1
|
Shah RB, Li Y, Yu H, Kini E, Sidi S. Stepwise phosphorylation and SUMOylation of PIDD1 drive PIDDosome assembly in response to DNA repair failure. Nat Commun 2024; 15:9195. [PMID: 39448602 PMCID: PMC11502896 DOI: 10.1038/s41467-024-53412-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
SUMOylation regulates numerous cellular stress responses, yet targets in the apoptotic machinery remain elusive. We show that a single, DNA damage-induced monoSUMOylation event controls PIDDosome (PIDD1/RAIDD/caspase-2) formation and apoptotic death in response to unresolved DNA interstrand crosslinks (ICLs). SUMO-1 conjugation occurs on conserved K879 in the PIDD1 death domain (DD); is catalyzed by PIAS1 and countered by SENP3; and is triggered by ATR phosphorylation of neighboring T788 in the PIDD1 DD, which enables PIAS1 docking. Phospho/SUMO-PIDD1 proteins are captured by nucleolar RAIDD monomers via a SUMO-interacting motif (SIM) in the RAIDD DD, thus compartmentalizing nascent PIDDosomes for caspase-2 recruitment. Denying SUMOylation or the SUMO-SIM interaction spares the onset of PIDDosome assembly but blocks its completion, thus eliminating the apoptotic response to ICL repair failure. Conversely, removal of SENP3 forces apoptosis, even in cells with tolerable ICL levels. SUMO-mediated PIDDosome control is also seen in response to DNA breaks but not supernumerary centrosomes. These results illuminate PIDDosome formation in space and time and identify a direct role for SUMOylation in the assembly of a major pro-apoptotic device.
Collapse
Affiliation(s)
- Richa B Shah
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuanyuan Li
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Honglin Yu
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ela Kini
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samuel Sidi
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
2
|
PIDD1 in cell cycle control, sterile inflammation and cell death. Biochem Soc Trans 2022; 50:813-824. [PMID: 35343572 PMCID: PMC9162469 DOI: 10.1042/bst20211186] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023]
Abstract
The death fold domain-containing protein PIDD1 has recently attracted renewed attention as a regulator of the orphan cell death-related protease, Caspase-2. Caspase-2 can activate p53 to promote cell cycle arrest in response to centrosome aberrations, and its activation requires formation of the PIDDosome multi-protein complex containing multimers of PIDD1 and the adapter RAIDD/CRADD at its core. However, PIDD1 appears to be able to engage with multiple client proteins to promote an even broader range of biological responses, such as NF-κB activation, translesion DNA synthesis or cell death. PIDD1 shows features of inteins, a class of self-cleaving proteins, to create different polypeptides from a common precursor protein that allow it to serve these diverse functions. This review summarizes structural information and molecular features as well as recent experimental advances that highlight the potential pathophysiological roles of this unique death fold protein to highlight its drug-target potential.
Collapse
|
3
|
Shah RB, Kernan JL, van Hoogstraten A, Ando K, Li Y, Belcher AL, Mininger I, Bussenault AM, Raman R, Ramanagoudr-Bhojappa R, Huang TT, D'Andrea AD, Chandrasekharappa SC, Aggarwal AK, Thompson R, Sidi S. FANCI functions as a repair/apoptosis switch in response to DNA crosslinks. Dev Cell 2021; 56:2207-2222.e7. [PMID: 34256011 DOI: 10.1016/j.devcel.2021.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 05/12/2021] [Accepted: 06/10/2021] [Indexed: 12/16/2022]
Abstract
Cells counter DNA damage through repair or apoptosis, yet a direct mechanism for this choice has remained elusive. When facing interstrand crosslinks (ICLs), the ICL-repair protein FANCI heterodimerizes with FANCD2 to initiate ICL excision. We found that FANCI alternatively interacts with a pro-apoptotic factor, PIDD1, to enable PIDDosome (PIDD1-RAIDD-caspase-2) formation and apoptotic death. FANCI switches from FANCD2/repair to PIDD1/apoptosis signaling in the event of ICL-repair failure. Specifically, removing key endonucleases downstream of FANCI/FANCD2, increasing ICL levels, or allowing damaged cells into mitosis (when repair is suppressed) all suffice for switching. Reciprocally, apoptosis-committed FANCI reverts from PIDD1 to FANCD2 after a failed attempt to assemble the PIDDosome. Monoubiquitination and deubiquitination at FANCI K523 impact interactor selection. These data unveil a repair-or-apoptosis switch in eukaryotes. Beyond ensuring the removal of unrepaired genomes, the switch's bidirectionality reveals that damaged cells can offset apoptotic defects via de novo attempts at lesion repair.
