenge due to their combination of phenotypically distinct cartilage and bone, which require specific, stratified biochemical cues for tissue regeneration. Furthermore, the articular cartilage exhibits significantly worse regeneration than bone due to its largely acellular and avascular nature, prompting significant demand for regenerative therapies. To address these clinical challenges, we have developed a bilayered, modular hydrogel system that enables the click functionalization of cartilage- and bone-specific biochemical cues to each layer. In this system, the crosslinker poly(glycolic acid)-poly(ethylene glycol)-poly(glycolic acid)-di(but-2-yne-1,4-dithiol) (PdBT) was click conjugated with either a cartilage- or bone-specific peptide sequence of interest, and then mixed with a suspension of thermoresponsive polymer and mesenchymal stem cells (MSCs) to generate tissue-specific, cell-encapsulated hydrogel layers targeting the cartilage or bone. We implanted bilayered hydrogels in rabbit femoral condyle defects and investigated the effects of tissue-specific peptide presentation and cell encapsulation on osteochondral tissue repair. After 12 weeks implantation, hydrogels with a chondrogenic peptide sequence produced higher histological measures of overall defect filling, cartilage surface regularity, glycosaminoglycan (GAG)/cell content of neocartilage and adjacent cartilage, and bone filling and bonding compared to non-chondrogenic hydrogels. Furthermore, MSC encapsulation promoted greater histological measures of overall defect filling, cartilage thickness, GAG/cell content of neocartilage, and bone filling. Our results establish the utility of this click functionalized hydrogel system for in vivo repair of the osteochondral unit. STATEMENT OF SIGNIFICANCE: Osteochondral repair requires mimicry of both cartilage- and bone-specific biochemical cues, which are highly distinct. While traditional constructs for osteochondral repair have mimicked gross compositional differences between the cartilage and bone in mineral content, mechanical properties, proteins, or cell types, few constructs have recapitulated the specific biochemical cues responsible for the differential development of cartilage and bone. In this study, click biofunctionalized, bilayered hydrogels produced stratified presentation of developmentally inspired peptide sequences for chondrogenesis and osteogenesis. This work represents, to the authors' knowledge, the first application of bioconjugation chemistry for the simultaneous repair of bone and cartilage tissue. The conjugation of tissue-specific peptide sequences successfully promoted development of both cartilage and bone tissues in vivo.
Collapse
Affiliation(s)
- Jason L Guo
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | - Yu Seon Kim
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | - Gerry L Koons
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | - Johnny Lam
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| | - Adam M Navara
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | - Sergio Barrios
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | - Virginia Y Xie
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | - Emma Watson
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | - Brandon T Smith
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | - Hannah A Pearce
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | | | | | - John A Jansen
- Department of Dentistry - Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Mark E Wong
- Department of Surgery, Division of Maxillofacial Surgery, The University of Texas School of Dentistry, Houston, TX, USA.
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
12
|
Li Y, Hoffman MD, Benoit DSW. Matrix metalloproteinase (MMP)-degradable tissue engineered periosteum coordinates allograft healing via early stage recruitment and support of host neurovasculature. Biomaterials 2021; 268:120535. [PMID: 33271450 PMCID: PMC8110201 DOI: 10.1016/j.biomaterials.2020.120535] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/17/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022]
Abstract
Despite serving as the clinical "gold standard" treatment for critical size bone defects, decellularized allografts suffer from long-term failure rates of ~60% due to the absence of the periosteum. Stem and osteoprogenitor cells within the periosteum orchestrate autograft healing through host cell recruitment, which initiates the regenerative process. To emulate periosteum-mediated healing, tissue engineering approaches have been utilized with mixed outcomes. While vascularization has been widely established as critical for bone regeneration, innervation was recently identified to be spatiotemporally regulated together with vascularization and similarly indispensable to bone healing. Notwithstanding, there are no known approaches that have focused on periosteal matrix cues to coordinate host vessel and/or axon recruitment. Here, we investigated the influence of hydrogel degradation mechanism, i.e. hydrolytic or enzymatic (cell-dictated), on tissue engineered periosteum (TEP)-modified allograft healing, especially host vessel/nerve recruitment and integration. Matrix metalloproteinase (MMP)-degradable hydrogels supported endothelial cell migration from encapsulated spheroids whereas no migration was observed in hydrolytically degradable hydrogels in vitro, which correlated with increased neurovascularization in vivo. Specifically, ~2.45 and 1.84-fold, and ~3.48 and 2.58-fold greater vessel and nerve densities with high levels of vessel and nerve co-localization was observed using MMP degradable TEP (MMP-TEP) -modified allografts versus unmodified and hydrolytically degradable TEP (Hydro-TEP)-modified allografts, respectively, at 3 weeks post-surgery. MMP-TEP-modified allografts exhibited greater longitudinal graft-localized vascularization and endochondral ossification, along with 4-fold and 2-fold greater maximum torques versus unmodified and Hydro-TEP-modified allografts after 9 weeks, respectively, which was comparable to that of autografts. In summary, our results demonstrated that the MMP-TEP coordinated allograft healing via early stage recruitment and support of host neurovasculature.
