1
|
Pitt CN, Ashkanfar A, English R, Naylor A, Öpöz TT, Langton DJ, Joyce TJ. Development of a bespoke finite element wear algorithm to investigate the effect of femoral centre of rotation on the wear evolution in total knee replacements. J Mech Behav Biomed Mater 2024; 163:106843. [PMID: 39647338 DOI: 10.1016/j.jmbbm.2024.106843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 11/01/2024] [Accepted: 11/29/2024] [Indexed: 12/10/2024]
Abstract
Total Knee Replacements (TKRs) are a commonly used treatment to help patients suffering from severely damaged knee joints, which is normally brought on by osteoarthritis. The aim of the surgery is to reduce pain and regain function of the joint, however, some of these implants fail prematurely with implant wear being one of the main factors of failure. Computational analysis is an efficient tool that can provide an in-depth insight on the evolution of wear, before utilising experimental techniques which are time-consuming and costly. In this study, a bespoke finite element (FE) based wear algorithm has been further developed for TKRs and was used to investigate how location of femoral centre of rotation (CoR) affects the evolution of wear at the bearing surfaces. Three locations of femoral CoR have been investigated: international standards (ISO) CoR, being the location defined in ISO 14243-3, distal CoR being the centre of the femoral component's distal radius, and reference CoR being the middle ground between the two. All investigations were setup in accordance with ISO 14243-3 for displacement-controlled wear testing conditions for knee simulators. The wear algorithm extracts contact pressure and sliding distance from the FE analysis to determine wear depth, wear pattern, volumetric wear, and wear rates on the polymeric insert and femoral component's bearing surfaces using Archard's wear law. The polymeric insert volumetric wear rate after 5 million cycles (Mc) for ISO, reference, and distal CoR are 4.37mm3/Mc, 5.40mm3/Mc, and 6.83mm3/Mc respectively. Furthermore, the wear pattern's location on the bearing surfaces is dependent on the femoral CoR, with ISO CoR wear pattern being positioned more posteriorly, distal CoR being more anteriorly, and reference CoR in between ISO and distal. The ISO CoR investigation showed a region of minimal wear between two wear regions at the middle of the femoral component's wear pattern, on both medial and lateral condyles. This region of minimal wear reduces for the reference CoR and further reduces for the distal CoR. After 5 Mc, the average polymeric insert-femoral component contact area changes with femoral CoR, with the average contact area being 66.53mm2, 68.35mm2, and 71.21mm2 for ISO, reference, and distal CoRs respectively, with distal having around 7% more contact area than ISO. The results from this study show that there is a wide range of wear values for different locations of femoral CoR. As such the choice of femoral CoR should be carefully considered when performing any wear investigation to ensure that the CoR location is consistent for all studies being compared.
Collapse
Affiliation(s)
- Ciaran Neil Pitt
- School of Engineering, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK.
| | - Ariyan Ashkanfar
- School of Engineering, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Russell English
- School of Engineering, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Andrew Naylor
- School of Engineering, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Tahsin T Öpöz
- School of Engineering, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | | | - Thomas J Joyce
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| |
Collapse
|
2
|
Liao R, Dewey MJ, Rong J, Johnson SA, D’Angelo WA, Hussey GS, Badylak SF. Matrix-bound nanovesicles alleviate particulate-induced periprosthetic osteolysis. SCIENCE ADVANCES 2024; 10:eadn1852. [PMID: 39423278 PMCID: PMC11488533 DOI: 10.1126/sciadv.adn1852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/16/2024] [Indexed: 10/21/2024]
Abstract
Aseptic loosening of orthopedic implants is an inflammatory disease characterized by immune cell activation, chronic inflammation, and destruction of periprosthetic bone, and is one of the leading reasons for prosthetic failure, affecting 12% of total joint arthroplasty patients. Matrix-bound nanovesicles (MBVs) are a subclass of extracellular vesicle recently shown to mitigate inflammation in preclinical models of rheumatoid arthritis and influenza-mediated "cytokine storm." The molecular mechanism of these anti-inflammatory properties is only partially understood. The objective of the present study was to investigate the effects of MBV on RANKL-induced osteoclast formation in vitro and particulate-induced osteolysis in vivo. Results showed that MBV attenuated osteoclast differentiation and activity by suppressing the NF-κB signaling pathway and downstream NFATc1, DC-STAMP, c-Src, and cathepsin K expression. In vivo, local administration of MBV attenuated ultrahigh molecular weight polyethylene particle-induced osteolysis, bone reconstruction, and periosteal inflammation. The results suggest that MBV may be a therapeutic option for preventing periprosthetic loosening.
Collapse
Affiliation(s)
- Runzhi Liao
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Marley J. Dewey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Jiayang Rong
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Scott A. Johnson
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - William A. D’Angelo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - George S. Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
3
|
de Souza W, Gemini-Piperni S, Ruivo C, Bastos N, Almeida S, Lopes D, Cardoso P, Oliveira MJ, Sumner DR, Ross RD, Jacobs JJ, Granjeiro JM, Fernandes MH, Rocha LA, Melo S, Ribeiro AR. Osteoblasts-derived exosomes as potential novel communicators in particle-induced periprosthetic osteolysis. Mater Today Bio 2024; 28:101189. [PMID: 39221219 PMCID: PMC11364904 DOI: 10.1016/j.mtbio.2024.101189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 07/12/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
The inflammatory response to wear particles derived from hip prothesis is considered a hallmark of periprosthetic osteolysis, which can ultimately lead to the need for revision surgery. Exosomes (Exos) have been associated with various bone pathologies, and there is increasing recognition in the literature that they actively transport molecules throughout the body. The role of wear particles in osteoblast-derived Exos is unknown, and the potential contribution of Exos to osteoimmune communication and periprosthetic osteolysis niche is still in its infancy. Given this, we investigate how titanium dioxide nanoparticles (TiO2 NPs), similar in size and composition to prosthetic wear particles, affect Exos biogenesis. Two osteoblastic cell models commonly used to study the response of osteoblasts to wear particles were selected as a proof of concept. The contribution of Exos to periprosthetic osteolysis was assessed by functional assays in which primary human macrophages were stimulated with bone-derived Exos. We demonstrated that TiO2 NPs enter multivesicular bodies, the nascent of Exos, altering osteoblast-derived Exos secretion and molecular cargo. No significant differences were observed in Exos morphology and size. However, functional assays reveal that Exos cargo enriched in uPA stimulates macrophages to a mixed M1 and M2 phenotype, inducing the release of pro- and anti-inflammatory signals characteristic of periprosthetic osteolysis. In addition, we demonstrated the expression of uPA in exosomes derived from the urine of patients with osteolysis. These results suggest that uPA can be a potential biomarker of osteolysis. In the future, uPa may serve as a possible non-invasive biomarker to identify patients at risk for peri-implant osteolysis.
Collapse
Affiliation(s)
- Wanderson de Souza
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil
| | - S. Gemini-Piperni
- Postgraduate Program in Translational Biomedicine, University Grande Rio, Duque de Caxias, Brazil
- Labεn Group, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Carolina Ruivo
- I3S-Institute for Research and Innovation in Health, University of Porto, Portugal, Porto, Portugal
| | - Nuno Bastos
- I3S-Institute for Research and Innovation in Health, University of Porto, Portugal, Porto, Portugal
| | - Sofia Almeida
- I3S-Institute for Research and Innovation in Health, University of Porto, Portugal, Porto, Portugal
| | - Daniel Lopes
- I3S-Institute for Research and Innovation in Health, University of Porto, Portugal, Porto, Portugal
| | - Patricia Cardoso
- I3S-Institute for Research and Innovation in Health, University of Porto, Portugal, Porto, Portugal
| | - Maria Jose Oliveira
- I3S-Institute for Research and Innovation in Health, University of Porto, Portugal, Porto, Portugal
| | - D. Rick Sumner
- Department of Orthopedic Surgery of RUSH University, Chicago, USA
| | - Ryan D. Ross
- Department of Orthopedic Surgery of RUSH University, Chicago, USA
| | - Joshua J. Jacobs
- Department of Anatomy & Cell Biology of RUSH University, Chicago, USA
| | - Jose Mauro Granjeiro
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil
- Postgraduate Program in Translational Biomedicine, University Grande Rio, Duque de Caxias, Brazil
- Dental School, Fluminense Federal University, Niterói, Brazil
| | - Maria Helena Fernandes
- Faculty of Dental Medicine, University of Porto, Porto, Portugal
- LAQV/REQUIMTE, University of Porto, Porto, Portugal
| | - Luis A. Rocha
- proMetheus, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal
- IBTN/EURO – European Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, Izmir Institute of Technology, Izmir, Turkey
| | - Sonia Melo
- I3S-Institute for Research and Innovation in Health, University of Porto, Portugal, Porto, Portugal
| | - Ana R. Ribeiro
- IBTN/EURO – European Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, Izmir Institute of Technology, Izmir, Turkey
- Nanosafety group, International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| |
Collapse
|
4
|
Kogan F, Yoon D, Teeter MG, Chaudhari AJ, Hales L, Barbieri M, Gold GE, Vainberg Y, Goyal A, Watkins L. Multimodal positron emission tomography (PET) imaging in non-oncologic musculoskeletal radiology. Skeletal Radiol 2024; 53:1833-1846. [PMID: 38492029 DOI: 10.1007/s00256-024-04640-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/18/2024]
Abstract
Musculoskeletal (MSK) disorders are associated with large impacts on patient's pain and quality of life. Conventional morphological imaging of tissue structure is limited in its ability to detect pain generators, early MSK disease, and rapidly assess treatment efficacy. Positron emission tomography (PET), which offers unique capabilities to evaluate molecular and metabolic processes, can provide novel information about early pathophysiologic changes that occur before structural or even microstructural changes can be detected. This sensitivity not only makes it a powerful tool for detection and characterization of disease, but also a tool able to rapidly assess the efficacy of therapies. These benefits have garnered more attention to PET imaging of MSK disorders in recent years. In this narrative review, we discuss several applications of multimodal PET imaging in non-oncologic MSK diseases including arthritis, osteoporosis, and sources of pain and inflammation. We also describe technical considerations and recent advancements in technology and radiotracers as well as areas of emerging interest for future applications of multimodal PET imaging of MSK conditions. Overall, we present evidence that the incorporation of PET through multimodal imaging offers an exciting addition to the field of MSK radiology and will likely prove valuable in the transition to an era of precision medicine.
Collapse
Affiliation(s)
- Feliks Kogan
- Department of Radiology, Stanford University, Stanford, CA, USA.
| | - Daehyun Yoon
- Department of Radiology, University of California-San Francisco, San Francisco, CA, USA
| | - Matthew G Teeter
- Department of Medical Biophysics, Western University, London, ON, Canada
| | | | - Laurel Hales
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Marco Barbieri
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Garry E Gold
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Yael Vainberg
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Ananya Goyal
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Lauren Watkins
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
5
|
Zhao C, Rong K, Liu P, Kong K, Li H, Zhang P, Chen X, Fu Q, Wang X. Preventing periprosthetic osteolysis in aging populations through lymphatic activation and stem cell-associated secretory phenotype inhibition. Commun Biol 2024; 7:962. [PMID: 39122919 PMCID: PMC11315686 DOI: 10.1038/s42003-024-06664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
With increases in life expectancy, the number of patients requiring joint replacement therapy and experiencing periprosthetic osteolysis, the most common complication leading to implant failure, is growing or underestimated. In this study, we found that osteolysis progression and osteoclast differentiation in the surface of the skull bone of adult mice were accompanied by significant expansion of lymphatic vessels within bones. Using recombinant VEGF-C protein to activate VEGFR3 and promote proliferation of lymphatic vessels in bone, we counteracted excessive differentiation of osteoclasts and osteolysis caused by titanium alloy particles or inflammatory cytokines LPS/TNF-α. However, this effect was not observed in aged mice because adipogenically differentiated mesenchymal stem cells (MSCs) inhibited the response of lymphatic endothelial cells to agonist proteins. The addition of the JAK inhibitor ruxolitinib restored the response of lymphatic vessels to external stimuli in aged mice to protect against osteolysis progression. These findings suggest that inhibiting SASP secretion by adipogenically differentiated MSCs while activating lymphatic vessels in bone offers a new method to prevent periprosthetic osteolysis during joint replacement follow-up.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kewei Rong
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengcheng Liu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Keyu Kong
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haikuo Li
- Division of Biology & Biomedical Sciences, Washington University in St. Louis School of Medicine, St. Louis, USA
| | - Pu Zhang
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuzhuo Chen
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaoqing Wang
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Ödman S, Martenne-Duplan A, Finck M, Crumière A, Goin B, Buttin P, Viguier E, Cachon T, Julinder K. Intra-Articular Surgical Reconstruction of a Canine Cranial Cruciate Ligament Using an Ultra-High-Molecular-Weight Polyethylene Ligament: Case Report with Six-Month Clinical Outcome. Vet Sci 2024; 11:334. [PMID: 39195788 PMCID: PMC11359426 DOI: 10.3390/vetsci11080334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/10/2024] [Accepted: 07/21/2024] [Indexed: 08/29/2024] Open
Abstract
The intra-articular reconstruction of the cranial cruciate ligament (CrCL) by an organic graft or a synthetic implant allows the restoration of physiological stifle stability. This treatment is still marginal in routine practice. A Rottweiler presented an acute complete CrCL rupture treated using an ultra-high-molecular-weight polyethylene (UHMWPE) implant. The latter was positioned under arthroscopic guidance and fixed with interference screws through femoral and tibial bone tunnels. The dog was weight-bearing just after surgery and resumed normal standing posture and gait after one month, with mild signs of pain upon stifle manipulation. At three months postoperatively, minimal muscle atrophy and minimal craniocaudal translation were noted on the operated hindlimb, with no effects on the clinical outcome. The stifle was painless. At six months postoperatively, standing posture and gait were normal, muscle atrophy had decreased, the stifle was painless, and the craniocaudal translation was stable. On radiographs, congruent articular surfaces were observed without worsening of osteoarthrosis over the follow-up, as well as stable moderate joint effusion. Replacement of a ruptured CrCL with a UHMWPE ligament yielded good functional clinical outcome at six months postoperatively. This technique could be considered an alternative for the treatment of CrCL rupture in large dogs, but it needs confirmation from a prospective study with more dogs.