Collapse
Affiliation(s)
- Richa B Shah
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jennifer L Kernan
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anya van Hoogstraten
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kiyohiro Ando
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuanyuan Li
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alicia L Belcher
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ivy Mininger
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrei M Bussenault
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Renuka Raman
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ramanagouda Ramanagoudr-Bhojappa
- Cancer Genomics Unit, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tony T Huang
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Settara C Chandrasekharappa
- Cancer Genomics Unit, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Aneel K Aggarwal
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruth Thompson
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncology & Metabolism, University of Sheffield Medical School, Sheffield, UK
| | - Samuel Sidi
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
4
|
Ma X, Tang TS, Guo C. Regulation of translesion DNA synthesis in mammalian cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:680-692. [PMID: 31983077 DOI: 10.1002/em.22359] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/29/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
The genomes of all living cells are under endogenous and exogenous attacks every day, causing diverse genomic lesions. Most of the lesions can be timely repaired by multiple DNA repair pathways. However, some may persist during S-phase, block DNA replication, and challenge genome integrity. Eukaryotic cells have evolved DNA damage tolerance (DDT) to mitigate the lethal effects of arrested DNA replication without prior removal of the offending DNA damage. As one important mode of DDT, translesion DNA synthesis (TLS) utilizes multiple low-fidelity DNA polymerases to incorporate nucleotides opposite DNA lesions to maintain genome integrity. Three different mechanisms have been proposed to regulate the polymerase switching between high-fidelity DNA polymerases in the replicative machinery and one or more specialized enzymes. Additionally, it is known that proliferating cell nuclear antigen (PCNA) mono-ubiquitination is essential for optimal TLS. Given its error-prone property, TLS is closely associated with spontaneous and drug-induced mutations in cells, which can potentially lead to tumorigenesis and chemotherapy resistance. Therefore, TLS process must be tightly modulated to avoid unwanted mutagenesis. In this review, we will focus on polymerase switching and PCNA mono-ubiquitination, the two key events in TLS pathway in mammalian cells, and summarize current understandings of regulation of TLS process at the levels of protein-protein interactions, post-translational modifications as well as transcription and noncoding RNAs. Environ. Mol. Mutagen. 61:680-692, 2020. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaolu Ma
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Caixia Guo
- CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Sladky VC, Villunger A. Uncovering the PIDDosome and caspase-2 as regulators of organogenesis and cellular differentiation. Cell Death Differ 2020; 27:2037-2047. [PMID: 32415279 PMCID: PMC7308375 DOI: 10.1038/s41418-020-0556-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 02/08/2023] Open
Abstract
The PIDDosome is a multiprotein complex that drives activation of caspase-2, an endopeptidase originally implicated in apoptosis. Yet, unlike other caspases involved in cell death and inflammation, caspase-2 seems to exert additional versatile functions unrelated to cell death. These emerging roles range from control of transcription factor activity to ploidy surveillance. Thus, caspase-2 and the PIDDosome act as a critical regulatory unit controlling cellular differentiation processes during organogenesis and regeneration. These newly established functions of the PIDDosome and its downstream effector render its components attractive targets for drug-development aiming to prevent fatty liver diseases, neurodegenerative disorders or osteoporosis. ![]()
Collapse
Affiliation(s)
- Valentina C Sladky
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria. .,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, 1090, Vienna, Austria. .,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria.
| |
Collapse
|
6
|
Zhang M, Chen L, Xu F, Jiang L, Yan W, Kunwar B, Tang F, Yang K, Shen C, Huang H, Lv J, Qin C, Wu X, Zeng S, Li M, Zhong S, Chen Q. Involvement of Upregulated P53-Induced Death Domain Protein in Retinal Ganglion Cells Apoptosis After Optic Nerve Crush. Curr Mol Med 2019; 20:51-59. [PMID: 31533600 DOI: 10.2174/1566524019666190918160032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/22/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022]
Abstract
Purpose:
Retinal ganglion cells (RGCs) apoptosis is a common characteristic
of optic neuropathies. p53-induced protein with a death domain (PIDD) is a well-known
regulator of genotoxic stress-induced apoptosis, which is constitutively cleaved into
three main fragments: PIDD-N, PIDD-C and PIDD-CC. Thus, we aim to determine the
physiological relevance of PIDD in RGCs apoptosis in an optic nerve crush (ONC)
model.
