1
|
Bakhanashvili M. The Role of Tumor Suppressor p53 Protein in HIV-Host Cell Interactions. Cells 2024; 13:1512. [PMID: 39329696 PMCID: PMC11429533 DOI: 10.3390/cells13181512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
The virus-host relationship is indispensable for executing successful viral infection. The pathogenesis of HIV is determined by an intricate interaction between the host and the virus for the regulation of HIV infection, thereby influencing various aspects, including the regulation of signaling pathways. High mutation rates and population heterogeneity characterize HIV with consequences for viral pathogenesis and the potential to escape the immune system and anti-viral inhibitors used in therapy. The origin of the high mutation rates exhibited by HIV may be attributed to a limited template-copied fidelity that likely operates in the cytoplasm. HIV-1 infection induces upregulation and activation of tumor suppressor p53 protein in the early stages of HIV-1 infection. p53 plays a multifaceted role in the context of HIV infection, thereby affecting viral replication. p53 is involved in maintaining genetic integrity, actively participating in various DNA repair processes through its various biochemical activities and via its ability to interact with components of the repair machinery. This report focuses on the impact of the p53 protein on the HIV-1 reverse transcription process while incorporating various incorrect and non-canonical nucleotides. The presence of functional host-coded p53 protein with proofreading-repair activities in the cytoplasm may lead to various biological outcomes.
Collapse
Affiliation(s)
- Mary Bakhanashvili
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
2
|
Aslamkhan AG, Michna L, Podtelezhnikov A, Vlasakova K, Suemizu H, Ohnishi Y, Liu L, Lane P, Xu Q, Kuhls MC, Wang Z, Pacchione S, Erdos Z, Tracy RW, Koeplinger K, Muniappa N, Valentine J, Galijatovic-Idrizbegovic A, Glaab WE, Sistare FD, Lebron J. A mechanistic biomarker investigation of fialuridine hepatotoxicity using the chimeric TK-NOG Hu-liver mouse model and in vitro micropatterned hepatocyte cocultures. Toxicol Res (Camb) 2024; 13:tfad120. [PMID: 38223529 PMCID: PMC10784659 DOI: 10.1093/toxres/tfad120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/20/2023] [Accepted: 12/01/2023] [Indexed: 01/16/2024] Open
Abstract
Fialuridine (FIAU) is a nucleoside-based drug that caused liver failure and deaths in a human clinical trial that were not predicted by nonclinical safety studies. A recent report concluded that a TK-NOG humanized liver (hu-liver) mouse model detected human-specific FIAU liver toxicity, and broader use of that model could improve drug safety testing. We further evaluated this model at similar dose levels to assess FIAU sensitivity and potential mechanistic biomarkers. Although we were unable to reproduce the marked acute liver toxicity with two separate studies (including one with a "sensitized" donor), we identified molecular biomarkers reflecting the early stages of FIAU mitochondrial toxicity, which were not seen with its stereoisomer (FIRU). Dose dependent FIAU-induced changes in hu-liver mice included more pronounced reductions in mitochondrial to nuclear DNA (mtDNA/nucDNA) ratios in human hepatocytes compared to mouse hepatocytes and kidneys of the same animals. FIAU treatment also triggered a p53 transcriptional response and opposing changes in transcripts of nuclear- and mitochondrial-encoded mitochondrial proteins. The time dependent accumulation of FIAU into mtDNA is consistent with the ≥9-week latency of liver toxicity observed for FIAU in the clinic. Similar changes were observed in an in vitro micro-patterned hepatocyte coculture system. In addition, FIAU-dependent mtDNA/nucDNA ratio and transcriptional alterations, especially reductions in mitochondrially encoded transcripts, were seen in livers of non-engrafted TK-NOG and CD-1 mice dosed for a shorter period. Conclusion: These mechanistic biomarker findings can be leveraged in an in vitro model and in a more routine preclinical model (CD-1 mice) to identify nucleosides with such a FIAU-like mitochondrial toxicity mechanistic liability potential. Further optimization of the TK-NOG hu-liver mouse model is necessary before broader adoption for drug safety testing.
Collapse
Affiliation(s)
- Amy G Aslamkhan
- Nonclinical Drug Safety, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, United States
| | - Laura Michna
- Nonclinical Drug Safety, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, United States
| | - Alexei Podtelezhnikov
- Nonclinical Drug Safety, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, United States
| | - Katerina Vlasakova
- Nonclinical Drug Safety, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, United States
| | - Hiroshi Suemizu
- Laboratory Animal Research, Central Institute for Experimental Animals, 210-0821 Kawasaki-ku, Kawasaki 3-25-12 Tonomachi, Japan
| | - Yasuyuki Ohnishi
- Laboratory Animal Research, Central Institute for Experimental Animals, 210-0821 Kawasaki-ku, Kawasaki 3-25-12 Tonomachi, Japan
| | - Liping Liu
- Nonclinical Drug Safety, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, United States
| | - Pamela Lane
- Nonclinical Drug Safety, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, United States
| | - Qiuwei Xu
- Nonclinical Drug Safety, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, United States
| | - Matthew C Kuhls
- Nonclinical Drug Safety, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, United States
| | - Zhibin Wang
- Nonclinical Drug Safety, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, United States
| | - Stephen Pacchione
- Nonclinical Drug Safety, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, United States
| | - Zoltan Erdos
- Nonclinical Drug Safety, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, United States
| | - Rodger William Tracy
- Pharmacokinetics, Dynamics, Metabolism and Bioanalytics, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA, United States
| | - Kenneth Koeplinger
- Pharmacokinetics, Dynamics, Metabolism and Bioanalytics, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA, United States
| | - Nagaraja Muniappa
- Nonclinical Drug Safety, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, United States
| | - John Valentine
- Pharmacokinetics, Dynamics, Metabolism and Bioanalytics, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA, United States
| | | | - Warren E Glaab
- Nonclinical Drug Safety, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, United States
| | - Frank D Sistare
- Nonclinical Drug Safety, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, United States
| | - Jose Lebron
- Nonclinical Drug Safety, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, United States
| |
Collapse
|
3
|
Chen X, Karmaker N, Cloutier P, Bass AD, Zheng Y, Sanche L. Low-Energy Electron Damage to Plasmid DNA in Thin Films: Dependence on Substrates, Surface Density, Charging, Environment, and Uniformity. J Phys Chem B 2022; 126:5443-5457. [PMID: 35834372 DOI: 10.1021/acs.jpcb.2c03664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interaction of low-energy electrons (LEEs) with DNA plays a significant role in the mechanisms leading to biological damage induced by ionizing radiation, particularly in radiotherapy, and its sensitization by chemotherapeutic drugs and nanoparticles. Plasmids constitute the form of DNA found in mitochondria and appear as a suitable model of genomic DNA. In a search for the best LEE targets, damage was induced to plasmids, in thin films in vacuum, by 6, 10, and 100 eV electrons under single collision conditions. The yields of single- and double-strand breaks, other cluster damage, isolated base lesions, and crosslinks were measured by electrophoresis and enzyme treatment. The films were deposited on oriented graphite or polycrystalline tantalum, with or without DNA autoassembly via diaminopropane (Dap) intercalation. Yields were correlated with the influence of vacuum, film uniformity, surface density, substrates, and the DNA environment. Aided by surface potential measurements and scanning electron microscopy and atomic force microscopy images, the lyophilized Dap-DNA films were found to be the most practical high-quality targets. These studies pave the way to the fabrication of LEE target-films composed of plasmids intercalated with biomolecules that could mimic the cellular environment; for example, as a first step, by replacing Dap with an amino acid.
Collapse
Affiliation(s)
- Xingju Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P. R. China
| | - Nanda Karmaker
- Département de Médecine Nucléaire et Radiobiologie et Centre de Recherche Clinique, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Pierre Cloutier
- Département de Médecine Nucléaire et Radiobiologie et Centre de Recherche Clinique, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Andrew D Bass
- Département de Médecine Nucléaire et Radiobiologie et Centre de Recherche Clinique, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Yi Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P. R. China.,Département de Médecine Nucléaire et Radiobiologie et Centre de Recherche Clinique, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Léon Sanche
- Département de Médecine Nucléaire et Radiobiologie et Centre de Recherche Clinique, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| |
Collapse
|
4
|
Walker BR, Moraes CT. Nuclear-Mitochondrial Interactions. Biomolecules 2022; 12:biom12030427. [PMID: 35327619 PMCID: PMC8946195 DOI: 10.3390/biom12030427] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondria, the cell’s major energy producers, also act as signaling hubs, interacting with other organelles both directly and indirectly. Despite having its own circular genome, the majority of mitochondrial proteins are encoded by nuclear DNA. To respond to changes in cell physiology, the mitochondria must send signals to the nucleus, which can, in turn, upregulate gene expression to alter metabolism or initiate a stress response. This is known as retrograde signaling. A variety of stimuli and pathways fall under the retrograde signaling umbrella. Mitochondrial dysfunction has already been shown to have severe implications for human health. Disruption of retrograde signaling, whether directly associated with mitochondrial dysfunction or cellular environmental changes, may also contribute to pathological deficits. In this review, we discuss known signaling pathways between the mitochondria and the nucleus, examine the possibility of direct contacts, and identify pathological consequences of an altered relationship.
Collapse
Affiliation(s)
- Brittni R. Walker
- Neuroscience Program, University of Miami Miller School of Medicine, 1420 NW 9th Avenue, Rm. 229, Miami, FL 33136, USA;
| | - Carlos T. Moraes
- Department of Neurology, University of Miami Miller School of Medicine, 1420 NW 9th Avenue, Rm. 229, Miami, FL 33136, USA
- Correspondence: ; Tel.: +1-305-243-5858
| |
Collapse
|
5
|
Friedman Y, Hizi A, Avni D, Bakhanashvili M. Mitochondrial matrix-localized p53 participates in degradation of mitochondrial RNAs. Mitochondrion 2021; 58:200-212. [PMID: 33775872 DOI: 10.1016/j.mito.2021.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/11/2021] [Accepted: 03/22/2021] [Indexed: 11/18/2022]
Abstract
Mitochondrial RNA degradation plays an important role in maintenance of the mitochondria genetic integrity. Mitochondrial localization of p53 was observed in non-stressed and stressed cells. p53, as an RNA-binding protein, exerts 3'→5' exoribonuclease activity. The data suggest that in non-stressed cells, mitochondrial matrix-localized p53, with exoribonuclease activity, may play a housekeeping positive role. p53, through restriction the formation of new RNA/DNA hybrid and processing R-loop, might serve as mitochondrial R-loop suppressor. Conversely, stress-induced matrix-p53 decreases the amount of mitochondrial single-stranded RNA transcripts (including polyA- and non-polyA RNAs), thereby leading to the decline in the amount of mitochondria-encoded oxidative phosphorylation components.
Collapse
Affiliation(s)
- Yael Friedman
- Infectious Diseases Unit, Sheba Medical Center, Tel-Hashomer 5265601, Israel
| | - Amnon Hizi
- Department of Cellular and Developmental Biology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Dror Avni
- Lab. Mol. Cell Biology, Center for Cancer Research & Dep. of Medicine C, Sheba Medical Center, Tel Hashomer, Israel
| | - Mary Bakhanashvili
- Infectious Diseases Unit, Sheba Medical Center, Tel-Hashomer 5265601, Israel; The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
6
|
Abate G, Vezzoli M, Sandri M, Rungratanawanich W, Memo M, Uberti D. Mitochondria and cellular redox state on the route from ageing to Alzheimer's disease. Mech Ageing Dev 2020; 192:111385. [PMID: 33129798 DOI: 10.1016/j.mad.2020.111385] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Several theories have been postulated, trying to explain why and how living organisms age. Despite some controversies and still huge open questions, a growing body of evidence suggest alterations of mitochondrial functionality and redox-homeostasis occur during the ageing process. Oxidative damage and mitochondrial dysfunction do not represent the cause of ageing per se but they have to be analyzed within the complexity of those series of processes occurring during lifespan. The establishment of a crosstalk among them is a shared common feature of many chronic age-related diseases, including neurodegenerative disorders, for which ageing is a major risk factor. The challenge is to understand when and how the interplay between these two systems move towards from normal ageing process to a pathological phenotype. Here in this review, we discuss the crosstalk between mitochondria and cytosolic-ROS. Furthermore, through a visual data mining approach, we attempt to describe the dynamic interplay between mitochondria and cellular redox state on the route from ageing to an AD phenotype.