Collapse
Affiliation(s)
- Yiming Li
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA; Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| | - Michael D Hoffman
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA; Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA; Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA; Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA; Materials Science Program, University of Rochester, Rochester, NY, USA; Department of Chemical Engineering, University of Rochester, Rochester, NY, USA; Department of Biomedical Genetics and Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
13
|
Negri S, Wang Y, Sono T, Lee S, Hsu GC, Xu J, Meyers CA, Qin Q, Broderick K, Witwer KW, Peault B, James AW. Human perivascular stem cells prevent bone graft resorption in osteoporotic contexts by inhibiting osteoclast formation. Stem Cells Transl Med 2020; 9:1617-1630. [PMID: 32697440 PMCID: PMC7695633 DOI: 10.1002/sctm.20-0152] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/24/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022] Open
Abstract
The vascular wall stores mesenchymal progenitor cells which are able to induce bone regeneration, via direct and paracrine mechanisms. Although much is known regarding perivascular cell regulation of osteoblasts, their regulation of osteoclasts, and by extension utility in states of high bone resorption, is not known. Here, human perivascular stem cells (PSCs) were used as a means to prevent autograft resorption in a gonadectomy-induced osteoporotic spine fusion model. Furthermore, the paracrine regulation by PSCs of osteoclast formation was evaluated, using coculture, conditioned medium, and purified extracellular vesicles. Results showed that PSCs when mixed with autograft bone induce an increase in osteoblast:osteoclast ratio, promote bone matrix formation, and prevent bone graft resorption. The confluence of these factors resulted in high rates of fusion in an ovariectomized rat lumbar spine fusion model. Application of PSCs was superior across metrics to either the use of unpurified, culture-defined adipose-derived stromal cells or autograft bone alone. Under coculture conditions, PSCs negatively regulated osteoclast formation and did so via secreted, nonvesicular paracrine factors. Total RNA sequencing identified secreted factors overexpressed by PSCs which may explain their negative regulation of graft resorption. In summary, PSCs reduce osteoclast formation and prevent bone graft resorption in high turnover states such as gonadectomy-induced osteoporosis.
Collapse
Affiliation(s)
- Stefano Negri
- Department of PathologyJohns Hopkins UniversityBaltimoreMarylandUSA
- Orthopaedic and Trauma Surgery Unit, Department of Surgery, DentistryPaediatrics and Gynaecology of the University of VeronaVeronaItaly
| | - Yiyun Wang
- Department of PathologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Takashi Sono
- Department of PathologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Seungyong Lee
- Department of PathologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | | | - Jiajia Xu
- Department of PathologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | | | - Qizhi Qin
- Department of PathologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Kristen Broderick
- Department of Plastic SurgeryJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Kenneth W. Witwer
- Departments of Molecular and Comparative Pathobiology and NeurologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Bruno Peault
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research CenterLos AngelesCaliforniaUSA
- Center for Cardiovascular Science and MRC Center for Regenerative MedicineUniversity of EdinburghEdinburghUK
| | - Aaron W. James
- Department of PathologyJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
14
|
Zhuang Z, John JV, Liao H, Luo J, Rubery P, Mesfin A, Boda SK, Xie J, Zhang X. Periosteum Mimetic Coating on Structural Bone Allografts via Electrospray Deposition Enhances Repair and Reconstruction of Segmental Defects. ACS Biomater Sci Eng 2020; 6:6241-6252. [PMID: 33449646 DOI: 10.1021/acsbiomaterials.0c00421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Structural bone allograft transplantation remains one of the common strategies for repair and reconstruction of large bone defects. Due to the loss of periosteum that covers the outer surface of the cortical bone, the healing and incorporation of allografts is extremely slow and limited. To enhance the biological performance of allografts, herein, we report a novel and simple approach for engineering a periosteum mimetic coating on the surface of structural bone allografts via polymer-mediated electrospray deposition. This approach enables the coating on allografts with precisely controlled composition and thickness. In addition, the periosteum mimetic coating can be tailored to achieve desired drug release profiles by making use of an appropriate biodegradable polymer or polymer blend. The efficacy study in a murine segmental femoral bone defect model demonstrates that the allograft coating composed of poly(lactic-co-glycolic acid) and bone morphogenetic protein-2 mimicking peptide significantly improves allograft healing as evidenced by decreased fibrotic tissue formation, increased periosteal bone formation, and enhanced osseointegration. Taken together, this study provides a platform technology for engineering a periosteum mimetic coating which can greatly promote bone allograft healing. This technology could eventually result in an off-the-shelf and multifunctional structural bone allograft for highly effective repair and reconstruction of large segmental bone defects. The technology can also be used to ameliorate the performance of other medical implants by modifying their surfaces.