Methods:
All animals were evenly randomized into four groups: sham-control group,
con-siRNA group, ONC group, and PIDD-siRNA group (ONC +PIDD-siRNA).
Expressions of PIDD, caspase-2, Brn3a and tBid in ONC model were analyzed by
Western blot and immunofluorescence. Mean densities of RGCs/mm2 were calculated
with Fluoro-Gold (FG). Moreover, we tested the effect of PIDD-siRNA on ONC-induced
RGCs apoptosis using TUNEL staining.
Results:
The level of full-length PIDD was weakly present and showed no significant
differences at any time points. PIDD-CC and PIDD-C were significantly up-regulated in
the retina at 3 days after ONC. Meanwhile, the expression of PIDD was significantly
increased in Brn3a (a marker of RGCs) positive cells, indicating that the localization of
PIDD appeared to be confined to RGCs. Furthermore, inhibition of PIDD prevented
RGCs apoptosis by inhibiting caspase-2 and tBid activation.
Conclusions:
Taken together, PIDD may play a crucial role in RGCs apoptosis after
ONC, and this process may be relevant to caspase-2 and tBid.
Collapse
Affiliation(s)
- Mingyuan Zhang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Lifei Chen
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Fan Xu
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Li Jiang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Wenya Yan
- Guangzhou Medical University, Guangzhou 511436, China
| | - Bibhav Kunwar
- Guangzhou Medical University, Guangzhou 511436, China
| | - Fen Tang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Ke Yang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Chaolan Shen
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Hui Huang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Jian Lv
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Chen Qin
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Xiaonian Wu
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Siming Zeng
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Min Li
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Shan Zhong
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Qi Chen
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| |
Collapse
|
7
|
Masuda Y, Masutani C. Spatiotemporal regulation of PCNA ubiquitination in damage tolerance pathways. Crit Rev Biochem Mol Biol 2019; 54:418-442. [PMID: 31736364 DOI: 10.1080/10409238.2019.1687420] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
DNA is constantly exposed to a wide variety of exogenous and endogenous agents, and most DNA lesions inhibit DNA synthesis. To cope with such problems during replication, cells have molecular mechanisms to resume DNA synthesis in the presence of DNA lesions, which are known as DNA damage tolerance (DDT) pathways. The concept of ubiquitination-mediated regulation of DDT pathways in eukaryotes was established via genetic studies in the yeast Saccharomyces cerevisiae, in which two branches of the DDT pathway are regulated via ubiquitination of proliferating cell nuclear antigen (PCNA): translesion DNA synthesis (TLS) and homology-dependent repair (HDR), which are stimulated by mono- and polyubiquitination of PCNA, respectively. Over the subsequent nearly two decades, significant progress has been made in understanding the mechanisms that regulate DDT pathways in other eukaryotes. Importantly, TLS is intrinsically error-prone because of the miscoding nature of most damaged nucleotides and inaccurate replication of undamaged templates by TLS polymerases (pols), whereas HDR is theoretically error-free because the DNA synthesis is thought to be predominantly performed by pol δ, an accurate replicative DNA pol, using the undamaged sister chromatid as its template. Thus, the regulation of the choice between the TLS and HDR pathways is critical to determine the appropriate biological outcomes caused by DNA damage. In this review, we summarize our current understanding of the species-specific regulatory mechanisms of PCNA ubiquitination and how cells choose between TLS and HDR. We then provide a hypothetical model for the spatiotemporal regulation of DDT pathways in human cells.