Collapse
Affiliation(s)
- G Abate
- Department of Molecular and Translational Medicine, University of Brescia, Italy.
| | - M Vezzoli
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - M Sandri
- Big & Open Data Innovation Laboratory (BODaI-Lab), Department of Economics and Management, University of Brescia, Italy
| | - W Rungratanawanich
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - M Memo
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - D Uberti
- Department of Molecular and Translational Medicine, University of Brescia, Italy; Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
7
|
Sarfraz M, Afzal A, Khattak S, Saddozai UAK, Li HM, Zhang QQ, Madni A, Haleem KS, Duan SF, Wu DD, Ji SP, Ji XY. Multifaceted behavior of PEST sequence enriched nuclear proteins in cancer biology and role in gene therapy. J Cell Physiol 2020; 236:1658-1676. [PMID: 32841373 DOI: 10.1002/jcp.30011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/18/2020] [Accepted: 08/04/2020] [Indexed: 01/12/2023]
Abstract
The amino acid sequence enriched with proline (P), glutamic acid (E), serine (S), and threonine (T) (PEST) is a signal-transducing agent providing unique features to its substrate nuclear proteins (PEST-NPs). The PEST motif is responsible for particular posttranslational modifications (PTMs). These PTMs impart distinct properties to PEST-NPs that are responsible for their activation/inhibition, intracellular localization, and stability/degradation. PEST-NPs participate in cancer metabolism, immunity, and protein transcription as oncogenes or as tumor suppressors. Gene-based therapeutics are getting the attention of researchers because of their cell specificity. PEST-NPs are good targets to explore as cancer therapeutics. Insights into PTMs of PEST-NPs demonstrate that these proteins not only interact with each other but also recruit other proteins to/from their active site to promote/inhibit tumors. Thus, the role of PEST-NPs in cancer biology is multivariate. It is hard to obtain therapeutic objectives with single gene therapy. An especially designed combination gene therapy might be a promising strategy in cancer treatment. This review highlights the multifaceted behavior of PEST-NPs in cancer biology. We have summarized a number of studies to address the influence of structure and PEST-mediated PTMs on activation, localization, stability, and protein-protein interactions of PEST-NPs. We also recommend researchers to adopt a pragmatic approach in gene-based cancer therapy.
Collapse
Affiliation(s)
- Muhammad Sarfraz
- Henan International Joint Laboratory for Nuclear Protein Regulation & Kaifeng Key Laboratory of Infectious Diseases and Bio-safety, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China.,Faculty of Pharmacy, The University of Lahore, Lahore, Punjab, Pakistan.,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan, China
| | - Attia Afzal
- Henan International Joint Laboratory for Nuclear Protein Regulation & Kaifeng Key Laboratory of Infectious Diseases and Bio-safety, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China.,Faculty of Pharmacy, The University of Lahore, Lahore, Punjab, Pakistan
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation & Kaifeng Key Laboratory of Infectious Diseases and Bio-safety, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
| | - Umair A K Saddozai
- Henan International Joint Laboratory for Nuclear Protein Regulation & Kaifeng Key Laboratory of Infectious Diseases and Bio-safety, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
| | - Hui-Min Li
- Henan International Joint Laboratory for Nuclear Protein Regulation & Kaifeng Key Laboratory of Infectious Diseases and Bio-safety, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China.,Department of Histology and Embryology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Bioinformatics Centre, Institute of Biomedical Informatics, Henan University, Kaifeng, Henan, China
| | - Qian-Qian Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation & Kaifeng Key Laboratory of Infectious Diseases and Bio-safety, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
| | - Asadullah Madni
- Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Kashif S Haleem
- Department of Microbiology, Hazara University, Mansehra, Pakistan
| | - Shao-Feng Duan
- Henan International Joint Laboratory for Nuclear Protein Regulation & Kaifeng Key Laboratory of Infectious Diseases and Bio-safety, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China.,School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, Henan, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation & Kaifeng Key Laboratory of Infectious Diseases and Bio-safety, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China.,School of Stomatology, Henan University, Kaifeng, Henan, China
| | - Shao-Ping Ji
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation & Kaifeng Key Laboratory of Infectious Diseases and Bio-safety, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
| |
Collapse
|
8
|
Lacroix M, Riscal R, Arena G, Linares LK, Le Cam L. Metabolic functions of the tumor suppressor p53: Implications in normal physiology, metabolic disorders, and cancer. Mol Metab 2020; 33:2-22. [PMID: 31685430 PMCID: PMC7056927 DOI: 10.1016/j.molmet.2019.10.002] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/24/2019] [Accepted: 10/05/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The TP53 gene is one of the most commonly inactivated tumor suppressors in human cancers. p53 functions during cancer progression have been linked to a variety of transcriptional and non-transcriptional activities that lead to the tight control of cell proliferation, senescence, DNA repair, and cell death. However, converging evidence indicates that p53 also plays a major role in metabolism in both normal and cancer cells. SCOPE OF REVIEW We provide an overview of the current knowledge on the metabolic activities of wild type (WT) p53 and highlight some of the mechanisms by which p53 contributes to whole body energy homeostasis. We will also pinpoint some evidences suggesting that deregulation of p53-associated metabolic activities leads to human pathologies beyond cancer, including obesity, diabetes, liver, and cardiovascular diseases. MAJOR CONCLUSIONS p53 is activated when cells are metabolically challenged but the origin, duration, and intensity of these stresses will dictate the outcome of the p53 response. p53 plays pivotal roles both upstream and downstream of several key metabolic regulators and is involved in multiple feedback-loops that ensure proper cellular homeostasis. The physiological roles of p53 in metabolism involve complex mechanisms of regulation implicating both cell autonomous effects as well as autocrine loops. However, the mechanisms by which p53 coordinates metabolism at the organismal level remain poorly understood. Perturbations of p53-regulated metabolic activities contribute to various metabolic disorders and are pivotal during cancer progression.
Collapse
Affiliation(s)
- Matthieu Lacroix
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe labélisée Ligue Contre le Cancer, France
| | - Romain Riscal
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Giuseppe Arena
- Gustave Roussy Cancer Campus, INSERM U1030, Villejuif, France
| | - Laetitia Karine Linares
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe labélisée Ligue Contre le Cancer, France
| | - Laurent Le Cam
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe labélisée Ligue Contre le Cancer, France.
| |
Collapse
|
9
|
da Silva Sergio LP, Mencalha AL, de Souza da Fonseca A, de Paoli F. DNA repair and genomic stability in lungs affected by acute injury. Biomed Pharmacother 2019; 119:109412. [PMID: 31514069 PMCID: PMC9170240 DOI: 10.1016/j.biopha.2019.109412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/28/2022] Open
Abstract
Acute pulmonary injury, or acute respiratory distress syndrome, has a high incidence in elderly individuals and high mortality in its most severe degree, becoming a challenge to public health due to pathophysiological complications and increased economic burden. Acute pulmonary injury can develop from sepsis, septic shock, and pancreatitis causing reduction of alveolar airspace due to hyperinflammatory response. Oxidative stress acts directly on the maintenance of inflammation, resulting in tissue injury, as well as inducing DNA damages. Once the DNA is damaged, enzymatic DNA repair mechanisms act on lesions in order to maintain genomic stability and, consequently, contribute to cell viability and homeostasis. Although palliative treatment based on mechanical ventilation and antibiotic using have a kind of efficacy, therapies based on modulation of DNA repair and genomic stability could be effective for improving repair and recovery of lung tissue in patients with acute pulmonary injury.
Collapse
Affiliation(s)
- Luiz Philippe da Silva Sergio
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, Vila Isabel, Rio de Janeiro, 20551030, Brazil.
| | - Andre Luiz Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| | - Adenilson de Souza da Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, Vila Isabel, Rio de Janeiro, 20551030, Brazil; Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rua Frei Caneca, 94, Rio de Janeiro, 20211040, Brazil; Centro de Ciências da Saúde, Centro Universitário Serra dos Órgãos, Avenida Alberto Torres, 111, Teresópolis, Rio de Janeiro, 25964004, Brazil
| | - Flavia de Paoli
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer - s/n, Campus Universitário, São Pedro, Juiz de Fora, Minas Gerais, 36036900, Brazil
| |
Collapse
|
10
|
Kim E, Kim JY, Lee JY. Mathematical Modeling of p53 Pathways. Int J Mol Sci 2019; 20:ijms20205179. [PMID: 31635420 PMCID: PMC6834204 DOI: 10.3390/ijms20205179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 12/30/2022] Open
Abstract
Cells have evolved balanced systems that ensure an appropriate response to stress. The systems elicit repair responses in temporary or moderate stress but eliminate irreparable cells via apoptosis in detrimental conditions of prolonged or severe stress. The tumor suppressor p53 is a central player in these stress response systems. When activated under DNA damage stress, p53 regulates hundreds of genes that are involved in DNA repair, cell cycle, and apoptosis. Recently, increasing studies have demonstrated additional regulatory roles of p53 in metabolism and mitochondrial physiology. Due to the inherent complexity of feedback loops between p53 and its target genes, the application of mathematical modeling has emerged as a novel approach to better understand the multifaceted functions and dynamics of p53. In this review, we discuss several mathematical modeling approaches in exploring the p53 pathways.
Collapse
Affiliation(s)
- Eunjung Kim
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Korea.
| | - Jae-Young Kim
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Korea.
- Korea Basic Science Institute, Daejeon 34133, Korea.
| | - Joo-Yong Lee
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Korea.
- Korea Basic Science Institute, Daejeon 34133, Korea.
| |
Collapse
|
11
|
p53 prevents doxorubicin cardiotoxicity independently of its prototypical tumor suppressor activities. Proc Natl Acad Sci U S A 2019; 116:19626-19634. [PMID: 31488712 DOI: 10.1073/pnas.1904979116] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Doxorubicin is a widely used chemotherapeutic agent that causes dose-dependent cardiotoxicity in a subset of treated patients, but the genetic determinants of this susceptibility are poorly understood. Here, we report that a noncanonical tumor suppressor activity of p53 prevents cardiac dysfunction in a mouse model induced by doxorubicin administered in divided low doses as in the clinics. While relatively preserved in wild-type (p53 +/+ ) state, mice deficient in p53 (p53 -/- ) developed left ventricular (LV) systolic dysfunction after doxorubicin treatment. This functional decline in p53 -/- mice was associated with decreases in cardiac oxidative metabolism, mitochondrial mass, and mitochondrial genomic DNA (mtDNA) homeostasis. Notably, mice with homozygous knockin of the p53 R172H (p53 172H/H ) mutation, which like p53 -/- state lacks the prototypical tumor suppressor activities of p53 such as apoptosis but retains its mitochondrial biogenesis capacity, showed preservation of LV function and mitochondria after doxorubicin treatment. In contrast to p53-null state, wild-type and mutant p53 displayed distinct mechanisms of transactivating mitochondrial transcription factor A (TFAM) and p53-inducible ribonucleotide reductase 2 (p53R2), which are involved in mtDNA transcription and maintenance. Importantly, supplementing mice with a precursor of NAD+ prevented the mtDNA depletion and cardiac dysfunction. These findings suggest that loss of mtDNA contributes to cardiomyopathy pathogenesis induced by doxorubicin administered on a schedule simulating that in the clinics. Given a similar mtDNA protection role of p53 in doxorubicin-treated human induced pluripotent stem cell (iPSC)-derived cardiomyocytes, the mitochondrial markers associated with cardiomyopathy development observed in blood and skeletal muscle cells may have prognostic utility.
