1
|
Furutake Y, Yamaguchi K, Yamanoi K, Kitamura S, Takamatsu S, Taki M, Ukita M, Hosoe Y, Murakami R, Abiko K, Horie A, Hamanishi J, Baba T, Matsumura N, Mandai M. YAP1 Suppression by ZDHHC7 Is Associated with Ferroptosis Resistance and Poor Prognosis in Ovarian Clear Cell Carcinoma. Mol Cancer Ther 2024; 23:1652-1665. [PMID: 38958503 DOI: 10.1158/1535-7163.mct-24-0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/16/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Ovarian clear cell carcinoma (OCCC), which has unique clinical characteristics, arises from benign endometriotic cysts, forming an oxidative stress environment because of excess iron accumulation, and exhibits poor prognosis, particularly in advanced stages owing to resistance to conventional therapeutics. Ferroptosis is an iron-dependent form of programmed cell death induced by lipid peroxidation and controlled by Hippo signaling. We hypothesized that overcoming ferroptosis resistance is an attractive strategy because OCCC acquires oxidative stress resistance during its development and exhibits chemoresistant features indicative of ferroptosis resistance. This study aimed to determine whether OCCC is resistant to ferroptosis and clarify the mechanism underlying resistance. Unlike ovarian high-grade serous carcinoma cells, OCCC cells were exposed to oxidative stress. However, OCCC cells remained unaffected by lipid peroxidation. Cell viability assays revealed that OCCC cells exhibited resistance to the ferroptosis inducer erastin. Moreover, Samroc analysis showed that the Hippo signaling pathway was enriched in OCCC cell lines and clinical samples. Furthermore, patients with low expression of nuclear yes-associated protein 1 (YAP1) exhibited a significantly poor prognosis of OCCC. Moreover, YAP1 activation enhanced ferroptosis in OCCC cell lines. Furthermore, suppression of zinc finger DHHC-type palmitoyltransferase 7 (ZDHHC7) enhanced ferroptosis by activating YAP1 in OCCC cell lines. Mouse xenograft models demonstrated that ZDHHC7 inhibition suppressed tumor growth via YAP1 activation by erastin treatment. In conclusion, YAP1 activation regulated by ZDHHC7 enhanced ferroptosis in OCCC. Thus, overcoming ferroptosis resistance is a potential therapeutic strategy for OCCC.
Collapse
MESH Headings
- Ferroptosis
- Humans
- Female
- Animals
- Mice
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/genetics
- Prognosis
- YAP-Signaling Proteins/metabolism
- Acyltransferases
- Adenocarcinoma, Clear Cell/metabolism
- Adenocarcinoma, Clear Cell/pathology
- Adenocarcinoma, Clear Cell/drug therapy
- Adenocarcinoma, Clear Cell/genetics
- Cell Line, Tumor
- Transcription Factors/metabolism
- Xenograft Model Antitumor Assays
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Gene Expression Regulation, Neoplastic
- Mice, Nude
- Cell Proliferation
- Drug Resistance, Neoplasm
- Signal Transduction
Collapse
Affiliation(s)
- Yoko Furutake
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Yamaguchi
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Yamanoi
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Sachiko Kitamura
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Shiro Takamatsu
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Mana Taki
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Masayo Ukita
- Department of Obstetrics and Gynecology, Shizuoka General Hospital, Shizuoka, Japan
| | - Yuko Hosoe
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Ryusuke Murakami
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Kaoru Abiko
- Department of Obstetrics and Gynecology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Akihito Horie
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Tsukasa Baba
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Bhattacharya R, Kumari J, Banerjee S, Tripathi J, Parihar SS, Mohan N, Sinha P. Hippo effector, Yorkie, is a tumor suppressor in select Drosophila squamous epithelia. Proc Natl Acad Sci U S A 2024; 121:e2319666121. [PMID: 39288176 PMCID: PMC11441523 DOI: 10.1073/pnas.2319666121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Mammalian Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) and Drosophila Yorkie (Yki) are transcription cofactors of the highly conserved Hippo signaling pathway. It has been long assumed that the YAP/TAZ/Yki signaling drives cell proliferation during organ growth. However, its instructive role in regulating developmentally programmed organ growth, if any, remains elusive. Out-of-context gain of YAP/TAZ/Yki signaling often turns oncogenic. Paradoxically, mechanically strained, and differentiated squamous epithelia display developmentally programmed constitutive nuclear YAP/TAZ/Yki signaling. The unknown, therefore, is how a growth-promoting YAP/TAZ/Yki signaling restricts proliferation in differentiated squamous epithelia. Here, we show that reminiscent of a tumor suppressor, Yki negatively regulates the cell growth-promoting PI3K/Akt/TOR signaling in the squamous epithelia of Drosophila tubular organs. Thus, downregulation of Yki signaling in the squamous epithelium of the adult male accessory gland (MAG) up-regulates PI3K/Akt/TOR signaling, inducing cell hypertrophy, exit from their cell cycle arrest, and, finally, culminating in squamous cell carcinoma (SCC). Thus, blocking PI3K/Akt/TOR signaling arrests Yki loss-induced MAG-SCC. Further, MAG-SCCs, like other lethal carcinomas, secrete a cachectin, Impl2-the Drosophila homolog of mammalian IGFBP7-inducing cachexia and shortening the lifespan of adult males. Moreover, in the squamous epithelium of other tubular organs, like the dorsal trunk of larval tracheal airways or adult Malpighian tubules, downregulation of Yki signaling triggers PI3K/Akt/TOR-induced cell hypertrophy. Our results reveal that Yki signaling plays an instructive, antiproliferative role in the squamous epithelia of tubular organs.
Collapse
Affiliation(s)
- Rachita Bhattacharya
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Jaya Kumari
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Shweta Banerjee
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Jyoti Tripathi
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Saurabh Singh Parihar
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Nitin Mohan
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Pradip Sinha
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| |
Collapse
|
3
|
Zhang H, Wang Y, Gao Y, Du M, Pan E, Sun M, Zhang X. Induced expression of AMOT reverses adriamycin resistance in breast cancer cells. Cell Biol Int 2024; 48:1301-1312. [PMID: 39021301 DOI: 10.1002/cbin.12198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/24/2024] [Accepted: 05/19/2024] [Indexed: 07/20/2024]
Abstract
Adriamycin (ADR) is widely used against breast cancer, but subsequent resistance always occurs. YAP, a downstream protein of angiomotin (AMOT), importantly contributes to ADR resistance, whereas the mechanism is largely unknown. MCF-7 cells and MDA-MB-231 cells were used to establish ADR-resistant cell. Then, mRNA and protein expressions of AMOT and YAP expressions were determined. After AMOT transfection alone or in combination with YAP, the sensitivity of the cells to ADR were evaluated in vitro by examining cell proliferation, apoptosis, and cell cycle, as well as in vivo by examining tumor growth. Additionally, the expressions of proteins in YAP pathway were determined in AMOT-overexpressing cells. In the ADR-resistant cells, the expression of AMOT was decreased while YAP was increased, respectively, and the nucleus localization of YAP was increased at the same time. After AMOT overexpression, these were inhibited, whereas the cell sensitivity to ADR was enhanced. However, the AMOT-induced changes were significantly suppressed by YAP knockdown. The consistent results in vivo showed that AMOT enhanced the inhibition of ADR on tumor growth, and inhibited YAP signaling, evidenced by decreased levels of YAP, CycD1, and p-ERK. Our data revealed that decreased AMOT contributed to ADR resistance in breast cancer cells, which was importantly negatively mediated YAP. These observations provide a potential therapy against breast cancer with ADR resistance.
Collapse
Affiliation(s)
- Haige Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Radiotherapy Oncology, Cancer Hospital, 1st Affiliated Hospital of Henan University of Science & Technology, Luoyang, Henan, China
| | - Yingyi Wang
- Department of Radiotherapy Oncology, Cancer Hospital, 1st Affiliated Hospital of Henan University of Science & Technology, Luoyang, Henan, China
| | - Ya Gao
- Department of Radiotherapy Oncology, Cancer Hospital, 1st Affiliated Hospital of Henan University of Science & Technology, Luoyang, Henan, China
| | - Mingming Du
- Department of Radiotherapy Oncology, Cancer Hospital, 1st Affiliated Hospital of Henan University of Science & Technology, Luoyang, Henan, China
| | - Erhu Pan
- Department of Radiotherapy Oncology, Cancer Hospital, 1st Affiliated Hospital of Henan University of Science & Technology, Luoyang, Henan, China
| | - Mingliang Sun
- Department of Radiotherapy Oncology, Cancer Hospital, 1st Affiliated Hospital of Henan University of Science & Technology, Luoyang, Henan, China
| | - Xiaozhi Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Kum Özşengezer S, Altun ZS, Sanlav G, Baran B, Kızmazoğlu D, Aktaş S, Keskinoğlu P, Olgun N. Investigation of YAP-1, OTX-2, and nestin protein expressions in neuroblastoma: a preliminary study. Ann Clin Transl Neurol 2024; 11:2153-2165. [PMID: 38925618 PMCID: PMC11330229 DOI: 10.1002/acn3.52136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/29/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
OBJECTIVES Neuroblastoma is the most common extracranial solid tumor in childhood. YAP (Yes-associated protein) is a highly expressed protein in NB. Nestin is an important marker of neuronal differentiation in NB. Orthodenticle homeobox (OTX) is a transcription factor and is overexpressed in blastoma-derived tumors. The aim of this study was to examine the potential roles of YAP-1, Nestin, and OTX-2 proteins in prognosis and risk stratification in neuroblastoma METHODS: Tumor sections of 56 patients with different NB risk groups were analyzed. YAP-1, Nestin, and OTX-2 protein expression levels were evaluated by immunohistochemical staining in NB patient tissue samples. RESULTS YAP-1, Nestin, and OTX-2 protein expression levels were evaluated together with the clinical findings of NB patients. YAP-1 was expressed in 18% of all tissues, while Nestin was expressed in 20.4%. OTX-2 protein expression was found in 41.1% of the NB patients. YAP-1 was expressed in 26.9% of high-risk and 11.5% of low-risk patients. Nestin was expressed in 24.4% high-risk and 33.3% low-risk patients. OTX-2 was expressed in 68.2% high-risk and 60% low-risk patients.YAP-1 was shown to provide survival advantages among risk groups. INTERPRETATION The findings of this study support that YAP-1 may be a potential prognostic biomarker for staging and risk-group assignment of NB patients. YAP-1 expression in neuroblastoma is associated with significantly poorer survival probabilities and should be considered as a potential therapeutic target. OTX-2 is a promising predictive biomarker candidate, but its mechanisms need further investigation in neuroblastoma, as nestin expression is not significantly linked to patient survival.
Collapse
Affiliation(s)
- Selen Kum Özşengezer
- Department of Basic OncologyOncology Institute, Dokuz Eylül UniversityIzmirTurkey
| | - Zekiye Sultan Altun
- Department of Basic OncologyOncology Institute, Dokuz Eylül UniversityIzmirTurkey
| | - Gamze Sanlav
- Department of Basic OncologyOncology Institute, Dokuz Eylül UniversityIzmirTurkey
| | - Burçin Baran
- Department of Basic OncologyOncology Institute, Dokuz Eylül UniversityIzmirTurkey
| | - Deniz Kızmazoğlu
- Department of Clinical OncologyInstitute of Oncology, Dokuz Eylül UniversityIzmirTurkey
- Department of Pediatric OncologyInstitute of Oncology, Dokuz Eylül UniversityIzmirTurkey
| | - Safiye Aktaş
- Department of Basic OncologyOncology Institute, Dokuz Eylül UniversityIzmirTurkey
| | - Pembe Keskinoğlu
- Department of Basic Medical Sciences, Department of Biostatistics and Medical InformaticsFaculty of Medicine, Dokuz Eylül UniversityIzmirTurkey
| | - Nur Olgun
- Department of Clinical OncologyInstitute of Oncology, Dokuz Eylül UniversityIzmirTurkey
- Department of Pediatric OncologyInstitute of Oncology, Dokuz Eylül UniversityIzmirTurkey
| |
Collapse
|
5
|
Dehghanian F, Ghahnavieh LE, Nilchi AN, Khalilian S, Joonbakhsh R. Breast cancer drug resistance: Decoding the roles of Hippo pathway crosstalk. Gene 2024; 916:148424. [PMID: 38588933 DOI: 10.1016/j.gene.2024.148424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/13/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024]
Abstract
The most significant factors that lead to cancer-related death in breast cancer (BC) patients include drug resistance, migration, invasion, and metastasis. Several signaling pathways are involved in the development of BC. The different types of BC are initially sensitive to chemotherapy, and drug resistance can occur through multiple molecular mechanisms. Regardless of developing targeted Therapy, due to the heterogenic nature and complexity of drug resistance, it is a major clinical challenge with the low survival rate in BC patients. The deregulation of several signaling pathways, particularly the Hippo pathway (HP), is one of the most recent findings about the molecular mechanisms of drug resistance in BC, which are summarized in this review. Given that HP is one of the recent cancer research hotspots, this review focuses on its implication in BC drug resistance. Unraveling the different molecular basis of HP through its crosstalk with other signaling pathways, and determining the effectiveness of HP inhibitors can provide new insights into possible therapeutic strategies for overcoming chemoresistance in BC.