Collapse
Affiliation(s)
- Yuji Masuda
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Chikahide Masutani
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Graduate School of Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|
8
|
Ji L, Zhang R, Chen J, Xue Q, Moghal N, Tsao MS. PIDD interaction with KEAP1 as a new mutation-independent mechanism to promote NRF2 stabilization and chemoresistance in NSCLC. Sci Rep 2019; 9:12437. [PMID: 31455821 PMCID: PMC6712044 DOI: 10.1038/s41598-019-48763-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 08/12/2019] [Indexed: 01/15/2023] Open
Abstract
Chemotherapy resistance is a major problem in non-small cell lung cancer (NSCLC) treatment. A major mechanism of chemoresistance involves stabilization of the NRF2 transcription factor. NRF2 levels are normally tightly regulated through interaction with KEAP1, an adaptor that targets NRF2 to the CUL3 E3 ubiquitin ligase for proteolysis. In NSCLC, aberrant NRF2 stabilization is best understood through mutations in NRF2, KEAP1, or CUL3 that disrupt their interaction. Biochemical studies, however, have revealed that NRF2 can also be stabilized through expression of KEAP1-interacting proteins that competitively sequester KEAP1 away from NRF2. Here, we have identified PIDD, as a novel KEAP1-interactor in NSCLC that regulates NRF2. We show that this interaction allows PIDD to reduce NRF2 ubiquitination and increase its stability. We also demonstrate that PIDD promotes chemoresistance in NSCLC cells both in vitro and in vivo, and that this effect is dependent on NRF2. Finally, we report that NRF2 protein expression in a NSCLC cohort exceeds the typical incidence of combined NRF2, KEAP1, and CUL3 mutations, and that NRF2 expression in this cohort is correlated with PIDD levels. Our data identify PIDD as a new NRF2 regulator, and suggest that variations in PIDD levels contribute to differential chemosensitivities among NSCLC patients.
Collapse
Affiliation(s)
- Lili Ji
- Department of Pathology, Medical College of Nantong University, Nantong, Jiangsu, 226001, China. .,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada.
| | - Rui Zhang
- Department of Tuberculosis, the Sixth Hospital of Nantong, Nantong, Jiangsu, 226000, China
| | - Jie Chen
- Department of Oncology, Jiangyin People's Hospital, Jiangyin, China
| | - Qun Xue
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Nadeem Moghal
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| |
Collapse
|
9
|
Lin YF, Shih HY, Shang ZF, Kuo CT, Guo J, Du C, Lee H, Chen BPC. PIDD mediates the association of DNA-PKcs and ATR at stalled replication forks to facilitate the ATR signaling pathway. Nucleic Acids Res 2019; 46:1847-1859. [PMID: 29309644 PMCID: PMC5829747 DOI: 10.1093/nar/gkx1298] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/19/2017] [Indexed: 12/13/2022] Open
Abstract
The DNA-dependent protein kinase (DNA-PK), consisting of the DNA binding Ku70/80 heterodimer and the catalytic subunit DNA-PKcs, has been well characterized in the non-homologous end-joining mechanism for DNA double strand break (DSB) repair and radiation resistance. Besides playing a role in DSB repair, DNA-PKcs is required for the cellular response to replication stress and participates in the ATR-Chk1 signaling pathway. However, the mechanism through which DNA-PKcs is recruited to stalled replication forks is still unclear. Here, we report that the apoptosis mediator p53-induced protein with a death domain (PIDD) is required to promote DNA-PKcs activity in response to replication stress. PIDD is known to interact with PCNA upon UV-induced replication stress. Our results demonstrate that PIDD is required to recruit DNA-PKcs to stalled replication forks through direct binding to DNA-PKcs at the N’ terminal region. Disruption of the interaction between DNA-PKcs and PIDD not only compromises the ATR association and regulation of DNA-PKcs, but also the ATR signaling pathway, intra-S-phase checkpoint and cellular resistance to replication stress. Taken together, our results indicate that PIDD, but not the Ku heterodimer, mediates the DNA-PKcs activity at stalled replication forks and facilitates the ATR signaling pathway in the cellular response to replication stress.