Collapse
|
12
|
Xie B, Wang S, Jiang N, Li JJ. Cyclin B1/CDK1-regulated mitochondrial bioenergetics in cell cycle progression and tumor resistance. Cancer Lett 2018; 443:56-66. [PMID: 30481564 DOI: 10.1016/j.canlet.2018.11.019] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/27/2018] [Accepted: 11/11/2018] [Indexed: 02/08/2023]
Abstract
A mammalian cell houses two genomes located separately in the nucleus and mitochondria. During evolution, communications and adaptations between these two genomes occur extensively to achieve and sustain homeostasis for cellular functions and regeneration. Mitochondria provide the major cellular energy and contribute to gene regulation in the nucleus, whereas more than 98% of mitochondrial proteins are encoded by the nuclear genome. Such two-way signaling traffic presents an orchestrated dynamic between energy metabolism and consumption in cells. Recent reports have elucidated the way how mitochondrial bioenergetics synchronizes with the energy consumption for cell cycle progression mediated by cyclin B1/CDK1 as the communicator. This review is to recapitulate cyclin B1/CDK1 mediated mitochondrial activities in cell cycle progression and stress response as well as its potential link to reprogram energy metabolism in tumor adaptive resistance. Cyclin B1/CDK1-mediated mitochondrial bioenergetics is applied as an example to show how mitochondria could timely sense the cellular fuel demand and then coordinate ATP output. Such nucleus-mitochondria oscillation may play key roles in the flexible bioenergetics required for tumor cell survival and compromising the efficacy of anti-cancer therapy. Further deciphering the cyclin B1/CDK1-controlled mitochondrial metabolism may invent effect targets to treat resistant cancers.
Collapse
Affiliation(s)
- Bowen Xie
- Department of Radiation Oncology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Shuangyan Wang
- Department of Radiation Oncology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Nian Jiang
- Department of Radiation Oncology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Jian Jian Li
- Department of Radiation Oncology, School of Medicine, University of California at Davis, Sacramento, CA, USA.
| |
Collapse
|
13
|
Zinovkina LA. Mechanisms of Mitochondrial DNA Repair in Mammals. BIOCHEMISTRY (MOSCOW) 2018; 83:233-249. [PMID: 29625543 DOI: 10.1134/s0006297918030045] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Accumulation of mutations in mitochondrial DNA leads to the development of severe, currently untreatable diseases. The contribution of these mutations to aging and progress of neurodegenerative diseases is actively studied. Elucidation of DNA repair mechanisms in mitochondria is necessary for both developing approaches to the therapy of diseases caused by mitochondrial mutations and understanding specific features of mitochondrial genome functioning. Mitochondrial DNA repair systems have become a subject of extensive studies only in the last decade due to development of molecular biology methods. DNA repair systems of mammalian mitochondria appear to be more diverse and effective than it had been thought earlier. Even now, one may speak about the existence of mitochondrial mechanisms for the repair of single- and double-stranded DNA lesions. Homologous recombination also takes place in mammalian mitochondria, although its functional significance and molecular mechanisms remain obscure. In this review, I describe DNA repair systems in mammalian mitochondria, such as base excision repair (BER) and microhomology-mediated end joining (MMEJ) and discuss a possibility of existence of mitochondrial DNA repair mechanisms otherwise typical for the nuclear DNA, e.g., nucleotide excision repair (NER), mismatch repair (MMR), homologous recombination, and classical non-homologous end joining (NHEJ). I also present data on the mechanisms for coordination of the nuclear and mitochondrial DNA repair systems that have been actively studied recently.
Collapse
Affiliation(s)
- L A Zinovkina
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119234, Russia.
| |
Collapse
|
14
|
Cunha-Oliveira T, Ferreira LL, Coelho AR, Deus CM, Oliveira PJ. Doxorubicin triggers bioenergetic failure and p53 activation in mouse stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol 2018; 348:1-13. [PMID: 29653124 DOI: 10.1016/j.taap.2018.04.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/06/2018] [Accepted: 04/08/2018] [Indexed: 01/28/2023]
Abstract
Doxorubicin (DOX) is a widely used anticancer drug that could be even more effective if its clinical dosage was not limited because of delayed cardiotoxicity. Beating stem cell-derived cardiomyocytes are a preferred in vitro model to further uncover the mechanisms of DOX-induced cardiotoxicity. Our objective was to use cultured induced-pluripotent stem cell(iPSC)-derived mouse cardiomyocytes (Cor.At) to investigate the effects of DOX on cell and mitochondrial metabolism, as well as on stress responses. Non-proliferating and beating Cor.At cells were treated with 0.5 or 1 μM DOX for 24 h, and morphological, functional and biochemical changes associated with mitochondrial bioenergetics, DNA-damage response and apoptosis were measured. Both DOX concentrations decreased ATP levels and SOD2 protein levels and induced p53-dependent caspase activation. However, differential effects were observed for the two DOX concentrations. The highest concentration induced a high degree of apoptosis, with increased nuclear apoptotic morphology, PARP-1 cleavage and decrease of some OXPHOS protein subunits. At the lowest concentration, DOX increased the expression of p53 target transcripts associated with mitochondria-dependent apoptosis and decreased transcripts related with DNA-damage response and glycolysis. Interestingly, cells treated with 0.5 μM DOX presented an increase in PDK4 transcript levels, accompanied by an increase in phospho-PDH and decreased PDH activity. This was accompanied by an apparent decrease in basal and maximal oxygen consumption rates (OCR) and in basal extracellular acidification rate (ECAR). Cells pre-treated with the PDK inhibitor dichloroacetate (DCA), with the aim of restoring PDH activity, partially recovered OCR and ECAR. The results suggest that the higher DOX concentration mainly induces p53-dependent apoptosis, whereas for the lower DOX concentration the cardiotoxic effects involve bioenergetic failure, unveiling PDH as a possible therapeutic target to decrease DOX cardiotoxicity.
Collapse
Affiliation(s)
- Teresa Cunha-Oliveira
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Building, Biocant Park, Cantanhede, Portugal.
| | - Luciana L Ferreira
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Building, Biocant Park, Cantanhede, Portugal
| | - Ana Raquel Coelho
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Building, Biocant Park, Cantanhede, Portugal; Institute for Interdisciplinary Research (I.I.I.), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Cláudia M Deus
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Building, Biocant Park, Cantanhede, Portugal; Institute for Interdisciplinary Research (I.I.I.), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Paulo J Oliveira
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Building, Biocant Park, Cantanhede, Portugal; Institute for Interdisciplinary Research (I.I.I.), University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
15
|
Saragani Y, Hizi A, Rahav G, Zaouch S, Bakhanashvili M. Cytoplasmic p53 contributes to the removal of uracils misincorporated by HIV-1 reverse transcriptase. Biochem Biophys Res Commun 2018; 497:804-810. [PMID: 29470985 DOI: 10.1016/j.bbrc.2018.02.159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 02/18/2018] [Indexed: 01/15/2023]
Abstract
HIV-1 reverse transcriptase (RT) in the cytoplasm of HIV-infected cells efficiently inserts the non-canonical dUTP into the proviral DNA, and extends the dU-terminated DNA. The misincorporation of dUTP leads to mutagenesis, and uracils can down-regulate viral gene expression. However, uracilation might also protect HIV DNA from auto-integration in the cytoplasm. Tumor suppressor p53 protein, exhibiting inherent 3'→5' exonuclease activity, provides a potential host-derived repair mechanism during HIV reverse transcription for the misincorporation of various wrong nucleotides, leading to both base-base mismatches and incorporated non-canonical ribonucleotides. Since the presence of proofreading activity is essential for DNA synthesis accuracy, we elucidated the potential involvement of cytoplasmic p53 in the U-editing activities during insertion of dUTP into DNA by recombinant HIV-1 RT (using isogenic p53-proficient and -deficient HCT116 cells). The biochemical data show that p53 in cytoplasm can participate through the intermolecular pathway in a dU-damage-associated repair mechanism by its ability to remove preformed 3'-terminal dUs, thus preventing further extension of 3' dU-terminated primer during DNA synthesis by HIV-1 RT. The specific depletion of p53 from cytoplasmic lysates of repair-proficient p53-harboring cells reduced this negative effect. Accordingly, the increased abundance of p53 in nutlin-treated cells correlates with enhanced error-correction functions, namely, removal of incorporated uracil. The data substantiate the significance of p53 as a potential proofreader for removal of non-canonical dUTP from HIV DNA, thus preventing the consequences of dUTP misincorporation in cell-type specific infectivity of HIV.
Collapse
Affiliation(s)
- Yossi Saragani
- Infectious Diseases Unit, Sheba Medical Center, Tel-Hashomer 5265601, Israel
| | - Amnon Hizi
- Dep. Cell and Developmental Biology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Galia Rahav
- Infectious Diseases Unit, Sheba Medical Center, Tel-Hashomer 5265601, Israel
| | - Sara Zaouch
- Infectious Diseases Unit, Sheba Medical Center, Tel-Hashomer 5265601, Israel
| | - Mary Bakhanashvili
- Infectious Diseases Unit, Sheba Medical Center, Tel-Hashomer 5265601, Israel.
| |
Collapse
|
16
|
Choudhury AR, Singh KK. Mitochondrial determinants of cancer health disparities. Semin Cancer Biol 2017; 47:125-146. [PMID: 28487205 PMCID: PMC5673596 DOI: 10.1016/j.semcancer.2017.05.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/25/2017] [Accepted: 05/03/2017] [Indexed: 01/10/2023]
Abstract
Mitochondria, which are multi-functional, have been implicated in cancer initiation, progression, and metastasis due to metabolic alterations in transformed cells. Mitochondria are involved in the generation of energy, cell growth and differentiation, cellular signaling, cell cycle control, and cell death. To date, the mitochondrial basis of cancer disparities is unknown. The goal of this review is to provide an understanding and a framework of mitochondrial determinants that may contribute to cancer disparities in racially different populations. Due to maternal inheritance and ethnic-based diversity, the mitochondrial genome (mtDNA) contributes to inherited racial disparities. In people of African ancestry, several germline, population-specific haplotype variants in mtDNA as well as depletion of mtDNA have been linked to cancer predisposition and cancer disparities. Indeed, depletion of mtDNA and mutations in mtDNA or nuclear genome (nDNA)-encoded mitochondrial proteins lead to mitochondrial dysfunction and promote resistance to apoptosis, the epithelial-to-mesenchymal transition, and metastatic disease, all of which can contribute to cancer disparity and tumor aggressiveness related to racial disparities. Ethnic differences at the level of expression or genetic variations in nDNA encoding the mitochondrial proteome, including mitochondria-localized mtDNA replication and repair proteins, miRNA, transcription factors, kinases and phosphatases, and tumor suppressors and oncogenes may underlie susceptibility to high-risk and aggressive cancers found in African population and other ethnicities. The mitochondrial retrograde signaling that alters the expression profile of nuclear genes in response to dysfunctional mitochondria is a mechanism for tumorigenesis. In ethnic populations, differences in mitochondrial function may alter the cross talk between mitochondria and the nucleus at epigenetic and genetic levels, which can also contribute to cancer health disparities. Targeting mitochondrial determinants and mitochondrial retrograde signaling could provide a promising strategy for the development of selective anticancer therapy for dealing with cancer disparities. Further, agents that restore mitochondrial function to optimal levels should permit sensitivity to anticancer agents for the treatment of aggressive tumors that occur in racially diverse populations and hence help in reducing racial disparities.
Collapse
Affiliation(s)
| | - Keshav K Singh
- Departments of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Departments of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Departments of Environmental Health, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Center for Aging, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35294, USA.
| |
Collapse
|
17
|
Vasileiou PVS, Mourouzis I, Pantos C. Principal Aspects Regarding the Maintenance of Mammalian Mitochondrial Genome Integrity. Int J Mol Sci 2017; 18:E1821. [PMID: 28829360 PMCID: PMC5578207 DOI: 10.3390/ijms18081821] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 12/11/2022] Open
Abstract
Mitochondria have emerged as key players regarding cellular homeostasis not only due to their contribution regarding energy production through oxidative phosphorylation, but also due to their involvement in signaling, ion regulation, and programmed cell death. Indeed, current knowledge supports the notion that mitochondrial dysfunction is a hallmark in the pathogenesis of various diseases. Mitochondrial biogenesis and function require the coordinated action of two genomes: nuclear and mitochondrial. Unfortunately, both intrinsic and environmental genotoxic insults constantly threaten the integrity of nuclear as well as mitochondrial DNA. Despite the extensive research that has been made regarding nuclear genome instability, the importance of mitochondrial genome integrity has only recently begun to be elucidated. The specific architecture and repair mechanisms of mitochondrial DNA, as well as the dynamic behavior that mitochondria exert regarding fusion, fission, and autophagy participate in mitochondrial genome stability, and therefore, cell homeostasis.