Collapse
Affiliation(s)
- Zhou Zhuang
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14621, United States
| | - Johnson V John
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Omaha, Nebraska 68198, United States
| | - Haofu Liao
- Department of Computer Science, University of Rochester, Rochester, New York 14627, United States
| | - Jiebo Luo
- Department of Computer Science, University of Rochester, Rochester, New York 14627, United States
| | - Paul Rubery
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, United States
| | - Addisu Mesfin
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, United States
| | - Sunil Kumar Boda
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Omaha, Nebraska 68198, United States
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Omaha, Nebraska 68198, United States
| | - Xinping Zhang
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, United States
| |
Collapse
|
15
|
Pinamont WJ, Yoshioka NK, Young GM, Karuppagounder V, Carlson EL, Ahmad A, Elbarbary R, Kamal F. Standardized Histomorphometric Evaluation of Osteoarthritis in a Surgical Mouse Model. J Vis Exp 2020:10.3791/60991. [PMID: 32449702 PMCID: PMC7882241 DOI: 10.3791/60991] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
One of the most prevalent joint disorders in the United States, osteoarthritis (OA) is characterized by progressive degeneration of articular cartilage, primarily in the hip and knee joints, which results in significant impacts on patient mobility and quality of life. To date, there are no existing curative therapies for OA able to slow down or inhibit cartilage degeneration. Presently, there is an extensive body of ongoing research to understand OA pathology and discover novel therapeutic approaches or agents that can efficiently slow down, stop, or even reverse OA. Thus, it is crucial to have a quantitative and reproducible approach to accurately evaluate OA-associated pathological changes in the joint cartilage, synovium, and subchondral bone. Currently, OA severity and progression are primarily assessed using the Osteoarthritis Research Society International (OARSI) or Mankin scoring systems. In spite of the importance of these scoring systems, they are semiquantitative and can be influenced by user subjectivity. More importantly, they fail to accurately evaluate subtle, yet important, changes in the cartilage during the early disease states or early treatment phases. The protocol we describe here uses a computerized and semiautomated histomorphometric software system to establish a standardized, rigorous, and reproducible quantitative methodology for the evaluation of joint changes in OA. This protocol presents a powerful addition to the existing systems and allows for more efficient detection of pathological changes in the joint.
Collapse
Affiliation(s)
- William J Pinamont
- Center for Orthopedic Research and Translational Sciences, Department of Orthopedics and Rehabilitation, Pennsylvania State College of Medicine
| | - Natalie K Yoshioka
- Center for Orthopedic Research and Translational Sciences, Department of Orthopedics and Rehabilitation, Pennsylvania State College of Medicine
| | - Gregory M Young
- Center for Orthopedic Research and Translational Sciences, Department of Orthopedics and Rehabilitation, Pennsylvania State College of Medicine
| | - Vengadeshprabhu Karuppagounder
- Center for Orthopedic Research and Translational Sciences, Department of Orthopedics and Rehabilitation, Pennsylvania State College of Medicine
| | - Elijah L Carlson
- Center for Orthopedic Research and Translational Sciences, Department of Orthopedics and Rehabilitation, Pennsylvania State College of Medicine
| | - Adeel Ahmad
- Center for Orthopedic Research and Translational Sciences, Department of Orthopedics and Rehabilitation, Pennsylvania State College of Medicine
| | - Reyad Elbarbary
- Center for Orthopedic Research and Translational Sciences, Department of Orthopedics and Rehabilitation, Pennsylvania State College of Medicine; Department of Biochemistry and Molecular Biology, Pennsylvania State College of Medicine
| | - Fadia Kamal
- Center for Orthopedic Research and Translational Sciences, Department of Orthopedics and Rehabilitation, Pennsylvania State College of Medicine; Department of Pharmacology, Pennsylvania State College of Medicine;
| |
Collapse
|
16
|
Winter RL, Tian Y, Caldwell FJ, Seeto WJ, Koehler JW, Pascoe DA, Fan S, Gaillard P, Lipke EA, Wooldridge AA. Cell engraftment, vascularization, and inflammation after treatment of equine distal limb wounds with endothelial colony forming cells encapsulated within hydrogel microspheres. BMC Vet Res 2020; 16:43. [PMID: 32019556 PMCID: PMC7001230 DOI: 10.1186/s12917-020-2269-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Endothelial colony forming cells (ECFCs) may be useful therapeutically in conditions with poor blood supply, such as distal limb wounds in the horse. Encapsulation of ECFCs into injectable hydrogel microspheres may ensure cell survival and cell localization to improve neovascularization and healing. Autologous ECFCs were isolated from 6 horses, labeled with quantum nanodots (QD), and a subset were encapsulated in poly(ethylene) glycol fibrinogen microspheres (PEG-Fb MS). Full-thickness dermal wounds were created on each distal limb and injected with empty PEG-Fb MS, serum, ECFCs, or ECFCs encapsulated into PEG- Fb MS (ECFC/MS). Analysis included wound surface area (WSA), granulation tissue scoring (GS), thermography, collagen density staining, and immunohistochemical staining for endothelial and inflammatory cells. The purpose of this study was to track cell location and evaluate wound vascularization and inflammatory response after injection of ECFC/MS or naked ECFCs in equine distal limb wounds. RESULTS ECFCs were found near and within newly formed blood vessels up to 3 weeks after injection. ECFC and ECFC/MS groups had the greatest blood vessel quantity at week 1 in the wound periphery. Wounds treated with ECFCs and ECFC/MS had the lowest density of neutrophils and macrophages at week 4. There were no significant effects of ECFC or ECFC/MS treatment on other measured parameters. CONCLUSIONS Injection of microsphere encapsulated ECFCs was practical for clinical use and well-tolerated. The positive ECFC treatment effects on blood vessel density and wound inflammation warrant further investigation.