Collapse
Affiliation(s)
- Fariba Dehghanian
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran.
| | - Laleh Ebrahimi Ghahnavieh
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran
| | - Amirhossein Naghsh Nilchi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran
| | - Sheyda Khalilian
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran
| | - Rezvan Joonbakhsh
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran
| |
Collapse
|
6
|
Parambil ST, Antony GR, Littleflower AB, Subhadradevi L. The molecular crosstalk of the hippo cascade in breast cancer: A potential central susceptibility. Biochimie 2024; 222:132-150. [PMID: 38494109 DOI: 10.1016/j.biochi.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
The incidence of breast cancer is perpetually growing globally, and it remains a major public health problem and the leading cause of mortality in women. Though the aberrant activities of the Hippo pathway have been reported to be associated with cancer, constructive knowledge of the pathway connecting the various elements of breast cancer remains to be elucidated. The Hippo transducers, yes-associated protein (YAP) and transcriptional co-activator with PDZ binding motif (TAZ), are reported to be either tumor suppressors, oncogenes, or independent prognostic markers in breast cancer. Thus, there is further need for an explicative evaluation of the dilemma with this molecular contribution of Hippo transducers in modulating breast malignancy. In this review, we summarize the intricate crosstalk of the Hippo pathway in different aspects of breast malignancy, including stem-likeness, cellular signaling, metabolic adaptations, tumor microenvironment, and immune responses. The collective data shows that Hippo transducers play an indispensable role in mammary tumor formation, progression, and dissemination. However, the cellular functions of YAP/TAZ in tumorigenesis might be largely dependent on the mechanical and biophysical cues they interact with, as well as on the cell phenotype. This review provides a glimpse into the plausible biological contributions of the cascade to the inward progression of breast carcinoma and suggests potential therapeutic prospects.
Collapse
Affiliation(s)
- Sulfath Thottungal Parambil
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, 695011, Kerala, India
| | - Gisha Rose Antony
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, 695011, Kerala, India
| | - Ajeesh Babu Littleflower
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, 695011, Kerala, India
| | - Lakshmi Subhadradevi
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, 695011, Kerala, India.
| |
Collapse
|
7
|
Zhang Z, Zhou X, Li J, Meng Q, Zheng P. LncRNA HOTAIR promotes the migration and invasion of cervical cancer through DNMT3B/LATS1/ YAP1 pS127 axis. Reprod Biol 2024; 24:100893. [PMID: 38754347 DOI: 10.1016/j.repbio.2024.100893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
Metastasis is the hallmark of cancer that is responsible for the greatest number of cancer-related deaths. As a critical regulator of the Hippo pathway, the phosphorylation status of Yes-associated protein 1 (YAP1), mainly at S127, is critical for its oncogenic function. Herein, we aim to investigate the precise molecular mechanism between long noncoding RNA HOX transcript antisense RNA (HOTAIR) and YAP1 phosphorylation in regulating tumor migration and invasion. In this study, we showed that inhibition of HOTAIR significantly decreased the migration and invasion of cancer cells both in vitro and in vivo through elevating the phosphorylation level of YAP1 on serine 127, demonstrating a tumor suppressive role of YAP1 S127 phosphorylation. Through bisulfite sequencing PCR (BSP), we found that inhibition of HOTAIR dramatically increased Large Tumor Suppressor Kinase 1 (LATS1) expression by regulating LATS1 methylation via DNA methyltransferase 3β (DNMT3B). In accordance with this observation, DNMT3B just only altered the distribution of YAP1 in the cytoplasm and the nucleus by inhibiting its phosphorylation, but did not change its total expression. Mechanistically, we discovered that HOTAIR suppressed YAP1 S127 phosphorylation by regulating the methylation of LATS1 via DNMT3B, the consequence of which is the translocation of YAP1 into the nucleus, reinforcing its coactivating transcriptional function, which in turn promotes the migration and invasion of cancer cells. Collectively, our data reveal that the phosphorylation of YAP1 S127 plays a vital role in the function of HOTAIR in tumorigenicity, and should be taken into consideration in future therapeutic strategies for cervical cancer.
Collapse
Affiliation(s)
- Zhihao Zhang
- College of Life Science and Healthy, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xianyi Zhou
- College of Life Science and Healthy, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jiulin Li
- College of Life Science and Healthy, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Qinghui Meng
- Qianjiang Center for Disease Control and Prevention, Chongqing 40900, China.
| | - Peng Zheng
- College of Life Science and Healthy, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
8
|
Akinpelu A, Akinsipe T, Avila LA, Arnold RD, Mistriotis P. The impact of tumor microenvironment: unraveling the role of physical cues in breast cancer progression. Cancer Metastasis Rev 2024; 43:823-844. [PMID: 38238542 PMCID: PMC11156564 DOI: 10.1007/s10555-024-10166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024]
Abstract
Metastasis accounts for the vast majority of breast cancer-related fatalities. Although the contribution of genetic and epigenetic modifications to breast cancer progression has been widely acknowledged, emerging evidence underscores the pivotal role of physical stimuli in driving breast cancer metastasis. In this review, we summarize the changes in the mechanics of the breast cancer microenvironment and describe the various forces that impact migrating and circulating tumor cells throughout the metastatic process. We also discuss the mechanosensing and mechanotransducing molecules responsible for promoting the malignant phenotype in breast cancer cells. Gaining a comprehensive understanding of the mechanobiology of breast cancer carries substantial potential to propel progress in prognosis, diagnosis, and patient treatment.
Collapse
Affiliation(s)
- Ayuba Akinpelu
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Tosin Akinsipe
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, 36849, USA
| | - L Adriana Avila
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, 36849, USA
| | - Robert D Arnold
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Panagiotis Mistriotis
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
9
|
Beyrami M, Khodadadi I, Tavilani H, Razavi ANE, Karimi J. Uncovering the relationship between YAP/ WWTR1 (TAZ) genes expression and LncRNAs of SNHG15, HCP5 and LINC01433 in breast cancer tissues. Pathol Res Pract 2024; 257:155286. [PMID: 38599044 DOI: 10.1016/j.prp.2024.155286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/11/2024] [Accepted: 03/30/2024] [Indexed: 04/12/2024]
Abstract
In spite of the decrease in breast cancer (BC) death rates, it has remained a significant public health concern. Dysregulation of the Hippo pathway contributes to breast cancer development and progression by enhancing cancerous cell proliferation, survival, invasion, and migration. Investigating the connection between specific lncRNAs (SNHG15, HCP5, and LINC01433) and YAP and WWTR1, and the impact of these lncRNAs on the expression of YAP and WWTR1 proteins in the Hippo pathway, may offer valuable understanding for BC diagnosis and treatment. Forty BC tissue samples were acquired from the Tumor Bank and utilized for RNA and protein extraction. Real-time PCR and western blotting techniques were performed to assess the gene and protein expressions, respectively. Correlations between variables and their associations with clinicopathological features in BC were evaluated using Mann-Whitney U or Student's t-test. Additionally, the analysis of the GEO database was utilized to validate the findings. In cancerous tissue, the up-regulation of YAP, WWTR1, HCP5, SNHG15, and Linc01433 at both the mRNA and protein levels corresponds to the findings in GEO datasets. A significant association was found between YAP and histological grade, while WWTR1 showed a correlation with family history and HER-2. The distinct and notable expression of YAP, WWTR1, SNHG15, HCP5, and Linc01433 in BC tissues, together with the results of combined ROC curve analysis derived from our finding and GEO database suggest that a combined panel of these 5 RNAs may have great potential in predicting of BC and its management.
Collapse
Affiliation(s)
- Mehdi Beyrami
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran
| | - Iraj Khodadadi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran
| | - Heidar Tavilani
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran
| | - Amir Nader Emami Razavi
- Iran National Tumor Bank, Cancer Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Jamshid Karimi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran.
| |
Collapse
|
10
|
Zhang H, Yin M, Hu Y, Jiang M, Lu M, Wu Y. Prognostic analysis of Yes-associated protein 1 in patients with colorectal cancer. A systematic review and meta-analysis. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2024; 116:148-156. [PMID: 36177818 DOI: 10.17235/reed.2022.8472/2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
BACKGROUND colorectal cancer (CRC) is the most common carcinoma worldwide, but a lack of effective prognostic markers limits clinical diagnosis and treatment. Yes-associated protein 1 (YAP1) is an effector of the HIPPO-pathway, which plays a critical role in cancer development and prognosis, including CRC. However, previous reports have suggested that it plays a dual role in CRC. METHODS a meta-analysis using RevMan 5.4 and Stata 14.0 was performed to evaluate the relationship between YAP1 and clinical outcomes of CRC, after searching for eligible studies in the PubMed, Web of Science and Embase databases. Online datasets GEPIA and LOGpc were also used to calculate survival results and for comparison with the meta-analysis results. Besides, "DESeq" packages were used for the expression analysis of YAP1 from the TCGA dataset. RESULTS YAP1 was overexpressed in the cancer tissues when compared to normal tissues in patients with CRC from the TCGA database (p = 0.000164) and GEPIA database. A total of 10 studies involving 2305 patients from the literature were selected. Pooled HR indicated that overexpression of YAP1 was associated with poor clinical outcomes (HR = 1.70, 95 % CI: 1.28-2.26, p = 0.0003). Subgroup analysis showed a clear correlation between overexpression of YAP1 and worse survival rate in Chinese patients (HR = 1.94, 95 % CI: 1.40-2.69, p = 0.0001), nuclear YAP1 overexpression (HR = 2.07, 95 % CI: 1.29-3.31, p = 0.003), 60 months of follow-up (HR = 1.89, 95 % CI: 1.30-2.73, p = 0.0008), IHC test (HR = 1.65, 95 % CI: 1.17-2.33, p = 0.005), IHC combined with other tests (HR = 1.77, 95 % CI: 1.13-2.77, p = 0.01) and multivariate analysis (HR = 1.70, 95 % CI: 1.24-2.31, p = 0.0009). Nevertheless, disease-free survival (DFS) showed no significant results in the patients with CRC in our meta-analysis (HR = 1.38, 95 % CI: 0.51-3.75, p = 0.52) as well as in the GEPIA and LOGpc databases. Meanwhile, YAP1 overexpression was also significantly associated with worse overall survival (OS) in GSE17536, GSE40967, GSE29623 and GSE71187. CONCLUSION YAP1 overexpression is common in CRC tissues. Overexpression of YAP1 in CRC patients, particularly in the nucleus, might be related to shorter OS, maybe in the early stages. YAP1 could serve as a potential predictor of poor prognosis in CRC.
Collapse
Affiliation(s)
- Hui Zhang
- Gastroenterology, The Second Affiliated Hospital. Kunming Medical University,
| | | | - Yu Hu
- Wuhan Mental Health Center, Tongji Medical College of Huazhong University,
| | - Mingming Jiang
- Gastroenterology, The Second Affiliated Hospital. Kunming Medical University,
| | - Mingliang Lu
- Gastroenterology, The Second Affiliated Hospital. Kunming Medical University,
| | - Yajuan Wu
- Radiotherapy, The Second Chest Radiotherapy Ward of Shanxi Cancer Hospital, china
| |
Collapse
|
11
|
Ahvaz S, Amini M, Yari A, Baradaran B, Jebelli A, Mokhtarzadeh A. Downregulation of long noncoding RNA B4GALT1-AS1 is associated with breast cancer development. Sci Rep 2024; 14:3114. [PMID: 38326326 PMCID: PMC10850139 DOI: 10.1038/s41598-023-51124-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/31/2023] [Indexed: 02/09/2024] Open
Abstract
The misregulation of long non-coding RNAs (lncRNAs) is related to the progressive evolution of various human cancers, such as Breast cancer (BC). The role of lncRNA B4GALT1-AS1 has been investigated in some human cancers. Therefore, studying B4GALT1-AS1 expression was aimed for the first time in the tumor and marginal tissues of BC in this study. The cancer genome atlas (TCGA) database was utilized to evaluate the relative expression of B4GALT1-AS1 in BC and other cancers. RNA was extracted from twenty-eight paired BC and marginal tissues, and cDNA was synthesized. The quantitative expression level of B4GALT1-AS1 was evaluated using real-time PCR. The bioinformatics analyses were performed to identify co-expression genes and related pathways. B4GALT1-AS1 was significantly downregulated in BC specimens compared to tumor marginal samples. The TCGA data analysis confirmed the downregulation of B4GALT1-AS1 in BC. The bioinformatics analysis discovered the correlation between 700 genes and B4GALT1-AS1 and identified GNAI1 as the high degree gene which was positively correlated with B4GALT1-AS1 expression. It seems B4GALT1-AS1 provides its function, at least partly, in association with one of the hippo pathway components, YAP, in other cancers. This protein has the opposite role in BC and its loss of function can result in poor survival in BC. Further research is needed to investigate the interaction between B4GALT1-AS1 and YAP in various subtypes of BC.
Collapse
Affiliation(s)
- Samaneh Ahvaz
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Yari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asiyeh Jebelli
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran.