Collapse
Affiliation(s)
- Yu-Fen Lin
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Hung-Ying Shih
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Zeng-Fu Shang
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Ching-Te Kuo
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA.,Department of Life Science, National Taiwan University, Taipei 10617, Taiwan, Republic of China
| | - Jiaming Guo
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA.,Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Chunying Du
- Department of Cancer and Cell Biology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Hsinyu Lee
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan, Republic of China
| | - Benjamin P C Chen
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| |
Collapse
|
10
|
Sladky V, Schuler F, Fava LL, Villunger A. The resurrection of the PIDDosome - emerging roles in the DNA-damage response and centrosome surveillance. J Cell Sci 2018; 130:3779-3787. [PMID: 29142064 DOI: 10.1242/jcs.203448] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The PIDDosome is often used as the alias for a multi-protein complex that includes the p53-induced death domain protein 1 (PIDD1), the bipartite linker protein CRADD (also known as RAIDD) and the pro-form of an endopeptidase belonging to the caspase family, i.e. caspase-2. Yet, PIDD1 variants can also interact with a number of other proteins that include RIPK1 (also known as RIP1) and IKBKG (also known as NEMO), PCNA and RFC5, as well as nucleolar components such as NPM1 or NCL. This promiscuity in protein binding is facilitated mainly by autoprocessing of the full-length protein into various fragments that contain different structural domains. As a result, multiple responses can be mediated by protein complexes that contain a PIDD1 domain. This suggests that PIDD1 acts as an integrator for multiple types of stress that need instant attention. Examples are various types of DNA lesion but also the presence of extra centrosomes that can foster aneuploidy and, ultimately, promote DNA damage. Here, we review the role of PIDD1 in response to DNA damage and also highlight novel functions of PIDD1, such as in centrosome surveillance and scheduled polyploidisation as part of a cellular differentiation program during organogenesis.
Collapse
Affiliation(s)
- Valentina Sladky
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Fabian Schuler
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Luca L Fava
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria.,Center for Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Povo, Italy
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| |
Collapse
|
11
|
Zhang J, Tong F, Cai Q, Chen LJ, Dong JH, Wu G, Dong XR. Shenqi fuzheng injection attenuates irradiation-induced brain injury in mice via inhibition of the NF-κB signaling pathway and microglial activation. Acta Pharmacol Sin 2015; 36:1288-99. [PMID: 26526200 PMCID: PMC4635327 DOI: 10.1038/aps.2015.69] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 06/15/2015] [Indexed: 02/01/2023] Open
Abstract
AIM Radiation-induced brain injury (RIBI) is the most common and severe adverse effect induced by cranial radiation therapy (CRT). In the present study, we examined the effects of the traditional Chinese medicine Shenqi Fuzheng Injection (SFI) on RIBI in mice, and explored the underlying mechanisms. METHODS C57BL/6J mice were subjected to a single dose of 20-Gy CRT. The mice were treated with SFI (20 mL·kg(-1)·d(-1), ip) for 4 weeks. Morris water maze test was used to assess the cognitive changes. Evans blue leakage and a horseradish peroxidase (HRP) assay were used to evaluate the integrity of the blood-brain barrier (BBB). The expression of inflammatory factors and microglial activation in brain tissues were detected using RT-PCR, Western blotting and immunofluorescence staining. RESULTS CRT caused marked reductions in the body weight and life span of the mice, and significantly impaired their spatial learning. Furthermore, CRT significantly increased the BBB permeability, number of activated microglia, expression levels of TNF-α and IL-1β, and the levels of phosphorylated p65 and PIDD-CC (the twice-cleaved fragment of p53-induced protein with a death domain) in the brain tissues. Four-week SFI treatment (administered for 2 weeks before and 2 weeks after CRT) not only significantly improved the physical status, survival, and spatial learning in CRT-treated mice, but also attenuated all the CRT-induced changes in the brain tissues. Four-week SFI pretreatment (administered for 4 weeks before CRT) was less effective. CONCLUSION Administration of SFI effectively attenuates irradiation-induced brain injury via inhibition of the NF-κB signaling pathway and microglial activation.