Collapse
Affiliation(s)
- Randolph L. Winter
- Department of Clinical Sciences, Auburn University, Auburn, AL USA
- Department of Clinical Sciences, Ohio State University, Columbus, OH USA
| | - Yuan Tian
- Department of Chemical Engineering, Auburn University, Auburn, AL USA
| | - Fred J. Caldwell
- Department of Clinical Sciences, Auburn University, Auburn, AL USA
| | - Wen J. Seeto
- Department of Chemical Engineering, Auburn University, Auburn, AL USA
| | - Jey W. Koehler
- Department of Pathobiology, Auburn University, Auburn, AL USA
| | | | - Shirley Fan
- Department of Mathematics, Auburn University, Auburn, AL USA
| | | | | | | |
Collapse
|
17
|
Savi FM, Lawrence F, Hutmacher DW, Woodruff MA, Bray LJ, Wille ML. Histomorphometric Evaluation of Critical-Sized Bone Defects Using Osteomeasure and Aperio Image Analysis Systems. Tissue Eng Part C Methods 2019; 25:732-741. [PMID: 31663423 DOI: 10.1089/ten.tec.2019.0179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Most histological evaluations of critical-sized bone defects are limited to the analysis of a few regions of interest at a time. Manual and semiautomated histomorphometric approaches often have intra- and interobserver subjectivity, as well as variability in image analysis methods. Moreover, the production of large image data sets makes histological assessment and histomorphometric analysis labor intensive and time consuming. Herein, we tested and compared two image segmentation methods: thresholding (automated) and region-based (manual) modes, for quantifying complete image sets across entire critical-sized bone defects, using the widely used Osteomeasure system and the freely downloadable Aperio Image Scope software. A comparison of bone histomorphometric data showed strong agreement between the automated segmentation mode of the Osteomeasure software with the manual segmentation mode of Aperio Image Scope analysis (bone formation R2 = 0.9615 and fibrous tissue formation R2 = 0.8734). These results indicate that Aperio is capable of handling large histological images, with excellent speed performance in producing highly consistent histomorphometric evaluations compared with the Osteomeasure image analysis system. The statistical evaluation of these two major bone parameters demonstrated that Aperio Image Scope is as capable as Osteomeasure. This study developed a protocol to improve the quality of results and reduce analysis time, while also promoting the standardization of image analysis protocols for the histomorphometric analysis of critical-sized bone defect samples. Impact Statement Despite bone tissue engineering innovations increasing over the last decade, histomorphometric analysis of large bone defects used to study such approaches continues to pose a challenge for pathological assessment. This is due to the resulting large image data set, and the lack of a gold standard image analysis protocol to quantify histological outcomes. Herein, we present a standardized protocol for the image analysis of critical-sized bone defect samples stained with Goldner's Trichrome using the Osteomeasure and Aperio Image Scope image analysis systems. The results were critically examined to determine their reproducibility and accuracy for analyzing large bone defects.
Collapse
Affiliation(s)
- Flavia Medeiros Savi
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| | - Felicity Lawrence
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| | - Dietmar Werner Hutmacher
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia.,ARC Center for Additive Biomanufacturing, Queensland University of Technology, Kelvin Grove, Australia
| | - Maria Ann Woodruff
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia.,ARC Center for Additive Biomanufacturing, Queensland University of Technology, Kelvin Grove, Australia.,Biofabrication and Tissue Morphology Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| | - Laura Jane Bray
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| | - Marie-Luise Wille
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| |
Collapse
|
18
|
NLRP3 inflammasome inhibitor glyburide expedites diabetic-induced impaired fracture healing. Immunobiology 2019; 224:786-791. [PMID: 31477246 DOI: 10.1016/j.imbio.2019.08.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/13/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022]
Abstract
Localized inflammation is accompanied by the diabetic-induced fracture. The present study aims to investigate the therapeutic effects of glyburide, an NLRP3 inflammasome inhibitor, in a diabetic-induced fracture model. An animal model of diabetic-induced fracture was established and the mice were administrated with metformin or glyburide for 3 weeks. Quantitative polymerase chain reaction (qPCR) and Western blotting were used to evaluate the relative expressions of IFN-γ, TNF-α, and IL-6. Micro-computed tomography (μCT) scanning was applied to evaluate bone callus formation. Histopathology examinations of fractured femur sections were performed using Tartrate-resistant acid phosphatase (TRAP) staining and Alcian blue and orange G staining. Bone strength was evaluated using Torsional testing. Our results showed that treatment of glyburide significantly decreased the expressions of IFN-γ, TNF-α, and IL-6 in the fracture calluses in diabetic-induced fracture model, while bone callus volume and bone volume fraction were increased. Additionally, our results also demonstrated that treatment of glyburide rescued the increase of osteoclasts in the bone-cartilage interface. Apart from decreasing a percentage of cartilage area and increasing the percentage of bone and fibrotic tissue area, treatment of glyburide increased the maximum torque and yield torque of fractures. These results implied that glyburide might be used as a potential drug candidate for diabetic-induced fracture.