Collapse
Affiliation(s)
- Sven Ödman
- Animal ArtroClinic i Söderköping AB, Ringvägen 40, 614 33 Söderköping, Sweden
| | - Antonin Martenne-Duplan
- Centre Hospitalier Vétérinaire Massilia, Animedis, IVC Evidensia France, 13012 Marseille, France
| | - Marlène Finck
- Centre Hospitalier Vétérinaire Massilia, Animedis, IVC Evidensia France, 13012 Marseille, France
| | - Antonin Crumière
- Novetech Surgery, 13bis Boulevard Tzarewitch, 06000 Nice, France; (A.C.); (B.G.)
| | - Bastien Goin
- Novetech Surgery, 13bis Boulevard Tzarewitch, 06000 Nice, France; (A.C.); (B.G.)
- VetAgro Sup, Interactions Cellules Environnement (ICE), University of Lyon, 69280 Marcy l’Etoile, France
- Univ Lyon, Univ Gustave Eiffel, Univ Claude Bernard Lyon 1, LBMC UMR T_9406, 69675 Bron Cedex, France
| | | | - Eric Viguier
- VetAgro Sup, Interactions Cellules Environnement (ICE), University of Lyon, 69280 Marcy l’Etoile, France
| | - Thibaut Cachon
- VetAgro Sup, Interactions Cellules Environnement (ICE), University of Lyon, 69280 Marcy l’Etoile, France
| | - Krister Julinder
- Animal ArtroClinic i Söderköping AB, Ringvägen 40, 614 33 Söderköping, Sweden
| |
Collapse
|
7
|
Li S, Lu X, Chai Q, Huang B, Dai S, Wang P, Liu J, Zhao Z, Li X, Liu B, Zuo K, Man Z, Li N, Li W. Engineered Niobium Carbide MXenzyme-Integrated Self-Adaptive Coatings Inhibiting Periprosthetic Osteolysis by Orchestrating Osteogenesis-Osteoclastogenesis Balance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29805-29822. [PMID: 38830200 DOI: 10.1021/acsami.4c04122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Periprosthetic osteolysis induced by the ultrahigh-molecular-weight polyethylene (UHMWPE) wear particles is a major complication associated with the sustained service of artificial joint prostheses and often necessitates revision surgery. Therefore, a smart implant with direct prevention and repair abilities is urgently developed to avoid painful revision surgery. Herein, we fabricate a phosphatidylserine- and polyethylenimine-engineered niobium carbide (Nb2C) MXenzyme-coated micro/nanostructured titanium implant (PPN@MNTi) that inhibits UHMWPE particle-induced periprosthetic osteolysis. The specific mechanism by which PPN@MNTi operates involves the bioresponsive release of nanosheets from the MNTi substrate within an osteolysis microenvironment, initiated by the cleavage of a thioketal-dopamine molecule sensitive to reactive oxygen species (ROS). Subsequently, functionalized Nb2C MXenzyme could target macrophages and escape from lysosomes, effectively scavenging intracellular ROS through its antioxidant nanozyme-mimicking activities. This further achieves the suppression of osteoclastogenesis by inhibiting NF-κB/MAPK and autophagy signaling pathways. Simultaneously, based on the synergistic effect of MXenzyme-integrated coatings and micro/nanostructured topography, the designed implant promotes the osteogenic differentiation of bone mesenchymal stem cells to regulate bone homeostasis, further achieving advanced osseointegration and alleviable periprosthetic osteolysis in vivo. This study provides a precise prevention and repair strategy of periprosthetic osteolysis, offering a paradigm for the development of smart orthopedic implants.
Collapse
Affiliation(s)
- Shishuo Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong Province 250021, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong Province 250021, P. R. China
| | - Xiaoqing Lu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong Province 250021, P. R. China
- College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong Province 250021, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong Province 250021, P. R. China
| | - Qihao Chai
- Department of Orthopedic Surgery, The 903rd Hospital of PLA, Hangzhou, Zhejiang Province 310009, P. R. China
| | - Benzhao Huang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong Province 250021, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong Province 250021, P. R. China
| | - Shimin Dai
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong Province 250021, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong Province 250021, P. R. China
| | - Peng Wang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong Province 250021, P. R. China
| | - Jianing Liu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong Province 250021, P. R. China
| | - Zhibo Zhao
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong Province 250021, P. R. China
| | - Xiao Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong Province 250021, P. R. China
| | - Bing Liu
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong Province 250021, P. R. China
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong Province 250021, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong Province 250021, P. R. China
| | - Kangqing Zuo
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong Province 250021, P. R. China
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong Province 250021, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong Province 250021, P. R. China
| | - Zhentao Man
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong Province 250021, P. R. China
- College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong Province 250021, P. R. China
- Shandong Institute of Endocrine and Metabolic Diseases, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Ji'nan, Shandong Province 250062, P. R. China
| | - Ningbo Li
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong Province 250021, P. R. China
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong Province 250021, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong Province 250021, P. R. China
| | - Wei Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong Province 250021, P. R. China
- College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong Province 250021, P. R. China
| |
Collapse
|
8
|
Yin Z, Cheng Q, Wang C, Hu Q, Yin J, Wang B. Apelin-13 alleviates osteoclast formation and osteolysis through Nrf2-pyroptosis pathway. Microsc Res Tech 2024; 87:1348-1358. [PMID: 38380581 DOI: 10.1002/jemt.24519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/13/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
Wear particle-induced periprosthetic osteolysis is the key to aseptic loosening after artificial joint replacement. Osteoclastogenesis plays a central role in this process. Apelin-13 is a member of the adipokine family with anti-inflammatory effects. Here, we report that apelin-13 alleviates RANKL-mediated osteoclast differentiation and titanium particle-induced osteolysis in mouse calvaria. Mechanistically, apelin-13 inhibits NLRP3 inflammasome-mediated pyroptosis by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. In summary, apelin-13 is expected to be a potential drug for relieving aseptic osteolysis. RESEARCH HIGHLIGHTS: This study reveals the molecular mechanism by which apelin-13 inhibits NLRP3 inflammasome activation and pyroptosis by promoting Nrf2. This study confirms that apelin-13 alleviates osteoclast activation by inhibiting pyroptosis. In vivo studies further confirmed that apelin-13 alleviated mouse skull osteolysis by inhibiting the activation of NLRP3 inflammasome.
Collapse
Affiliation(s)
- Zhaoyang Yin
- Department of Orthopedics, The Affiliated Lianyungang Hospital of Xuzhou Medical University (The First People's Hospital of Lianyungang), Lianyungang, China
| | - Qinghua Cheng
- Department of Orthopedics, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Chao Wang
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Qin Hu
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Jian Yin
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Bin Wang
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Sündermann J, Bitsch A, Kellner R, Doll T. Is read-across for chemicals comparable to medical device equivalence and where to use it for conformity assessment? Regul Toxicol Pharmacol 2024; 149:105622. [PMID: 38588771 DOI: 10.1016/j.yrtph.2024.105622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/07/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Novel medical devices must conform to medical device regulation (MDR) for European market entry. Likewise, chemicals must comply with the Registration, Evaluation, Authorization and Restriction of Chemicals (REACh) regulation. Both pose regulatory challenges for manufacturers, but concordantly provide an approach for transferring data from an already registered device or compound to the one undergoing accreditation. This is called equivalence for medical devices and read-across for chemicals. Although read-across is not explicitly prohibited in the process of medical device accreditation, it is usually not performed due to a lack of guidance and acceptance criteria from the authorities. Nonetheless, a scientifically justified read-across of material-based endpoints, as well as toxicological assessment of chemical aspects, such as extractables and leachables, can prevent failure of MDR device equivalence if data is lacking. Further, read-across, if applied correctly can facilitate the standard MDR conformity assessment. The need for read-across within medical device registration should let authorities to reconsider device accreditation and the formulation of respective guidance documents. Acceptance criteria like in the European Chemicals Agency (ECHA) read-across assessment framework (RAAF) are needed. This can reduce the impact of the MDR and help with keeping high European innovation device rate, beneficial for medical device patients.
Collapse
Affiliation(s)
- Jan Sündermann
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Str. 1, 30625, Hannover, Germany.
| | - Annette Bitsch
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Str. 1, 30625, Hannover, Germany
| | - Rupert Kellner
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Str. 1, 30625, Hannover, Germany
| | - Theodor Doll
- Department of Otolaryngology and Cluster of Excellence "Hearing4all", Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| |
Collapse
|
10
|
Huang J, Tang Y, Wang P, Zhou H, Li H, Cheng Z, Wu Y, Xie Z, Cai Z, Wu D, Shen H. One-Pot Construction of Articular Cartilage-Like Hydrogel Coating for Durable Aqueous Lubrication. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309141. [PMID: 38339915 DOI: 10.1002/adma.202309141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/22/2024] [Indexed: 02/12/2024]
Abstract
Articular cartilage has an appropriate multilayer structure and superior tribological properties and provides a structural paradigm for design of lubricating materials. However, mimicking articular cartilage traits on prosthetic materials with durable lubrication remains a huge challenge. Herein, an ingenious three-in-one strategy is developed for constructing an articular cartilage-like bilayer hydrogel coating on the surface of ultra-high molecular weight polyethylene (BH-UPE), which makes full use of conceptions of interfacial interlinking, high-entanglement crosslinking, and interface-modulated polymerization. The hydrogel coating is tightly interlinked with UPE substrate through hydrogel-UPE interchain entanglement and bonding. The hydrogel chains are highly entangled with each other to form a dense tough layer with negligible hysteresis for load-bearing by reducing the amounts of crosslinker and hydrophilic initiator to p.p.m. levels. Meanwhile, the polymerization of monomers in the top surface region is suppressed via interface-modulated polymerization, thus introducing a porous surface for effective aqueous lubrication. As a result, BH-UPE exhibits an ultralow friction coefficient of 0.0048 during 10 000 cycles under a load of 0.9 MPa, demonstrating great potential as an advanced bearing material for disc prosthesis. This work may provide a new way to build stable bilayer coatings and have important implications for development of biological lubricating materials.
Collapse
Affiliation(s)
- Jiajun Huang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Youchen Tang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Peng Wang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Hao Zhou
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - He Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Ziying Cheng
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Yanfeng Wu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Zhongyu Xie
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Zhaopeng Cai
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Dingcai Wu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Huiyong Shen
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| |
Collapse
|
11
|
Ashkanfar A, Toh SMS, English R, Langton DJ, Joyce TJ. The impact of femoral head size on the wear evolution at contacting surfaces of total hip prostheses: A finite element analysis. J Mech Behav Biomed Mater 2024; 153:106474. [PMID: 38447273 DOI: 10.1016/j.jmbbm.2024.106474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/08/2024]
Abstract
Total Hip Arthroplasty has been a revolutionary technique in restoring mobility to patients with damaged hip joints. The introduction of modular components of the hip prosthesis allowed for bespoke solutions based on the requirements of the patient. The femoral stem is designed with a conical trunnion to allow for assembly of different femoral head sizes based on surgical requirements. The femoral head diameters for a metal-on-polyethylene hip prosthesis have typically ranged between 22 mm and 36 mm and are typically manufactured using Cobalt-Chromium alloy. A smaller femoral head diameter is associated with lower wear of the polyethylene, however, there is a higher risk of dislocation. In this study, a finite element model of a standard commercial hip arthroplasty prosthesis was modelled with femoral head diameters ranging from 22 mm to 36 mm to investigate the wear evolution and material loss at both contacting surfaces (acetabular cup and femoral stem trunnion). The finite element model, coupled with a validated in-house wear algorithm modelled a human walking for 10 million steps. The results have shown that as the femoral head size increased, the amount of wear on all contacting surfaces increased. As the femoral head diameter increased from 22 mm to 36 mm, the highly cross-linked polyethylene (XLPE) volumetric wear increased by 61% from 98.6 mm3 to 159.5 mm3 while the femoral head taper surface volumetric wear increased by 21% from 4.18 mm3 to 4.95 mm3. This study has provided an insight into the amount of increased wear as the femoral head size increased which can highlight the life span of these prostheses in the human body.
Collapse
Affiliation(s)
- Ariyan Ashkanfar
- School of Engineering, Liverpool John Moores University, Liverpool, UK
| | | | - Russell English
- School of Engineering, Liverpool John Moores University, Liverpool, UK
| | | | - Thomas J Joyce
- School of Engineering, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
12
|
Jagannath GRR, Basawaraj, Naik Narayana CK, Hulikere Mallaradhya M, Majdi A, Alkahtani MQ, Islam S. Enhancing Wear Resistance of UHMWPE Composites with Micro MoS 2 and Nano Graphite: A Taguchi-DOE Approach. ACS OMEGA 2024; 9:16743-16758. [PMID: 38617631 PMCID: PMC11007771 DOI: 10.1021/acsomega.4c00864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 04/16/2024]
Abstract
This study presents an in-depth investigation into the wear characteristics of ultrahigh-molecular-weight polyethylene (UHMWPE) composites reinforced with microsized MoS2 and nanosized graphite particles. The objective is to enhance the wear resistance of the UHMWPE by examining the effects of various parameters and optimizing the wear performance. To achieve this goal, wet wear tests were conducted under controlled conditions, and the results were compared between composites with micro MoS2 and nano graphite reinforcements. The Taguchi method was employed to design the experiments (DOE) using an L9 orthogonal array. Four key parameters, namely, reinforcement percentage, load, speed, and track radius, were varied systematically to analyze their impact on wear characteristics, including wear rate, frictional forces, and the coefficient of friction (COF). The data obtained from the experiments were subjected to analysis of variance (ANOVA) to identify the significant factors affecting wear behavior. Subsequently, the optimal wear parameters were determined through regression analysis, allowing for the prediction of wear characteristics under the optimum conditions. This research not only provides insights into the comparative performance of micro MoS2 and nano graphite reinforcements in UHMWPE composites but also offers a comprehensive approach to optimizing wear resistance by employing advanced statistical and experimental techniques. The findings contribute to the development of more durable and wear-resistant materials with potential applications in various industries, such as those investigated in the study, which are commonly employed, such as automotive, aerospace, medical devices, or manufacturing.