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Deng H, Jia Q, Ming X, Sun Y, Lu Y, Liu L, Zhou J. Hippo pathway in intestinal diseases: focusing on ferroptosis. Front Cell Dev Biol 2023; 11:1291686. [PMID: 38130953 PMCID: PMC10734691 DOI: 10.3389/fcell.2023.1291686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The incidence of intestinal diseases, such as inflammatory bowel disease, gastric cancer, and colorectal cancer, has steadily increased over the past decades. The Hippo pathway is involved in cell proliferation, tissue and organ damage, energy metabolism, tumor formation, and other physiologic processes. Ferroptosis is a form of programmed cell death characterized by the accumulation of iron and lipid peroxides. The Hippo pathway and ferroptosis are associated with various intestinal diseases; however, the crosstalk between them is unclear. This review elaborates on the current research on the Hippo pathway and ferroptosis in the context of intestinal diseases. We summarized the connection between the Hippo pathway and ferroptosis to elucidate the underlying mechanism by which these pathways influence intestinal diseases. We speculate that a mutual regulatory mechanism exists between the Hippo pathway and ferroptosis and these two pathways interact in several ways to regulate intestinal diseases.
Collapse
Affiliation(s)
- Hongwei Deng
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
| | - Qiuting Jia
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
| | - Xin Ming
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yuxin Sun
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Yuxuan Lu
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
| | - Li Liu
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Jun Zhou
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
13
|
Chow SE, Hsu CC, Yang CT, Meir YJJ. YAP co-localizes with the mitotic spindle and midbody to safeguard mitotic division in lung-cancer cells. FEBS J 2023; 290:5704-5719. [PMID: 37549045 DOI: 10.1111/febs.16926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/22/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
YES-associated protein (YAP) is a part of the Hippo pathway, with pivotal roles in several developmental processes and dual functionality as both a tumor suppressor and an oncogene. In the present study, we identified YAP activity as a microtubular scaffold protein that maintains the stability of the mitotic spindle and midbody by physically interacting with α-tubulin during mitotic progression. The interaction of YAP and α-tubulin was evident in co-immunoprecipitation assays, as well as observing their co-localization in the microtubular structure of the mitotic spindle and midbody in immunostainings. With YAP depletion, levels of ECT2, MKLP-1, and Aurora B are reduced, which is consistent with YAP functioning in midbody formation during cytokinesis. The concomitant decrease in α-tubulin and increase in acetyl-α-tubulin during YAP depletion occurred at the post-transcriptional level. This suggests that YAP maintains the stability of the mitotic spindle and midbody, which ensures appropriate chromosome segregation during mitotic division. The increase in acetyl-α-tubulin during YAP depletion may provide a lesion-halting mechanism in maintaining the microtubule structure. The depletion of YAP also results in multinuclearity and aneuploidy, which supports its role in stabilizing the mitotic spindle and midbody.
Collapse
Affiliation(s)
- Shu-Er Chow
- Department of Otolaryngology-Head and Neck Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Nature Science, Center for General Studies, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Chi Hsu
- Department of Nature Science, Center for General Studies, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Ta Yang
- Department of Thoracic Medicine, Taoyuan Chang Gung Memorial Hospital, Taiwan
| | - Yaa-Jyuhn J Meir
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Limbal Stem Cell Laboratory, Department of Ophthalmology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
14
|
Xin Y, Li K, Huang M, Liang C, Siemann D, Wu L, Tan Y, Tang X. Biophysics in tumor growth and progression: from single mechano-sensitive molecules to mechanomedicine. Oncogene 2023; 42:3457-3490. [PMID: 37864030 PMCID: PMC10656290 DOI: 10.1038/s41388-023-02844-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 10/22/2023]
Abstract
Evidence from physical sciences in oncology increasingly suggests that the interplay between the biophysical tumor microenvironment and genetic regulation has significant impact on tumor progression. Especially, tumor cells and the associated stromal cells not only alter their own cytoskeleton and physical properties but also remodel the microenvironment with anomalous physical properties. Together, these altered mechano-omics of tumor tissues and their constituents fundamentally shift the mechanotransduction paradigms in tumorous and stromal cells and activate oncogenic signaling within the neoplastic niche to facilitate tumor progression. However, current findings on tumor biophysics are limited, scattered, and often contradictory in multiple contexts. Systematic understanding of how biophysical cues influence tumor pathophysiology is still lacking. This review discusses recent different schools of findings in tumor biophysics that have arisen from multi-scale mechanobiology and the cutting-edge technologies. These findings range from the molecular and cellular to the whole tissue level and feature functional crosstalk between mechanotransduction and oncogenic signaling. We highlight the potential of these anomalous physical alterations as new therapeutic targets for cancer mechanomedicine. This framework reconciles opposing opinions in the field, proposes new directions for future cancer research, and conceptualizes novel mechanomedicine landscape to overcome the inherent shortcomings of conventional cancer diagnosis and therapies.
Collapse
Grants
- R35 GM150812 NIGMS NIH HHS
- This work was financially supported by National Natural Science Foundation of China (Project no. 11972316, Y.T.), Shenzhen Science and Technology Innovation Commission (Project no. JCYJ20200109142001798, SGDX2020110309520303, and JCYJ20220531091002006, Y.T.), General Research Fund of Hong Kong Research Grant Council (PolyU 15214320, Y. T.), Health and Medical Research Fund (HMRF18191421, Y.T.), Hong Kong Polytechnic University (1-CD75, 1-ZE2M, and 1-ZVY1, Y.T.), the Cancer Pilot Research Award from UF Health Cancer Center (X. T.), the National Institute of General Medical Sciences of the National Institutes of Health under award number R35GM150812 (X. T.), the National Science Foundation under grant number 2308574 (X. T.), the Air Force Office of Scientific Research under award number FA9550-23-1-0393 (X. T.), the University Scholar Program (X. T.), UF Research Opportunity Seed Fund (X. T.), the Gatorade Award (X. T.), and the National Science Foundation REU Site at UF: Engineering for Healthcare (Douglas Spearot and Malisa Sarntinoranont). We are deeply grateful for the insightful discussions with and generous support from all members of Tang (UF)’s and Tan (PolyU)’s laboratories and all staff members of the MAE/BME/ECE/Health Cancer Center at UF and BME at PolyU.
- National Natural Science Foundation of China (National Science Foundation of China)
- Shenzhen Science and Technology Innovation Commission
Collapse
Affiliation(s)
- Ying Xin
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Keming Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Miao Huang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Chenyu Liang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Dietmar Siemann
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Lizi Wu
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
- Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Xin Tang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA.
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA.
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
15
|
Park I, Lee Y, Kim JH, Bae SJ, Ahn SG, Jeong J, Cha YJ. YAP1 Expression in HR+HER2- Breast Cancer: 21-Gene Recurrence Score Analysis and Public Dataset Validation. Cancers (Basel) 2023; 15:5034. [PMID: 37894401 PMCID: PMC10605327 DOI: 10.3390/cancers15205034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND YAP1, an oncogene in numerous cancers, is a downstream transcription factor of the Hippo pathway. This study focuses on its relationship with the Oncotype Dx (ODX) test risk score (RS) in patients with hormone-receptor-positive, HER2-negative (HR+HER2-) breast cancer. METHODS We retrospectively analyzed 401 HR+HER2- breast cancer patients from Gangnam Severance Hospital who underwent ODX tests (May 2014-April 2020). YAP1 nuclear localization was evaluated via immunohistochemical staining and its clinical correlation with clinicopathological parameters, including RS, was analyzed. Public datasets TCGA-BRCA and METABRIC validated clinical outcomes. RESULTS YAP1 expression negatively correlated with ODX RS (OR 0.373, p = 0.002). Elevated YAP1 mRNA levels corresponded to better clinical outcomes, specifically in ER-positive patients, with significant results in METABRIC and TCGA-BRCA datasets (p < 0.0001 OS in METABRIC, p = 0.00085 RFS in METABRIC, p = 0.040 DFS in TCGA-BRCA). In subsets with varying ESR1 mRNA expression and pronounced YAP1 expression, superior survival outcomes were consistently observed. CONCLUSION YAP1 may be a valuable prognostic marker and potential therapeutic target in HR+HER2- breast cancer patients.
Collapse
Affiliation(s)
- Inho Park
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea; (I.P.); (Y.L.)
- Center for Precision Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Yangkyu Lee
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea; (I.P.); (Y.L.)
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea; (J.H.K.); (S.J.B.); (S.G.A.); (J.J.)
| | - Jee Hung Kim
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea; (J.H.K.); (S.J.B.); (S.G.A.); (J.J.)
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Soong June Bae
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea; (J.H.K.); (S.J.B.); (S.G.A.); (J.J.)
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Sung Gwe Ahn
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea; (J.H.K.); (S.J.B.); (S.G.A.); (J.J.)
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Joon Jeong
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea; (J.H.K.); (S.J.B.); (S.G.A.); (J.J.)
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Yoon Jin Cha
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea; (I.P.); (Y.L.)
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Republic of Korea; (J.H.K.); (S.J.B.); (S.G.A.); (J.J.)
| |
Collapse
|
16
|
Sgarzi M, Mazzeschi M, Santi S, Montacci E, Panciera T, Ferlizza E, Girone C, Morselli A, Gelfo V, Kuhre RS, Cavallo C, Valente S, Pasquinelli G, Győrffy B, D'Uva G, Romaniello D, Lauriola M. Aberrant MET activation impairs perinuclear actin cap organization with YAP1 cytosolic relocation. Commun Biol 2023; 6:1044. [PMID: 37838732 PMCID: PMC10576810 DOI: 10.1038/s42003-023-05411-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 10/03/2023] [Indexed: 10/16/2023] Open
Abstract
Little is known about the signaling network responsible for the organization of the perinuclear actin cap, a recently identified structure holding unique roles in the regulation of nuclear shape and cell directionality. In cancer cells expressing a constitutively active MET, we show a rearrangement of the actin cap filaments, which crash into perinuclear patches associated with spherical nuclei, meandering cell motility and inactivation of the mechano-transducer YAP1. MET ablation is sufficient to reactivate YAP1 and restore the cap, leading to enhanced directionality and flattened nuclei. Consistently, the introduction of a hyperactive MET in normal epithelial cells, enhances nuclear height and alters the cap organization, as also confirmed by TEM analysis. Finally, the constitutively active YAP1 mutant YAP5SA is able to overcome the effects of oncogenic MET. Overall, our work describes a signaling axis empowering MET-mediated YAP1 dampening and actin cap misalignment, with implications for nuclear shape and cell motility.
Collapse
Affiliation(s)
- Michela Sgarzi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | | | - Spartaco Santi
- Institute of Molecular Genetics, National Research Council of Italy, Bologna, Italy
- IRCCS-Institute Orthopaedic Rizzoli, Bologna, Italy
| | - Elisa Montacci
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Tito Panciera
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Enea Ferlizza
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Cinzia Girone
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Alessandra Morselli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Valerio Gelfo
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Rikke Sofie Kuhre
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Carola Cavallo
- Laboratory of Preclinical Studies for Regenerative Medicine of the Musculoskeletal System (RAMSES), (IRCCS) Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Sabrina Valente
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Gianandrea Pasquinelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Balazs Győrffy
- Semmelweis University Dept. of Bioinformatics and 2nd Dept. Of Pediatrics, Budapest, Hungary
- TTK Cancer Biomarker Research Group, Institute of Enzymology, Budapest, Hungary
| | - Gabriele D'Uva
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Donatella Romaniello
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
| | - Mattia Lauriola
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
- Centre for Applied Biomedical Research (CRBA), Bologna University Hospital Authority St. Orsola -Malpighi Polyclinic, Bologna, Italy.
| |
Collapse
|
17
|
Lv L, Zhou X. Targeting Hippo signaling in cancer: novel perspectives and therapeutic potential. MedComm (Beijing) 2023; 4:e375. [PMID: 37799806 PMCID: PMC10547939 DOI: 10.1002/mco2.375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 10/07/2023] Open
Abstract
As highly conserved among diverse species, Hippo signaling pathway regulates various biological processes, including development, cell proliferation, stem cell function, tissue regeneration, homeostasis, and organ size. Studies in the last two decades have provided a good framework for how these fundamental functions of Hippo signaling are tightly regulated by a network with numerous intracellular and extracellular factors. The Hippo signaling pathway, when dysregulated, may lead to a wide variety of diseases, especially cancer. There is growing evidence demonstrating that dysregulated Hippo signaling is closely associated with tumorigenesis, cancer cell invasion, and migration, as well as drug resistance. Therefore, the Hippo pathway is considered an appealing therapeutic target for the treatment of cancer. Promising novel agents targeting the Hippo signaling pathway for cancers have recently emerged. These novel agents have shown antitumor activity in multiple cancer models and demonstrated therapeutic potential for cancer treatment. However, the detailed molecular basis of the Hippo signaling-driven tumor biology remains undefined. Our review summarizes current advances in understanding the mechanisms by which Hippo signaling drives tumorigenesis and confers drug resistance. We also propose strategies for future preclinical and clinical development to target this pathway.