Collapse
Affiliation(s)
- Panagiotis V S Vasileiou
- Department of Basic Medical Sciences, Laboratory of Histology & Embryology, School of Medicine, National and Kapodistrian University of Athens, 75 MikrasAsias Avenue, Goudi, Athens 11527, Greece.
| | - Iordanis Mourouzis
- Department of Pharmacology, School of Medicine, National and Kapodistrian University of Athens, 75 MikrasAsias Avenue, Goudi, Athens 11527, Greece.
| | - Constantinos Pantos
- Department of Pharmacology, School of Medicine, National and Kapodistrian University of Athens, 75 MikrasAsias Avenue, Goudi, Athens 11527, Greece.
| |
Collapse
|
18
|
Liu K, Zang Y, Guo X, Wei F, Yin J, Pang L, Chen D. The Δ133p53 Isoform Reduces Wtp53-induced Stimulation of DNA Pol γ Activity in the Presence and Absence of D4T. Aging Dis 2017; 8:228-239. [PMID: 28400988 PMCID: PMC5362181 DOI: 10.14336/ad.2016.0910] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 09/10/2016] [Indexed: 01/02/2023] Open
Abstract
The mitochondrial toxicity of nucleoside reverse transcriptase inhibitors (NRTIs) is due to the inhibition of mitochondrial DNA (mtDNA) polymerase γ (pol γ). Previous studies have shown that wild type p53 (wtp53) can interact with pol γ and mtDNA to enhance mitochondrial DNA base excision repair (mtBER) activity and increase the accuracy of DNA synthesis. The N-terminal transactivation domain and central specific DNA-binding domain of p53 play critical roles in the stimulation of BER. In this study, we identified the possible roles of wtp53, Δ40p53 and Δ133p53 in regulating mtDNA pol γ activity in cells with d4T treatment. The results show that Δ40p53 and Δ133p53 can exist in mitochondrial fragments and form polymers with themselves or wtp53. Unlike wtP53, Δ133p53 alone cannot increase DNA pol γ activity. More importantly, we found that Δ133p53 played a negative role in p53 stimulation of DNA pol γ activity when studied in d4T-treated and d4T-untreated mitochondrial extracts. Gel shift data also indicate that Δ40p53 and Δ133p53 cannot interact with APE. Wtp53 and Δ40p53 can act antagonize the effect of d4T inhibition of DNA pol γ activity. However, when wtp53 interacted with Δ133p53, DNA pol γ activity was significantly decreased. Conclusion: Δ133p53 negatively regulates p53’s stimulation of pol γ in the presence and absence of d4T.
Collapse
Affiliation(s)
- Kai Liu
- 1Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
| | - Yunjin Zang
- 2The Affiliated Hospital of Qingdao University, Organ Transplantation Center, Qingdao, Shandong 266003, China
| | - Xianghua Guo
- 1Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
| | - Feili Wei
- 1Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
| | - Jiming Yin
- 1Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
| | - Lijun Pang
- 1Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
| | - Dexi Chen
- 1Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
19
|
Removal of ribonucleotides by p53 protein incorporated during DNA synthesis by HIV-1 reverse transcriptase. AIDS 2017; 31:343-353. [PMID: 28081035 DOI: 10.1097/qad.0000000000001339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE(S) HIV-1 reverse transcriptase frequently incorporates ribonucleotides into the proviral DNA in macrophages, but not in lymphocytes. The enzyme exerts an efficient ribonucleotide-terminated primer extension capacity. Furthermore, ribonucleotide-editing repair is attenuated in macrophages. Tumor suppressor p53 protein, displaying an intrinsic 3'→5' exonuclease activity, was found to be involved in efficient proofreading of base-base mismatches produced during DNA synthesis. As the presence of proofreading activity is cardinal for the DNA synthesis accuracy, it was of interest to assess whether p53 can serve as a trans-acting proofreader for HIV-1 reverse transcriptase during ribonucleotide incorporation. DESIGN We investigated the potential involvement of cytoplasmic p53 in error correction during insertion of ribonucleotides into DNA by recombinant HIV-1 reverse transcriptase in a p53-proficient and deficient background. METHODS Primer extension reactions were carried out to elucidate the incorporation and removal of ribonucleotides. RESULTS The biochemical studies suggest that p53 is involved in a ribonucleotide damage-associated repair mechanism through its capacity to remove preformed 3'-terminal ribonucleotides, to decrease ribonucleotide incorporation and to prevent the 3'-ribo-terminated primer extension during ongoing DNA synthesis by HIV-1 reverse transcriptase. A positive correlation exists between the presence of endogenous p53 and decrease in stable incorporation of ribonucleotides into DNA with p53-harboring lysates of HCT116 cells. p53, by preferential removal of purine over pyrimidine ribonucleotides, may affect the ribonucleotide mutation spectra produced by HIV-1 reverse transcriptase. CONCLUSION The data implies that p53 can excise incorrect sugar in addition to base mispairs, thereby expanding the role of p53 in the repair of nucleic acids replication errors.
Collapse
|
20
|
Bonda E, Rahav G, Kaya A, Bakhanashvili M. p53 in the mitochondria, as a trans-acting protein, provides error-correction activities during the incorporation of non-canonical dUTP into DNA. Oncotarget 2016; 7:73323-73336. [PMID: 27689337 PMCID: PMC5341982 DOI: 10.18632/oncotarget.12331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/19/2016] [Indexed: 11/25/2022] Open
Abstract
Mutations in mitochondrial DNA is an outcome of errors produced by DNA polymerase γ during replication and failure of the repair mechanism. Misincorporation of non-canonical dUTP leads to mutagenesis or apoptosis, and may contribute to the cytotoxic effects of 5'-fluorouracil chemotherapy. Tumor suppressor p53 protein in the mitochondria displays physical and functional interactions with mitochondrial DNA and polymerase γ, and by its intrinsic 3'→5' exonuclease activity can diminish the polymerization errors. Here we demonstrate the impact of p53 on incorporation of uracil into DNA examined with mitochondrial fractions, as the source of polymerase γ. p53 in mitochondria facilitates DNA damage repair functions resulting from uracil-DNA misincorporation. Our biochemical studies revealed that the procession of U:A and mismatched U:G lesions enhances in the presence of recombinant or endogenous cytoplasmic p53. p53 in mitochondria can function as an exonuclease/proofreader for polymerase γ by either decreasing the incorporation of non-canonical dUTP into DNA or by promoting the excision of incorporated nucleotide from nascent DNA, thus expanding the spectrum of DNA damage sites exploited for proofreading as a trans-acting protein. The data suggest that p53 may contribute to defense of the cells from consequences of dUTP misincorporation in both normal and tumor cells.
Collapse
Affiliation(s)
- Elad Bonda
- Infectious Diseases Unit, Sheba Medical Center, Tel Hashomer 5265601, Israel
| | - Galia Rahav
- Infectious Diseases Unit, Sheba Medical Center, Tel Hashomer 5265601, Israel
| | - Angelina Kaya
- Infectious Diseases Unit, Sheba Medical Center, Tel Hashomer 5265601, Israel
| | - Mary Bakhanashvili
- Infectious Diseases Unit, Sheba Medical Center, Tel Hashomer 5265601, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
21
|
Lionaki E, Gkikas I, Tavernarakis N. Differential Protein Distribution between the Nucleus and Mitochondria: Implications in Aging. Front Genet 2016; 7:162. [PMID: 27695477 PMCID: PMC5025450 DOI: 10.3389/fgene.2016.00162] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/01/2016] [Indexed: 01/05/2023] Open
Abstract
The coordination of nuclear and mitochondrial genomes plays a pivotal role in maintenance of mitochondrial biogenesis and functionality during stress and aging. Environmental and cellular inputs signal to nucleus and/or mitochondria to trigger interorganellar compensatory responses. Loss of this tightly orchestrated coordination results in loss of cellular homeostasis and underlies various pathologies and age-related diseases. Several signaling cascades that govern interorganellar communication have been revealed up to now, and have been classified as part of the anterograde (nucleus to mitochondria) or retrograde (mitochondrial to nucleus) response. Many of these molecular pathways rely on the dual distribution of nuclear or mitochondrial components under basal or stress conditions. These dually localized components usually engage in specific tasks in their primary organelle of function, whilst upon cellular stimuli, they appear in the other organelle where they engage in the same or a different task, triggering a compensatory stress response. In this review, we focus on protein factors distributed between the nucleus and mitochondria and activated to exert their functions upon basal or stress conditions. We further discuss implications of bi-organellar targeting in the context of aging.
Collapse
Affiliation(s)
- Eirini Lionaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas Heraklion, Greece
| | - Ilias Gkikas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas Heraklion, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-HellasHeraklion, Greece; Department of Basic Sciences, Faculty of Medicine, University of CreteHeraklion, Greece
| |
Collapse
|
22
|
Amelioration of premature aging in mtDNA mutator mouse by exercise: the interplay of oxidative stress, PGC-1α, p53, and DNA damage. A hypothesis. Curr Opin Genet Dev 2016; 38:127-132. [PMID: 27497229 DOI: 10.1016/j.gde.2016.06.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/25/2016] [Accepted: 06/21/2016] [Indexed: 11/23/2022]
Abstract
The mtDNA mutator mouse lacks the proofreading capacity of the sole mtDNA polymerase, leading to accumulation of somatic mtDNA mutations, and a profound premature aging phenotype including elevated oxidative stress and apoptosis, and reduced mitochondrial function. We have previously reported that endurance exercise alleviates the aging phenotype in the mutator mice, reduces oxidative stress, and enhances mitochondrial biogenesis. Here we summarize our findings, with the emphasis on the central role of p53 in these adaptations. We demonstrate that mtDNA in sedentary and exercised PolG mice carry similar amounts of mutations in muscle, but in addition to that sedentary mice have more non-mutational damage, which is mitigated by exercise. It follows therefore that the profound alleviation of the mtDNA mutator phenotype in muscle by exercise may not require a reduction in mtDNA mutational load, but rather a decrease of mtDNA damage and/or oxidative stress. We further hypothesize that the observed 'alleviation without a reduction of mutational load' implies that the oxidative stress in PolG muscle is maintained, at least in part, by the 'malicious cycle', a hypothetical positive feedback potentially driven by the 'transcriptional mutagenesis', that is the conversion of chemically modified nucleotides into mutant RNA bases by the mitochondrial RNA polymerase.
Collapse
|
23
|
DNA damage tolerance pathway involving DNA polymerase ι and the tumor suppressor p53 regulates DNA replication fork progression. Proc Natl Acad Sci U S A 2016; 113:E4311-9. [PMID: 27407148 DOI: 10.1073/pnas.1605828113] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
DNA damage tolerance facilitates the progression of replication forks that have encountered obstacles on the template strands. It involves either translesion DNA synthesis initiated by proliferating cell nuclear antigen monoubiquitination or less well-characterized fork reversal and template switch mechanisms. Herein, we characterize a novel tolerance pathway requiring the tumor suppressor p53, the translesion polymerase ι (POLι), the ubiquitin ligase Rad5-related helicase-like transcription factor (HLTF), and the SWI/SNF catalytic subunit (SNF2) translocase zinc finger ran-binding domain containing 3 (ZRANB3). This novel p53 activity is lost in the exonuclease-deficient but transcriptionally active p53(H115N) mutant. Wild-type p53, but not p53(H115N), associates with POLι in vivo. Strikingly, the concerted action of p53 and POLι decelerates nascent DNA elongation and promotes HLTF/ZRANB3-dependent recombination during unperturbed DNA replication. Particularly after cross-linker-induced replication stress, p53 and POLι also act together to promote meiotic recombination enzyme 11 (MRE11)-dependent accumulation of (phospho-)replication protein A (RPA)-coated ssDNA. These results implicate a direct role of p53 in the processing of replication forks encountering obstacles on the template strand. Our findings define an unprecedented function of p53 and POLι in the DNA damage response to endogenous or exogenous replication stress.
Collapse
|
24
|
Park JH, Zhuang J, Li J, Hwang PM. p53 as guardian of the mitochondrial genome. FEBS Lett 2016; 590:924-34. [PMID: 26780878 DOI: 10.1002/1873-3468.12061] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/22/2015] [Accepted: 01/04/2016] [Indexed: 12/16/2022]
Abstract
Participating in the repair of nuclear DNA is one mechanism by which p53 suppresses tumorigenesis, but there is growing evidence that p53 also helps maintain the mitochondrial genome through its translocation into mitochondria and interactions with mtDNA repair proteins. Because of the susceptibility of mtDNA to oxidative damage and replication errors, it is vital to protect mtDNA genomic stability to preserve health and fitness. Here, we focus on reviewing the evidence for the involvement of p53 in maintaining the integrity of mtDNA through its activities in both the nucleus and the mitochondria.