Collapse
Affiliation(s)
- Gadipallya Ranga Rao Jagannath
- Department
of Mechanical Engineering, R.N.S. Institute
of Technology, Affiliated
to Visvesvaraya Technological University, Belagavi, Bengaluru 590018, India
| | - Basawaraj
- Department
of Aerospace Propulsion Technology, VTU-Regional
Centre Muddenahalli, Affiliated to Visvesvaraya Technological University, Belagavi, Bengaluru 560091, India
| | - Channa Keshava Naik Narayana
- Department
of Mechanical Engineering, BGS College of
Engineering and Technology, Affiliated to Visvesvaraya Technological University, Belagavi, Bengaluru 560086, India
| | - Mallaradhya Hulikere Mallaradhya
- Department
of Mechanical Engineering, SJC Institute
of Technology, Affiliated
to Visvesvaraya Technological University, Belagavi, Chickballapura 562101, India
| | - Ali Majdi
- Department
of Buildings and Construction Techniques Engineering, College of Engineering, Al-Mustaqbal University, Hillah 51001, Babylon, Iraq
| | - Meshel Q. Alkahtani
- Civil Engineering
Department, College of Engineering, King
Khalid University, Abha 61421, Saudi Arabia
| | - Saiful Islam
- Civil Engineering
Department, College of Engineering, King
Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
13
|
Agarwal AR, Kuyl EV, Gu A, Golladay GJ, Thakkar SC, Siram G, Unger A, Rao S. Trend of using cementless total knee arthroplasty: a nationwide analysis from 2015 to 2021. ARTHROPLASTY 2024; 6:24. [PMID: 38581037 PMCID: PMC10998332 DOI: 10.1186/s42836-024-00241-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 02/05/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Modern cementless total knee arthroplasty (TKA) fixation has shown comparable long-term outcomes to cemented TKA, but the trend of using cementless TKA remains unclear. This study aimed to investigate the trend of using cementless TKA based on a national database. METHODS The patients undergoing cementless TKA between 2015 and 2021 were retrospectively extracted from the PearlDiver (Mariner dataset) Database. The annual percentage of cementless TKA was calculated using the following formula: annual number of cementless TKA/annual number of TKA. The trend of the number of patients undergoing cementless TKA was created according to a compounded annual growth rate (CAGR) calculation of annual percentages. Patient age, comorbidity, region, insurance type, etc., were also investigated. Differences were considered statistically significant at P < 0.05. RESULTS Of the 574,848 patients who received TKA, 546,731 (95%) underwent cemented fixation and 28,117 (5%) underwent cementless fixation. From 2015 to 2021, the use of cementless TKA significantly increased by 242% from 3 to 9% (compounded annual growth rate (CAGR): + 20%; P < 0.05). From 2015 to 2021, we observed a CAGR greater than 15% for all age groups (< 50, 50-59, 60-69, 70-74, 75 +), insurance types (cash, commercial, government, Medicare, Medicaid), regions (Midwest, Northeast, South, West), sex (male and female), and certain comorbidities (osteoporosis, diabetes mellitus, tobacco use, underweight (BMI < 18.5), rheumatoid arthritis) (P < 0.05 for all). Patients undergoing TKA with chronic kidney disease, prior fragility fractures, and dementia demonstrated a CAGR of + 9%-13% from 2015 to 2021 (P < 0.05). CONCLUSION From 2015 to 2021, the use of cementless TKA saw a dramatic increase in all patient populations. However, there is still no consensus on when to cement and in whom. Clinical practice guidelines are needed to ensure safe and effective use of cementless fixation.
Collapse
Affiliation(s)
- Amil R Agarwal
- Department of Orthopaedic Surgery, George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA.
| | - Emile-Victor Kuyl
- Department of Orthopaedic Surgery, George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA
| | - Alex Gu
- Department of Orthopaedic Surgery, George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA
| | - Gregory J Golladay
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Savyasachi C Thakkar
- Department of Orthopaedic Surgery, Johns Hopkins Medicine, Baltimore, MD, 21205, USA
| | | | - Anthony Unger
- Washington Orthopaedics and Sports Medicine, Washington, DC, 20006, USA
| | - Sandesh Rao
- Washington Orthopaedics and Sports Medicine, Washington, DC, 20006, USA
| |
Collapse
|
14
|
Dreyer MJ, Weisse B, Contreras Raggio JI, Zboray R, Taylor WR, Preiss S, Horn N. The influence of implant design and limb alignment on in vivo wear rates of fixed-bearing and rotating-platform knee implant retrievals. J Orthop Res 2024; 42:777-787. [PMID: 37975250 DOI: 10.1002/jor.25734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/11/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Analysis of polyethylene (PE) wear in knee implants is crucial for understanding the factors leading to revision in total knee arthroplasty. Importantly, current experimental and computational methods for predicting insert wear can only be validated against true in vivo measurements from retrievals. This study quantitatively investigated in vivo PE wear rates in fixed-bearing (FB) (n = 21) and rotating-platform (n = 53) implant retrievals. 3D surface geometry of the retrievals was measured using a structured light scanner. Then, a reference surface that included the deformation, but not the wear that the retrievals had experienced in vivo, was constructed using a fully automatic surface reconstruction algorithm. Finally, wear volume was calculated from the deviation between the worn and reconstructed surfaces. The measurement and analysis techniques were validated and the algorithm was found to produce errors of only 0.2% relative to the component volumes. In addition to quantifying cohort-level wear rates, the effect of mechanical axis limb alignment on mediolateral wear distribution was examined for a subset of the retrievals (n = 14 + 26). Our results show that FB implants produce significantly (p = 0.04) higher topside wear rates (24.6 ± 10.1 mm3/year) than rotating-platform implants (15.3 ± 8.0 mm3/year). This effect was larger than that of limb alignment, which had a smaller and nonsignificant influence on overall wear rates (+4.5 ± 11.6 mm3/year, p = 0.43). However, increased varus alignment was associated significantly with greater medial compartment wear in both the FB and rotating-platform designs (+1.7 ± 1.3%/° and +1.8 ± 1.6%/°). Our findings emphasize the importance of implant design and limb alignment on wear outcomes, providing reference data for improving implant performance and longevity.
Collapse
Affiliation(s)
- Michael J Dreyer
- Laboratory for Movement Biomechanics, Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
- Laboratory for Mechanical Systems Engineering, Empa, Dübendorf, Switzerland
| | - Bernhard Weisse
- Laboratory for Mechanical Systems Engineering, Empa, Dübendorf, Switzerland
| | - José Ignacio Contreras Raggio
- Laboratory for Mechanical Systems Engineering, Empa, Dübendorf, Switzerland
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar, Chile
| | - Robert Zboray
- Center for X-ray Analytics, Empa, Dübendorf, Switzerland
| | - William R Taylor
- Laboratory for Movement Biomechanics, Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Stefan Preiss
- Department of Lower Extremities, Schulthess Clinic, Zürich, Switzerland
| | - Nils Horn
- Department of Lower Extremities, Schulthess Clinic, Zürich, Switzerland
| |
Collapse
|
15
|
Jiang H, Wang Y, Tang Z, Peng X, Li C, Dang Y, Ma R. Calycosin alleviates titanium particle-induced osteolysis by modulating macrophage polarization and subsequent osteogenic differentiation. J Cell Mol Med 2024; 28:e18157. [PMID: 38494857 PMCID: PMC10945085 DOI: 10.1111/jcmm.18157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/01/2024] [Accepted: 01/12/2024] [Indexed: 03/19/2024] Open
Abstract
Periprosthetic osteolysis (PPO) caused by wear particles is one of the leading causes of implant failure after arthroplasty. Macrophage polarization imbalance and subsequent osteogenic inhibition play a crucial role in PPO. Calycosin (CA) is a compound with anti-inflammatory and osteoprotective properties. This study aimed to evaluate the effects of CA on titanium (Ti) particle-induced osteolysis, Ti particle-induced macrophage polarization and subsequent osteogenic deficits, and explore the associated signalling pathways in a Ti particle-stimulated calvarial osteolysis mouse model using micro-CT, ELISA, qRT-PCR, immunofluorescence and western blot techniques. The results showed that CA alleviated inflammation, osteogenic inhibition and osteolysis in the Ti particle-induced calvarial osteolysis mouse model in vivo. In vitro experiments showed that CA suppressed Ti-induced M1 macrophage polarization, promoted M2 macrophage polarization and ultimately enhanced osteogenic differentiation of MC3T3-E1 cells. In addition, CA alleviated osteogenic deficits by regulating macrophage polarization homeostasis via the NF-κB signalling pathway both in vivo and in vitro. All these findings suggest that CA may prove to be an effective therapeutic agent for wear particle-induced osteolysis.
Collapse
Affiliation(s)
- Hui Jiang
- Department of OrthopedicsThe Affiliated Jinling Hospital of Nanjing Medical UniversityNanjingChina
| | - Yang Wang
- Department of OrthopedicsThe Affiliated Jinling Hospital of Nanjing Medical UniversityNanjingChina
| | - Zhao Tang
- Department of OrthopedicsThe Affiliated Jinling Hospital of Nanjing Medical UniversityNanjingChina
| | - Xianjiang Peng
- Department of Anesthesiology, Xi'an Children's HospitalAffiliated Children's Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Chan Li
- Department of Anesthesiology, Xi'an Children's HospitalAffiliated Children's Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yangjie Dang
- Department of Anesthesiology, Xi'an Children's HospitalAffiliated Children's Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Rui Ma
- Department of Anesthesiology, Xi'an Children's HospitalAffiliated Children's Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
16
|
Choudhary A, Pisulkar G, Taywade S, Awasthi AA, Salwan A. A Comprehensive Review of Total Hip Arthroplasty Outcomes in Post-traumatic Hip Arthritis: Insights and Perspectives. Cureus 2024; 16:e56350. [PMID: 38633974 PMCID: PMC11021999 DOI: 10.7759/cureus.56350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 03/17/2024] [Indexed: 04/19/2024] Open
Abstract
Post-traumatic hip arthritis presents a challenging condition characterized by degenerative changes in the hip joint following traumatic injury. Total hip arthroplasty (THA) is a cornerstone in managing this condition, offering significant pain relief, functional improvement, and enhanced quality of life. This comprehensive review aims to synthesize existing literature to elucidate the outcomes of THA in post-traumatic hip arthritis, exploring factors influencing surgical success and identifying areas for further research. Key findings reveal favourable clinical outcomes associated with THA, though considerations such as patient characteristics, surgical techniques, and implant selection impact outcomes. Implications for clinical practice underscore the importance of tailored preoperative assessment and ongoing advancements in surgical approaches and implant technology. Furthermore, opportunities for future research lie in long-term durability studies, patient-reported outcomes assessment, and exploration of innovative surgical techniques. Overall, THA emerges as a promising intervention for post-traumatic hip arthritis, yet continual refinement through research and innovation remains imperative to optimize patient care in this population.
Collapse
Affiliation(s)
- Abhishek Choudhary
- Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Gajanan Pisulkar
- Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Shounak Taywade
- Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Abhiram A Awasthi
- Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ankur Salwan
- Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
17
|
Deng Y, Phillips K, Feng ZP, Smith PN, Li RW. Aseptic loosening around total joint replacement in humans is regulated by miR-1246 and miR-6089 via the Wnt signalling pathway. J Orthop Surg Res 2024; 19:94. [PMID: 38287447 PMCID: PMC10823634 DOI: 10.1186/s13018-024-04578-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/23/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Total joint replacement for osteoarthritis is one of the most successful surgical procedures in modern medicine. However, aseptic loosening continues to be a leading cause of revision arthroplasty. The diagnosis of aseptic loosening remains a challenge as patients are often asymptomatic until the late stages. MicroRNA (miRNA) has been demonstrated to be a useful diagnostic tool and has been successfully used in the diagnosis of other diseases. We aimed to identify differentially expressed miRNA in the plasma of patients with aseptic loosening. METHODS Adult patients undergoing revision arthroplasty for aseptic loosening and age- and gender-matched controls were recruited. Samples of bone, tissue and blood were collected, and RNA sequencing was performed in 24 patients with aseptic loosening and 26 controls. Differentially expressed miRNA in plasma was matched to differentially expressed mRNA in periprosthetic bone and tissue. Western blot was used to validate protein expression. RESULTS Seven miRNA was differentially expressed in the plasma of patients with osteolysis (logFC >|2|, adj-P < 0.05). Three thousand six hundred and eighty mRNA genes in bone and 427 mRNA genes in tissue samples of osteolysis patients were differentially expressed (logFC >|2|, adj-P < 0.05). Gene enrichment analysis and pathway analysis revealed two miRNA (miR-1246 and miR-6089) had multiple gene targets in the Wnt signalling pathway in the local bone and tissues which regulate bone metabolism. CONCLUSION These results suggest that aseptic loosening may be regulated by miR-1246 and miR-6089 via the Wnt signalling pathway.
Collapse
Affiliation(s)
- Yi Deng
- Australian National University Medical School, Canberra, Australia.