Collapse
Affiliation(s)
- Liemei Lv
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongChina
| | - Xiangxiang Zhou
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongChina
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Branch of National Clinical Research Center for Hematologic DiseasesJinanShandongChina
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
18
|
Steinberg T, Dieterle MP, Ramminger I, Klein C, Brossette J, Husari A, Tomakidi P. On the Value of In Vitro Cell Systems for Mechanobiology from the Perspective of Yes-Associated Protein/Transcriptional Co-Activator with a PDZ-Binding Motif and Focal Adhesion Kinase and Their Involvement in Wound Healing, Cancer, Aging, and Senescence. Int J Mol Sci 2023; 24:12677. [PMID: 37628858 PMCID: PMC10454169 DOI: 10.3390/ijms241612677] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Mechanobiology comprises how cells perceive different mechanical stimuli and integrate them into a process called mechanotransduction; therefore, the related mechanosignaling cascades are generally important for biomedical research. The ongoing discovery of key molecules and the subsequent elucidation of their roles in mechanobiology are fundamental to understanding cell responses and tissue conditions, such as homeostasis, aging, senescence, wound healing, and cancer. Regarding the available literature on these topics, it becomes abundantly clear that in vitro cell systems from different species and tissues have been and are extremely valuable tools for enabling the discovery and functional elucidation of key mechanobiological players. Therefore, this review aims to discuss the significant contributions of in vitro cell systems to the identification and characterization of three such key players using the selected examples of yes-associated protein (YAP), its paralog transcriptional co-activator with a PDZ-binding motif (TAZ), and focal adhesion kinase (FAK) and their involvement in wound healing, cancer, aging, and senescence. In addition, the reader is given suggestions as to which future prospects emerge from the in vitro studies discussed herein and which research questions still remain open.
Collapse
Affiliation(s)
- Thorsten Steinberg
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Martin Philipp Dieterle
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Imke Ramminger
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Charlotte Klein
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Julie Brossette
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Ayman Husari
- Center for Dental Medicine, Department of Orthodontics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Pascal Tomakidi
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| |
Collapse
|
19
|
Dai Y, Zhang X, Ou Y, Zou L, Zhang D, Yang Q, Qin Y, Du X, Li W, Yuan Z, Xiao Z, Wen Q. Anoikis resistance--protagonists of breast cancer cells survive and metastasize after ECM detachment. Cell Commun Signal 2023; 21:190. [PMID: 37537585 PMCID: PMC10399053 DOI: 10.1186/s12964-023-01183-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/04/2023] [Indexed: 08/05/2023] Open
Abstract
Breast cancer exhibits the highest global incidence among all tumor types. Regardless of the type of breast cancer, metastasis is a crucial cause of poor prognosis. Anoikis, a form of apoptosis initiated by cell detachment from the native environment, is an outside-in process commencing with the disruption of cytosolic connectors such as integrin-ECM and cadherin-cell. This disruption subsequently leads to intracellular cytoskeletal and signaling pathway alterations, ultimately activating caspases and initiating programmed cell death. Development of an anoikis-resistant phenotype is a critical initial step in tumor metastasis. Breast cancer employs a series of stromal alterations to suppress anoikis in cancer cells. Comprehensive investigation of anoikis resistance mechanisms can inform strategies for preventing and regressing metastatic breast cancer. The present review first outlines the physiological mechanisms of anoikis, elucidating the alterations in signaling pathways, cytoskeleton, and protein targets that transpire from the outside in upon adhesion loss in normal breast cells. The specific anoikis resistance mechanisms induced by pathological changes in various spatial structures during breast cancer development are also discussed. Additionally, the genetic loci of targets altered in the development of anoikis resistance in breast cancer, are summarized. Finally, the micro-RNAs and targeted drugs reported in the literature concerning anoikis are compiled, with keratocin being the most functionally comprehensive. Video Abstract.
Collapse
Affiliation(s)
- Yalan Dai
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Oncology, Garze Tibetan Autonomous Prefecture People's Hospital, Kangding, China
| | - Xinyi Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Yingjun Ou
- Clinical Medicine School, Southwest Medicial Univercity, Luzhou, China
- Orthopaedics, Garze Tibetan Autonomous Prefecture People's Hospital, Kangding, China
| | - Linglin Zou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Duoli Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qingfan Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Qin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiuju Du
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wei Li
- Southwest Medical University, Luzhou, China
| | | | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
20
|
Luo J, Deng L, Zou H, Guo Y, Tong T, Huang M, Ling G, Li P. New insights into the ambivalent role of YAP/TAZ in human cancers. J Exp Clin Cancer Res 2023; 42:130. [PMID: 37211598 DOI: 10.1186/s13046-023-02704-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023] Open
Abstract
Hippo signaling was first identified in Drosophila as a key controller of organ size by regulating cell proliferation and anti-apoptosis. Subsequent studies have shown that this pathway is highly conserved in mammals, and its dysregulation is implicated in multiple events of cancer development and progression. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) (hereafter YAP/TAZ) are the downstream effectors of the Hippo pathway. YAP/TAZ overexpression or activation is sufficient to induce tumor initiation and progression, as well as recurrence and therapeutic resistance. However, there is growing evidence that YAP/TAZ also exert a tumor-suppressive function in a context-dependent manner. Therefore, caution should be taken when targeting Hippo signaling in clinical trials in the future. In this review article, we will first give an overview of YAP/TAZ and their oncogenic roles in various cancers and then systematically summarize the tumor-suppressive functions of YAP/TAZ in different contexts. Based on these findings, we will further discuss the clinical implications of YAP/TAZ-based tumor targeted therapy and potential future directions.
Collapse
Affiliation(s)
- Juan Luo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Liang Deng
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Hailin Zou
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Yibo Guo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Tongyu Tong
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, People's Republic of China
- Department of Urology, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Mingli Huang
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Gengqiang Ling
- Department of Neurosurgery, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Peng Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, People's Republic of China.
| |
Collapse
|
21
|
Venghateri JB, Dassa B, Morgenstern D, Shreberk-Shaked M, Oren M, Geiger B. Deciphering the involvement of the Hippo pathway co-regulators, YAP/TAZ in invadopodia formation and matrix degradation. Cell Death Dis 2023; 14:290. [PMID: 37185904 PMCID: PMC10130049 DOI: 10.1038/s41419-023-05769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 05/17/2023]
Abstract
Invadopodia are adhesive, actin-rich protrusions formed by metastatic cancer cells that degrade the extracellular matrix and facilitate invasion. They support the metastatic cascade by a spatially and temporally coordinated process whereby invading cells bind to the matrix, degrade it by specific metalloproteinases, and mechanically penetrate diverse tissue barriers by forming actin-rich extensions. However, despite the apparent involvement of invadopodia in the metastatic process, the molecular mechanisms that regulate invadopodia formation and function are still largely unclear. In this study, we have explored the involvement of the key Hippo pathway co-regulators, namely YAP, and TAZ, in invadopodia formation and matrix degradation. Toward that goal, we tested the effect of depletion of YAP, TAZ, or both on invadopodia formation and activity in multiple human cancer cell lines. We report that the knockdown of YAP and TAZ or their inhibition by verteporfin induces a significant elevation in matrix degradation and invadopodia formation in several cancer cell lines. Conversely, overexpression of these proteins strongly suppresses invadopodia formation and matrix degradation. Proteomic and transcriptomic profiling of MDA-MB-231 cells, following co-knockdown of YAP and TAZ, revealed a significant change in the levels of key invadopodia-associated proteins, including the crucial proteins Tks5 and MT1-MMP (MMP14). Collectively, our findings show that YAP and TAZ act as negative regulators of invadopodia formation in diverse cancer lines, most likely by reducing the levels of essential invadopodia components. Dissecting the molecular mechanisms of invadopodia formation in cancer invasion may eventually reveal novel targets for therapeutic applications against invasive cancer.
Collapse
Affiliation(s)
- Jubina Balan Venghateri
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Bareket Dassa
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - David Morgenstern
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | | | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Benjamin Geiger
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
22
|
Parambil ST, Thankayyan SKR, Antony GR, Littleflower AB, Augustine P, Somanathan T, Subhadradevi L. YAP transduction drives triple-negative breast cancer aggressiveness through modulating the EGFR‒AKT axis in patient-derived xenograft cells. Med Oncol 2023; 40:137. [PMID: 37014473 DOI: 10.1007/s12032-023-02007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023]
Abstract
Aside from the high prevalence of incidents of breast cancer, the high grade of heterogeneity and the dearth of standard treatment guidelines make triple-negative breast cancer (TNBC) the most refractory subtype. Though still in its infancy, the Hippo pathway has been known to play a critical role in tumorigenesis. However, the molecular mechanics through which the pathway exploits the breast cancer (BC) cell vulnerability are largely unexplored. In this study, we observed a relatively higher expression of the Hippo effector, yes-associated protein (YAP), in TNBC patients compared to non-TNBC patients. Thus, we sought to investigate the contribution of Hippo signaling in TNBC by focusing particularly on transducers of the pathway. Impeding YAP transactivation by means of RNA interference or pharmacological inhibition was carried out, followed by evaluation of the subsequent biological changes at the molecular level. We successfully translated the observed data into a TNBC patient-derived xenograft cell line (PDXC). We discovered that nuclear translocation of YAP was associated with TNBC aggressive characteristics and activated the EGFR-AKT axis. Here, we explored the putative role of the Hippo transducer in enhancing cancer hostility and observed that YAP transduction drives proliferation, migration, and survival of TNBC by preventing cellular apoptosis through mediating EGFR activation. These observations suggest that YAP represents a major vulnerability in TNBC cells that may be exploited therapeutically.
Collapse
Affiliation(s)
- Sulfath Thottungal Parambil
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, 695011, Kerala, India
| | - Santhosh Kumar R Thankayyan
- Division of Cancer Biology, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram, 695014, India
| | - Gisha Rose Antony
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, 695011, Kerala, India
| | - Ajeesh Babu Littleflower
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, 695011, Kerala, India
| | - Paul Augustine
- Division of Surgical Oncology, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, 695011, Kerala, India
| | - Thara Somanathan
- Division of Pathology, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, 695011, Kerala, India
| | - Lakshmi Subhadradevi
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, 695011, Kerala, India.
| |
Collapse
|
23
|
Caron JM, Han X, Lary CW, Sathyanarayana P, Remick SC, Ernstoff MS, Herlyn M, Brooks PC. Targeting the secreted RGDKGE collagen fragment reduces PD‑L1 by a proteasome‑dependent mechanism and inhibits tumor growth. Oncol Rep 2023; 49:44. [PMID: 36633146 PMCID: PMC9868893 DOI: 10.3892/or.2023.8481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/16/2022] [Indexed: 01/13/2023] Open
Abstract
Structural alterations of collagen impact signaling that helps control tumor progression and the responses to therapeutic intervention. Integrins represent a class of receptors that include members that mediate collagen signaling. However, a strategy of directly targeting integrins to control tumor growth has demonstrated limited activity in the clinical setting. New molecular understanding of integrins have revealed that these receptors can regulate both pro‑ and anti‑tumorigenic functions in a cell type‑dependent manner. Therefore, designing strategies that block pro‑tumorigenic signaling, without impeding anti‑tumorigenic functions, may lead to development of more effective therapies. In the present study, evidence was provided for a novel signaling cascade in which β3‑integrin‑mediated binding to a secreted RGDKGE‑containing collagen fragment stimulates an autocrine‑like signaling pathway that differentially governs the activity of both YAP and (protein kinase‑A) PKA, ultimately leading to alterations in the levels of immune checkpoint molecule PD‑L1 by a proteasome dependent mechanism. Selectively targeting this collagen fragment, reduced nuclear YAP levels, and enhanced PKA and proteasome activity, while also exhibiting significant antitumor activity in vivo. The present findings not only provided new mechanistic insight into a previously unknown autocrine‑like signaling pathway that may provide tumor cells with the ability to regulate PD‑L1, but our findings may also help in the development of more effective strategies to control pro‑tumorigenic β3‑integrin signaling without disrupting its tumor suppressive functions in other cellular compartments.
Collapse
Affiliation(s)
- Jennifer M. Caron
- MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME 04074, USA
| | - Xianghua Han
- MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME 04074, USA
| | - Christine W. Lary
- MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME 04074, USA
| | - Pradeep Sathyanarayana
- MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME 04074, USA
| | - Scot C. Remick
- MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME 04074, USA
| | - Marc S. Ernstoff
- Division of Cancer Treatment and Diagnosis, Developmental Therapeutics Program, National Cancer Institute, Bethesda, MD 20892, USA
| | | | - Peter C. Brooks
- MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME 04074, USA
| |
Collapse
|
24
|
Wang Z, Liu M, Lei H, Xiao S, Zheng Y. TEAD1 Silencing Regulates Cell Proliferation and Resistance to 5-Fluorouracil in Cutaneous Squamous Cell Carcinoma. Clin Cosmet Investig Dermatol 2022; 15:2685-2692. [PMID: 36536757 PMCID: PMC9759115 DOI: 10.2147/ccid.s386547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2023]
Abstract
PURPOSE Cutaneous squamous cell carcinoma (cSCC) is a skin malignant tumor account for approximately one-third of all nonmelanoma skin cancers. Studies have shown that TEA domain transcription factor 1 (TEAD1) is discovered to be involved in the pathogenesis of some human cancers, but to our knowledge its role in cSCC has not been reported. PATIENTS AND METHODS Samples from 16 cSCC patients and 27 healthy individuals were obtained for immunohistochemical staining of TEAD1. The expressions of TEAD1 in SCL-1, HSC-1 cells compared with the primary neonatal human epithelial keratinocytes were detected by Western blot and RT-qPCR. Proliferation and cell cycle of TEAD1 knockdown in cSCC cell lines were examined by MTT and flow cytometry analysis. Annexin V/PI and JC-1 staining were used to determine the cell apoptosis. RESULTS The expression of TEAD1 decreased significantly in cSCC compared to its expression in normal skin tissues and cell lines. Down-regulation of TEAD1 in cSCC cell lines promoted cell growth via regulation of the G2/M progression. Additionally, silence of TEAD1 also protected cells against 5-Fluorouracil-induced apoptosis and decreased the expression of apoptosis-related protein (p53). CONCLUSION Our results suggested that TEAD1 expression is down-regulated and functioned as a tumor suppressor in cSCC and that it may serve as a biomarker or therapeutic target of cSCC.