Collapse
|
19
|
Tjin G, Flores-Figueroa E, Duarte D, Straszkowski L, Scott M, Khorshed RA, Purton LE, Lo Celso C. Imaging methods used to study mouse and human HSC niches: Current and emerging technologies. Bone 2019; 119:19-35. [PMID: 29704697 DOI: 10.1016/j.bone.2018.04.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 12/18/2022]
Abstract
Bone marrow contains numerous different cell types arising from hematopoietic stem cells (HSCs) and non-hematopoietic mesenchymal/skeletal stem cells, in addition to other cell types such as endothelial cells- these non-hematopoietic cells are commonly referred to as stromal cells or microenvironment cells. HSC function is intimately linked to complex signals integrated by their niches, formed by combinations of hematopoietic and stromal cells. Studies of hematopoietic cells have been significantly advanced by flow cytometry methods, enabling the quantitation of each cell type in normal and perturbed situations, in addition to the isolation of these cells for molecular and functional studies. Less is known, however, about the specific niches for distinct developing hematopoietic lineages, or the changes occurring in the niche size and function in these distinct anatomical sites in the bone marrow under stress situations and ageing. Significant advances in imaging technology during the last decade have permitted studies of HSC niches in mice. Additional imaging technologies are emerging that will facilitate the study of human HSC niches in trephine BM biopsies. Here we provide an overview of imaging technologies used to study HSC niches, in addition to highlighting emerging technology that will help us to more precisely identify and characterize HSC niches in normal and diseased states.
Collapse
Affiliation(s)
- Gavin Tjin
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Eugenia Flores-Figueroa
- Oncology Research Unit, Oncology Hospital, National Medical Center Century XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Delfim Duarte
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London, UK; The Sir Francis Crick Institute, London, UK
| | - Lenny Straszkowski
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Mark Scott
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London, UK; Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Reema A Khorshed
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London, UK
| | - Louise E Purton
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; The University of Melbourne, Department of Medicine at St Vincent's Hospital, Fitzroy, Victoria, Australia.
| | - Cristina Lo Celso
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London, UK; The Sir Francis Crick Institute, London, UK.
| |
Collapse
|
20
|
Han Z, Bhavsar M, Leppik L, Oliveira KMC, Barker JH. Histological Scoring Method to Assess Bone Healing in Critical Size Bone Defect Models. Tissue Eng Part C Methods 2019; 24:272-279. [PMID: 29466929 DOI: 10.1089/ten.tec.2017.0497] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Large bone defects are a major problem in trauma and orthopedic surgery. Tissue engineering based treatments have emerged as promising alternatives to traditional bone grafting techniques. Critical size bone defect animal models have been developed and widely used to evaluate and compare therapeutic effectiveness in bone tissue engineering treatments. To measure healing in a given defect after treatment, histological assessment methods are commonly used. These histological methods are typically qualitative and only measure the amount of newly formed bone. In this study, we introduce a new histological scoring method that in addition to new bone formation also measures newly formed "cartilage," "fibrous tissue," and "remnant bone defect size." Using Kappa analysis and interclass correlation analysis, we verified the reliability of our new scoring method. These additional parameters make it possible to differentiate between the hard callus and soft callus phases of healing and, thus, derive more valuable information about the effect different tissue-engineering treatments have on the healing process.
Collapse
Affiliation(s)
- Zhihua Han
- Frankfurt Initiative for Regenerative Medicine, Experimental Trauma and Orthopaedic Surgery, J.W. Goethe University , Frankfurt am Main, Germany
| | - Mit Bhavsar
- Frankfurt Initiative for Regenerative Medicine, Experimental Trauma and Orthopaedic Surgery, J.W. Goethe University , Frankfurt am Main, Germany
| | - Liudmila Leppik
- Frankfurt Initiative for Regenerative Medicine, Experimental Trauma and Orthopaedic Surgery, J.W. Goethe University , Frankfurt am Main, Germany
| | - Karla M C Oliveira
- Frankfurt Initiative for Regenerative Medicine, Experimental Trauma and Orthopaedic Surgery, J.W. Goethe University , Frankfurt am Main, Germany
| | - John H Barker
- Frankfurt Initiative for Regenerative Medicine, Experimental Trauma and Orthopaedic Surgery, J.W. Goethe University , Frankfurt am Main, Germany
| |
Collapse
|
21
|
Wang T, Zhai Y, Nuzzo M, Yang X, Yang Y, Zhang X. Layer-by-layer nanofiber-enabled engineering of biomimetic periosteum for bone repair and reconstruction. Biomaterials 2018; 182:279-288. [PMID: 30142527 DOI: 10.1016/j.biomaterials.2018.08.028] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/03/2018] [Accepted: 08/10/2018] [Indexed: 01/07/2023]
Abstract
Periosteum plays an indispensable role in bone repair and reconstruction. To recapitulate the remarkable regenerative capacity of periosteum, a biomimetic tissue-engineered periosteum (TEP) was constructed via layer-by-layer bottom-up strategy utilizing polycaprolactone (PCL), collagen, and nano-hydroxyapatite composite nanofiber sheets seeded with bone marrow stromal cells (BMSCs). When combined with a structural bone allograft to repair a 4 mm segmental bone defect created in the mouse femur, TEP restored donor-site periosteal bone formation, reversing the poor biomechanics of bone allograft healing at 6 weeks post-implantation. Further histologic analyses showed that TEP recapitulated the entire periosteal bone repair process, as evidenced by donor-dependent formation of bone and cartilage, induction of distinct CD31high type H endothelium, reconstitution of bone marrow and remodeling of bone allografts. Compared to nanofiber sheets without BMSC seeding, TEP eliminated the fibrotic tissue capsule elicited by nanofiber sheets, leading to a marked improvement of osseointegration at the compromised periosteal site. Taken together, our study demonstrated a novel layer-by-layer engineering platform for construction of a versatile biomimetic periosteum, enabling further assembly of a multi-component and multifunctional periosteum replacement for bone defect repair and reconstruction.