Collapse
Affiliation(s)
- Ji-Hoon Park
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jie Zhuang
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jie Li
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paul M Hwang
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
25
|
Safdar A, Khrapko K, Flynn JM, Saleem A, De Lisio M, Johnston APW, Kratysberg Y, Samjoo IA, Kitaoka Y, Ogborn DI, Little JP, Raha S, Parise G, Akhtar M, Hettinga BP, Rowe GC, Arany Z, Prolla TA, Tarnopolsky MA. Exercise-induced mitochondrial p53 repairs mtDNA mutations in mutator mice. Skelet Muscle 2016; 6:7. [PMID: 26834962 PMCID: PMC4733510 DOI: 10.1186/s13395-016-0075-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 01/05/2016] [Indexed: 11/22/2022] Open
Abstract
Background Human genetic disorders and transgenic mouse models have shown that mitochondrial DNA (mtDNA) mutations and telomere dysfunction instigate the aging process. Epidemiologically, exercise is associated with greater life expectancy and reduced risk of chronic diseases. While the beneficial effects of exercise are well established, the molecular mechanisms instigating these observations remain unclear. Results Endurance exercise reduces mtDNA mutation burden, alleviates multisystem pathology, and increases lifespan of the mutator mice, with proofreading deficient mitochondrial polymerase gamma (POLG1). We report evidence for a POLG1-independent mtDNA repair pathway mediated by exercise, a surprising notion as POLG1 is canonically considered to be the sole mtDNA repair enzyme. Here, we show that the tumor suppressor protein p53 translocates to mitochondria and facilitates mtDNA mutation repair and mitochondrial biogenesis in response to endurance exercise. Indeed, in mutator mice with muscle-specific deletion of p53, exercise failed to prevent mtDNA mutations, induce mitochondrial biogenesis, preserve mitochondrial morphology, reverse sarcopenia, or mitigate premature mortality. Conclusions Our data establish a new role for p53 in exercise-mediated maintenance of the mtDNA genome and present mitochondrially targeted p53 as a novel therapeutic modality for diseases of mitochondrial etiology. Electronic supplementary material The online version of this article (doi:10.1186/s13395-016-0075-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adeel Safdar
- Department of Kinesiology, McMaster University, Hamilton, ON L8N 3Z5 Canada ; Department of Pediatrics, McMaster University, Hamilton, ON L8N 3Z5 Canada ; Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5 Canada
| | | | - James M Flynn
- Buck Institute for Research on Aging, Novato, CA 94945 USA
| | - Ayesha Saleem
- Department of Pediatrics, McMaster University, Hamilton, ON L8N 3Z5 Canada
| | - Michael De Lisio
- Department of Kinesiology, McMaster University, Hamilton, ON L8N 3Z5 Canada
| | - Adam P W Johnston
- Department of Kinesiology, McMaster University, Hamilton, ON L8N 3Z5 Canada
| | | | - Imtiaz A Samjoo
- Department of Medical Sciences, McMaster University, Hamilton, ON L8N 3Z5 Canada
| | - Yu Kitaoka
- Department of Pediatrics, McMaster University, Hamilton, ON L8N 3Z5 Canada
| | - Daniel I Ogborn
- Department of Medical Sciences, McMaster University, Hamilton, ON L8N 3Z5 Canada
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC V1V 1V7 Canada
| | - Sandeep Raha
- Department of Pediatrics, McMaster University, Hamilton, ON L8N 3Z5 Canada
| | - Gianni Parise
- Department of Kinesiology, McMaster University, Hamilton, ON L8N 3Z5 Canada ; Department of Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, ON L8N 3Z5 Canada
| | - Mahmood Akhtar
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5 Canada
| | - Bart P Hettinga
- Department of Pediatrics, McMaster University, Hamilton, ON L8N 3Z5 Canada
| | - Glenn C Rowe
- Division of Cardiovascular Disease, University of Alabama, Birmingham, AL 35294 USA
| | - Zoltan Arany
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Tomas A Prolla
- Departments of Genetics, University of Wisconsin, Madison, WI 53706 USA ; Departments of Medical Genetics, University of Wisconsin, Madison, WI 53706 USA
| | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, ON L8N 3Z5 Canada ; Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5 Canada
| |
Collapse
|
26
|
Strom J, Xu B, Tian X, Chen QM. Nrf2 protects mitochondrial decay by oxidative stress. FASEB J 2015; 30:66-80. [PMID: 26340923 DOI: 10.1096/fj.14-268904] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 08/13/2015] [Indexed: 12/22/2022]
Abstract
Sublethal levels of oxidative stress are commonly associated with various pathophysiological conditions. Cardiomyocytes have the highest content of mitochondria among all cell types, allowing the study of mitochondria in cells surviving oxidative stress and address whether nuclear factor-erythroid-derived 2-related factor 2 (Nrf2) can reverse these changes. Mitochondria normally exist in elaborated networks, which were replaced by predominately individual punctuate mitochondria 24 h after exposure to a nonlethal dose of H2O2. Electron microscopy revealed that cells surviving H2O2 show swelling of mitochondria with disorganized cristae and areas of condensation. Measurements of functional mitochondria showed a H2O2 dose-dependent decrease over a course of 5 d. At the protein and mRNA levels, cells surviving H2O2 treatment show a reduction of mitochondrial components, cytochrome c, and cytochrome b. Nrf2 overexpression prevented H2O2 from inducing mitochondria morphologic changes and reduction of cytochrome b/c. Although Nrf2 is known as a transcription factor regulating antioxidant and detoxification genes, Nrf2 overexpression did not significantly reduce the level of protein oxidation. Instead, Nrf2 was found to associate with the outer mitochondrial membrane. Mitochondria prepared from the myocardium of Nrf2 knockout mice are more sensitive to permeability transition. Our data suggest that Nrf2 protects mitochondria from oxidant injury likely through direct interaction with mitochondria.
Collapse
Affiliation(s)
- Joshua Strom
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Beibei Xu
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Xiuqing Tian
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Qin M Chen
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
27
|
Xavier JM, Morgado AL, Solá S, Rodrigues CMP. Mitochondrial translocation of p53 modulates neuronal fate by preventing differentiation-induced mitochondrial stress. Antioxid Redox Signal 2014; 21:1009-24. [PMID: 24329038 PMCID: PMC4123470 DOI: 10.1089/ars.2013.5417] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS Apoptosis regulatory proteins, such as p53, play a pivotal role in neural differentiation, through mechanisms independent of cell death. In addition, p53 has been identified as an important regulator of mitochondrial survival response, maintaining mitochondrial DNA (mtDNA) integrity and oxidative protection. The aim of this study was to determine the role of mitochondrial p53 in organelle damage and neural differentiation. RESULTS Our results show that mitochondrial apoptotic events such as reactive oxygen species production, mitochondrial membrane permeabilization, and cytochrome c release are typical of early-stage mouse neural stem cell differentiation, which occurs 3-18 h after induction of differentiation, with no evidence of cell death. In addition, decreased mtDNA content, lipidated LC3 (LC3-II), colocalization of mitochondria and LC3-II puncta, and mitochondria-associated Parkin are consistent with activation of mitophagy. Importantly, at early stages of neural differentiation, p53 was actively translocated to mitochondria and attenuated mitochondrial oxidative stress, cytochrome c release, and mitophagy. Forced mitochondrial translocation of p53 increased neurogenic potential and neurite outgrowth. INNOVATION AND CONCLUSION In conclusion, our results reveal a novel role for mitochondrial p53, which modulates mitochondrial damage and apoptosis-related events in the context of neural differentiation, thus enhancing neuronal fate.
Collapse
Affiliation(s)
- Joana M Xavier
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa , Lisboa, Portugal
| | | | | | | |
Collapse
|
28
|
Sevini F, Giuliani C, Vianello D, Giampieri E, Santoro A, Biondi F, Garagnani P, Passarino G, Luiselli D, Capri M, Franceschi C, Salvioli S. mtDNA mutations in human aging and longevity: controversies and new perspectives opened by high-throughput technologies. Exp Gerontol 2014; 56:234-44. [PMID: 24709341 DOI: 10.1016/j.exger.2014.03.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/14/2014] [Accepted: 03/26/2014] [Indexed: 12/21/2022]
Abstract
The last 30 years of research greatly contributed to shed light on the role of mitochondrial DNA (mtDNA) variability in aging, although contrasting results have been reported, mainly due to bias regarding the population size and stratification, and to the use of analysis methods (haplogroup classification) that resulted to be not sufficiently adequate to grasp the complexity of the phenomenon. A 5-years European study (the GEHA EU project) collected and analyzed data on mtDNA variability on an unprecedented number of long-living subjects (enriched for longevity genes) and a comparable number of controls (matched for gender and ethnicity) in Europe. This very large study allowed a reappraisal of the role of both the inherited and the somatic mtDNA variability in aging, as an association with longevity emerged only when mtDNA variants in OXPHOS complexes co-occurred. Moreover, the availability of data from both nuclear and mitochondrial genomes on a large number of subjects paves the way for an evaluation at a very large scale of the epistatic interactions at a higher level of complexity. This scenario is expected to be even more clarified in the next future with the use of next generation sequencing (NGS) techniques, which are becoming applicable to evaluate mtDNA variability and, then, new mathematical/bioinformatic analysis methods are urgently needed. Recent advances of association studies on age-related diseases and mtDNA variability will also be discussed in this review, taking into account the bias hidden by population stratification. Finally, very recent findings in terms of mtDNA heteroplasmy (i.e. the coexistence of wild type and mutated copies of mtDNA) and aging as well as mitochondrial epigenetic mechanisms will also be discussed.
Collapse
Affiliation(s)
- Federica Sevini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, via S. Giacomo 12, 40126 Bologna, Italy; C.I.G. Interdepartmental Centre L. Galvani for Integrated Studies on Bioinformatics, Biophysics and Biocomplexity, University of Bologna, via S. Giacomo 12, 40126, Bologna, Italy.
| | - Cristina Giuliani
- Department of Biological, Geological and Environmental Sciences, Laboratory of Anthropology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy; Department of Biological, Geological and Environmental Sciences, Centre for Genome Biology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Dario Vianello
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, via S. Giacomo 12, 40126 Bologna, Italy
| | - Enrico Giampieri
- Department of Physics and Astronomy, Viale Berti Pichat 6/2, 40126 Bologna, Italy
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, via S. Giacomo 12, 40126 Bologna, Italy
| | - Fiammetta Biondi
- C.I.G. Interdepartmental Centre L. Galvani for Integrated Studies on Bioinformatics, Biophysics and Biocomplexity, University of Bologna, via S. Giacomo 12, 40126, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, via S. Giacomo 12, 40126 Bologna, Italy; C.I.G. Interdepartmental Centre L. Galvani for Integrated Studies on Bioinformatics, Biophysics and Biocomplexity, University of Bologna, via S. Giacomo 12, 40126, Bologna, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036 Rende, Italy
| | - Donata Luiselli
- Department of Biological, Geological and Environmental Sciences, Laboratory of Anthropology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy; Department of Biological, Geological and Environmental Sciences, Centre for Genome Biology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, via S. Giacomo 12, 40126 Bologna, Italy; C.I.G. Interdepartmental Centre L. Galvani for Integrated Studies on Bioinformatics, Biophysics and Biocomplexity, University of Bologna, via S. Giacomo 12, 40126, Bologna, Italy
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, via S. Giacomo 12, 40126 Bologna, Italy; C.I.G. Interdepartmental Centre L. Galvani for Integrated Studies on Bioinformatics, Biophysics and Biocomplexity, University of Bologna, via S. Giacomo 12, 40126, Bologna, Italy; IRCCS, Institute of Neurological Sciences of Bologna, Ospedale Bellaria, Via Altura 3, 40139 Bologna, Italy; CNR, Institute of Organic Synthesis and Photoreactivity (ISOF), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, via S. Giacomo 12, 40126 Bologna, Italy; C.I.G. Interdepartmental Centre L. Galvani for Integrated Studies on Bioinformatics, Biophysics and Biocomplexity, University of Bologna, via S. Giacomo 12, 40126, Bologna, Italy
| |
Collapse
|
29
|
Alexandrou AT, Li JJ. Cell cycle regulators guide mitochondrial activity in radiation-induced adaptive response. Antioxid Redox Signal 2014; 20:1463-80. [PMID: 24180340 PMCID: PMC3936506 DOI: 10.1089/ars.2013.5684] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE There are accruing concerns on potential genotoxic agents present in the environment including low-dose ionizing radiation (LDIR) that naturally exists on earth's surface and atmosphere and is frequently used in medical diagnosis and nuclear industry. Although its long-term health risk is being evaluated and remains controversial, LDIR is shown to induce temporary but significant adaptive responses in mammalian cells and animals. The mechanisms guiding the mitochondrial function in LDIR-induced adaptive response represent a unique communication between DNA damage and cellular metabolism. Elucidation of the LDIR-regulated mitochondrial activity may reveal new mechanisms adjusting cellular function to cope with hazardous environmental stress. RECENT ADVANCES Key cell cycle regulators, including Cyclin D1/CDK4 and Cyclin B1/cyclin-dependent kinase 1 (CDK1) complexes, are actively involved in the regulation of mitochondrial functions via phosphorylation of their mitochondrial targets. Accumulating new evidence supports a concept that the Cyclin B1/CDK1 complex acts as a mediator in the cross talk between radiation-induced DNA damage and mitochondrial functions to coordinate cellular responses to low-level genotoxic stresses. CRITICAL ISSUES The LDIR-mediated mitochondrial activity via Cyclin B1/CDK1 regulation is an irreplaceable network that is able to harmonize vital cellular functions with adjusted mitochondrial metabolism to enhance cellular homeostasis. FUTURE DIRECTIONS Further investigation of the coordinative mechanism that regulates mitochondrial activities in sublethal stress conditions, including LDIR, will reveal new insights of how cells cope with genotoxic injury and will be vital for future targeted therapeutic interventions that reduce environmental injury and cancer risk.