Collapse
Affiliation(s)
- Ziyang Wang
- Department of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Meng Liu
- Department of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Hao Lei
- Department of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Shengxiang Xiao
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Yan Zheng
- Department of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
25
|
Lee Y, Bae SJ, Eun NL, Ahn SG, Jeong J, Cha YJ. Correlation of Yes-Associated Protein 1 with Stroma Type and Tumor Stiffness in Hormone-Receptor Positive Breast Cancer. Cancers (Basel) 2022; 14:cancers14204971. [PMID: 36291755 PMCID: PMC9599900 DOI: 10.3390/cancers14204971] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary YAP1 is an oncogene that can be activated by matrix stiffness, as it can act as a mechanotransducer. So far, only in vitro studies regarding YAP1 activation and matrix stiffness are present. We confirmed the activation of YAP1 in breast cancer using human breast cancer tissue and immunohistochemistry. Tumor stiffness was quantified by shear-wave elastography. Nuclear localization of YAP1 showed correlation with tumor stiffness in hormone-receptor positive (HR+) breast cancer. Also, tumors with non-collagen-type stroma showed an association between YAP1 expression and tumor stiffness. YAP1 expression, along with tumor stiffness, may serve as a prognostic candidate in HR+ breast cancer. Abstract (1) Background: Yes-associated protein 1 (YAP1) is an oncogene activated under the dysregulated Hippo pathway. YAP1 is also a mechanotransducer that is activated by matrix stiffness. So far, there are no in vivo studies on YAP1 expression related to stiffness. We aimed to investigate the association between YAP1 activation and tumor stiffness in human breast cancer samples, using immunohistochemistry and shear-wave elastography (SWE). (2) Methods: We included 488 patients with treatment-naïve breast cancer. Tumor stiffness was measured and the mean, maximal, and minimal elasticity values and elasticity ratios were recorded. Nuclear YAP1 expression was evaluated by immunohistochemistry and tumor-infiltrating lymphocytes (TILs); tumor-stroma ratio (TSR) and stroma type of tumors were also evaluated. (3) Results: Tumor stiffness was higher in tumors with YAP1 positivity, low TILs, and high TSR and was correlated with nuclear YAP1 expression; this correlation was observed in hormone receptor positive (HR+) tumors, as well as in tumors with non-collagen-type stroma. (4) Conclusions: We confirmed the correlation between nuclear YAP1 expression and tumor stiffness, and nuclear YAP1 expression was deemed a prognostic candidate in HR+ tumors combined with SWE-measured tumor stiffness.
Collapse
Affiliation(s)
- Yangkyu Lee
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Soong June Bae
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Korea
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Na Lae Eun
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Sung Gwe Ahn
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Korea
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Joon Jeong
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Korea
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Yoon Jin Cha
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Korea
- Correspondence: ; Tel.: +82-2-2019-3540
| |
Collapse
|
26
|
Estrogen Regulates the Expression and Localization of YAP in the Uterus of Mice. Int J Mol Sci 2022; 23:ijms23179772. [PMID: 36077170 PMCID: PMC9456404 DOI: 10.3390/ijms23179772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
The dynamics of uterine endometrium is important for successful establishment and maintenance of embryonic implantation and development, along with extensive cell differentiation and proliferation. The tissue event is precisely and complicatedly regulated as several signaling pathways are involved including two main hormones, estrogen and progesterone signaling. We previously showed a novel signaling molecule, Serine/threonine protein kinase 3/4 (STK3/4), which is responded to hormone in the mouse uterine epithelium. However, the role and regulation of its target, YES-associated protein (YAP) remains unknown. In this study, we investigated the expression and regulation of YAP in mouse endometrium. We found that YAP was periodically expressed in the endometrium during the estrous cycle. Furthermore, periodic expression of YAP was shown to be related to the pathway under hormone treatment. Interestingly, estrogen was shown to positively modulate YAP via endometrial epithelial receptors. In addition, the knockdown of YAP showed that YAP regulated various target genes in endometrial cells. The knockdown of YAP down-regulated numerous targets including ADAMTS1, AMOT, AMOTL1, ANKRD1, CTNNA1, MCL1. On the other hand, the expressions of AREG and AXL were increased by its knockdown. These findings imply that YAP responds via Hippo signaling under various intrauterine signals and is considered to play a role in the expression of factors important for uterine endometrium dynamic regulation.
Collapse
|
27
|
Wang Y, Chen H, Yu J, Kang W, To KF. Recent insight into the role and therapeutic potential of YAP/TAZ in gastrointestinal cancers. Biochim Biophys Acta Rev Cancer 2022; 1877:188787. [PMID: 36041574 DOI: 10.1016/j.bbcan.2022.188787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/25/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022]
Abstract
With the rapid development of cancer treatment, gastrointestinal (GI) cancers are still the most prevalent malignancies with high morbidity and mortality worldwide. Dysregulation of the Hippo signaling pathway has been recognized to play a critical role during cancer development and adopted for monitoring disease progression and therapy response. Despite the well-documented tumor proliferation and metastasis, recent efforts in two core Hippo components, Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), have identified as the driving forces behind cancer metabolism, stemness, tumor immunity, and therapy resistance. Understanding the molecular mechanisms by which YAP/TAZ facilitates the tumorigenesis and progression of GI cancer, and identifying novel therapeutic strategies for targeting YAP/TAZ are crucial to GI cancer treatment and prevention. In this study, we summarize the latest findings on the function and regulatory mechanisms of YAP/TAZ in GI cancers, and highlight the translational significance of targeting YAP/TAZ for cancer therapies.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Centre, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Huarong Chen
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jun Yu
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Centre, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Centre, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
28
|
Li L, Luo J, Fang JY, Zhang R, Ma JB, Zhu ZP. Expression characteristics of the yes-associated protein in breast cancer: A meta-analysis. Medicine (Baltimore) 2022; 101:e30176. [PMID: 36042678 PMCID: PMC9410612 DOI: 10.1097/md.0000000000030176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The yes-associated protein (YAP) gene plays an important role in many malignant tumors, but its clinical significance in breast cancer remains unclear. This study aimed to explore the significance of YAP expression in breast cancer using meta-analysis. METHODS Seven databases will be searched to collect the case-control studies published on the association between YAP expression and clinical pathogenic features in breast cancer until December 2021: PubMed, EMBASE, Web of Science, China National Knowledge Infrastructure, Chinese Scientific Journal Database, Wan Fang Database, and the Chinese Biomedical Literature Database. To perform meta-analysis, STATA 14.0 and RevMan5 software were used with odds ratio (OR) and 95% confidence interval (95% CI) as the effect index, and publication bias and sensitivity analysis were subsequently tested. RESULTS Form a total of 10 articles used in this study, 8 studies consisted of nontriple negative breast cancer (non-TNBC) and the other 2 of TNBC. Meta-analysis indicated a positive expression rate of YAP in non-TNBC tissues that was lower than in normal breast tissue (OR = 0.15, 95% CI = 0.10-0.21, P < .001). In contrast, the positive rate of YAP expression in TNBC was significantly higher than that in normal breast tissue (OR = 18.23, 95% CI = 8.20-40.52, P < .001). Furthermore, the positive expression rate was higher in the patients with lymph node metastasis, higher tumor node metastasis stage and histologic grade, and larger diameter in TNBC. However, there was no statistical difference in the positive expression rate of YAP between non-TNBC patients and lymph node metastasis, tumor node metastasis stage, histologic grade, and tumor size. CONCLUSIONS YAP may participate in the occurrence and development of non-TNBC as a tumor suppressor gene; however, it may also be a carcinogenic factor in TNBC and may be a potential therapeutic target for TNBC.
Collapse
Affiliation(s)
- Lan Li
- Department of Pathology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Jin Luo
- Department of Pathology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Jing-Yi Fang
- Department of Pathology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Rui Zhang
- Department of Pathology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Jian-Bo Ma
- Department of Pathology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Zheng-Peng Zhu
- Department of Pathology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
- *Correspondence: Zheng-Peng Zhu, Department of Pathology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Daling Road, Zhangwan District, Shiyan 16, Hubei Province, China (e-mail: )
| |
Collapse
|
29
|
Expression and Role of TRIM2 in Human Diseases. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9430509. [PMID: 36051486 PMCID: PMC9427271 DOI: 10.1155/2022/9430509] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022]
Abstract
Tripartite motif (TRIM) protein family proteins contain more than 80 members in humans, and most of these proteins exhibit E3 ubiquitin ligase activity mediated through a RING finger domain. Their biological functions are very complex, and they perform diverse functions in cell evolution processes, such as intracellular signaling, development, apoptosis, protein quality control, innate immunity, autophagy, and carcinogenesis. Tripartite motif-containing protein 2 (TRIM2), a member of the TRIM superfamily, is an 81 kDa multidomain protein, also known as CMT2R or RNF86, located at 4q31.3. TRIM2 functions as an E3 ubiquitin ligase. Current studies have shown that TRIM2 can play roles in neuroprotection, neuronal rapid ischemic tolerance, antiviral responses, neurological diseases, etc. Moreover, based on some studies in tumors, TRIM2 regulates tumor proliferation, migration, invasion, apoptosis, and drug resistance through different mechanisms and plays a critical role in tumor occurrence and development. This review is aimed at providing a systematic and comprehensive summary of research on TRIM2 and at exploring the potential role of TRIM2 as a biomarker and therapeutic target in many kinds of human diseases.
Collapse
|
30
|
Expression of Key Factors of the Hippo Signaling Pathway in Yak (Bos grunniens) Mammary Gland. Animals (Basel) 2022; 12:ani12162103. [PMID: 36009693 PMCID: PMC9404922 DOI: 10.3390/ani12162103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The Hippo signaling pathway plays a significant role in regulating the organ development processes of mammals. Our research aimed to investigate the expression and distribution of key members of the Hippo signaling pathway in yak mammary glands during different stages. Using immunohistochemistry, Western blot, and relative quantitative real-time polymerase chain reaction techniques, we found that the protein and mRNA expression levels of MST1, LATS1, YAP1 and TEAD1 in the yak’s mammary gland varies with the growth, lactation, and dry periods. The differential expression in the yak’s mammary gland at different stages strongly suggests that the Hippo signaling pathway plays an important role in regulating the mammary gland development processes under different physiological conditions. Abstract Due to its rich nutritional value, yak milk is an important food source in the alpine pastoral areas. However, yaks have a low milk yield. The Hippo pathway participates in cell proliferation and organ development. We aimed to determine the regulatory mechanism of this pathway in yak mammary cells. A greater understanding of how the expression of its essential genes influence the reproductive cycle could lead to improvements in lactation performance. The expression levels of the key genes MST1, LATS1, YAP1, and TEAD1 were detected by quantitative real-time PCR, Western blotting, and immunohistochemistry during the growth, lactation, and dry periods (GP, LP and DP, respectively). The MST1 and LATS1 mRNA and protein expression level was highest during GP and lowest during LP. The YAP1 and TEAD1 mRNA and protein expression level decreased from GP to LP and DP. MST1 and LATS1 were expressed in the cytoplasm whereas YAP1 and TEAD1 were expressed in the nucleus and cytoplasm, respectively. The differential expression of MST1, LATS1, YAP1, and TEAD1 expression in the yak mammary gland during different developmental stages strongly suggests that they play an important role in the regulation of developmental functions under different physiological conditions.
Collapse
|
31
|
Hippo-TAZ signaling is the master regulator of the onset of triple-negative basal-like breast cancers. Proc Natl Acad Sci U S A 2022; 119:e2123134119. [PMID: 35858357 PMCID: PMC9303858 DOI: 10.1073/pnas.2123134119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Breast cancer is the most frequent malignancy in women worldwide. Basal-like breast cancer (BLBC) is the most aggressive form of this disease, and patients have a poor prognosis. Here, we present data suggesting that the Hippo-transcriptional coactivator with PDZ-binding motif (TAZ) pathway is a key driver of BLBC onset and progression. Deletion of Mob1a/b in mouse mammary luminal epithelium induced rapid and highly reproducible mammary tumorigenesis that was dependent on TAZ but not yes-associated protein 1 (YAP1). In situ early-stage BLBC-like malignancies developed in mutant animals by 2 wk of age, and invasive BLBC appeared by 4 wk. In a human estrogen receptor+ luminal breast cancer cell line, TAZ hyperactivation skewed the features of these luminal cells to the basal phenotype, consistent with the aberrant TAZ activation frequently observed in human precancerous BLBC lesions. TP53 mutation is rare in human precancerous BLBC but frequent in invasive BLBC. Addition of Trp53 deficiency to our Mob1a/b-deficient mouse model enhanced tumor grade and accelerated cancer progression. Our work justifies targeting the Hippo-TAZ pathway as a therapy for human BLBC, and our mouse model represents a powerful tool for evaluating candidate agents.