- Department of Orthopaedic Surgery, Canberra Hospital, Canberra, Australia.
| | - Kate Phillips
- Australian National University Medical School, Canberra, Australia
| | - Zhi-Ping Feng
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Paul N Smith
- Australian National University Medical School, Canberra, Australia
- Department of Orthopaedic Surgery, Canberra Hospital, Canberra, Australia
| | - Rachel W Li
- Australian National University Medical School, Canberra, Australia
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| |
Collapse
|
18
|
Minaei Noshahr R, Amouzadeh Omrani F, Yadollahzadeh Chari A, Salehpour Roudsari M, Madadi F, Shakeri Jousheghan S, Manafi-Rasi A. MicroRNAs in Aseptic Loosening of Prosthesis: Pathophysiology and Potential Therapeutic Approaches. THE ARCHIVES OF BONE AND JOINT SURGERY 2024; 12:612-621. [PMID: 39498221 PMCID: PMC11531769 DOI: 10.22038/abjs.2024.70918.3319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/01/2024] [Indexed: 11/07/2024]
Abstract
Objectives Aseptic loosening (AL) is one of the leading causes of total joint arthroplasty (TJA) revision. Discovering the roles of microRNAs (miRNA/miR) in ontogenesis and osteolysis has attracted more attention to diagnosing and treating bone disorders. This review aimed to summarize miRNA biogenesis and describe the involvement of miRNAs in AL of implants. Methods A detailed search was carried out on scientific search engines, including Google Scholar, Web of Science, and PubMed, to find appropriate papers related to subjects. The search process was performed using the following keywords: "Implant", "miRNAs", "Wear particles", "Osteoclasts", "Total joint replacement", and "Osteolytic diseases". Results miRNAs play an essential role in the regulation of gene expression. AL is associated with several pathologic properties, including wear particle-induced persistent inflammatory response, unbalanced osteoclastogenesis, abnormal osteoblast differentiation, and maturation. Recent researches have revealed that these pathological events are closely associated with miRNA deregulation, confirming the relationship between miRNA and AL of prostheses. Conclusion With the results of the new approaches to target miRNA, the essential role of miRNA is further defined. Understanding the mechanisms of miRNAs and related signaling pathways in the pathophysiology of AL will help scientists illuminate novel therapeutic strategies and specific targeted drugs.
Collapse
Affiliation(s)
| | - Farzad Amouzadeh Omrani
- Department of Orthopedics, School of Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Firoozeh Madadi
- Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Alireza Manafi-Rasi
- Department of Orthopedics, School of Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Yamakado K. UHMWPE suture induced pseudotumor following arthroscopic rotator cuff repair: A case report. Shoulder Elbow 2023; 15:87-91. [PMID: 37974602 PMCID: PMC10649478 DOI: 10.1177/17585732211067117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 11/19/2023]
Abstract
UHMWPE suture shows excellent biocompatibility and complication associated with suture debris had not been described before in shoulder surgery. In this study, a case of a 38-year-old man with a wear debris pseudotumor mimicking osteochondromatosis in the subacromial bursa five years after arthroscopic rotator cuff repair using a composite braid suture (a polydioxanone core with a sleeve of UHMWPE) was presented. Histological examination confirmed the presence of suture fragments surrounded with the osteochondral layer without inflammatory reactions. The present study implies the potential risk of free fragmented remnants from the UHMWPE suture. Because of the silent nature of the histological response, a high index of suspicion should be necessary to disclose the chanciness of its use.
Collapse
Affiliation(s)
- Kotaro Yamakado
- Department of Orthopaedics, Fukui General Hospital, Fukui, Japan
| |
Collapse
|
20
|
Walker EA, Fox MG, Blankenbaker DG, French CN, Frick MA, Hanna TN, Jawetz ST, Onks C, Said N, Stensby JD, Beaman FD. ACR Appropriateness Criteria® Imaging After Total Knee Arthroplasty: 2023 Update. J Am Coll Radiol 2023; 20:S433-S454. [PMID: 38040463 DOI: 10.1016/j.jacr.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 12/03/2023]
Abstract
Total knee arthroplasty is the most commonly performed joint replacement procedure in the United States. This manuscript will discuss the recommended imaging modalities for six clinical variants; 1. follow-up of symptomatic or asymptomatic patients with a total knee arthroplasty. Initial imaging, 2. Suspected infection after total knee arthroplasty. Additional imaging following radiographs, 3. Pain after total knee arthroplasty. Infection excluded. Suspect aseptic loosening or osteolysis or instability. Additional imaging following radiographs, 4. Pain after total knee arthroplasty. Suspect periprosthetic or hardware fracture. Additional imaging following radiographs, 5. Pain after total knee arthroplasty. Measuring component rotation. Additional imaging following radiographs, and 6. Pain after total knee arthroplasty. Suspect periprosthetic soft-tissue abnormality unrelated to infection, including quadriceps or patellar tendinopathy. Additional imaging following radiographs. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision process support the systematic analysis of the medical literature from peer reviewed journals. Established methodology principles such as Grading of Recommendations Assessment, Development, and Evaluation or GRADE are adapted to evaluate the evidence. The RAND/UCLA Appropriateness Method User Manual provides the methodology to determine the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where peer reviewed literature is lacking or equivocal, experts may be the primary evidentiary source available to formulate a recommendation.
Collapse
Affiliation(s)
- Eric A Walker
- Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania; Uniformed Services University of the Health Sciences, Bethesda, Maryland.
| | | | - Donna G Blankenbaker
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Cristy N French
- Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | | | - Tarek N Hanna
- Emory University, Atlanta, Georgia; Committee on Emergency Radiology-GSER
| | | | - Cayce Onks
- Penn State Health, Hershey, Pennsylvania, Primary care physician
| | - Nicholas Said
- Duke University Medical Center, Durham, North Carolina
| | | | | |
Collapse
|
21
|
Yin Z, Gong G, Liu X, Yin J. Mechanism of regulating macrophages/osteoclasts in attenuating wear particle-induced aseptic osteolysis. Front Immunol 2023; 14:1274679. [PMID: 37860014 PMCID: PMC10582964 DOI: 10.3389/fimmu.2023.1274679] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
Joint replacement surgery is the most effective treatment for end-stage arthritis. Aseptic loosening caused by periprosthetic osteolysis is a common complication after joint replacement. Inflammation induced by wear particles derived from prosthetic biomaterials is a major cause of osteolysis. We emphasize that bone marrow-derived macrophages and their fusion-derived osteoclasts play a key role in this pathological process. Researchers have developed multiple intervention approaches to regulate macrophage/osteoclast activation. Aiming at wear particle-induced periprosthetic aseptic osteolysis, this review separately discusses the molecular mechanism of regulation of ROS formation and inflammatory response through intervention of macrophage/osteoclast RANKL-MAPKs-NF-κB pathway. These molecular mechanisms regulate osteoclast activation in different ways, but they are not isolated from each other. There is also a lot of crosstalk among the different mechanisms. In addition, other bone and joint diseases related to osteoclast activation are also briefly introduced. Therefore, we discuss these new findings in the context of existing work with a view to developing new strategies for wear particle-associated osteolysis based on the regulation of macrophages/osteoclasts.
Collapse
Affiliation(s)
- Zhaoyang Yin
- Department of Orthopedics, The Affiliated Lianyungang Hospital of Xuzhou Medical University (The First People’s Hospital of Lianyungang), Lianyungang, China
| | - Ge Gong
- Department of Geriatrics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xinhui Liu
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Jian Yin
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Kikuchi S, Wada A, Kamihara Y, Yamamoto I, Kirigaya D, Kunimoto K, Horaguchi R, Fujihira T, Nabe Y, Minemura T, Dang NH, Sato T. A Novel Mechanism for Bone Loss: Platelet Count Negatively Correlates with Bone Mineral Density via Megakaryocyte-Derived RANKL. Int J Mol Sci 2023; 24:12150. [PMID: 37569526 PMCID: PMC10418703 DOI: 10.3390/ijms241512150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
A potential association between hematopoietic stem cell status in bone marrow and surrounding bone tissue has been hypothesized, and some studies have investigated the link between blood count and bone mineral density (BMD), although their exact relationship remains controversial. Moreover, biological factors linking the two are largely unknown. In our present study, we found no clear association between platelet count and BMD in the female group, with aging having a very strong effect on BMD. On the other hand, a significant negative correlation was found between platelet count and BMD in the male group. As a potential mechanism, we examined whether megakaryocytes, the source of platelet production, secrete cytokines that regulate BMD, namely OPG, M-CSF, and RANKL. We detected the production of these cytokines by megakaryocytes derived from bone marrow mononuclear cells, and found that RANKL was negatively correlated with BMD. This finding suggests that RANKL production by megakaryocytes may mediate the negative correlation between platelet count and BMD. To our knowledge, this is the first report to analyze bone marrow cells as a mechanism for the association between blood count and BMD. Our study may provide new insights into the development and potential treatment of osteoporosis.
Collapse
Affiliation(s)
- Shohei Kikuchi
- Department of Hematology, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (S.K.); (A.W.); (Y.K.); (I.Y.); (D.K.); (K.K.); (R.H.); (T.F.); (Y.N.); (T.M.)
| | - Akinori Wada
- Department of Hematology, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (S.K.); (A.W.); (Y.K.); (I.Y.); (D.K.); (K.K.); (R.H.); (T.F.); (Y.N.); (T.M.)
| | - Yusuke Kamihara
- Department of Hematology, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (S.K.); (A.W.); (Y.K.); (I.Y.); (D.K.); (K.K.); (R.H.); (T.F.); (Y.N.); (T.M.)
| | - Imari Yamamoto
- Department of Hematology, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (S.K.); (A.W.); (Y.K.); (I.Y.); (D.K.); (K.K.); (R.H.); (T.F.); (Y.N.); (T.M.)
| | - Daiki Kirigaya
- Department of Hematology, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (S.K.); (A.W.); (Y.K.); (I.Y.); (D.K.); (K.K.); (R.H.); (T.F.); (Y.N.); (T.M.)
| | - Kohei Kunimoto
- Department of Hematology, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (S.K.); (A.W.); (Y.K.); (I.Y.); (D.K.); (K.K.); (R.H.); (T.F.); (Y.N.); (T.M.)
| | - Ryusuke Horaguchi
- Department of Hematology, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (S.K.); (A.W.); (Y.K.); (I.Y.); (D.K.); (K.K.); (R.H.); (T.F.); (Y.N.); (T.M.)
| | - Takuma Fujihira
- Department of Hematology, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (S.K.); (A.W.); (Y.K.); (I.Y.); (D.K.); (K.K.); (R.H.); (T.F.); (Y.N.); (T.M.)
| | - Yoshimi Nabe
- Department of Hematology, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (S.K.); (A.W.); (Y.K.); (I.Y.); (D.K.); (K.K.); (R.H.); (T.F.); (Y.N.); (T.M.)
| | - Tomoki Minemura
- Department of Hematology, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (S.K.); (A.W.); (Y.K.); (I.Y.); (D.K.); (K.K.); (R.H.); (T.F.); (Y.N.); (T.M.)
| | - Nam H. Dang
- Division of Hematology/Oncology, University of Florida, Gainesville, FL 32610, USA;
| | - Tsutomu Sato
- Department of Hematology, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (S.K.); (A.W.); (Y.K.); (I.Y.); (D.K.); (K.K.); (R.H.); (T.F.); (Y.N.); (T.M.)
| |
Collapse
|
23
|
Birkett M, Zia AW, Devarajan DK, Panayiotidis MI, Joyce TJ, Tambuwala MM, Serrano-Aroca A. Multi-functional bioactive silver- and copper-doped diamond-like carbon coatings for medical implants. Acta Biomater 2023:S1742-7061(23)00363-X. [PMID: 37392935 DOI: 10.1016/j.actbio.2023.06.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/09/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Diamond-like carbon (DLC) coatings doped with bioactive elements of silver (Ag) and copper (Cu) have been receiving increasing attention in the last decade, particularly in the last 5 years, due to their potential to offer a combination of enhanced antimicrobial and mechanical performance. These multi-functional bioactive DLC coatings offer great potential to impart the next generation of load-bearing medical implants with improved wear resistance and strong potency against microbial infections. This review begins with an overview of the status and issues with current total joint implant materials and the state-of-the art in DLC coatings and their application to medical implants. A detailed discussion of recent advances in wear resistant bioactive DLC coatings is then presented with a focus on doping the DLC matrix with controlled quantities of Ag and Cu elements. It is shown that both Ag and Cu doping can impart strong antimicrobial potency against a range of Gram-positive and Gram-negative bacteria, but this is always accompanied so far by a reduction in mechanical performance of the DLC coating matrix. The article concludes with discussion of potential synthesis methods to accurately control bioactive element doping without jeopardising mechanical properties and gives an outlook to the potential long-term impact of developing a superior multifunctional bioactive DLC coating on implant device performance and patient health and wellbeing. STATEMENT OF SIGNIFICANCE: Multi-functional diamond-like carbon (DLC) coatings doped with bioactive elements of silver (Ag) and copper (Cu) offer great potential to impart the next generation of load-bearing medical implants with improved wear resistance and strong potency against microbial infections. This article provides a critical review of the state-of-the-art in Ag and Cu doped DLC coatings, beginning with an overview of the current applications of DLC coatings in implant technology followed by a detailed discussion of Ag/Cu doped DLC coatings with particular focus on the relationship between their mechanical and antimicrobial performance. Finally, it ends with a discussion on the potential long-term impact of developing a truly multifunctional ultra-hard wearing bioactive DLC coating to extend the lifetime of total joint implants.
Collapse
Affiliation(s)
- Martin Birkett
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Abdul Wasy Zia
- Institute of Mechanical, Process, and Energy Engineering (IMPEE), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Dinesh Kumar Devarajan
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119, India
| | - Mihalis I Panayiotidis
- Department of Cancer Genetics Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Thomas J Joyce
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | | | - Angel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain
| |
Collapse
|
24
|
Maduka CV, Habeeb OM, Kuhnert MM, Hakun M, Goodman SB, Contag CH. Glycolytic reprogramming underlies immune cell activation by polyethylene wear particles. BIOMATERIALS ADVANCES 2023; 152:213495. [PMID: 37301057 DOI: 10.1016/j.bioadv.2023.213495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 04/20/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Primary total joint arthroplasties (TJAs) are widely and successfully applied reconstructive procedures to treat end-stage arthritis. Nearly 50 % of TJAs are now performed in young patients, posing a new challenge: performing TJAs which last a lifetime. The urgency is justified because subsequent TJAs are costlier and fraught with higher complication rates, not to mention the toll taken on patients and their families. Polyethylene particles, generated by wear at joint articulations, drive aseptic loosening by inciting insidious inflammation associated with surrounding bone loss. Down modulating polyethylene particle-induced inflammation enhances integration of implants to bone (osseointegration), preventing loosening. A promising immunomodulation strategy could leverage immune cell metabolism, however, the role of immunometabolism in polyethylene particle-induced inflammation is unknown. Our findings reveal that immune cells exposed to sterile or contaminated polyethylene particles show fundamentally altered metabolism, resulting in glycolytic reprogramming. Inhibiting glycolysis controlled inflammation, inducing a pro-regenerative phenotype that could enhance osseointegration.