Collapse
Affiliation(s)
- Tao Wang
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Yuankun Zhai
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Marc Nuzzo
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Xiaochuan Yang
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Yunpeng Yang
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Xinping Zhang
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA.
| |
Collapse
|
22
|
Paine A, Woeller CF, Zhang H, de la Luz Garcia-Hernandez M, Huertas N, Xing L, Phipps RP, Ritchlin CT. Thy1 is a positive regulator of osteoblast differentiation and modulates bone homeostasis in obese mice. FASEB J 2018; 32:3174-3183. [PMID: 29401595 DOI: 10.1096/fj.201701379r] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Thy1 (CD90), a glycosylated, glycophosphatidylinositol-anchored membrane protein highly expressed by subsets of mesenchymal stem cells and fibroblasts, inhibits adipogenesis. The role of Thy1 on bone structure and function has been poorly studied and represents a major knowledge gap. Therefore, we analyzed the long bones of wild-type (WT) and Thy1 knockout (KO) mice with micro-computed tomography (micro-CT) and histomorphometry to compare changes in bone architecture and overall bone structure. micro-CT analysis of long bones revealed Thy1 KO and WT mice fed a high-fat diet demonstrated bone structural parameters at 4 mo that differed significantly between WT and KO mice. A significant reduction in trabecular bone volume was noted in Thy1 KO mice. The most prominent differences were observed in trabecular bone volume ratio and trabecular bone connectivity density. Consistent with micro-CT measurements, histomorphometric analysis also showed decreased bone volume in the obese Thy1 KO mice compared to obese WT mice. In vitro assays revealed that osteogenic conditions increased Thy1 expression during OB differentiation and absence of Thy1 attenuated osteoblastogenesis. Together, these findings support the concept that Thy1 serves as a major mechanistic link to regulate bone formation and negatively regulate adipogenesis.-Paine, A., Woeller, C. F., Zhang, H., Garcia-Hernandez, M. L., Huertas, N., Xing, L., Phipps, R. P., Ritchlin, C. T. Thy1 is a positive regulator of osteoblast differentiation and modulates bone homeostasis in obese mice.
Collapse
Affiliation(s)
- Ananta Paine
- Division of Allergy, Immunology, and Rheumatology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Collynn F Woeller
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Hengwei Zhang
- Center for Musculoskeletal Research, University of Rochester Medical Center, University of Rochester, Rochester, New York, USA; and.,Department of Pathology and Laboratory Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Maria de la Luz Garcia-Hernandez
- Division of Allergy, Immunology, and Rheumatology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Nelson Huertas
- Division of Allergy, Immunology, and Rheumatology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Lianping Xing
- Center for Musculoskeletal Research, University of Rochester Medical Center, University of Rochester, Rochester, New York, USA; and.,Department of Pathology and Laboratory Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Richard P Phipps
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Christopher T Ritchlin
- Division of Allergy, Immunology, and Rheumatology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| |
Collapse
|
23
|
Malhan D, Muelke M, Rosch S, Schaefer AB, Merboth F, Weisweiler D, Heiss C, Arganda-Carreras I, El Khassawna T. An Optimized Approach to Perform Bone Histomorphometry. Front Endocrinol (Lausanne) 2018; 9:666. [PMID: 30519215 PMCID: PMC6259258 DOI: 10.3389/fendo.2018.00666] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 10/25/2018] [Indexed: 12/17/2022] Open
Abstract
Bone histomorphometry allows quantitative evaluation of bone micro-architecture, bone formation, and bone remodeling by providing an insight to cellular changes. Histomorphometry plays an important role in monitoring changes in bone properties because of systemic skeletal diseases like osteoporosis and osteomalacia. Besides, quantitative evaluation plays an important role in fracture healing studies to explore the effect of biomaterial or drug treatment. However, until today, to our knowledge, bone histomorphometry remain time-consuming and expensive. This incited us to set up an open-source freely available semi-automated solution to measure parameters like trabecular area, osteoid area, trabecular thickness, and osteoclast activity. Here in this study, the authors present the adaptation of Trainable Weka Segmentation plugin of ImageJ to allow fast evaluation of bone parameters (trabecular area, osteoid area) to diagnose bone related diseases. Also, ImageJ toolbox and plugins (BoneJ) were adapted to measure osteoclast activity, trabecular thickness, and trabecular separation. The optimized two different scripts are based on ImageJ, by providing simple user-interface and easy accessibility for biologists and clinicians. The scripts developed for bone histomorphometry can be optimized globally for other histological samples. The showed scripts will benefit the scientific community in histological evaluation.