Collapse
|
32
|
de Almeida BO, de Almeida LC, Costa-Lotufo LV, Machado-Neto JA. ANKHD1 contributes to the malignant phenotype of triple-negative breast cancer cells. Cell Biol Int 2022; 46:1433-1446. [PMID: 35842770 DOI: 10.1002/cbin.11844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/11/2022] [Accepted: 04/15/2022] [Indexed: 11/12/2022]
Abstract
Ankyrin repeat and KH domain-containing protein 1, ANKHD1, has been identified as a regulator of signaling pathways and cellular processes of relevance in carcinogenesis. However, the role of ANKHD1 in breast cancer remains unclear. The aim of the present study was to characterize the expression pattern and involvement of ANKHD1 in the malignant phenotype of breast cancer cell lines and to investigate the clinical relevance of ANKHD1 in a breast cancer context. Gene and protein expressions were assessed in the cell lines by quantitative reverse transcription PCR and Western blot analysis, respectively, and ANKHD1 silencing through siRNA transfection was conducted for further in vitro functional assays. The expression of ANKHD1 was identified in non-tumorigenic breast epithelium and breast cancer cell lines, but differences in cellular localization were found among the neoplasia subtypes. ANKHD1 silencing reduced the viability, clonogenicity, and migration of triple-negative breast cancer (TNBC) cells. Bioinformatics analyses demonstrated that patients with triple-negative basal-like 2 and mesenchymal breast cancer subtypes had high ANKHD1 expression associated with poor recurrence-free survival. Therefore, these data indicate that ANKHD1 relevance in breast cancer varies among its subtypes, indicating the importance of ANKHD1 in TNBC.
Collapse
Affiliation(s)
- Bruna O de Almeida
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Larissa C de Almeida
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Leticia V Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - João A Machado-Neto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
33
|
Jin Y, Zhao Q, Zhu W, Feng Y, Xiao T, Zhang P, Jiang L, Hou Y, Guo C, Huang H, Chen Y, Tong X, Cao J, Li F, Zhu X, Qin J, Gao D, Liu XY, Zhang H, Chen L, Thomas RK, Wong KK, Zhang L, Wang Y, Hu L, Ji H. Identification of TAZ as the essential molecular switch in orchestrating SCLC phenotypic transition and metastasis. Natl Sci Rev 2022; 9:nwab232. [PMID: 35967587 PMCID: PMC9365451 DOI: 10.1093/nsr/nwab232] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
Small-cell lung cancer (SCLC) is a recalcitrant cancer characterized by high metastasis. However, the exact cell type contributing to metastasis remains elusive. Using a Rb1 L/L /Trp53 L/L mouse model, we identify the NCAMhiCD44lo/- subpopulation as the SCLC metastasizing cell (SMC), which is progressively transitioned from the non-metastasizing NCAMloCD44hi cell (non-SMC). Integrative chromatin accessibility and gene expression profiling studies reveal the important role of the SWI/SNF complex, and knockout of its central component, Brg1, significantly inhibits such phenotypic transition and metastasis. Mechanistically, TAZ is silenced by the SWI/SNF complex during SCLC malignant progression, and its knockdown promotes SMC transition and metastasis. Importantly, ectopic TAZ expression reversely drives SMC-to-non-SMC transition and alleviates metastasis. Single-cell RNA-sequencing analyses identify SMC as the dominant subpopulation in human SCLC metastasis, and immunostaining data show a positive correlation between TAZ and patient prognosis. These data uncover high SCLC plasticity and identify TAZ as the key molecular switch in orchestrating SCLC phenotypic transition and metastasis.
Collapse
Affiliation(s)
- Yujuan Jin
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiqi Zhao
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Weikang Zhu
- Center for Excellence in Mathematical Sciences, National Center for Mathematics and Interdisciplinary Sciences, Key Laboratory of Management, Decision and Information System, Hua Loo-Keng Center for Mathematical Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
| | - Yan Feng
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tian Xiao
- Shenzhen Key Laboratory of Translational Medicine of Tumor, Department of Cell Biology and Genetics, Shenzhen University Health Sciences Center, Shenzhen 518060, China
| | - Peng Zhang
- Shanghai Pulmonary Hospital, Tongji University, Shanghai 200092, China
| | - Liyan Jiang
- Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Yingyong Hou
- Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chenchen Guo
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hsinyi Huang
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yabin Chen
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinyuan Tong
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiayu Cao
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fei Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 200120, China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dong Gao
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin-Yuan Liu
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hua Zhang
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Luonan Chen
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Roman K Thomas
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, Cologne 50931, Germany
- Department of Pathology, University Hospital Cologne, Cologne 50937, Germany
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Lei Zhang
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yong Wang
- Center for Excellence in Mathematical Sciences, National Center for Mathematics and Interdisciplinary Sciences, Key Laboratory of Management, Decision and Information System, Hua Loo-Keng Center for Mathematical Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Liang Hu
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
34
|
YAP and TAZ: Monocorial and bicorial transcriptional co-activators in human cancers. Biochim Biophys Acta Rev Cancer 2022; 1877:188756. [PMID: 35777600 DOI: 10.1016/j.bbcan.2022.188756] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/09/2022] [Accepted: 06/23/2022] [Indexed: 12/17/2022]
Abstract
The transcriptional regulators YAP and TAZ are involved in numerous physiological processes including organ development, growth, immunity and tissue regeneration. YAP and TAZ dysregulation also contribute to tumorigenesis, thereby making them attractive cancer therapeutic targets. Arbitrarily, YAP and TAZ are often considered as a single protein, and are referred to as YAP/TAZ in most studies. However, increasing experimental evidences documented that YAP and TAZ perform both overlapping and distinct functions in several physiological and pathological processes. In addition to regulating distinct processes, YAP and TAZ are also regulated by distinct upstream cues. The aim of the review is to describe the distinct roles of YAP and TAZ focusing particularly on cancer. Therapeutic strategies targeting either YAP and TAZ proteins or only one of them should be carefully evaluated. Selective targeting of YAP or TAZ may in fact impair different pathways and determine diverse clinical outputs.
Collapse
|
35
|
Calvet L, Dos-Santos O, Spanakis E, Jean-Baptiste V, Le Bail JC, Buzy A, Paul P, Henry C, Valence S, Dib C, Pollard J, Sidhu S, Moll J, Debussche L, Valtingojer I. YAP1 is essential for malignant mesothelioma tumor maintenance. BMC Cancer 2022; 22:639. [PMID: 35689194 PMCID: PMC9188206 DOI: 10.1186/s12885-022-09686-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/17/2022] [Indexed: 11/10/2022] Open
Abstract
Malignant pleural mesothelioma, a tumor arising from the membrane covering the lungs and the inner side of the ribs, is a cancer in which genetic alterations of genes encoding proteins that act on or are part of the Hippo-YAP1 signaling pathway are frequent. Dysfunctional Hippo signaling may result in aberrant activation of the transcriptional coactivator protein YAP1, which binds to and activates transcription factors of the TEAD family. Recent studies have associated elevated YAP1 protein activity with a poor prognosis of malignant mesothelioma and its resistance to current therapies, but its role in tumor maintenance is unclear. In this study, we investigate the dependence of malignant mesothelioma on YAP1 signaling to maintain fully established tumors in vivo. We show that downregulation of YAP1 in a dysfunctional Hippo genetic background results in the inhibition of YAP1/TEAD-dependent gene expression, the induction of apoptosis, and the inhibition of tumor cell growth in vitro. The conditional downregulation of YAP1 in established tumor xenografts leads to the inhibition of YAP1-dependent gene transcription and eventually tumor regression. This effect is only seen in the YAP1-activated MSTO-211H mesothelioma xenograft model, but not in the Hippo-independent HCT116 colon cancer xenograft model. Our data demonstrate that, in the context of a Hippo pathway mutated background, YAP1 activity alone is enough to maintain the growth of established tumors in vivo, thus validating the concept of inhibiting the activated YAP1-TEAD complex for the treatment of malignant pleural mesothelioma patients.
Collapse
Affiliation(s)
- Loreley Calvet
- Department of Oncology, In Vivo Pharmacology, Sanofi Research Center, Vitry-sur-Seine, France.
| | - Odette Dos-Santos
- Department of Oncology, Molecular Oncology, Sanofi Research Center, Vitry-sur-Seine, France
| | - Emmanuel Spanakis
- Department of Oncology, Precision Oncology, Sanofi Research Center, Vitry-sur-Seine, France
| | | | | | - Armelle Buzy
- Department of Translational Sciences, Sanofi Research Center, Chilly Mazarin, France
| | - Pascal Paul
- Department of Translational Sciences, Sanofi Research Center, Chilly Mazarin, France
| | - Christophe Henry
- Department of Oncology, Molecular Oncology, Sanofi Research Center, Vitry-sur-Seine, France
| | - Sandrine Valence
- Department of Oncology, Precision Oncology, Sanofi Research Center, Vitry-sur-Seine, France
| | - Colette Dib
- Department of Oncology, Precision Oncology, Sanofi Research Center, Vitry-sur-Seine, France
| | - Jack Pollard
- Department of Oncology, Precision Oncology, Sanofi Research Center, Cambridge, USA
| | - Sukhvinder Sidhu
- Department of Oncology, In Vivo Pharmacology, Sanofi Research Center, Vitry-sur-Seine, France
| | - Jürgen Moll
- Department of Oncology, Molecular Oncology, Sanofi Research Center, Vitry-sur-Seine, France
| | - Laurent Debussche
- Department of Oncology, In Vivo Pharmacology, Sanofi Research Center, Vitry-sur-Seine, France.,Department of Oncology, Molecular Oncology, Sanofi Research Center, Vitry-sur-Seine, France
| | - Iris Valtingojer
- Department of Oncology, Molecular Oncology, Sanofi Research Center, Vitry-sur-Seine, France
| |
Collapse
|
36
|
Zhang Y, Wang X, Zhou X. Functions of Yes-association protein (YAP) in cancer progression and anticancer therapy resistance. BRAIN SCIENCE ADVANCES 2022. [DOI: 10.26599/bsa.2022.9050008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The Hippo pathway, a highly conserved kinase cascade, regulates cell proliferation, apoptosis, organ size, and tissue homeostasis. Dysregulation of this pathway reportedly plays an important role in the progression of various human cancers. Yes-association protein (YAP), the Hippo pathway’s core effector, is considered a marker for cancer therapy and patient prognosis. In addition, studies have indicated that YAP is involved in promoting anticancer drug resistance. This review summarizes current knowledge on YAP’s role in cancer progression, anticancer drug resistance, and advances in the development of YAP-targeting drugs. A thorough understanding of the complex interactions among molecular, cellular, and environmental factors concerning YAP function in cancer progression may provide new insight into the underlying mechanism of anticancer drug resistance. It might lead to improved prognosis through novel combined therapies.
Collapse
Affiliation(s)
- Yu Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- These authors contributed equally to this work
| | - Xiang Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- The Graduate School, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- These authors contributed equally to this work
| | - Xiuping Zhou
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| |
Collapse
|
37
|
Liu P, Zeng J, Yang G. Expression of yes‑associated protein, β‑catenin and smoothened, and their clinical significance in invasive breast cancer. Exp Ther Med 2022; 23:429. [PMID: 35607374 PMCID: PMC9121206 DOI: 10.3892/etm.2022.11356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/22/2022] [Indexed: 12/05/2022] Open
Abstract
The expression profile and role of yes-associated protein (YAP) in occurrence and development of breast cancer is ambiguous. The present study aimed to explore the relationship among the YAP, β-catenin and smoothened (SMO) signaling pathways to provide a theoretical basis for the clinical diagnosis and treatment of invasive breast cancer. Immunohistochemistry was used to determine the protein expression levels of YAP, β-catenin and SMO in tumor, tumor-adjacent and normal breast tissue. The possible association between the expression levels of these three proteins and the clinicopathological features of patients with breast cancer was then analyzed by the χ2 test. The protein expression of YAP was found to be downregulated, whilst β-catenin and SMO expression were found to be upregulated in tumor tissues as compared with that in normal breast tissues. In addition, the expression of YAP in breast cancer tissues was found to be associated with that of human epidermal growth factor receptor 2 (HER2), progesterone and estrogen receptors. By contrast, the protein expression of β-catenin and SMO in breast cancer tissues was only associated with HER2. There was a negative correlation between the expression of YAP and SMO protein in breast cancer tissues. Compared with that in the changes in each of YAP, β-catenin and SMO protein expression levels individually, their combined changes in expression were demonstrated to associate significantly with the tumor histological grade. To conclude, data from the present study suggest that the combined protein expression of YAP, β-catenin and SMO can be used as a prognostic indicator for the treatment of invasive breast cancer.
Collapse
Affiliation(s)
- Pengju Liu
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Jianfeng Zeng
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Gaohua Yang
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| |
Collapse
|
38
|
Analysis of Yes-Associated Protein-1 (YAP1) Target Gene Signature to Predict Progressive Breast Cancer. J Clin Med 2022; 11:jcm11071947. [PMID: 35407556 PMCID: PMC8999906 DOI: 10.3390/jcm11071947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/02/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023] Open
Abstract
Breast cancers are treated according to the ER/PR or HER2 expression and show better survival outcomes with targeted therapy. Triple-negative breast cancers (TNBCs) with a lack of expression of ER/PR and HER2 are treated with systemic therapy with unpredictable responses and outcomes. It is essential to investigate novel markers to identify targeted therapies for TNBC. One such marker is YAP1, a transcription co-activator protein that shows association with poor prognosis of breast cancer. YAP1 transcriptionally regulates the expression of genes that drive the oncogenic phenotypes. Here, we assess a potential YAP target gene signature to predict a progressive subset of breast tumors from METABRIC and TCGA datasets. YAP1 target genes were shortlisted based on expression correlation and concordance with YAP1 expression and significant association with survival outcomes of patients. Hierarchical clustering was performed for the shortlisted genes. The utility of the clustered genes was assessed by survival analysis to identify a recurring subset. Expression of the shortlisted target genes showed significant association with survival outcomes of HER2-positive and TNBC subset in both datasets. The shortlisted genes were verified using an independent dataset. Further validation using IHC can prove the utility of this potential prognostic signature to identify a recurrent subset of HER2-positive and TNBC subtypes.