Collapse
Affiliation(s)
- Chima V Maduka
- Comparative Medicine & Integrative Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA; Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Oluwatosin M Habeeb
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA; Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Maxwell M Kuhnert
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA; Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Maxwell Hakun
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA; Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Stuart B Goodman
- Department of Orthopedic Surgery, Stanford University, CA 94063, USA; Department of Bioengineering, Stanford University, CA 94305, USA
| | - Christopher H Contag
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA; Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA; Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48864, USA.
| |
Collapse
|
25
|
Gong G, Wan W, Liu X, Yin J. Apelin-13, a regulator of autophagy, apoptosis and inflammation in multifaceted bone protection. Int Immunopharmacol 2023; 117:109991. [PMID: 37012875 DOI: 10.1016/j.intimp.2023.109991] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
Apelin/APJ is widely distributed in various tissues in the body and participates in the regulation of physiological and pathological mechanisms such as autophagy, apoptosis, inflammation, and oxidative stress. Apelin-13 is an adipokine family member with multiple biological roles and has been shown to be involved in the development and progression of bone diseases. In the process of osteoporosis and fracture healing, Apelin-13 plays an osteoprotective role by regulating the autophagy and apoptosis of BMSCs, and promotes the osteogenic differentiation of BMSCs. In addition, Apelin-13 also attenuates the progression of arthritis by regulating the inflammatory response of macrophages. In conclusion, Apelin-13 has an important connection with bone protection, which provides a new strategy for the clinical treatment of bone-related diseases.
Collapse
Affiliation(s)
- Ge Gong
- Department of Geriatrics, Jinling Hospital, Medical School of Nanjing University, Nanjing 211002, China
| | - Wenhui Wan
- Department of Geriatrics, Jinling Hospital, Medical School of Nanjing University, Nanjing 211002, China
| | - Xinhui Liu
- Department of Orthopedics, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing 211100, China.
| | - Jian Yin
- Department of Orthopedics, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing 211100, China.
| |
Collapse
|
26
|
Lu Y, Xu X, Yang C, Hosseinkhani S, Zhang C, Luo K, Tang K, Yang K, Lin J. Copper modified cobalt-chromium particles for attenuating wear particle induced-inflammation and osteoclastogenesis. BIOMATERIALS ADVANCES 2023; 147:213315. [PMID: 36746101 DOI: 10.1016/j.bioadv.2023.213315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/28/2022] [Accepted: 01/22/2023] [Indexed: 01/30/2023]
Abstract
The nature of aseptic prosthetic loosening mainly relates to the wear particles that induce inflammation and subsequent osteoclastogenesis. The ideal approach to impede wear particle-induced osteolysis should minimize inflammation and osteoclastogenesis. In this work, Co29Cr9W3Cu particles were used as a research model for the first time to explore the response of Co29Cr9W3Cu particles to inflammatory response and osteoclast activation in vitro and in vivo by using Co29Cr9W particles as the control group. In vitro studies showed that the Co29Cr9W3Cu particles could promote the generation of M2-phenotype macrophages and increase the expression level of anti-inflammatory factor IL-10, while inhibiting the formation of M1-phenotype macrophages and down-regulating the expression of inflammatory factors TNF-α, IL-6 and IL-1β; More importantly, the Co29Cr9W3Cu particles reduced the expression of NF-κB and downstream osteoclast related-specific transcription marker genes, such as TRAP, NFATc1, and Cath-K; In vivo results indicated that the Co29Cr9W3Cu particles exposed to murine calvarial contributed to decreasing the amount of osteoclast and osteolysis area. These findings collectively demonstrated that Cu-bearing cobalt-chromium alloy may potentially delay the development of aseptic prosthetic loosening induced by wear particles, which is expected to provide evidence of Co29Cr9W3Cu alloy as an alternative material of joint implants with anti-wear associated osteolysis.
Collapse
Affiliation(s)
- Yanjin Lu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350001, China; Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350117, China; Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Xiongcheng Xu
- Research Center of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350001, China
| | - Chunguang Yang
- Institute of Metal Research, Chinese Academy of Sciences, 110000 Shenyang, China
| | | | - Chenke Zhang
- Sports Medicine Center, Department of Orthopedic Surgery, Southwest Hospital, Army Military Medical University, Chongqing 40000, China.
| | - Kai Luo
- Research Center of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350001, China.
| | - Kanglai Tang
- Sports Medicine Center, Department of Orthopedic Surgery, Southwest Hospital, Army Military Medical University, Chongqing 40000, China
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Sciences, 110000 Shenyang, China
| | - Jinxin Lin
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350001, China; Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China.
| |
Collapse
|
27
|
Cong Y, Wang Y, Yuan T, Zhang Z, Ge J, Meng Q, Li Z, Sun S. Macrophages in aseptic loosening: Characteristics, functions, and mechanisms. Front Immunol 2023; 14:1122057. [PMID: 36969165 PMCID: PMC10030580 DOI: 10.3389/fimmu.2023.1122057] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/13/2023] [Indexed: 03/10/2023] Open
Abstract
Aseptic loosening (AL) is the most common complication of total joint arthroplasty (TJA). Both local inflammatory response and subsequent osteolysis around the prosthesis are the fundamental causes of disease pathology. As the earliest change of cell behavior, polarizations of macrophages play an essential role in the pathogenesis of AL, including regulating inflammatory responses and related pathological bone remodeling. The direction of macrophage polarization is closely dependent on the microenvironment of the periprosthetic tissue. When the classically activated macrophages (M1) are characterized by the augmented ability to produce proinflammatory cytokines, the primary functions of alternatively activated macrophages (M2) are related to inflammatory relief and tissue repair. Yet, both M1 macrophages and M2 macrophages are involved in the occurrence and development of AL, and a comprehensive understanding of polarized behaviors and inducing factors would help in identifying specific therapies. In recent years, studies have witnessed novel discoveries regarding the role of macrophages in AL pathology, the shifts between polarized phenotype during disease progression, as well as local mediators and signaling pathways responsible for regulations in macrophages and subsequent osteoclasts (OCs). In this review, we summarize recent progress on macrophage polarization and related mechanisms during the development of AL and discuss new findings and concepts in the context of existing work.
Collapse
Affiliation(s)
- Yehao Cong
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yi Wang
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Tao Yuan
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Zheng Zhang
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Jianxun Ge
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Qi Meng
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Ziqing Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- *Correspondence: Ziqing Li, ; Shui Sun,
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- *Correspondence: Ziqing Li, ; Shui Sun,
| |
Collapse
|
28
|
Insight into the Molecule Impact of Critical-Sized UHMWPE-ALN Wear Particles on Cells by the Alginate-Encapsulated Cell Reactor. Int J Mol Sci 2023; 24:ijms24043510. [PMID: 36834920 PMCID: PMC9967683 DOI: 10.3390/ijms24043510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Wear particles of ultra-high molecular weight polyethylene (UHMWPE) are inevitable during service as joint prosthesis, and particles ≤ 10 μm with critical size could cause serious osteolysis and aseptic loosening of joint prosthesis. The aim of this study is to adopt the alginate-encapsulated cell reactor to investigate the molecular impact of critical-sized wear particles of UHMWPE loaded with alendronate sodium (UHMWPE-ALN) on cells. Results showed that compared with UHMWPE wear particles, UHMWPE-ALN wear particles inhibited the proliferation of macrophages significantly after being co-cultured for 1, 4, 7, and 14 d. Furthermore, the released ALN promoted early apoptosis, suppressed the secretion of TNF-α and IL-6 of macrophages, and down-regulated relative gene expressions of TNF-α, IL-6, and IL-1β and RANK. In addition, compared with UHMWPE wear particles, UHMWPE-ALN wear particles promoted the ALP activity of osteoblasts, down-regulated the gene expression of RANKL, and up-regulated gene expression of osteoprotegerin. There were mainly two approaches of the effects of critical-sized UHMWPE-ALN wear particles on cells, one of which was cytology and the other was cytokine signal pathway. The former mainly affected the proliferation and activity of macrophages and osteoblasts. The latter would inhibit osteoclasts via cytokine and RANKL/RANK signal pathway. Thus, UHMWPE-ALN had the potential application in clinics to treat osteolysis induced by wear particles.
Collapse
|
29
|
Ponomarjova E, Jakovicka D, Studers P. Massive Periprosthetic Osteolysis Spreads to the Soft Tissue and Pelvic Region after Primary Total Hip Replacement: A Case Report. J Orthop Case Rep 2023; 13:25-29. [PMID: 37144063 PMCID: PMC10152936 DOI: 10.13107/jocr.2023.v13.i02.3542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/11/2022] [Indexed: 05/06/2023] Open
Abstract
Introduction Periprosthetic osteolysis (PPOL) is a serious complication after total hip replacement and requires immediate action to prevent further spread to nearby tissues and has the opportunity to restore hip function successfully. We present the case of PPOL of a patient with a challenging course of treatment. Case Report We report a 75-year-old patient with PPOL that spreads to the soft tissues and pelvic region 14 years after primary total hip arthroplasty. At all stages of treatment, an elevated neutrophil-dominant cell count was detected in the analysis of synovial fluid aspiration of the left hip joint without detection of microbiological culture. Due to severe bone loss and general patient condition, no further surgical treatment was indicated, and there is no clear vision of future actions. Conclusion Management of severe PPOL can be challenging, as there are limited surgical treatment options with a good long-term prognosis. If an osteolytic process is suspected, it should be treated as soon as possible to avoid more severe progression of the complications.
Collapse
Affiliation(s)
- Eleonora Ponomarjova
- Department of Orthopaedics, Faculty of Medicine, Riga Stradins University, Riga, Latvia
| | - Darta Jakovicka
- Joint Laboratory of Traumatology and Orthopaedics, Riga Stradins University, Riga, Latvia
| | - Peteris Studers
- Department of Spine and Joint Surgery, Hospital of Traumatology and Orthopaedics, Riga, Latvia
- Address of Correspondence: Assoc. Prof. Peteris Studers, Joint Laboratory of Traumatology and Orthopaedics, Riga Stradins University, Riga, Latvia. E-mail:
| |
Collapse
|
30
|
Wu Z, Li X, Chen X, He X, Chen Y, Zhang L, Li Z, Yang M, Yuan G, Shi B, Chen N, Li N, Feng H, Zhou M, Rui G, Xu F, Xu R. Phosphatidyl Inositol 3-Kinase (PI3K)-Inhibitor CDZ173 protects against LPS-induced osteolysis. Front Pharmacol 2023; 13:1021714. [PMID: 36686650 PMCID: PMC9854393 DOI: 10.3389/fphar.2022.1021714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/03/2022] [Indexed: 01/09/2023] Open
Abstract
A major complication of a joint replacement is prosthesis loosening caused by inflammatory osteolysis, leading to the revision of the operation. This is due to the abnormal activation of osteoclast differentiation and function caused by periprosthetic infection. Therefore, targeting abnormally activated osteoclasts is still effective for treating osteolytic inflammatory diseases. CDZ173 is a selective PI3K inhibitor widely used in autoimmune-related diseases and inflammatory diseases and is currently under clinical development. However, the role and mechanism of CDZ173 in osteoclast-related bone metabolism remain unclear. The possibility for treating aseptic prosthesis loosening brought on by inflammatory osteolysis illness can be assessed using an LPS-induced mouse cranial calcium osteolysis model. In this study, we report for the first time that CDZ173 has a protective effect on LPS-induced osteolysis. The data show that this protective effect is due to CDZ173 inhibiting the activation of osteoclasts in vivo. Meanwhile, our result demonstrated that CDZ173 had a significant inhibitory effect on RANKL-induced osteoclasts. Furthermore, using the hydroxyapatite resorption pit assay and podosol actin belt staining, respectively, the inhibitory impact of CDZ173 on bone resorption and osteoclast fusion of pre-OC was determined. In addition, staining with alkaline phosphatase (ALP) and alizarin red (AR) revealed that CDZ173 had no effect on osteoblast development in vitro. Lastly, CDZ173 inhibited the differentiation and function of osteoclasts by weakening the signal axis of PI3K-AKT/MAPK-NFATc1 in osteoclasts. In conclusion, our results highlight the potential pharmacological role of CDZ173 in preventing osteoclast-mediated inflammatory osteolysis and its potential clinical application.
Collapse
Affiliation(s)
- Zuoxing Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.,The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Xuedong Li
- Department of Medical Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Xiaohui Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.,The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Xuemei He
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, China
| | - Yu Chen
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, China
| | - Long Zhang
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, China
| | - Zan Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Mengyu Yang
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, China
| | - Guixin Yuan
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, China
| | - Baohong Shi
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, China
| | - Ning Chen
- Department of Endocrinology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Na Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.,The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Haotian Feng
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China
| | - Mengyu Zhou
- Department of Dentistry, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Gang Rui
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Feng Xu
- Department of Subject Planning, Ninth People's Hospital Shanghai, Jiaotong University School of Medicine, Shanghai, China
| | - Ren Xu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.,The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China.,Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| |
Collapse
|
31
|
Hoffmann M, Reichert JC, Rakow A, Schoon J, Wassilew GI. [Postoperative outcomes and survival rates after aseptic revision total hip arthroplasty : What can patients expect from revision surgery?]. ORTHOPADIE (HEIDELBERG, GERMANY) 2023; 52:3-11. [PMID: 35737015 DOI: 10.1007/s00132-022-04274-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND In 2020, more than 14,000 aseptic revision procedures for total hip arthroplasty (THA) were registered in Germany. Patient expectations of revision hip arthroplasty are not substantially different from expectations of primary hip replacement. OUTCOME However, revision surgery is associated with increased complication rates and a higher proportion of dissatisfied patients. In particular, poorer postoperative function and mobility as well as increased pain levels following revision THA have been described compared to the outcome after primary THA. Quality of life and return-to-work can also be impaired. SURVIVAL RATE Implant survival is influenced by age, BMI, and comorbidities of the patients, but also by the size and complexity of bone defects, the extent of periprosthetic soft tissue compromise and the choice of revision implant(s). In addition, the number of previous revision surgeries inversely correlates with the survival rates. Previous revisions have been shown to be associated with increased risks of aseptic loosening, instability and periprosthetic infection.