Collapse
Affiliation(s)
- Aris T Alexandrou
- Department of Radiation Oncology, NCI-Designated Comprehensive Cancer Center, University of California at Davis , Sacramento, California
| | | |
Collapse
|
30
|
Green ML, Pisano MM, Prough RA, Knudsen TB. Release of targeted p53 from the mitochondrion as an early signal during mitochondrial dysfunction. Cell Signal 2013; 25:2383-90. [PMID: 23899557 PMCID: PMC3826263 DOI: 10.1016/j.cellsig.2013.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 07/08/2013] [Accepted: 07/19/2013] [Indexed: 01/28/2023]
Abstract
Increased accumulation of p53 tumor suppressor protein is an early response to low-level stressors. To investigate the fate of mitochondrial-sequestered p53, mouse embryonic fibroblast cells (MEFs) on a p53-deficient genetic background were transfected with p53-EGFP fusion protein led by a sense (m53-EGFP) or antisense (c53-EGFP) mitochondrial import signal. Rotenone exposure (100nM, 1h) triggered the translocation of m53-EGFP from the mitochondrion to the nucleus, thus shifting the transfected cells from a mitochondrial p53 to a nuclear p53 state. Antibodies for p53 serine phosphorylation or lysine acetylation indicated a different post-translational status of recombinant p53 in the nucleus and mitochondrion, respectively. These data suggest that cycling of p53 through the mitochondria may establish a direct pathway for p53 signaling from the mitochondria to the nucleus during mitochondrial dysfunction. PK11195, a pharmacological ligand of mitochondrial TSPO (formerly known as the peripheral-type benzodiazepine receptor), partially suppressed the release of mitochondria-sequestered p53. These findings support the notion that p53 function mediates a direct signaling pathway from the mitochondria to nucleus during mitochondrial dysfunction.
Collapse
Affiliation(s)
- M L Green
- Department of Molecular, Cellular and Craniofacial Biology, University of Louisville, 501 S. Preston St., Louisville, KY 40202, USA; Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | | | | | | |
Collapse
|
31
|
Wickramasekera NT, Das GM. Tumor suppressor p53 and estrogen receptors in nuclear-mitochondrial communication. Mitochondrion 2013; 16:26-37. [PMID: 24177747 DOI: 10.1016/j.mito.2013.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 10/04/2013] [Accepted: 10/22/2013] [Indexed: 01/09/2023]
Abstract
Several gene transcription regulators considered solely localized within the nuclear compartment are being reported to be present in the mitochondria as well. There is growing interest in the role of mitochondria in regulating cellular metabolism in normal and disease states. Various findings demonstrate the importance of crosstalk between nuclear and mitochondrial genomes, transcriptomes, and proteomes in regulating cellular functions. Both tumor suppressor p53 and estrogen receptor (ER) were originally characterized as nuclear transcription factors. In addition to their individual roles as regulators of various genes, these two proteins interact resulting in major cellular consequences. In addition to its nuclear role, p53 has been localized to the mitochondria where it executes various transcription-independent functions. Likewise, ERs are reported to be present in mitochondria; however their functional roles remain to be clearly defined. In this review, we provide an integrated view of the current knowledge of nuclear and mitochondrial p53 and ERs and how it relates to normal and pathological physiology.
Collapse
Affiliation(s)
- Nadi T Wickramasekera
- Department of Pharmacology and Therapeutics, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, United States
| | - Gokul M Das
- Department of Pharmacology and Therapeutics, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, United States.
| |
Collapse
|
32
|
Gupta S, De S, Srivastava V, Hussain M, Kumari J, Muniyappa K, Sengupta S. RECQL4 and p53 potentiate the activity of polymerase γ and maintain the integrity of the human mitochondrial genome. Carcinogenesis 2013; 35:34-45. [PMID: 24067899 DOI: 10.1093/carcin/bgt315] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
UNLABELLED Germline mutations in RECQL4 and p53 lead to cancer predisposition syndromes, Rothmund-Thomson syndrome (RTS) and Li-Fraumeni syndrome (LFS), respectively. RECQL4 is essential for the transport of p53 to the mitochondria under unstressed conditions. Here, we show that both RECQL4 and p53 interact with mitochondrial polymerase (PolγA/B2) and regulate its binding to the mitochondrial DNA (mtDNA) control region (D-loop). Both RECQL4 and p53 bind to the exonuclease and polymerase domains of PolγA. Kinetic constants for interactions between PolγA-RECQL4, PolγA-p53 and PolγB-p53 indicate that RECQL4 and p53 are accessory factors for PolγA-PolγB and PolγA-DNA interactions. RECQL4 enhances the binding of PolγA to DNA, thereby potentiating the exonuclease and polymerization activities of PolγA/B2. To investigate whether lack of RECQL4 and p53 results in increased mitochondrial genome instability, resequencing of the entire mitochondrial genome was undertaken from multiple RTS and LFS patient fibroblasts. We found multiple somatic mutations and polymorphisms in both RTS and LFS patient cells. A significant number of mutations and polymorphisms were common between RTS and LFS patients. These changes are associated with either aging and/or cancer, thereby indicating that the phenotypes associated with these syndromes may be due to deregulation of mitochondrial genome stability caused by the lack of RECQL4 and p53. SUMMARY The biochemical mechanisms by which RECQL4 and p53 affect mtDNA replication have been elucidated. Resequencing of RTS and LFS patients' mitochondrial genome reveals common mutations indicating similar mechanisms of regulation by RECQL4 and p53.
Collapse
Affiliation(s)
- Shruti Gupta
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India and
| | | | | | | | | | | | | |
Collapse
|
33
|
Liu G, Cheresh P, Kamp DW. Molecular basis of asbestos-induced lung disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2013; 8:161-87. [PMID: 23347351 DOI: 10.1146/annurev-pathol-020712-163942] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Asbestos causes asbestosis and malignancies by molecular mechanisms that are not fully understood. The modes of action underlying asbestosis, lung cancer, and mesothelioma appear to differ depending on the fiber type, lung clearance, and genetics. After reviewing the key pathologic changes following asbestos exposure, we examine recently identified pathogenic pathways, with a focus on oxidative stress. Alveolar epithelial cell apoptosis, which is an important early event in asbestosis, is mediated by mitochondria- and p53-regulated death pathways and may be modulated by the endoplasmic reticulum. We review mitochondrial DNA (mtDNA)-damage and -repair mechanisms, focusing on 8-oxoguanine DNA glycosylase, as well as cross talk between reactive oxygen species production, mtDNA damage, p53, OGG1, and mitochondrial aconitase. These new insights into the molecular basis of asbestos-induced lung diseases may foster the development of novel therapeutic targets for managing degenerative diseases (e.g., asbestosis and idiopathic pulmonary fibrosis), tumors, and aging, for which effective management is lacking.
Collapse
Affiliation(s)
- Gang Liu
- Clinical Research Center, Affiliated Hospital of Guangdong Medical College, Zhangjiang, China.
| | | | | |
Collapse
|
34
|
Mitochondrial matrix P53 sensitizes cells to oxidative stress. Mitochondrion 2013; 13:277-81. [PMID: 23499753 DOI: 10.1016/j.mito.2013.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 03/04/2013] [Accepted: 03/05/2013] [Indexed: 12/12/2022]
Abstract
A mitochondrial matrix-specific p53 construct (termed p53-290) in HepG2 cells was utilized to determine the impact of p53 in the mitochondrial matrix following oxidative stress. H₂O₂ exposure reduced cellular proliferation similarly in both p53-290 and vector cells, and p53-290 cells demonstrating decreased cell viability at 1mM H₂O₂ (~85% viable). Mitochondrial DNA (mtDNA) abundance was decreased in a dose-dependent manner in p53-290 cells while no change was observed in vector cells. Oximetric analysis revealed reduced maximal respiration and reserve capacity in p53-290 cells. Our results demonstrate that mitochondrial matrix p53 sensitizes cells to oxidative stress by reducing mtDNA abundance and mitochondrial function.
Collapse
|
35
|
Cheresh P, Kim SJ, Tulasiram S, Kamp DW. Oxidative stress and pulmonary fibrosis. Biochim Biophys Acta Mol Basis Dis 2012; 1832:1028-40. [PMID: 23219955 DOI: 10.1016/j.bbadis.2012.11.021] [Citation(s) in RCA: 348] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 11/26/2012] [Accepted: 11/28/2012] [Indexed: 02/08/2023]
Abstract
Oxidative stress is implicated as an important molecular mechanism underlying fibrosis in a variety of organs, including the lungs. However, the causal role of reactive oxygen species (ROS) released from environmental exposures and inflammatory/interstitial cells in mediating fibrosis as well as how best to target an imbalance in ROS production in patients with fibrosis is not firmly established. We focus on the role of ROS in pulmonary fibrosis and, where possible, highlight overlapping molecular pathways in other organs. The key origins of oxidative stress in pulmonary fibrosis (e.g. environmental toxins, mitochondria/NADPH oxidase of inflammatory and lung target cells, and depletion of antioxidant defenses) are reviewed. The role of alveolar epithelial cell (AEC) apoptosis by mitochondria- and p53-regulated death pathways is examined. We emphasize an emerging role for the endoplasmic reticulum (ER) in pulmonary fibrosis. After briefly summarizing how ROS trigger a DNA damage response, we concentrate on recent studies implicating a role for mitochondrial DNA (mtDNA) damage and repair mechanisms focusing on 8-oxoguanine DNA glycosylase (Ogg1) as well as crosstalk between ROS production, mtDNA damage, p53, Ogg1, and mitochondrial aconitase (ACO2). Finally, the association between ROS and TGF-β1-induced fibrosis is discussed. Novel insights into the molecular basis of ROS-induced pulmonary diseases and, in particular, lung epithelial cell death may promote the development of unique therapeutic targets for managing pulmonary fibrosis as well as fibrosis in other organs and tumors, and in aging; diseases for which effective management is lacking. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.
Collapse
Affiliation(s)
- Paul Cheresh
- Department of Medicine, Northwestern University Feinberg School of Medicine and Jesse Brown VA Medical Center, USA
| | | | | | | |
Collapse
|
36
|
De Paepe B. Mitochondrial Markers for Cancer: Relevance to Diagnosis, Therapy, and Prognosis and General Understanding of Malignant Disease Mechanisms. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/217162] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cancer cells display changes that aid them to escape from cell death, sustain their proliferative powers, and shift their metabolism toward glycolytic energy production. Mitochondria are key organelles in many metabolic and biosynthetic pathways, and the adaptation of mitochondrial function has been recognized as crucial to the changes that occur in cancer cells. This paper zooms in on the pathologic evaluation of mitochondrial markers for diagnosing and staging of human cancer and determining the patients’ prognoses.