Collapse
|
39
|
Transcriptional repression of estrogen receptor alpha by YAP reveals the Hippo pathway as therapeutic target for ER + breast cancer. Nat Commun 2022; 13:1061. [PMID: 35217640 PMCID: PMC8881512 DOI: 10.1038/s41467-022-28691-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/01/2022] [Indexed: 12/30/2022] Open
Abstract
Extensive knowledge has been gained on the transcription network controlled by ERα, however, the mechanism underlying ESR1 (encoding ERα) expression is less understood. We recently discovered that the Hippo pathway is required for the proper expression of ESR1. YAP/TAZ are transcription coactivators that are phosphorylated and inhibited by the Hippo pathway kinase LATS. Here we delineated the molecular mechanisms underlying ESR1 transcription repression by the Hippo pathway. Mechanistically, YAP binds to TEAD to increase local chromatin accessibility to stimulate transcription of nearby genes. Among the YAP target genes, Vestigial-Like Protein 3 (VGLL3) competes with YAP/TAZ for binding to TEAD transcription factor and recruits the NCOR2/SMRT repressor to the super-enhancer of ESR1 gene, leading to epigenetic alteration and transcriptional silencing. We developed a potent LATS inhibitor VT02956. Targeting the Hippo pathway by VT02956 represses ESR1 expression and inhibits the growth of ER+ breast cancer cells as well as patient-derived tumour organoids. Moreover, histone deacetylase inhibitors, such as Entinostat, induce VGLL3 expression to inhibit ER+ breast cancer cells. Our study suggests LATS as unexpected cancer therapeutic targets, especially for endocrine-resistant breast cancers.
Collapse
|
40
|
The Hippo pathway in cancer: YAP/TAZ and TEAD as therapeutic targets in cancer. Clin Sci (Lond) 2022; 136:197-222. [PMID: 35119068 PMCID: PMC8819670 DOI: 10.1042/cs20201474] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023]
Abstract
Tumorigenesis is a highly complex process, involving many interrelated and cross-acting signalling pathways. One such pathway that has garnered much attention in the field of cancer research over the last decade is the Hippo signalling pathway. Consisting of two antagonistic modules, the pathway plays an integral role in both tumour suppressive and oncogenic processes, generally via regulation of a diverse set of genes involved in a range of biological functions. This review discusses the history of the pathway within the context of cancer and explores some of the most recent discoveries as to how this critical transducer of cellular signalling can influence cancer progression. A special focus is on the various recent efforts to therapeutically target the key effectors of the pathway in both preclinical and clinical settings.
Collapse
|
41
|
Chen Q, Wang H, Li Z, Li F, Liang L, Zou Y, Shen H, Li J, Xia Y, Cheng Z, Yang T, Wang K, Shen F. Circular RNA ACTN4 promotes intrahepatic cholangiocarcinoma progression by recruiting YBX1 to initiate FZD7 transcription. J Hepatol 2022; 76:135-147. [PMID: 34509526 DOI: 10.1016/j.jhep.2021.08.027] [Citation(s) in RCA: 116] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Intrahepatic cholangiocarcinoma (ICC) is a primary liver cancer with high aggressiveness and extremely poor prognosis. The role of circular RNAs (circRNAs) in ICC carcinogenesis and progression remains to be determined. METHODS CircRNA microarray was performed to screen significantly upregulated circRNAs in paired ICC and non-tumor tissues. Colony formation, transwell, and xenograft models were used to examine the role of circRNAs in ICC proliferation and metastasis. RNA pulldown, mass spectrometry, chromatin immunoprecipitation, RNA-binding protein immunoprecipitation, chromatin isolation by RNA purification, electrophoretic mobility shift assay, and luciferase reporter assays were used to explore the molecular sponge role of the circRNA (via miRNA binding), and the interaction between circRNA and RNA-binding proteins. RESULTS Hsa_circ_0050898, which originated from exon 1 to exon 20 of the ACTN4 gene (named circACTN4), was significantly upregulated in ICC. High circACTN4 expression was associated with enhanced tumor proliferation and metastasis in vitro and in vivo, as well as a worse prognosis following ICC resection. In addition, circACTN4 upregulated Yes-associated protein 1 (YAP1) expression by sponging miR-424-5p. More importantly, circACTN4 also recruited Y-box binding protein 1 (YBX1) to stimulate Frizzled-7 (FZD7) transcription. Furthermore, circACTN4 overexpression in ICC cells enhanced the interaction between YAP1 and β-catenin, which are the core components of the Hippo and Wnt signaling pathways, respectively. CONCLUSIONS CircACTN4 was upregulated in ICC and promoted ICC proliferation and metastasis by acting as a molecular sponge of miR-424-5p, as well as by interacting with YBX1 to transcriptionally activate FZD7. These results suggest that circACTN4 is a potential prognostic marker and therapeutic target for ICC. LAY SUMMARY Intrahepatic cholangiocarcinoma is a primary liver cancer associated with aggressiveness and extremely poor prognosis. It is essential for therapeutic development that we uncover relevant pathogenic pathways. Herein, we showed that a circular RNA (circACTN4) was highly expressed in intrahepatic cholangiocarcinoma and was positively associated with tumor growth and metastasis through key developmental signaling pathways. Thus, circACTN4 could be a prognostic biomarker and therapeutic target for intrahepatic cholangiocarcinoma.
Collapse
Affiliation(s)
- Qinjunjie Chen
- Department of Hepatic Surgery IV, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Haibo Wang
- Department of Hepatic Surgery IV, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Zheng Li
- Department of Hepatic Surgery IV, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Fengwei Li
- Department of Hepatic Surgery IV, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China; Department of Hepatic Surgery II, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Leilei Liang
- Department of Gynecological Oncology, Chinese Academy of Medical Sciences Cancer Institute and Hospital: Cancer Hospital Chinese Academy of Medical Sciences, Beijing, China
| | - Yiran Zou
- Department of Hepatic Surgery IV, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Hao Shen
- Department of Hepatobiliary Surgery, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Jun Li
- Department of Hepatic Surgery IV, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Yong Xia
- Department of Hepatic Surgery IV, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Zhangjun Cheng
- Hepato-Pancreato-Biliary Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Tian Yang
- Department of Hepatobiliary Surgery, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Kui Wang
- Department of Hepatic Surgery II, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Feng Shen
- Department of Hepatic Surgery IV, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
42
|
Suwannakul N, Midorikawa K, Du C, Qi YP, Zhang J, Xiang BD, Murata M, Ma N. Subcellular localization of HMGB1 in human cholangiocarcinoma: correlation with tumor stage. Discov Oncol 2021; 12:49. [PMID: 35201494 PMCID: PMC8777519 DOI: 10.1007/s12672-021-00446-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/22/2021] [Indexed: 11/23/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant disease with a poor prognosis, and several studies have been conducted using different molecular markers as a tool for CCA diagnosis, including Clonorchis sinensis (CS)-CCA. We initially identified the expression profiles of the three markers of interest, HMGB1, SOX9, and YAP1, using GSE (GSE76297 and GSE32958) datasets. Upregulated levels of these three proteins were detected in CCA samples compared to those in normal samples. To clarify this issue, 24 human CCA tissues with paired adjacent normal tissues were evaluated using immunohistochemical staining. Of the three markers, the total cellular staining intensities were scanned, and subcellular localization was scored in the nuclear and cytoplasmic regions. The intensities of HMGB1, SOX9, and YAP1 were elevated in CCA tissues than the adjacent normal tissues. Individual scoring of subcellular localization revealed that the expression levels of HMGB1 (nucleus) and YAP1 (nucleus and cytoplasm) were significantly different from the pathologic M stage. Moreover, the translocation pattern was categorized using "site-index", and the results demonstrated that the overexpression of HMGB1 and SOX9 was mostly observed in both the nucleus and cytoplasm, whereas YAP1 was predominantly expressed in the cytoplasm of tumor cells. Interestingly, the site index of HMGB1 was moderately correlated with the tumor stage (r = 0.441, p = 0.031). These findings imply that the overexpression of subcellular HMGB1 could be associated with the metastatic status of patients with CS-CCA, which was shown to be effective for CS-CCA prognosis.
Collapse
Affiliation(s)
- Nattawan Suwannakul
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kaoru Midorikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Chunping Du
- Department of Pathology, Guangxi Medical University Cancer Hospital, Guangxi, China
| | - Ya-Peng Qi
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi, China
| | - Jie Zhang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi, China
| | - Bang-De Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi, China
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Ning Ma
- Graduate School of Health Science, Suzuka University of Medical Science, 1001-1, Kishioka, Suzuka, Mie, 510-0293, Japan.
| |
Collapse
|
43
|
Zhu M, Peng R, Liang X, Lan Z, Tang M, Hou P, Song JH, Mak CSL, Park J, Zheng SE, Huang A, Ma X, Chen R, Chang Q, Logothetis CJ, Jain AK, Lin SH, Katayama H, Hanash S, Wang G. P4HA2-induced prolyl hydroxylation suppresses YAP1-mediated prostate cancer cell migration, invasion, and metastasis. Oncogene 2021; 40:6049-6056. [PMID: 34471235 PMCID: PMC8526415 DOI: 10.1038/s41388-021-02000-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023]
Abstract
Yes-associated protein 1 (YAP1), a key player in the Hippo pathway, has been shown to play a critical role in tumor progression. However, the role of YAP1 in prostate cancer cell invasion, migration, and metastasis is not well defined. Through functional, transcriptomic, epigenomic, and proteomic analyses, we showed that prolyl hydroxylation of YAP1 plays a critical role in the suppression of cell migration, invasion, and metastasis in prostate cancer. Knockdown (KD) or knockout (KO) of YAP1 led to an increase in cell migration, invasion, and metastasis in prostate cancer cells. Microarray analysis showed that the EMT pathway was activated in Yap1-KD cells. ChIP-seq analysis showed that YAP1 target genes are enriched in pathways regulating cell migration. Mass spectrometry analysis identified P4H prolyl hydroxylase in the YAP1 complex and YAP1 was hydroxylated at multiple proline residues. Proline-to-alanine mutations of YAP1 isoform 3 identified proline 174 as a critical residue, and its hydroxylation suppressed cell migration, invasion, and metastasis. KO of P4ha2 led to an increase in cell migration and invasion, which was reversed upon Yap1 KD. Our study identified a novel regulatory mechanism of YAP1 by which P4HA2-dependent prolyl hydroxylation of YAP1 determines its transcriptional activities and its function in prostate cancer metastasis.
Collapse
Affiliation(s)
- Ming Zhu
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ruiqing Peng
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xin Liang
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zhengdao Lan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ming Tang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Pingping Hou
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jian H. Song
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Celia Sze Ling Mak
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jiwon Park
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shui-er Zheng
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ailing Huang
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xingdi Ma
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ruidong Chen
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qing Chang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Christopher J. Logothetis
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Abhinav K. Jain
- Department of Epigenetics and Molecular Carcinogenesis & Epigenomics Profiling Core Facility, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sue-Hwa Lin
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hiroyuki Katayama
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guocan Wang
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
44
|
Li FL, Guan KL. The two sides of Hippo pathway in cancer. Semin Cancer Biol 2021; 85:33-42. [PMID: 34265423 DOI: 10.1016/j.semcancer.2021.07.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 02/08/2023]
Abstract
The Hippo signaling pathway was originally characterized by genetic studies in Drosophila to regulate tissue growth and organ size, and the core components of this pathway are highly conserved in mammals. Studies over the past two decades have revealed critical physiological and pathological functions of the Hippo tumor-suppressor pathway, which is tightly regulated by a broad range of intracellular and extracellular signals. These properties enable the Hippo pathway to serve as an important controller in organismal development and adult tissue homeostasis. Dysregulation of the Hippo signaling has been observed in many cancer types, suggesting the possibility of cancer treatment by targeting the Hippo pathway. The general consensus is that Hippo has tumor suppressor function. However, growing evidence also suggests that the function of the Hippo pathway in malignancy is cancer context dependent as recent studies indicating tumor promoting function of LATS. This article surveys the Hippo pathway signaling mechanisms and then reviews both the tumor suppressing and promoting function of this pathway. A comprehensive understanding of the dual roles of the Hippo pathway in cancer will benefit future therapeutic targeting of the Hippo pathway for cancer treatment.