Collapse
Affiliation(s)
- Manuela Hoffmann
- Zentrum für Orthopädie, Unfallchirurgie und Rehabilitationsmedizin, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Deutschland
| | - Johannes C Reichert
- Zentrum für Orthopädie, Unfallchirurgie und Rehabilitationsmedizin, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Deutschland
| | - Anastasia Rakow
- Zentrum für Orthopädie, Unfallchirurgie und Rehabilitationsmedizin, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Deutschland
| | - Janosch Schoon
- Zentrum für Orthopädie, Unfallchirurgie und Rehabilitationsmedizin, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Deutschland
| | - Georgi I Wassilew
- Zentrum für Orthopädie, Unfallchirurgie und Rehabilitationsmedizin, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Deutschland.
| |
Collapse
|
32
|
Haq-Siddiqi NA, Britton D, Kim Montclare J. Protein-engineered biomaterials for cartilage therapeutics and repair. Adv Drug Deliv Rev 2023; 192:114647. [PMID: 36509172 DOI: 10.1016/j.addr.2022.114647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/17/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Cartilage degeneration and injury are major causes of pain and disability that effect millions, and yet treatment options for conditions like osteoarthritis (OA) continue to be mainly palliative or involve complete replacement of injured joints. Several biomaterial strategies have been explored to address cartilage repair either by the delivery of therapeutics or as support for tissue repair, however the complex structure of cartilage tissue, its mechanical needs, and lack of regenerative capacity have hindered this goal. Recent advances in synthetic biology have opened new possibilities for engineered proteins to address these unique needs. Engineered protein and peptide-based materials benefit from inherent biocompatibility and nearly unlimited tunability as they utilize the body's natural building blocks to fabricate a variety of supramolecular structures. The pathophysiology and needs of OA cartilage are presented here, along with an overview of the current state of the art and next steps for protein-engineered repair strategies for cartilage.
Collapse
Affiliation(s)
- Nada A Haq-Siddiqi
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States
| | - Dustin Britton
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States; Department of Chemistry, New York University, New York 10003, United States; Department of Radiology, New York University Grossman School of Medicine, New York 10016, United States; Department of Biomaterials, NYU College of Dentistry, New York, NY 10010, United States; Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States.
| |
Collapse
|
33
|
Chen X, Cao X, Zheng D, Li C, Chen Y, Kong K, Xu W, Shi B, Chen X, Dai F, Zhang S. Ultrasmall PtAu 2 nanoclusters activate endogenous anti-inflammatory and anti-oxidative systems to prevent inflammatory osteolysis. Theranostics 2023; 13:1010-1027. [PMID: 36793859 PMCID: PMC9925309 DOI: 10.7150/thno.80514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/10/2023] [Indexed: 02/04/2023] Open
Abstract
Rationale: Inflammatory osteolysis, characterized by abundant immune cell infiltration and osteoclast (OC) formation, is a common complication induced by bacterial products and/or wear particles at the bone-prosthesis interface that severely reduces long-term stability after implantation. Molecular nanoclusters are ultrasmall particles with unique physicochemical and biological properties that have great potential as theranostic agents for treating inflammatory diseases. Methods: In this study, heterometallic PtAu2 nanoclusters with sensitive nitric oxide-responsive phosphorescence turn-on characteristics and strong binding interactions with cysteine were designed, making them desirable candidates for the treatment of inflammatory osteolysis. Results: PtAu2 clusters exhibited satisfactory biocompatibility and cellular uptake behavior, with potent anti-inflammatory and anti-OC activities in vitro. In addition, PtAu2 clusters alleviated lipopolysaccharide-induced calvarial osteolysis in vivo and activated nuclear factor erythroid 2-related factor 2 (Nrf2) expression by disrupting its association with Kelch-like ECH-associated protein 1 (Keap1), thereby upregulating the expression of endogenous anti-inflammatory and anti-oxidative products. Conclusion: Through the rational design of novel heterometallic nanoclusters that activate the endogenous anti-inflammatory system, this study provides new insights into the development of multifunctional molecular therapeutic agents for inflammatory osteolysis and other inflammatory diseases.
Collapse
Affiliation(s)
- Xuzhuo Chen
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiankun Cao
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Dasheng Zheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Chang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Yan Chen
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Keyu Kong
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Weifeng Xu
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Bin Shi
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350002, Fujian, China
| | - Xinwei Chen
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Fengrong Dai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Shanyong Zhang
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
34
|
Shah NA, Lan RT, Dai R, Jiang K, Shen HY, Hong R, Xu JZ, Li L, Li ZM. Improved oxidation stability and crosslink density of chemically crosslinked ultrahigh molecular weight polyethylene using the antioxidant synergy for artificial joints. J Biomed Mater Res B Appl Biomater 2023; 111:26-37. [PMID: 35809250 DOI: 10.1002/jbm.b.35129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/28/2022] [Accepted: 06/27/2022] [Indexed: 02/05/2023]
Abstract
Vitamin E (VE) is currently an approved antioxidant to improve the oxidation stability of highly crosslinked ultrahigh molecular weight polyethylene (UHMWPE) insert used commercially in total joint arthroplasty. However, the decrease in crosslink density caused by VE reduces wear resistance of UHMWPE, showing an uncoordinated challenge. In this work, we hypothesized that D-sorbitol (DS) as a secondary antioxidant can improve the antioxidant efficacy of VE on chemically crosslinked UHMWPE. The combined effect of VE and DS on oxidation stability of UHMWPE was investigated at a set of controlled hybrid antioxidant content. The hybrid antioxidant strategy showed significantly synergistic enhancement on the oxidation stability of chemically crosslinked UHMWPE compared with the single VE strategy. More strikingly, the crosslink density of the blends with hybrid antioxidants stayed at a high level since DS is not sensitive to crosslinking. The relationships between oxidation stability, mechanical properties, crosslink density, and crystallinity were investigated, by which the clinically relevant overall performance of UHMWPE was optimized. This work provides a leading-edge design mean for the development of joint bearings.
Collapse
Affiliation(s)
- Nouman Ali Shah
- West China School of Nursing, Sichuan University/West China Hospital, Sichuan University, Chengdu, China.,College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Ri-Tong Lan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Rui Dai
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Kai Jiang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Hui-Yuan Shen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Rui Hong
- West China School of Nursing, Sichuan University/West China Hospital, Sichuan University, Chengdu, China.,College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Jia-Zhuang Xu
- West China School of Nursing, Sichuan University/West China Hospital, Sichuan University, Chengdu, China.,College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Lingli Li
- West China School of Nursing, Sichuan University/West China Hospital, Sichuan University, Chengdu, China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Zhao S, Ge C, Li Y, Chang L, Dan Z, Tu Y, Deng L, Kang H, Li C. Desferrioxamine alleviates UHMWPE particle-induced osteoclastic osteolysis by inhibiting caspase-1-dependent pyroptosis in osteocytes. J Biol Eng 2022; 16:34. [PMID: 36482442 PMCID: PMC9733322 DOI: 10.1186/s13036-022-00314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cell death and inflammation are the two important triggers of wear particle-induced osteolysis. Particles, including cobalt-chromium-molybdenum and tricalcium phosphate, have been reported to induce pyroptosis in macrophages and osteocytes. Although macrophage pyroptosis facilitates osteoclastic bone resorption and osteolysis, whether osteocyte pyroptosis is involved in osteoclastic osteolysis still needs further investigation. Desferrioxamine (DFO), an FDA-approved medication and a powerful iron chelator, has been proven to reduce ultrahigh-molecular-weight polyethylene (UHMWPE) particle-induced osteolysis. However, whether DFO can ameliorate UHMWPE particle-induced osteolysis by decreasing pyroptosis in osteocytes is unknown. RESULTS A mouse calvarial osteolysis model and the mouse osteocyte cell line MLO-Y4 was used, and we found that pyroptosis in osteocytes was significantly induced by UHMWPE particles. Furthermore, our findings uncovered a role of caspase-1-dependent pyroptosis in osteocytes in facilitating osteoclastic osteolysis induced by UHMWPE particles. In addition, we found that DFO could alleviate UHMWPE particle-induced pyroptosis in osteocytes in vivo and in vitro. CONCLUSIONS We uncovered a role of caspase-1-dependent pyroptosis in osteocytes in facilitating osteoclastic osteolysis induced by UHMWPE particles. Furthermore, we found that DFO alleviated UHMWPE particle-induced osteoclastic osteolysis partly by inhibiting pyroptosis in osteocytes. Schematic of DFO reducing UHMWPE particle-induced osteolysis by inhibiting osteocytic pyroptosis. Wear particles, such as polymers, generated from prosthetic implant materials activate canonical inflammasomes and promote the cleavage and activation of caspase-1. This is followed by caspase-1-dependent IL-β maturation and GSDMD cleavage. The N-terminal fragment of GSDMD binds to phospholipids on the cell membrane and forms holes in the membrane, resulting in the release of mature IL-β and inflammatory intracellular contents. This further facilitates osteoclastic differentiation of BMMs, resulting in excessive bone resorption and ultimately leading to prosthetic osteolysis. DFO reduces UHMWPE particle-induced osteolysis by inhibiting osteocytic pyroptosis.
Collapse
Affiliation(s)
- Shenli Zhao
- grid.460149.e0000 0004 1798 6718Department of Orthopedics, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China ,grid.412277.50000 0004 1760 6738Department of Orthopedics, Shanghai Key Laboratory for the Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2Nd Road, Shanghai, 200025 China
| | - Chen Ge
- grid.412277.50000 0004 1760 6738Department of Orthopedic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Li
- grid.89957.3a0000 0000 9255 8984Nanjing Medical University School of Medicine, Nanjing, China
| | - Leilei Chang
- grid.412277.50000 0004 1760 6738Department of Orthopedics, Shanghai Key Laboratory for the Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2Nd Road, Shanghai, 200025 China
| | - Zhou Dan
- grid.412277.50000 0004 1760 6738Department of Orthopedics, Shanghai Key Laboratory for the Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2Nd Road, Shanghai, 200025 China
| | - Yihui Tu
- grid.460149.e0000 0004 1798 6718Department of Orthopedics, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lianfu Deng
- grid.412277.50000 0004 1760 6738Department of Orthopedics, Shanghai Key Laboratory for the Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2Nd Road, Shanghai, 200025 China
| | - Hui Kang
- grid.412538.90000 0004 0527 0050Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicin, No. 301 Middle Yanchang Road, Shanghai, 200072 China
| | - Changwei Li
- grid.412277.50000 0004 1760 6738Department of Orthopedics, Shanghai Key Laboratory for the Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2Nd Road, Shanghai, 200025 China
| |
Collapse
|
36
|
Demott CJ, Grunlan MA. Emerging polymeric material strategies for cartilage repair. J Mater Chem B 2022; 10:9578-9589. [PMID: 36373438 DOI: 10.1039/d2tb02005j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cartilage is found throughout the body, serving an array of essential functions. Owing to the limited healing capacity of cartilage, damage or degeneration is often permanent and so requires clinical intervention. Established surgical techniques generally rely on biological grafting. However, recent advances in polymeric materials provide an encouraging alternative to overcome limits of auto- and allografts. For regenerative engineering of cartilage, a polymeric scaffold ideally supports and instructs tissue regeneration while also providing mechanical integrity. Scaffolds direct regeneration via chemical and mechanical cues, as well as delivery and support of exogenous cells and bioactive factors. Advanced polymeric scaffolds aim to direct regeneration locally, replicating the heterogeneities of native tissues. Alternatively, new cartilage-mimetic hydrogels have potential to serve as synthetic cartilage replacements. Prepared as multi-network or composite hydrogels, the most promising candidates have simultaneously realized the hydration, mechanical, and tribological properties of native cartilage. Collectively, the recent rise in polymers for cartilage regeneration and replacement proposes a changing paradigm, with a new generation of materials paving the way for improved clinical outcomes.
Collapse
Affiliation(s)
- Connor J Demott
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3003, USA
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3003, USA.,Department of Materials Science & Engineering, Texas A&M University, College Station, TX 77843-3003, USA.,Department of Chemistry, Texas A&M University, College Station, TX 77843-3003, USA.
| |
Collapse
|
37
|
Manescu (Paltanea) V, Antoniac I, Antoniac A, Paltanea G, Miculescu M, Bita AI, Laptoiu S, Niculescu M, Stere A, Paun C, Cristea MB. Failure Analysis of Ultra-High Molecular Weight Polyethylene Tibial Insert in Total Knee Arthroplasty. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7102. [PMID: 36295170 PMCID: PMC9605650 DOI: 10.3390/ma15207102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Knee osteoarthritis is treated based on total knee arthroplasty (TKA) interventions. The most frequent failure cause identified in surgical practice is due to wear and oxidation processes of the prothesis' tibial insert. This component is usually manufactured from ultra-high molecular weight polyethylene (UHMWPE). To estimate the clinical complications related to a specific prosthesis design, we investigated four UHMWPE tibial inserts retrieved from patients from Clinical Hospital Colentina, Bucharest, Romania. For the initial analysis of the polyethylene degradation modes, macrophotography was chosen. A light stereomicroscope was used to estimate the structural performance and the implant surface degradation. Scanning electron microscopy confirmed the optical results and fulfilled the computation of the Hood index. The oxidation process in UHMWPE was analyzed based on Fourier-transform infrared spectroscopy (FTIR). The crystallinity degree and the oxidation index were computed in good agreement with the existing standards. Mechanical characterization was conducted based on the small punch test. The elastic modulus, initial peak load, ultimate load, and ultimate displacement were estimated. Based on the aforementioned experimental tests, a variation between 9 and 32 was found in the case of the Hood score. The oxidation index has a value of 1.33 for the reference sample and a maximum of 9.78 for a retrieved sample.