Collapse
Affiliation(s)
- Boel De Paepe
- Laboratories for Neuropathology & Mitochondrial Disorders, Ghent University Hospital, Building K5 3rd Floor, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
37
|
Vadrot N, Ghanem S, Braut F, Gavrilescu L, Pilard N, Mansouri A, Moreau R, Reyl-Desmars F. Mitochondrial DNA maintenance is regulated in human hepatoma cells by glycogen synthase kinase 3β and p53 in response to tumor necrosis factor α. PLoS One 2012; 7:e40879. [PMID: 22911714 PMCID: PMC3401193 DOI: 10.1371/journal.pone.0040879] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 06/18/2012] [Indexed: 12/16/2022] Open
Abstract
During chronic liver inflammation, up-regulated Tumor Necrosis Factor alpha (TNF-α) targets hepatocytes and induces abnormal reactive oxygen species (ROS) production responsible for mitochondrial DNA (mtDNA) alterations. The serine/threonine Glycogen Synthase Kinase 3 beta (GSK3β) plays a pivotal role during inflammation but its involvement in the maintenance of mtDNA remains unknown. The aim of this study was to investigate its involvement in TNF-α induced mtDNA depletion and its interrelationship with p53 a protein known to maintain mtDNA copy numbers. Using quantitative polymerase chain reaction (qPCR) we found that at 30 min in human hepatoma HepG2 cells TNF-α induced 0.55±0.10 mtDNA lesions per 10 Kb and a 52.4±2.8% decrease in mtDNA content dependent on TNF-R1 receptor and ROS production. Both lesions and depletion returned to baseline from 1 to 6 h after TNF-α exposure. Luminol-amplified chemiluminescence (LAC) was used to measure the rapid (10 min) and transient TNF-α induced increase in ROS production (168±15%). A transient 8-oxo-dG level of 1.4±0.3 ng/mg DNA and repair of abasic sites were also measured by ELISA assays. Translocation of p53 to mitochondria was observed by Western Blot and co-immunoprecipitations showed that TNF-α induced p53 binding to GSK3β and mitochondrial transcription factor A (TFAM). In addition, mitochondrial D-loop immunoprecipitation (mtDIP) revealed that TNF-α induced p53 binding to the regulatory D-loop region of mtDNA. The knockdown of p53 by siRNAs, inhibition by the phosphoSer(15)p53 antibody or transfection of human mutant active GSK3βS9A pcDNA3 plasmid inhibited recovery of mtDNA content while blockade of GSK3β activity by SB216763 inhibitor or knockdown by siRNAs suppressed mtDNA depletion. This study is the first to report the involvement of GSK3β in TNF-α induced mtDNA depletion. We suggest that p53 binding to GSK3β, TFAM and D-loop could induce recovery of mtDNA content through mtDNA repair.
Collapse
Affiliation(s)
- Nathalie Vadrot
- INSERM U773, CRB3, Equipe Moreau, Université Paris 7 Denis Diderot, Faculté de Médecine X Bichat, Paris, France
| | - Sarita Ghanem
- INSERM U773, CRB3, Equipe Moreau, Université Paris 7 Denis Diderot, Faculté de Médecine X Bichat, Paris, France
| | - Françoise Braut
- INSERM U773, CRB3, Equipe El-Benna, Université Paris 7 Denis Diderot, Faculté de Médecine X Bichat, Paris, France
| | - Laura Gavrilescu
- INSERM U773, CRB3, Equipe Moreau, Université Paris 7 Denis Diderot, Faculté de Médecine X Bichat, Paris, France
| | - Nathalie Pilard
- INSERM U773, CRB3, Equipe Moreau, Université Paris 7 Denis Diderot, Faculté de Médecine X Bichat, Paris, France
| | - Abdellah Mansouri
- INSERM U773, CRB3, Equipe Moreau, Université Paris 7 Denis Diderot, Faculté de Médecine X Bichat, Paris, France
| | - Richard Moreau
- INSERM U773, CRB3, Equipe Moreau, Université Paris 7 Denis Diderot, Faculté de Médecine X Bichat, Paris, France
| | - Florence Reyl-Desmars
- INSERM U773, CRB3, Equipe Moreau, Université Paris 7 Denis Diderot, Faculté de Médecine X Bichat, Paris, France
- * E-mail:
| |
Collapse
|
38
|
Derech-Haim S, Teiblum G, Kadosh R, Rahav G, Bonda E, Sredni B, Bakhanashvili M. Ribonuclease activity of p53 in cytoplasm in response to various stress signals. Cell Cycle 2012; 11:1400-13. [PMID: 22421154 DOI: 10.4161/cc.19812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The tumor suppressor p53 protein is expressed at low levels under normal conditions. The subcellular localization and functional activation of p53 are influenced by diverse stress signals. p53 in cytoplasm exerts intrinsic 3'→5' exonuclease activity with various RNA and DNA substrates. ssRNAs containing an adenosine and uridine-rich (ARE) element are permissive targets for p53-mediated degradation. The analysis of the exonuclease activity in cytoplasm with activated p53 induced by various drug treatments or following γ-irradiation revealed that the expression of p53 exonuclease activity in response to stress signals is heterogeneous. Various genotoxic and non-genotoxic agents upregulate p53 yet have different effects on expression of exonuclease activity with ARE RNA but not with DNA substrate. Ribonuclease activity is enhanced in cytoplasmic extracts of HCT116 (p53+/+) cells exposed to γ-irradiation or treated by the non-genotoxic drug AS101 but decreased following treatment by genotoxic (e.g., doxorubicin) or non-genotoxic (e.g., DFMO) agents, thus indicating that p53 exonuclease activity is dependent on the specific stress and nature of the substrate. Apparently, the disparity in expression of p53 ribonuclease activity after each treatment is attributable to the different post-treatment response and to two posttranscriptional events: the interaction of RNA-binding HuR protein with ARE RNA protects the substrate from degradation by p53 and/or decrease in p53 ARE RNA binding capacity due to phosphorylation at Ser392 leads to reduction in p5 ribonuclease activity. Our results provide new insights into p53 exonuclease function and into the mechanisms behind the regulation ARE-RNA degradation by p53 under different cellular conditions.
Collapse
Affiliation(s)
- Sanaz Derech-Haim
- Infectious Diseases Unit, Sheba Medical Center, Tel Hashomer, Israel
| | | | | | | | | | | | | |
Collapse
|
39
|
p53 and mitochondrial DNA: their role in mitochondrial homeostasis and toxicity of antiretrovirals. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:2276-83. [PMID: 22469844 DOI: 10.1016/j.ajpath.2012.01.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/11/2012] [Accepted: 01/30/2012] [Indexed: 02/04/2023]
Abstract
The roles and actions of the tumor suppressor protein p53 have been extensively studied with regard to nuclear events, including transcription and DNA damage repair. However, the direct roles of p53 in mitochondrial DNA (mtDNA) replication and function are less well understood. Studies herein used a mitochondrial-targeted p53 (MTS-p53) to determine its effects on both mtDNA abundance and mitochondrial function. MTS-p53 decreased cellular proliferation and mtDNA abundance in HepG2 cells transfected with wild-type (WT) human p53. When MTS-p53 cells were treated with the nucleoside reverse transcriptase inhibitor (NRTI), 2',3'-dideoxycytidine or 2',3'-dideoxyinosine, mtDNA depletion that resembled untransfected controls was observed in both instances. p53-Overexpressing cells showed reduced mitochondrial function by oximetry, including a reduction in maximal respiratory capacity and reserve capacity. A truncated p53 (MTS-p53-290) was generated for localization exclusively to the mitochondria. MTS-p53-290 cells proliferated at control levels but displayed decreased mtDNA abundance and mitochondrial function with NRTI treatment. The MTS-p53-290 cells demonstrated that only the nuclear fraction of p53 controlled cellular proliferation, which was supported by the MTS-p53 results. Data herein indicate that overexpression of p53 in the mitochondria reduces mtDNA abundance and increases the sensitivity of mammalian cells to NRTI exposure by reducing mitochondrial function.
Collapse
|
40
|
De S, Kumari J, Mudgal R, Modi P, Gupta S, Futami K, Goto H, Lindor NM, Furuichi Y, Mohanty D, Sengupta S. RECQL4 is essential for the transport of p53 to mitochondria in normal human cells in the absence of exogenous stress. J Cell Sci 2012; 125:2509-22. [PMID: 22357944 DOI: 10.1242/jcs.101501] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mutations in RECQL4 helicase are associated with Rothmund-Thomson syndrome (RTS). A subset of RTS patients is predisposed to cancer and is sensitive to DNA damaging agents. The enhanced sensitivity of cells from RTS patients correlates with the accumulation of transcriptionally active nuclear p53. We found that in untreated normal human cells these two nuclear proteins, p53 and RECQL4, instead colocalize in the mitochondrial nucleoids. RECQL4 accumulates in mitochondria in all phases of the cell cycle except S phase and physically interacts with p53 only in the absence of DNA damage. p53-RECQL4 binding leads to the masking of the nuclear localization signal of p53. The N-terminal 84 amino acids of RECQL4 contain a mitochondrial localization signal, which causes the localization of RECQL4-p53 complex to the mitochondria. RECQL4-p53 interaction is disrupted after stress, allowing p53 translocation to the nucleus. In untreated normal cells RECQL4 optimizes de novo replication of mtDNA, which is consequently decreased in fibroblasts from RTS patients. Wild-type RECQL4-complemented RTS cells show relocalization of both RECQL4 and p53 to the mitochondria, loss of p53 activation, restoration of de novo mtDNA replication and resistance to different types of DNA damage. In cells expressing Δ84 RECQL4, which cannot translocate to mitochondria, all the above functions are compromised. The recruitment of p53 to the sites of de novo mtDNA replication is also regulated by RECQL4. Thus these findings elucidate the mechanism by which p53 is regulated by RECQL4 in unstressed normal cells and also delineates the mitochondrial functions of the helicase.
Collapse
Affiliation(s)
- Siddharth De
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
p53 regulates the cell cycle and deoxyribonucleic acid (DNA) repair pathways as part of its unequivocally important function to maintain genomic stability. Intriguingly, recent studies show that p53 can also transactivate genes involved in coordinating the two major pathways of energy generation to promote aerobic metabolism, but how this serves to maintain genomic stability is less clear. In an attempt to understand the biology, this review presents human epidemiologic data on the inverse relationship between aerobic capacity and cancer incidence that appears to be mirrored by the impact of p53 on aerobic capacity in mouse models. The review summarizes mechanisms by which p53 regulates mitochondrial respiration and proposes how this might contribute to maintaining genomic stability. Although disparate in nature, the data taken together suggest that the promotion of aerobic metabolism by p53 serves as an important tumor suppressor activity and may provide insights for cancer prevention strategies in the future.
Collapse
Affiliation(s)
- Cory U. Lago
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Ho Joong Sung
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, GyeongGi-Do, Korea
| | - Wenzhe Ma
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Ping-yuan Wang
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Paul M. Hwang
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
42
|
Bakthavatchalu V, Dey S, Xu Y, Noel T, Jungsuwadee P, Holley AK, Dhar SK, Batinic-Haberle I, St Clair DK. Manganese superoxide dismutase is a mitochondrial fidelity protein that protects Polγ against UV-induced inactivation. Oncogene 2011; 31:2129-39. [PMID: 21909133 PMCID: PMC3237716 DOI: 10.1038/onc.2011.407] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Manganese superoxide dismutase is a nuclear encoded primary antioxidant enzyme localized exclusively in the mitochondrial matrix. Genotoxic agents, such as ultraviolet (UV) radiation, generates oxidative stress and cause mitochondrial DNA (mtDNA) damage. The mtDNA polymerase (Polγ), a major constituent of nucleoids, is responsible for the replication and repair of the mitochondrial genome. Recent studies suggest that the mitochondria contain fidelity proteins and MnSOD constitutes an integral part of the nucleoid complex. However, it is not known whether or how MnSOD participates in the mitochondrial repair processes. Using skin tissue from C57BL/6 mice exposed to UVB radiation, we demonstrate that MnSOD has a critical role in preventing mtDNA damage by protecting the function of Polγ. Quantitative-PCR analysis shows an increase in mtDNA damage after UVB exposure. Immunofluorescence and immunoblotting studies demonstrate p53 translocation to the mitochondria and interaction with Polγ after UVB exposure. The mtDNA immunoprecipitation assay with Polγ and p53 antibodies in p53(+/+) and p53(-/-) mice demonstrates an interaction between MnSOD, p53 and Polγ. The results suggest that these proteins form a complex for the repair of UVB-associated mtDNA damage. The data also demonstrate that UVB exposure injures the mtDNA D-loop in a p53-dependent manner. Using MnSOD-deficient mice we demonstrate that UVB-induced mtDNA damage is MnSOD dependent. Exposure to UVB results in nitration and inactivation of Polγ, which is prevented by addition of the MnSOD mimetic Mn(III)TE-2-PyP(5+). These results demonstrate for the first time that MnSOD is a fidelity protein that maintains the activity of Polγ by preventing UVB-induced nitration and inactivation of Polγ. The data also demonstrate that MnSOD has a role along with p53 to prevent mtDNA damage.