Collapse
Affiliation(s)
- Fu-Long Li
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Kun-Liang Guan
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
45
|
Morciano G, Vezzani B, Missiroli S, Boncompagni C, Pinton P, Giorgi C. An Updated Understanding of the Role of YAP in Driving Oncogenic Responses. Cancers (Basel) 2021; 13:cancers13123100. [PMID: 34205830 PMCID: PMC8234554 DOI: 10.3390/cancers13123100] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary In 2020, the global cancer database GLOBOCAN estimated 19.3 million new cancer cases worldwide. The discovery of targeted therapies may help prognosis and outcome of the patients affected, but the understanding of the plethora of highly interconnected pathways that modulate cell transformation, proliferation, invasion, migration and survival remains an ambitious goal. Here we propose an updated state of the art of YAP as the key protein driving oncogenic response via promoting all those steps at multiple levels. Of interest, the role of YAP in immunosuppression is a field of evolving research and growing interest and this summary about the current pharmacological therapies impacting YAP serves as starting point for future studies. Abstract Yes-associated protein (YAP) has emerged as a key component in cancer signaling and is considered a potent oncogene. As such, nuclear YAP participates in complex and only partially understood molecular cascades that are responsible for the oncogenic response by regulating multiple processes, including cell transformation, tumor growth, migration, and metastasis, and by acting as an important mediator of immune and cancer cell interactions. YAP is finely regulated at multiple levels, and its localization in cells in terms of cytoplasm–nucleus shuttling (and vice versa) sheds light on interesting novel anticancer treatment opportunities and putative unconventional functions of the protein when retained in the cytosol. This review aims to summarize and present the state of the art knowledge about the role of YAP in cancer signaling, first focusing on how YAP differs from WW domain-containing transcription regulator 1 (WWTR1, also named as TAZ) and which upstream factors regulate it; then, this review focuses on the role of YAP in different cancer stages and in the crosstalk between immune and cancer cells as well as growing translational strategies derived from its inhibitory and synergistic effects with existing chemo-, immuno- and radiotherapies.
Collapse
|
46
|
Yang X, Nanayakkara J, Claypool D, Saghafinia S, Wong JJM, Xu M, Wang X, Nicol CJB, Michael IP, Hafner M, Yang X, Renwick N. A miR-375/YAP axis regulates neuroendocrine differentiation and tumorigenesis in lung carcinoid cells. Sci Rep 2021; 11:10455. [PMID: 34001972 PMCID: PMC8129150 DOI: 10.1038/s41598-021-89855-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/30/2021] [Indexed: 02/03/2023] Open
Abstract
Lung carcinoids are variably aggressive and mechanistically understudied neuroendocrine neoplasms (NENs). Here, we identified and elucidated the function of a miR-375/yes-associated protein (YAP) axis in lung carcinoid (H727) cells. miR-375 and YAP are respectively high and low expressed in wild-type H727 cells. Following lentiviral CRISPR/Cas9-mediated miR-375 depletion, we identified distinct transcriptomic changes including dramatic YAP upregulation. We also observed a significant decrease in neuroendocrine differentiation and substantial reductions in cell proliferation, transformation, and tumor growth in cell culture and xenograft mouse disease models. Similarly, YAP overexpression resulted in distinct and partially overlapping transcriptomic changes, phenocopying the effects of miR-375 depletion in the same models as above. Transient YAP knockdown in miR-375-depleted cells reversed the effects of miR-375 on neuroendocrine differentiation and cell proliferation. Pathways analysis and confirmatory real-time PCR studies of shared dysregulated target genes indicate that this axis controls neuroendocrine related functions such as neural differentiation, exocytosis, and secretion. Taken together, we provide compelling evidence that a miR-375/YAP axis is a critical mediator of neuroendocrine differentiation and tumorigenesis in lung carcinoid cells.
Collapse
Affiliation(s)
- Xiaojing Yang
- grid.410356.50000 0004 1936 8331Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen’s University, 88 Stuart St, Kingston, ON K7L 3N6 Canada
| | - Jina Nanayakkara
- grid.410356.50000 0004 1936 8331Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen’s University, 88 Stuart St, Kingston, ON K7L 3N6 Canada
| | - Duncan Claypool
- grid.420086.80000 0001 2237 2479Laboratory of Muscle Stem Cells and Gene Regulation, NIAMS, 50 South Drive, Bethesda, MD 20892 USA
| | - Sadegh Saghafinia
- grid.5333.60000000121839049Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Justin J. M. Wong
- grid.410356.50000 0004 1936 8331Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen’s University, 88 Stuart St, Kingston, ON K7L 3N6 Canada
| | - Minqi Xu
- grid.410356.50000 0004 1936 8331Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen’s University, 88 Stuart St, Kingston, ON K7L 3N6 Canada
| | - Xiantao Wang
- grid.420086.80000 0001 2237 2479Laboratory of Muscle Stem Cells and Gene Regulation, NIAMS, 50 South Drive, Bethesda, MD 20892 USA
| | - Christopher J. B. Nicol
- grid.410356.50000 0004 1936 8331Department of Pathology and Molecular Medicine, Queen’s University, 88 Stuart St, Kingston, ON K7L 3N6 Canada ,Division of Cancer Biology and Genetics, Queen’s Cancer Research Institute, 10 Stuart St, Kingston, ON K7L 3N6 Canada
| | - Iacovos P. Michael
- grid.5333.60000000121839049Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Markus Hafner
- grid.420086.80000 0001 2237 2479Laboratory of Muscle Stem Cells and Gene Regulation, NIAMS, 50 South Drive, Bethesda, MD 20892 USA
| | - Xiaolong Yang
- grid.410356.50000 0004 1936 8331Cancer Research Laboratory, Department of Pathology and Molecular Medicine, Queen’s University, 88 Stuart St, Kingston, ON K7L 3N6 Canada
| | - Neil Renwick
- grid.410356.50000 0004 1936 8331Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen’s University, 88 Stuart St, Kingston, ON K7L 3N6 Canada
| |
Collapse
|
47
|
Ma X. Context-dependent interplay between Hippo and JNK pathway in Drosophila. AIMS GENETICS 2021. [DOI: 10.3934/genet.2014.1.20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AbstractBoth Hippo and JNK signaling have well-established roles in regulating many physiological processes, including cell proliferation, growth, survival, and migration. An increasing body of evidence shows that dysregulation of either Hippo or JNK pathway would lead to tumorigenesis. Recently, studies in Drosophila has coupled Hippo with JNK pathway in numerous ways ranging from tissue regeneration to growth control. In this review, I provide an overview of the current understanding of crosstalk between Hippo and JNK pathway in Drosophila, and discuss their context-dependent interactions in gut homeostasis, regeneration, cell competition and migration.
Collapse
Affiliation(s)
- Xianjue Ma
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
48
|
Cha YJ, Kim D, Bae SJ, Ahn SG, Jeong J, Cho MK, Paik PS, Yoo TK, Park WC, Yoon CI. The association between the expression of nuclear Yes-associated protein 1 (YAP1) and p53 protein expression profile in breast cancer patients. PLoS One 2021; 16:e0250986. [PMID: 33970925 PMCID: PMC8109764 DOI: 10.1371/journal.pone.0250986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/19/2021] [Indexed: 01/17/2023] Open
Abstract
Background Yes-associated protein 1 (YAP1) is a key effector molecule regulated by the Hippo pathway and described as a poor prognostic factor in breast cancer. Tumor protein 53 (TP53) mutation is well known as a biomarker related to poor survival outcomes. So far clinical characteristics and survival outcome according to YAP1 and TP53 mutation have been poorly identified in breast cancer. Patients and methods Retrospectively, 533 breast tumor tissues were collected at the Seoul St Mary’s hospital and Gangnam Severance Hospital from 1992 to 2017. Immunohistochemistry with YAP1 and p53 specific antibodies were performed, and the clinical data were analyzed. Results Mutant p53 pattern was associated with aggressive tumor features and advanced anatomical stage. Inferior overall survival (OS) and recurrence free survival (RFS) were related with mutant p53 pattern cases with low nuclear YAP1 expression (P = 0.0009 and P = 0.0011, respectively). Multivariate analysis showed that mutant p53 pattern was an independent prognostic marker for OS [hazard ratios (HR): 2.938, 95% confidence intervals (CIs): 1.028–8.395, P = 0.044] and RFS (HR: 1.842, 95% CIs: 1.026–3.304). However, in cases with high nuclear YAP1 expression, there were no significantly difference in OS and RFS according to p53 staining pattern. Conclusion We found that mutant p53 pattern is a poor prognostic biomarker in breast tumor with low nuclear YAP1 expression. Our findings suggest that interaction between nuclear YAP1 and p53 expression pattern impact survival outcomes.
Collapse
Affiliation(s)
- Yoon Jin Cha
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Dooreh Kim
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Soong June Bae
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Gwe Ahn
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Joon Jeong
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Min Kyung Cho
- Division of Breast Surgery, Department of Surgery, Seoul St Mary’s Hospital, College of Medicine, The Catholic University of Seoul, Seoul, Korea
| | - Pill Sun Paik
- Division of Breast Surgery, Department of Surgery, Seoul St Mary’s Hospital, College of Medicine, The Catholic University of Seoul, Seoul, Korea
| | - Tae-Kyung Yoo
- Division of Breast Surgery, Department of Surgery, Seoul St Mary’s Hospital, College of Medicine, The Catholic University of Seoul, Seoul, Korea
| | - Woo-Chan Park
- Division of Breast Surgery, Department of Surgery, Seoul St Mary’s Hospital, College of Medicine, The Catholic University of Seoul, Seoul, Korea
| | - Chang Ik Yoon
- Division of Breast Surgery, Department of Surgery, Seoul St Mary’s Hospital, College of Medicine, The Catholic University of Seoul, Seoul, Korea
- * E-mail:
| |
Collapse
|
49
|
Spencer A, Sligar AD, Chavarria D, Lee J, Choksi D, Patil NP, Lee H, Veith AP, Riley WJ, Desai S, Abbaspour A, Singeetham R, Baker AB. Biomechanical regulation of breast cancer metastasis and progression. Sci Rep 2021; 11:9838. [PMID: 33972619 PMCID: PMC8110548 DOI: 10.1038/s41598-021-89288-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/22/2021] [Indexed: 01/20/2023] Open
Abstract
Physical activity has been consistently linked to decreased incidence of breast cancer and a substantial increase in the length of survival of patients with breast cancer. However, the understanding of how applied physical forces directly regulate breast cancer remains limited. We investigated the role of mechanical forces in altering the chemoresistance, proliferation and metastasis of breast cancer cells. We found that applied mechanical tension can dramatically alter gene expression in breast cancer cells, leading to decreased proliferation, increased resistance to chemotherapeutic treatment and enhanced adhesion to inflamed endothelial cells and collagen I under fluidic shear stress. A mechanistic analysis of the pathways involved in these effects supported a complex signaling network that included Abl1, Lck, Jak2 and PI3K to regulate pro-survival signaling and enhancement of adhesion under flow. Studies using mouse xenograft models demonstrated reduced proliferation of breast cancer cells with orthotopic implantation and increased metastasis to the skull when the cancer cells were treated with mechanical load. Using high throughput mechanobiological screens we identified pathways that could be targeted to reduce the effects of load on metastasis and found that the effects of mechanical load on bone colonization could be reduced through treatment with a PI3Kγ inhibitor.
Collapse
Affiliation(s)
- Adrianne Spencer
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Andrew D Sligar
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Daniel Chavarria
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Jason Lee
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Darshil Choksi
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Nikita P Patil
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - HooWon Lee
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Austin P Veith
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - William J Riley
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Shubh Desai
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Ali Abbaspour
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Rohan Singeetham
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Aaron B Baker
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA.
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA.
- Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA.
- Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
50
|
Qadir J, Riaz SK, Taj K, Sattar N, Sahar NE, Khan JS, Kayani MA, Haq F, Arshad Malik MF. Increased YAP1 expression is significantly associated with breast cancer progression, metastasis and poor survival. Future Oncol 2021; 17:2725-2734. [PMID: 33880946 DOI: 10.2217/fon-2020-1080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
YAP1 plays a key role as a transcriptional coactivator in the Hippo pathway. Based on conflicting reports regarding YAP1 function in cancer, this study discerned its role in breast carcinogenesis. First, a systematic review of salient breast cancer studies targeting YAP1 dysregulation was performed. Additionally, freshly excised tumor specimens of approximately 200 breast cancer patients were processed for quantification of YAP1 expression at mRNA and protein levels using quantitative PCR and immunohistochemistry, respectively. YAP1 expression was nine folds higher in tumors versus controls and significantly associated with metastasis (p < 0.05) and poor survival in Pakistani breast cancer patients. These findings establish the role of YAP1 overexpression in tumorigenesis and metastasis. Hence, YAP1 inhibition may be considered a possible therapeutic strategy.
Collapse
Affiliation(s)
- Javeria Qadir
- Department of Biosciences, Cancer Genetics Lab, COMSATS University Islamabad, Islamabad, 44000, Pakistan
| | - Syeda Kiran Riaz
- Department of Molecular Biology, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, 44000, Pakistan
| | - Kiran Taj
- Department of Biosciences, Cancer Genetics Lab, COMSATS University Islamabad, Islamabad, 44000, Pakistan
| | - Natasha Sattar
- Department of Biosciences, Cancer Genetics Lab, COMSATS University Islamabad, Islamabad, 44000, Pakistan
| | - Namood-E Sahar
- Department of Biosciences, Cancer Genetics Lab, COMSATS University Islamabad, Islamabad, 44000, Pakistan.,College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jahangir Sarwar Khan
- Department of General Surgery, Rawalpindi Medical University, Rawalpindi, 46000, Pakistan
| | - Mahmood Akhtar Kayani
- Department of Biosciences, Cancer Genetics Lab, COMSATS University Islamabad, Islamabad, 44000, Pakistan
| | - Farhan Haq
- Department of Biosciences, Cancer Genetics Lab, COMSATS University Islamabad, Islamabad, 44000, Pakistan
| | | |
Collapse
|