Collapse
Affiliation(s)
- Veronica Manescu (Paltanea)
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
- Faculty of Electrical Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Iulian Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Gheorghe Paltanea
- Faculty of Electrical Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Marian Miculescu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Ana-Iulia Bita
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Stefan Laptoiu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Marius Niculescu
- Faculty of Medicine, Titu Maiorescu University, 67A Gheorghe Petrascu Street, 031593 Bucharest, Romania
- Department of Orthopedics and Trauma I, Colentina Clinical Hospital, 19-21 Soseaua Stefan cel Mare, 020125 Bucharest, Romania
| | - Alexandru Stere
- Medical Ortovit Ltd., 8 Miron Costin Street, 011098 Bucharest, Romania
| | - Costel Paun
- Faculty of Electrical Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
- National Institute for Research and Development in Microtechnologies IMT-Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania
| | - Mihai Bogdan Cristea
- Department of Morphological Sciences, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
| |
Collapse
|
38
|
Bioactive inorganic compound MXene and its application in tissue engineering and regenerative medicine. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
Parilla FW, Ince DC, Pashos GE, Maloney WJ, Clohisy JC. Long-Term Follow-Up of Conventional Polyethylene in Total Hip Arthroplasty in Young Patients: Heightened Wear-Related Complications Are Observed at the Beginning of the Third Decade. J Arthroplasty 2022; 37:1816-1821. [PMID: 35460812 DOI: 10.1016/j.arth.2022.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/30/2022] [Accepted: 04/08/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Conventional polyethylene (CPE) was used widely in the past as a bearing surface in total hip arthroplasty (THA). As CPE THAs age and the revision burden continues to grow, it is increasingly important to understand the durability and failure mechanisms of this bearing material. Currently, such long-term data remain limited, particularly in younger, more active patients in whom wear issues are of greater concern. METHODS We retrospectively reviewed 90 hips (77 patients) that underwent primary THA with CPE bearings on cobalt chrome femoral heads at age ≤50 years at 20-year minimum follow-up (mean 21.6 [20-23]). We analyzed polyethylene wear rates, clinical outcomes (modified Harris Hip Score, University of California, Los Angeles Activity Score), and implant survivorship. RESULTS Wear analysis revealed a median linear wear rate of 0.113 mm/y (95% CI 0.102-0.148) and a median volumetric wear rate of 41.20 mm3/y (95% CI 43.5-61.0). Modified Harris Hip Scores remained 37 points above preoperative baseline (P < .001) and University of California, Los Angeles scores 1.4 points above baseline (P = .018) at 21.6-year mean follow-up. Twenty-nine hips (32.2%) were revised, 20 of which (22.2%) were wear-related at a median of 15.4 years (interquartile range 11.4-19.5). Survivorship free from wear-related revision was 95.6% (95% CI 88.7-98.3), 87.9% (78.6-93.3), 78.1% (49.6-66.5), and 61.1% (41.3-67.0) at 10, 15, 20, and 25 years. CONCLUSION Wear-related issues developed at increasingly high rates after 15 years, suggesting the need for surveillance after this time. The long-term wear and survivorship data of this study may be used as a benchmark when evaluating the performance of contemporary bearings in young, active THA patients.
Collapse
Affiliation(s)
- Frank W Parilla
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Deniz C Ince
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Gail E Pashos
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - William J Maloney
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Redwood City, California
| | - John C Clohisy
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
40
|
Wu YL, Zhang CH, Teng Y, Pan Y, Liu NC, Liu PX, Zhu X, Su XL, Lin J. Propionate and butyrate attenuate macrophage pyroptosis and osteoclastogenesis induced by CoCrMo alloy particles. Mil Med Res 2022; 9:46. [PMID: 35996168 PMCID: PMC9396885 DOI: 10.1186/s40779-022-00404-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Wear particles-induced osteolysis is a major long-term complication after total joint arthroplasty. Up to now, there is no effective treatment for wear particles-induced osteolysis except for the revision surgery, which is a heavy psychological and economic burden to patients. A metabolite of gut microbiota, short chain fatty acids (SCFAs), has been reported to be beneficial for many chronic inflammatory diseases. This study aimed to investigate the therapeutic effect of SCFAs on osteolysis. METHODS A model of inflammatory osteolysis was established by applying CoCrMo alloy particles to mouse calvarium. After two weeks of intervention, the anti-inflammatory effects of SCFAs on wear particle-induced osteolysis were evaluated by Micro-CT analysis and immunohistochemistry staining. In vitro study, lipopolysaccharide (LPS) primed bone marrow-derived macrophages (BMDMs) and Tohoku Hospital Pediatrics-1 (THP-1) macrophages were stimulated with CoCrMo particles to activate inflammasome in the presence of acetate (C2), propionate (C3), and butyrate (C4). Western blotting, Enzyme-linked immunosorbent assay, and immunofluorescence were used to detect the activation of NLRP3 inflammasome. The effects of SCFAs on osteoclasts were evaluate by qRT-PCR, Western blotting, immunofluorescence, and tartrate-resistant acid phosphatase (TRAP) staining. Additionally, histone deacetylase (HDAC) inhibitors, agonists of GPR41, GPR43, and GPR109A were applied to confirm the underlying mechanism of SCFAs on the inflammasome activation of macrophages and osteoclastogenesis. RESULTS C3 and C4 but not C2 could alleviate wear particles-induced osteolysis with fewer bone erosion pits (P < 0.001), higher level of bone volume to tissue volume (BV/TV, P < 0.001), bone mineral density (BMD, P < 0.001), and a lower total porosity (P < 0.001). C3 and C4 prevented CoCrMo alloy particles-induced ASC speck formation and nucleation-induced oligomerization, suppressing the cleavage of caspase-1 (P < 0.05) and IL-1β (P < 0.05) stimulated by CoCrMo alloy particles. C3 and C4 also inhibited the generation of Gasdermin D-N-terminal fragment (GSDMD-NT) to regulate pyroptosis. Besides, C3 and C4 have a negative impact on osteoclast differentiation (P < 0.05) and its function (P < 0.05), affecting the podosome arrangement and morphologically normal podosome belts formation. CONCLUSION Our work showed that C3 and C4 are qualified candidates for the treatment of wear particle-induced osteolysis.
Collapse
Affiliation(s)
- Yang-Lin Wu
- Department of Orthopaedics, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Centre of Soochow University, Suzhou, 215001, Jiangsu, China.,Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Chen-Hui Zhang
- Department of Orthopaedics, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Centre of Soochow University, Suzhou, 215001, Jiangsu, China
| | - Yun Teng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Ying Pan
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Nai-Cheng Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Pei-Xin Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Xu Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Xin-Lin Su
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Jun Lin
- Department of Orthopaedics, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Centre of Soochow University, Suzhou, 215001, Jiangsu, China.
| |
Collapse
|
41
|
Saito N, Haniu H, Aoki K, Nishimura N, Uemura T. Future Prospects for Clinical Applications of Nanocarbons Focusing on Carbon Nanotubes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201214. [PMID: 35754236 PMCID: PMC9404397 DOI: 10.1002/advs.202201214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Over the past 15 years, numerous studies have been conducted on the use of nanocarbons as biomaterials towards such applications as drug delivery systems, cancer therapy, and regenerative medicine. However, the clinical use of nanocarbons remains elusive, primarily due to short- and long-term safety concerns. It is essential that the biosafety of each therapeutic modality be demonstrated in logical and well-conducted experiments. Accordingly, the fundamental techniques for assessing nanocarbon biomaterial safety have become more advanced. Optimal controls are being established, nanocarbon dispersal techniques are being refined, the array of biokinetic evaluation methods has increased, and carcinogenicity examinations under strict conditions have been developed. The medical implementation of nanocarbons as a biomaterial is in sight. With a particular focus on carbon nanotubes, these perspectives aim to summarize the contributions to date on nanocarbon applications and biosafety, introduce the recent achievements in evaluation techniques, and clarify the future prospects and systematic introduction of carbon nanomaterials for clinical use through practical yet sophisticated assessment methods.
Collapse
Affiliation(s)
- Naoto Saito
- Institute for Biomedical SciencesInterdisciplinary Cluster for Cutting Edge ResearchShinshu University3‐1‐1 AsahiMatsumotoNagano390‐8621Japan
| | - Hisao Haniu
- Institute for Biomedical SciencesInterdisciplinary Cluster for Cutting Edge ResearchShinshu University3‐1‐1 AsahiMatsumotoNagano390‐8621Japan
| | - Kaoru Aoki
- Department of Applied Physical TherapyShinshu University School of Health Sciences3‐1‐1 AsahiMatsumotoNagano390‐8621Japan
| | - Naoyuki Nishimura
- Institute for Biomedical SciencesInterdisciplinary Cluster for Cutting Edge ResearchShinshu University3‐1‐1 AsahiMatsumotoNagano390‐8621Japan
| | - Takeshi Uemura
- Institute for Biomedical SciencesInterdisciplinary Cluster for Cutting Edge ResearchShinshu University3‐1‐1 AsahiMatsumotoNagano390‐8621Japan
- Division of Gene ResearchResearch Center for Supports to Advanced ScienceShinshu University3‐1‐1 AsahiMatsumotoNagano390‐8621Japan
| |
Collapse
|
42
|
Inhibitory role of Annexin A1 in pathological bone resorption and therapeutic implications in periprosthetic osteolysis. Nat Commun 2022; 13:3919. [PMID: 35798730 PMCID: PMC9262976 DOI: 10.1038/s41467-022-31646-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/20/2022] [Indexed: 12/26/2022] Open
Abstract
There is currently no therapy available for periprosthetic osteolysis, the most common cause of arthroplasty failure. Here, the role of AnxA1 in periprosthetic osteolysis and potential therapeutics were investigated. Reducing the expression of AnxA1 in calvarial tissue was found to be associated with increased osteolytic lesions and the osteolytic lesions induced by debris implantation were more severe in AnxA1-defecient mice than in wild-type mice. AnxA1 inhibits the differentiation of osteoclasts through suppressing NFκB signaling and promoting the PPAR-γ pathway. Administration of N-terminal-AnxA1 (Ac2-26 peptide) onto calvariae significantly reduced osteolytic lesions triggered by wear debris. These therapeutic effects were abrogated in mice that had received the PPAR-γ antagonist, suggesting that the AnxA1/PPAR-γ axis has an inhibitory role in osteolysis. The administration of Ac2–26 suppressed osteolysis induced by TNF-α and RANKL injections in mice. These findings indicate that AnxA1 is a potential therapeutic agent for the treatment of periprosthetic osteolysis. Periprosthetic osteolysis is a cause of arthroplasty failure without available therapies. Here the authors show that Annexin A1 (AnxA1) is involved in in periprosthetic osteolysis and exerts potential therapeutic effects through suppressing NFκB signaling and promoting the PPAR-γ pathway resulting in inhibition of inflammation and osteoclasts differentiation induced by wear debris.
Collapse
|
43
|
Li X, Lu Y, Li J, Zhou S, Wang Y, Li L, Zhao F. Photoluminescent carbon dots (PCDs) from sour apple: a biocompatible nanomaterial for preventing UHMWPE wear-particle induced osteolysis via modulating Chemerin/ChemR23 and SIRT1 signaling pathway and its bioimaging application. J Nanobiotechnology 2022; 20:301. [PMID: 35761350 PMCID: PMC9235131 DOI: 10.1186/s12951-022-01498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/07/2022] [Indexed: 11/10/2022] Open
Abstract
Photoluminescent nanomaterials have been widely employed in several biological applications both in vitro and in vivo. For the first time, we report a novel application of sour apple-derived photoluminescent carbon dots (PCDs) for reducing ultra-high molecular weight polyethylene (UHMWPE) wear particle-induced osteolysis using mouse calvarial model. Generally, aseptic prosthetic loosening seems to be a significant postoperative problem for artificial joints replacement, which is mainly contributed by UHMWPE-induced osteolysis. Hence, inhibiting osteoclastic bone-resorption could minimize UHMWPE-induced osteolysis for implant loosening. Prior to osteolysis studies, the prepared sour apple-derived PCDs were employed for bioimaging application. As expected, the prepared PCDs effectively inhibited the UHMWPE particle-induced osteoclastogenesis in vitro. The PCDs treatment effectively inhibited the UHMWPE-induced osteoclast differentiation, F-actin ring pattern, and bone resorption in vitro. Also, the PCDs reduced the UHMWPE-induced ROS stress as well as the expression level of pro-inflammatory cytokines, including TNF-α, IL-1, IL-6, and IL-8. Further, the qPCR and western blot results hypothesized that PCDs inhibited the UHMWPE wear particle-induced osteolysis through suppressing chemerin/ChemR23 signaling and NFATc1 pathway, along with upregulation of SIRT1 expression. Overall, these findings suggest that the synthesized PCDs could be a potential therapeutic material for minimizing UHMWPE particle-induced periprosthetic osteolysis to avoid postoperative complications.
Collapse
Affiliation(s)
- Xiang Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Yang Lu
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Jiarui Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Shengji Zhou
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Yuxin Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Liangping Li
- Department of Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Fengchao Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 310003, People's Republic of China.
| |
Collapse
|
44
|
Mjöberg B. Hip prosthetic loosening and periprosthetic osteolysis: A commentary. World J Orthop 2022; 13:574-577. [PMID: 35949708 PMCID: PMC9244959 DOI: 10.5312/wjo.v13.i6.574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/02/2022] [Accepted: 06/14/2022] [Indexed: 02/06/2023] Open
Abstract
Prosthetic loosening and periprosthetic osteolysis have been debated for decades, both in terms of the timing and nature of the triggering events. The hypothesis of wear-particle-induced loosening states that wear particles cause a foreign-body response leading to periprosthetic osteolysis and ultimately to late prosthetic loosening, i.e., that the osteolysis precedes the loosening. The theory of early loosening, on the other hand, postulates that the loosening is already initiated during or shortly after surgery, i.e., that the osteolysis is secondary to the loosening. This commentary focuses on the causal relationship between prosthetic loosening and periprosthetic osteolysis.