Collapse
Affiliation(s)
- Deeksha Malhan
- Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig University of Giessen, Giessen, Germany
| | - Matthias Muelke
- Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig University of Giessen, Giessen, Germany
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital of Giessen and Marburg, Giessen, Germany
| | - Sebastian Rosch
- Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig University of Giessen, Giessen, Germany
| | - Annemarie B. Schaefer
- Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig University of Giessen, Giessen, Germany
| | - Felix Merboth
- Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig University of Giessen, Giessen, Germany
| | - David Weisweiler
- Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig University of Giessen, Giessen, Germany
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital of Giessen and Marburg, Giessen, Germany
| | - Christian Heiss
- Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig University of Giessen, Giessen, Germany
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital of Giessen and Marburg, Giessen, Germany
| | - Ignacio Arganda-Carreras
- Department of Computer Science and Artificial Intelligence, Basque Country University, San Sebastian, Spain
- *Correspondence: Ignacio Arganda-Carreras
| | - Thaqif El Khassawna
- Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig University of Giessen, Giessen, Germany
- Thaqif El Khassawna
| |
Collapse
|
24
|
Wang Y, Newman MR, Ackun-Farmmer M, Baranello MP, Sheu TJ, Puzas JE, Benoit DSW. Fracture-Targeted Delivery of β-Catenin Agonists via Peptide-Functionalized Nanoparticles Augments Fracture Healing. ACS NANO 2017; 11:9445-9458. [PMID: 28881139 PMCID: PMC5736386 DOI: 10.1021/acsnano.7b05103] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Despite several decades of progress, bone-specific drug delivery is still a major challenge. Current bone-acting drugs require high-dose systemic administration which decreases therapeutic efficacy and increases off-target tissue effects. Here, a bone-targeted nanoparticle (NP) delivery system for a β-catenin agonist, 3-amino-6-(4-((4-methylpiperazin-1-yl)sulfonyl)phenyl)-N-(pyridin-3-yl)pyrazine-2-carboxamide, a glycogen synthase kinase 3 beta (GSK-3β) inhibitor, was developed to enhance fracture healing. The GSK-3β inhibitor loading capacity was found to be 15 wt % within highly stable poly(styrene-alt-maleic anhydride)-b-poly(styrene) NPs, resulting in ∼50 nm particles with ∼ -30 mV surface charge. A peptide with high affinity for tartrate-resistant acid phosphatase (TRAP), a protein deposited by osteoclasts on bone resorptive surfaces, was introduced to the NP corona to achieve preferential delivery to fractured bone. Targeted NPs showed improved pharmacokinetic profiles with greater accumulation at fractured bone, accompanied by significant uptake in regenerative cell types (mesenchymal stem cells (MSCs) and osteoblasts). MSCs treated with drug-loaded NPs in vitro exhibited 2-fold greater β-catenin signaling than free drug that was sustained for 5 days. To verify similar activity in vivo, TOPGAL reporter mice bearing fractures were treated with targeted GSK-3β inhibitor-loaded NPs. Robust β-galactosidase activity was observed in fracture callus and periosteum treated with targeted carriers versus controls, indicating potent β-catenin activation during the healing process. Enhanced bone formation and microarchitecture were observed in mice treated with GSK-3β inhibitor delivered via TRAP-binding peptide-targeted NPs. Specifically, increased bone bridging, ∼4-fold greater torsional rigidity, and greater volumes of newly deposited bone were observed 28 days after treatment, indicating expedited fracture healing.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Maureen R. Newman
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Marian Ackun-Farmmer
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Michael P. Baranello
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Tzong-Jen Sheu
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - J. Edward Puzas
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Danielle S. W. Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| |
Collapse
|
25
|
Controlled and sustained delivery of siRNA/NPs from hydrogels expedites bone fracture healing. Biomaterials 2017; 139:127-138. [PMID: 28601703 DOI: 10.1016/j.biomaterials.2017.06.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/16/2017] [Accepted: 06/02/2017] [Indexed: 01/01/2023]
Abstract
Despite great potential, delivery remains as the most significant barrier to the widespread use of siRNA therapeutics. siRNA has delivery limitations due to susceptibility to RNase degradation, low cellular uptake, and poor tissue-specific localization. Here, we report the development of a hybrid nanoparticle (NP)/hydrogel system that overcomes these challenges. Hydrogels provide localized and sustained delivery via controlled release of entrapped siRNA/NP complexes while NPs protect and enable efficient cytosolic accumulation of siRNA. To demonstrate therapeutic efficacy, regenerative siRNA against WW domain-containing E3 ubiquitin protein ligase 1 (Wwp1) complexed with NP were entrapped within poly(ethylene glycol) (PEG)-based hydrogels and implanted at sites of murine mid-diaphyseal femur fractures. Results showed localization of hydrogels and controlled release of siRNA/NPs at fractures for 28 days, a timeframe over which fracture healing occurs. siRNA/NP sustained delivery from hydrogels resulted in significant Wwp1 silencing at fracture callus compared to untreated controls. Fractures treated with siRNA/NP hydrogels exhibited accelerated bone formation and significantly increased biomechanical strength. This NP/hydrogel siRNA delivery system has outstanding therapeutic promise to augment fracture healing. Owing to the structural similarities of siRNA, the development of the hydrogel platform for in vivo siRNA delivery has myriad therapeutic possibilities in orthopaedics and beyond.