Collapse
Affiliation(s)
- V Bakthavatchalu
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536-0298, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Background: We previously hypothesized a role for mitochondria damage checkpoint (mito-checkpoint) in maintaining the mitochondrial integrity of cells. Consistent with this hypothesis, defects in mitochondria have been demonstrated to cause genetic and epigenetic changes in the nuclear DNA, resistance to cell-death and tumorigenesis. In this paper, we describe that defects in mitochondria arising from the inhibition of mitochondrial oxidative phosphorylation (mtOXPHOS) induce cell cycle arrest, a response similar to the DNA damage checkpoint response. Materials and Methods: Primary mouse embryonic fibroblasts obtained from p53 wild-type and p53-deficient mouse embryos (p53 -/-) were treated with inhibitors of electron transport chain and cell cycle analysis, ROS production, mitochondrial content analysis and immunoblotting was performed. The expression of p53R2 was also measured by real time quantitative PCR. Results: We determined that, while p53 +/+ cells arrest in the cell cycle, p53 -/- cells continued to divide after exposure to mitochondrial inhibitors, showing that p53 plays an important role in the S-phase delay in the cell cycle. p53 is translocated to mitochondria after mtOXPHOS inhibition. Our study also revealed that p53-dependent induction of reactive oxygen species acts as a major signal triggering a mito-checkpoint response. Furthermore our study revealed that loss of p53 results in down regulation of p53R2 that contributes to depletion of mtDNA in primary MEF cells. Conclusions: Our study suggests that p53 1) functions as mito-checkpoint protein and 2) regulates mtDNA copy number and mitochondrial biogenesis. We describe a conceptual organization of the mito-checkpoint pathway in which identified roles of p53 in mitochondria are incorporated.
Collapse
Affiliation(s)
- Mariola Kulawiec
- Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| | | | | |
Collapse
|
44
|
Sandulache VC, Skinner HD, Ow TJ, Zhang A, Xia X, Luchak JM, Wong LJC, Pickering CR, Zhou G, Myers JN. Individualizing antimetabolic treatment strategies for head and neck squamous cell carcinoma based on TP53 mutational status. Cancer 2011; 118:711-21. [PMID: 21720999 DOI: 10.1002/cncr.26321] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 05/10/2011] [Indexed: 12/21/2022]
Abstract
BACKGROUND Mutations in the tumor protein 53 (TP53) tumor suppressor gene are common in head and neck squamous cell carcinoma (HNSCC) and correlate with radioresistance. Currently, there are no clinically available therapeutic approaches targeting p53 in HNSCC. In this report, the authors propose a strategy that uses TP53 mutational status to individualize antimetabolic strategies for the potentiation of radiation toxicity in HNSCC cells. METHODS Glycolytic flux and mitochondrial respiration were evaluated in wild-type (wt) and mutant (mut) TP53 HNSCC cell lines. Sensitivity to external-beam radiation (XRT) was measured using a clonogenic assay. RESULTS HNSCC cells that expressed mutTP53 demonstrated radioresistance compared with HNSCC cells that expressed wtTP53. Glycolytic inhibition potentiated radiation toxicity in mutTP53-expressing, but not wtTP53-expressing, HNSCC cells. The relative sensitivity of mutTP53 HNSCC cells to glycolytic inhibition was caused by a glycolytic dependence associated with decreased mitochondrial complex II and IV activity. The wtTP53-expressing cells maintained mitochondrial reserves and were relatively insensitive to glycolytic inhibition. Inhibition of respiration using metformin increased glycolytic dependence in wtTP53-expressing cells and potentiated the effects of glycolyic inhibition on radiation toxicity. CONCLUSIONS TP53 mutation in HNSCC cells was correlated with a metabolic shift away from mitochondrial respiration toward glycolysis, resulting in increased sensitivity to the potentiating effects of glycolytic inhibition on radiation toxicity. In contrast, wtTP53-expressing cells required inhibition of both mitochondrial respiration and glycolysis to become sensitized to radiation. Therefore, the authors concluded that TP53 mutational status may be used as a marker of altered tumor cell metabolism to individualize HNSCC treatment selection of specific, targeted metabolic agents that can overcome cellular resistance to radiation therapy.
Collapse
Affiliation(s)
- Vlad C Sandulache
- Bobby R. Alford Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Huang SXL, Jaurand MC, Kamp DW, Whysner J, Hei TK. Role of mutagenicity in asbestos fiber-induced carcinogenicity and other diseases. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2011; 14:179-245. [PMID: 21534089 PMCID: PMC3118525 DOI: 10.1080/10937404.2011.556051] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The cellular and molecular mechanisms of how asbestos fibers induce cancers and other diseases are not well understood. Both serpentine and amphibole asbestos fibers have been shown to induce oxidative stress, inflammatory responses, cellular toxicity and tissue injuries, genetic changes, and epigenetic alterations in target cells in vitro and tissues in vivo. Most of these mechanisms are believe to be shared by both fiber-induced cancers and noncancerous diseases. This article summarizes the findings from existing literature with a focus on genetic changes, specifically, mutagenicity of asbestos fibers. Thus far, experimental evidence suggesting the involvement of mutagenesis in asbestos carcinogenicity is more convincing than asbestos-induced fibrotic diseases. The potential contributions of mutagenicity to asbestos-induced diseases, with an emphasis on carcinogenicity, are reviewed from five aspects: (1) whether there is a mutagenic mode of action (MOA) in fiber-induced carcinogenesis; (2) mutagenicity/carcinogenicity at low dose; (3) biological activities that contribute to mutagenicity and impact of target tissue/cell type; (4) health endpoints with or without mutagenicity as a key event; and finally, (5) determinant factors of toxicity in mutagenicity. At the end of this review, a consensus statement of what is known, what is believed to be factual but requires confirmation, and existing data gaps, as well as future research needs and directions, is provided.
Collapse
Affiliation(s)
- Sarah X. L. Huang
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Marie-Claude Jaurand
- INSERM (Institut National de la Santé et de la Recherche Médicale), Paris, France
| | - David W. Kamp
- Pulmonary & Critical Care Medicine, Northwestern University Feinberg School of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - John Whysner
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Tom K. Hei
- Address correspondence to Tom K. Hei, Center for Radiological Research, College of Physicians and Surgeons, Columbia University. 630 West 168th Street, New York, NY 10032, USA. E-mail:
| |
Collapse
|
46
|
Belyakova NV, Legina OK, Ronzhina NL, Shevelev IV, Krutiakov VM. Investigation of the interaction of repair DNA polymerase β and autonomous 3′ → 5′-exonucleases TREX1 and TREX2. BIOL BULL+ 2010. [DOI: 10.1134/s1062359010050043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Cyclin B1/Cdk1 phosphorylation of mitochondrial p53 induces anti-apoptotic response. PLoS One 2010; 5:e12341. [PMID: 20808790 PMCID: PMC2925892 DOI: 10.1371/journal.pone.0012341] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 08/01/2010] [Indexed: 01/10/2023] Open
Abstract
The pro-apoptotic function of p53 has been well defined in preventing genomic instability and cell transformation. However, the intriguing fact that p53 contributes to a pro-survival advantage of tumor cells under DNA damage conditions raises a critical question in radiation therapy for the 50% human cancers with intact p53 function. Herein, we reveal an anti-apoptotic role of mitochondrial p53 regulated by the cell cycle complex cyclin B1/Cdk1 in irradiated human colon cancer HCT116 cells with p53+/+ status. Steady-state levels of p53 and cyclin B1/Cdk1 were identified in the mitochondria of many human and mouse cells, and their mitochondrial influx was significantly enhanced by radiation. The mitochondrial kinase activity of cyclin B1/Cdk1 was found to specifically phosphorylate p53 at Ser-315 residue, leading to enhanced mitochondrial ATP production and reduced mitochondrial apoptosis. The improved mitochondrial function can be blocked by transfection of mutant p53 Ser-315-Ala, or by siRNA knockdown of cyclin B1 and Cdk1 genes. Enforced translocation of cyclin B1 and Cdk1 into mitochondria with a mitochondrial-targeting-peptide increased levels of Ser-315 phosphorylation on mitochondrial p53, improved ATP production and decreased apoptosis by sequestering p53 from binding to Bcl-2 and Bcl-xL. Furthermore, reconstitution of wild-type p53 in p53-deficient HCT116 p53−/− cells resulted in an increased mitochondrial ATP production and suppression of apoptosis. Such phenomena were absent in the p53-deficient HCT116 p53−/− cells reconstituted with the mutant p53. These results demonstrate a unique anti-apoptotic function of mitochondrial p53 regulated by cyclin B1/Cdk1-mediated Ser-315 phosphorylation in p53-wild-type tumor cells, which may provide insights for improving the efficacy of anti-cancer therapy, especially for tumors that retain p53.
Collapse
|
48
|
Berretta R, Moscato P. Cancer biomarker discovery: the entropic hallmark. PLoS One 2010; 5:e12262. [PMID: 20805891 PMCID: PMC2923618 DOI: 10.1371/journal.pone.0012262] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Accepted: 06/26/2010] [Indexed: 12/29/2022] Open
Abstract
Background It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-througput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases.
Collapse
Affiliation(s)
- Regina Berretta
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, New South Wales, Australia
- Information Based Medicine Program, Hunter Medical Research Institute, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - Pablo Moscato
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, New South Wales, Australia
- Information Based Medicine Program, Hunter Medical Research Institute, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
- Australian Research Council Centre of Excellence in Bioinformatics, Callaghan, New South Wales, Australia
- * E-mail:
| |
Collapse
|
49
|
Abstract
Nuclear transcription factors have been detected in mammalian mitochondria and may directly regulate mitochondrial gene expression. Emerging genomics techniques may overcome outstanding challenges in this field.
Collapse
Affiliation(s)
- Sarah Leigh-Brown
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | | | | |
Collapse
|
50
|
Shutt TE, Shadel GS. A compendium of human mitochondrial gene expression machinery with links to disease. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:360-79. [PMID: 20544879 PMCID: PMC2886302 DOI: 10.1002/em.20571] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Mammalian mitochondrial DNA encodes 37 essential genes required for ATP production via oxidative phosphorylation, instability or misregulation of which is associated with human diseases and aging. Other than the mtDNA-encoded RNA species (13 mRNAs, 12S and 16S rRNAs, and 22 tRNAs), the remaining factors needed for mitochondrial gene expression (i.e., transcription, RNA processing/modification, and translation), including a dedicated set of mitochondrial ribosomal proteins, are products of nuclear genes that are imported into the mitochondrial matrix. Herein, we inventory the human mitochondrial gene expression machinery, and, while doing so, we highlight specific associations of these regulatory factors with human disease. Major new breakthroughs have been made recently in this burgeoning area that set the stage for exciting future studies on the key outstanding issue of how mitochondrial gene expression is regulated differentially in vivo. This should promote a greater understanding of why mtDNA mutations and dysfunction cause the complex and tissue-specific pathology characteristic of mitochondrial disease states and how mitochondrial dysfunction contributes to more common human pathology and aging.
Collapse
Affiliation(s)
- Timothy E. Shutt
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, P.O. Box 208023, New haven, CT 06520-8023
| | - Gerald S. Shadel
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, P.O. Box 208023, New haven, CT 06520-8023
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, P.O. Box 208005, New haven, CT 06520-8005
- corresponding author: Department of Pathology, Yale University School of Medicine, P.O. Box 208023, New Haven, CT 06520-8023 phone: (203) 785-2475 FAX: (203) 785-2628
| |
Collapse
|