Collapse
Affiliation(s)
- Bengt Mjöberg
- Department of Orthopedics, Lund University, Lund SE-221 00, Sweden
| |
Collapse
|
45
|
Wear and corrosion behaviour of nanocrystalline TaN, ZrN, and TaZrN coatings deposited on biomedical grade CoCrMo alloy. J Mech Behav Biomed Mater 2022; 130:105228. [DOI: 10.1016/j.jmbbm.2022.105228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/29/2022] [Accepted: 04/02/2022] [Indexed: 11/21/2022]
|
46
|
Voss JO, Kasselmann S, Koerdt S, Rendenbach C, Fischer H, Jöhrens K, Czabanka M, Schmidt-Bleek K, Duda GN, Heiland M, Raguse JD. Treatment options for critical size defects - Comparison of different materials in a calvaria split model in sheep. BIOMATERIALS ADVANCES 2022; 136:212788. [PMID: 35929320 DOI: 10.1016/j.bioadv.2022.212788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
Bone defects of the craniofacial skeleton are often associated with aesthetic and functional impairment as well as loss of protection to intra- and extracranial structures. Solid titanium plates and individually adapted bone cements have been the materials of choice, but may lead to foreign-body reactions and insufficient osseointegration. In contrast, porous scaffolds are thought to exhibit osteoconductive properties to support bone ingrowth. Here, we analyse in critical size defects of the calvaria in sheep whether different bone replacement materials may overcome those remaining challenges. In a critical size defect model, bilateral 20 × 20 × 5-mm craniectomies were performed on either side of the sagittal sinus in 24 adult female blackheaded sheep. Bony defects were randomised to one of five different bone replacement materials (BRMs): titanium scaffold, biodegradable poly(d,l-lactic acid) calcium carbonate scaffold (PDLLA/CC), polyethylene 1 (0.71 mm mean pore size) or 2 (0.515 mm mean pore size) scaffolds and polymethyl methacrylate (PMMA)-based bone cement block. Empty controls (n = 3) served as references. To evaluate bone growth over time, three different fluorochromes were administered at different time points. At 3, 6 and 12 months after surgery, animals were sacrificed and the BRMs and surrounding bone analysed by micro-CT and histomorphometry. The empty control group verified that the calvaria defect in this study was a reliable critical size defect model. Bone formation in vivo was detectable in all BRMs after 12 months by micro-CT and histomorphometric analysis, except for the non-porous PMMA group. A maximum of bone formation was detected in the 12-months group for titanium and PDLLA/CC. Bone formation in PDLLA/CC starts to increase rapidly between 6 and 12 months, as the BRM resorbs over time. Contact between bone and BRM influenced bone formation inside the BRM. Empty controls exhibited bone formation solely at the periphery. Overall, porous BRMs offered bone integration to different extent over 12 months in the tested calvaria defect model. Titanium and PDLLA/CC scaffolds showed remarkable osseointegration properties by micro-CT and histomorphometric analysis. PDLLA/CC scaffolds degraded over time without major residues. Pore size influenced bone ingrowth in polyethylene, emphasising the importance of porous scaffold structure.
Collapse
Affiliation(s)
- Jan Oliver Voss
- Department of Oral and Maxillofacial Surgery, Charité Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, 10178 Berlin, Germany.
| | - Svenja Kasselmann
- Department of Oral and Maxillofacial Surgery, Charité Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany; Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie Universität Berlin, Koserstraße 20, 14195 Berlin, Germany.
| | - Steffen Koerdt
- Department of Oral and Maxillofacial Surgery, Charité Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Carsten Rendenbach
- Department of Oral and Maxillofacial Surgery, Charité Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Heilwig Fischer
- Department of Oral and Maxillofacial Surgery, Charité Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, 10178 Berlin, Germany; Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Korinna Jöhrens
- Institute of Pathology, University Hospital Carl Gustav Carus, Fetscherstr. 74, 01307, TU Dresden, Dresden, Germany.
| | - Marcus Czabanka
- Department of Neurosurgery, Universitätsmedizin Frankfurt am Main, Schleusenweg 2-16, 60590 Frankfurt am Main, Germany.
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute and Berlin Institute of Health Centre for Regenerative Therapies, Berlin Institute of Health at Charité Universitätsmedizin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Georg N Duda
- Julius Wolff Institute and Berlin Institute of Health Centre for Regenerative Therapies, Berlin Institute of Health at Charité Universitätsmedizin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Max Heiland
- Department of Oral and Maxillofacial Surgery, Charité Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Jan-Dirk Raguse
- Department of Oral and Maxillofacial Surgery, Charité Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany; Fachklinik Hornheide, Department of Oral and Maxillofacial Surgery, Dorbaumstraße 300, 48147 Münster, Germany.
| |
Collapse
|
47
|
Kim HS, Park JW, Ha JH, Lee YK, Ha YC, Koo KH. Third-Generation Ceramic-on-Ceramic Total Hip Arthroplasty in Patients with Osteonecrosis of the Femoral Head: A 10- to 16-year Follow-up Study. J Bone Joint Surg Am 2022; 104:68-75. [PMID: 34780390 DOI: 10.2106/jbjs.20.00720] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Long-term follow-up results of ceramic-on-ceramic (COC) total hip arthroplasty (THA), specifically, in patients with osteonecrosis of the femoral head (ONFH) are unknown. We evaluated (1) clinical results and radiological outcomes, (2) ceramic-related complications: noise and ceramic fracture, (3) osteolysis, and (4) survivorship after alumina COC THA in ONFH patients with longer than 10-year follow-up. METHODS From May 2003 to June 2009, 325 ONFH patients (403 hips) underwent primary THAs at our department. Among them, 231 patients (293 THAs) were followed for 10 to 16 (mean, 12.9) years. There were 148 men and 83 women, their mean age at the time of THA was 47.2 years, and their mean body index was 24.0 kg/m2. The postoperative CT scans were done in 160 hips. RESULTS Grinding sensation or squeak was noted in 6.8% (20/293), ceramic head fracture occurred in 2.4% (7/293) and acetabular osteolysis developed in 0.7% (2/293). All 7 ceramic fractures occurred in 28-mm short-neck heads. There was no detectable wear or prosthetic loosening, and the 16-year survivorship was 96.0% (95% confidence interval; 93.8% to 98.2%). The mean Harris hip score was 91.7 (range, 84 to 100) points at the final follow-up. CONCLUSIONS The 10- to 16-year results of alumina COC THAs were encouraging with an excellent survivorship. However, ceramic fracture and noise still remain matters of concern. We recommend not to use 28-mm short-neck ceramic head to avoid ceramic head fractures. LEVEL OF EVIDENCE III.
Collapse
Affiliation(s)
- Hong Seok Kim
- Department of Orthopaedic Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jung Wee Park
- Department of Orthopaedic Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Joo Hyung Ha
- Department of Orthopaedic Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Young-Kyun Lee
- Department of Orthopaedic Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.,Department of Orthopedic Surgery, Seoul National University College of Medicine, 166 Gumi-ro, Bundang-gu, Seongnam-si, 463-707, Republic of Korea
| | - Yong-Chan Ha
- Department of Orthopaedic Surgery, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Hoi Koo
- Department of Orthopaedic Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.,Department of Orthopedic Surgery, Seoul National University College of Medicine, 166 Gumi-ro, Bundang-gu, Seongnam-si, 463-707, Republic of Korea
| |
Collapse
|
48
|
Wu Y, Teng Y, Zhang C, Pan Y, Zhang Q, Zhu X, Liu N, Su X, Lin J. The ketone body β-hydroxybutyrate alleviates CoCrMo alloy particles induced osteolysis by regulating NLRP3 inflammasome and osteoclast differentiation. J Nanobiotechnology 2022; 20:120. [PMID: 35264201 PMCID: PMC8905851 DOI: 10.1186/s12951-022-01320-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
Background Aseptic Loosening (AL) following periprosthetic osteolysis is the main long-term complication after total joint arthroplasty (TJA). However, there is rare effective treatment except for revision surgery, which is costly and painful to the patients. In recent years, the ketone body β-hydroxybutyrate (BHB) has attracted much attention and has been proved to be beneficial in many chronic diseases. With respect to the studies on the ketone body β-hydroxybutyrate (BHB), its anti-inflammatory ability has been widely investigated. Although the ketone body β-hydroxybutyrate has been applied in many inflammatory diseases and has achieved considerable therapeutic efficacy, its effect on wear particles induced osteolysis is still unknown. Results In this work, we confirmed that the anti-inflammatory action of β-hydroxybutyrate (BHB) could be reappeared in CoCrMo alloy particles induced osteolysis. Mechanistically, the ketone body β-hydroxybutyrate (BHB) deactivated the activation of NLRP3 inflammasome triggered by CoCrMo alloy particles. Of note, this inhibitory action was independent of Gpr109a receptor as well as histone deacetylase (HDAC) suppression. Furthermore, given that butyrate, one kind of short chain fatty acid (SCFA) structurally related to β-hydroxybutyrate (BHB), has been reported to be an inhibitor of osteoclast, thus we also investigate the effect of β-hydroxybutyrate (BHB) on osteoclast, which was contributed to bone resorption. It was found that β-hydroxybutyrate (BHB) did not only affect osteoclast differentiation, but also inhibit its function. Unlike the inflammasome, the effect of β-hydroxybutyrate (BHB) on osteoclast may mainly rely on histone deacetylase (HDAC) suppression. Conclusions In general, our study showed that the alleviation of osteolysis may owe to the effect of β-hydroxybutyrate (BHB) on inflammasome deactivation and osteoclast. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01320-0.
Collapse
Affiliation(s)
- Yanglin Wu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 188 Shizi Street, Suzhou, 215006, Jiangsu, China.,Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Yun Teng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Chenhui Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Ying Pan
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qin Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Xu Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Naicheng Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Xinlin Su
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Jun Lin
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 188 Shizi Street, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
49
|
Borm PJ. The parallels between particle induced lung overload and particle induced periprosthetic osteolysis (PPOL). OPEN RESEARCH EUROPE 2022; 1:16. [PMID: 37645132 PMCID: PMC10445866 DOI: 10.12688/openreseurope.13264.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/11/2022] [Indexed: 08/31/2023]
Abstract
Background: When particles deposit for instance in the lung after inhalation or in the hip joint after local release from a hip implant material they can initiate a defense response. Even though these particles originate from inert materials such as polyethylene (PE) or titanium, they may cause harm when reaching high local doses and overwhelming local defense mechanisms. Main body: This paper describes the parallels between adverse outcome pathways (AOP) and particle properties in lung overload and periprosthetic osteolysis (PPOL). It is noted that in both outcomes in different organs , the macrophage and cytokine orchestrated persistent inflammation is the common driver of events, in the bone leading to loss of bone density and structure, and in the lung leading to fibrosis and cancer. Most evidence on lung overload and its AOP is derived from chronic inhalation studies in rats, and the relevance to man is questioned. In PPOL, the paradigms and metrics are based on human clinical data, with additional insights generated from in vitro and animal studies. In both organ pathologies the total volume of particle deposition has been used to set threshold values for the onset of pathological alterations. The estimated clinical threshold for PPOL of 130 mg/ml is much higher than the amount to cause lung overload in the rat (10 mg/ml),although the threshold in PPOL is not necessarily synonymous to particle overload. Conclusions: The paradigms developed in two very different areas of particle response in the human body have major similarities in their AOP. Connecting the clinical evidence in PPOL to lung overload challenges relevance of rat inhalation studies to the human lung cancer hazard. .
Collapse
Affiliation(s)
- Paul J.A. Borm
- Nanoconsult, Meerssen, The Netherlands
- University of Dusseldorf, Dusseldorf, 50224, Germany
| |
Collapse
|
50
|
Matsumae G, Kida H, Takahashi D, Shimizu T, Ebata T, Yokota S, Alhasan H, Aly MK, Yutani T, Uetsuki K, Terkawi MA, Iwasaki N. Determination of optimal concentration of vitamin E in polyethylene liners for producing minimal biological response to prosthetic wear debris. J Biomed Mater Res B Appl Biomater 2022; 110:1587-1593. [PMID: 35122380 DOI: 10.1002/jbm.b.35019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/28/2021] [Accepted: 01/15/2022] [Indexed: 01/07/2023]
Abstract
The introduction of vitamin E-blended ultra-high molecular weight polyethylene (VE-UHMWPE) for use in prosthetic components of hip implants has resulted in the production of implants that have excellent mechanical properties and substantially less adverse cellular responses. Given the importance of a biological response to wear in the survival of a prosthesis, we generated wear debris from UHMWPE that had been prepared with different concentrations of vitamin E of 0.1, 0.3, 0.5, and 1% and evaluated their biological reaction in vitro and in vivo. All types of VE-UHMWPE debris promoted a significantly lower expression of Tnf-α in murine peritoneal macrophages than that induced by conventional UHMWPE debris. However, levels of Tnf-α were not significantly different among the macrophages that were stimulated with VE-UHMWPE wear at the concentrations tested. The ability of wear debris to induce inflammatory osteolysis was assessed in a mouse calvarial osteolysis model. The expressions of Tnf-α, Il-6, and Rankl in granulomatous tissue formed around the wear debris were significantly reduced in mice that had been implanted with 0.3%VE-UHMWPE debris as compared to the corresponding values for mice that had been implanted with UHMWPE debris. Consistent with this finding, 0.3%VE-UHMWPE debris showed the lowest osteolytic activity, as evidenced by the reduced bone resorption area, the degree of infiltration of inflammatory cells and the TRAP staining area. Our results suggested that a 0.3% vitamin E concentration is the most appropriate concentration for use in prosthetic components with a reduced adverse cellular response for prolonging the life-span of the implant.
Collapse
Affiliation(s)
- Gen Matsumae
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroaki Kida
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Daisuke Takahashi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Shimizu
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Taku Ebata
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shunichi Yokota
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hend Alhasan
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mahmoud Khamis Aly
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tomoyo Yutani
- R&D Center, Teijin Nakashima Medical Co., Ltd., Okayama, Japan
| | - Keita Uetsuki
- R&D Center, Teijin Nakashima Medical Co., Ltd., Okayama, Japan
| | - Mohamad Alaa Terkawi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|