Collapse
|
26
|
Daily oral consumption of hydrolyzed type 1 collagen is chondroprotective and anti-inflammatory in murine posttraumatic osteoarthritis. PLoS One 2017; 12:e0174705. [PMID: 28384173 PMCID: PMC5383229 DOI: 10.1371/journal.pone.0174705] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 03/14/2017] [Indexed: 01/06/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease for which there are no disease modifying therapies. Thus, strategies that offer chondroprotective or regenerative capability represent a critical unmet need. Recently, oral consumption of a hydrolyzed type 1 collagen (hCol1) preparation has been reported to reduce pain in human OA and support a positive influence on chondrocyte function. To evaluate the tissue and cellular basis for these effects, we examined the impact of orally administered hCol1 in a model of posttraumatic OA (PTOA). In addition to standard chow, male C57BL/6J mice were provided a daily oral dietary supplement of hCol1 and a meniscal-ligamentous injury was induced on the right knee. At various time points post-injury, hydroxyproline (hProline) assays were performed on blood samples to confirm hCol1 delivery, and joints were harvested for tissue and molecular analyses were performed, including histomorphometry, OARSI and synovial scoring, immunohistochemistry and mRNA expression studies. Confirming ingestion of the supplements, serum hProline levels were elevated in experimental mice administered hCol1. In the hCol1 supplemented mice, chondroprotective effects were observed in injured knee joints, with dose-dependent increases in cartilage area, chondrocyte number and proteoglycan matrix at 3 and 12 weeks post-injury. Preservation of cartilage and increased chondrocyte numbers correlated with reductions in MMP13 protein levels and apoptosis, respectively. Supplemented mice also displayed reduced synovial hyperplasia that paralleled a reduction in Tnf mRNA, suggesting an anti-inflammatory effect. These findings establish that in the context of murine knee PTOA, daily oral consumption of hCol1 is chondroprotective, anti-apoptotic in articular chondrocytes, and anti-inflammatory. While the underlying mechanism driving these effects is yet to be determined, these findings provide the first tissue and cellular level information explaining the already published evidence of symptom relief supported by hCol1 in human knee OA. These results suggest that oral consumption of hCol1 is disease modifying in the context of PTOA.
Collapse
|
27
|
Kuzin II, Kates SL, Ju Y, Zhang L, Rahimi H, Wojciechowski W, Bernstein SH, Burack R, Schwarz EM, Bottaro A. Increased numbers of CD23(+) CD21(hi) Bin-like B cells in human reactive and rheumatoid arthritis lymph nodes. Eur J Immunol 2016; 46:1752-7. [PMID: 27105894 DOI: 10.1002/eji.201546266] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/15/2016] [Accepted: 04/19/2016] [Indexed: 12/21/2022]
Abstract
A unique population of CD23(+) CD21(high) B cells in inflamed nodes (Bin) has been shown to accumulate in lymph nodes (LNs) draining inflamed joints of TNF-transgenic (TNF-tg) mice. Bin cells contribute to arthritis flare in mice by distorting node architecture and hampering lymphatic flow, but their existence in human inflamed LNs has not yet been described. Here, we report the characterization of resident B-cell populations in fresh popliteal lymph nodes (PLNs) from patients with severe lower limb diseases (non-RA) and rheumatoid arthritis (RA) patients, and from banked, cryopreserved reactive and normal human LN single cell suspension samples. Bin-like B cells were shown to be significantly increased in reactive LNs, and strikingly elevated (>30% of total) in RA samples. Histopathology and immunofluorescence analyses were consistent with B follicular hyperplasia and histological alterations in RA vs. non-RA PLNs. This is the first description of Bin-like B cells in human inflamed LNs. Consistent with published mouse data, this population appears to be associated with inflammatory arthritis and distortion of LN architecture. Further analyses are necessary to assess the role of CD23(+) CD21(hi) Bin-like B cells in RA pathogenesis and arthritic flare.
Collapse
Affiliation(s)
- Igor I Kuzin
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Stephen L Kates
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Department of Orthopaedics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Yawen Ju
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Longze Zhang
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Department of Orthopaedics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Homaira Rahimi
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Wojciech Wojciechowski
- Center for Pediatric Biomed Research and Flow Cytometry Shared Resource Laboratory, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Steven H Bernstein
- J.P. Wilmot Cancer Center, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Richard Burack
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,J.P. Wilmot Cancer Center, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Department of Orthopaedics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Andrea Bottaro
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| |
Collapse
|