Collapse
Affiliation(s)
| | - Fan Tong
- Cancer Center, Wuhan 430022, China
| | - Qian Cai
- Cancer Center, Wuhan 430022, China
| | | | - Ji-hua Dong
- Experimental Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gang Wu
- Cancer Center, Wuhan 430022, China
| | | |
Collapse
|
12
|
Abstract
Replicative polymerases (pols) cannot accommodate damaged template bases, and these pols stall when such offenses are encountered during S phase. Rather than repairing the damaged base, replication past it may proceed via one of two DNA damage tolerance (DDT) pathways, allowing replicative DNA synthesis to resume. In translesion DNA synthesis (TLS), a specialized TLS pol is recruited to catalyze stable, yet often erroneous, nucleotide incorporation opposite damaged template bases. In template switching, the newly synthesized sister strand is used as a damage-free template to synthesize past the lesion. In eukaryotes, both pathways are regulated by the conjugation of ubiquitin to the PCNA sliding clamp by distinct E2/E3 pairs. Whereas monoubiquitination by Rad6/Rad18 mediates TLS, extension of this ubiquitin to a polyubiquitin chain by Ubc13-Mms2/Rad5 routes DDT to the template switching pathway. In this review, we focus on the monoubiquitination of PCNA by Rad6/Rad18 and summarize the current knowledge of how this process is regulated.
Collapse
Affiliation(s)
- Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802; ,
| | | |
Collapse
|
13
|
Mansilla SF, Soria G, Vallerga MB, Habif M, Martínez-López W, Prives C, Gottifredi V. UV-triggered p21 degradation facilitates damaged-DNA replication and preserves genomic stability. Nucleic Acids Res 2013; 41:6942-51. [PMID: 23723248 PMCID: PMC3737556 DOI: 10.1093/nar/gkt475] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Although many genotoxic treatments upregulate the cyclin kinase inhibitor p21, agents such as UV irradiation trigger p21 degradation. This suggests that p21 blocks a process relevant for the cellular response to UV. Here, we show that forced p21 stabilization after UV strongly impairs damaged-DNA replication, which is associated with permanent deficiencies in the recruitment of DNA polymerases from the Y family involved in translesion DNA synthesis), with the accumulation of DNA damage markers and increased genomic instability. Remarkably, such noxious effects disappear when disrupting the proliferating cell nuclear antigen (PCNA) interacting motif of stable p21, thus suggesting that the release of PCNA from p21 interaction is sufficient to allow the recruitment to PCNA of partners (such as Y polymerases) relevant for the UV response. Expression of degradable p21 only transiently delays early replication events and Y polymerase recruitment after UV irradiation. These temporary defects disappear in a manner that correlates with p21 degradation with no detectable consequences on later replication events or genomic stability. Together, our findings suggest that the biological role of UV-triggered p21 degradation is to prevent replication defects by facilitating the tolerance of UV-induced DNA lesions.
Collapse
Affiliation(s)
- Sabrina F Mansilla
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir-CONICET, Buenos Aires C1405BWE, Argentina
| | | | | | | | | | | | | |
Collapse
|
14
|
Ando K, Kernan JL, Liu PH, Sanda T, Logette E, Tschopp J, Look AT, Wang J, Bouchier-Hayes L, Sidi S. PIDD death-domain phosphorylation by ATM controls prodeath versus prosurvival PIDDosome signaling. Mol Cell 2012; 47:681-93. [PMID: 22854598 DOI: 10.1016/j.molcel.2012.06.024] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 05/08/2012] [Accepted: 06/15/2012] [Indexed: 11/16/2022]
Abstract
Biochemical evidence implicates the death-domain (DD) protein PIDD as a molecular switch capable of signaling cell survival or death in response to genotoxic stress. PIDD activity is determined by binding-partner selection at its DD: whereas recruitment of RIP1 triggers prosurvival NF-κB signaling, recruitment of RAIDD activates proapoptotic caspase-2 via PIDDosome formation. However, it remains unclear how interactor selection, and thus fate decision, is regulated at the PIDD platform. We show that the PIDDosome functions in the "Chk1-suppressed" apoptotic response to DNA damage, a conserved ATM/ATR-caspase-2 pathway antagonized by Chk1. In this pathway, ATM phosphorylates PIDD on Thr788 within the DD. This phosphorylation is necessary and sufficient for RAIDD binding and caspase-2 activation. Conversely, nonphosphorylatable PIDD fails to bind RAIDD or activate caspase-2, and engages prosurvival RIP1 instead. Thus, ATM phosphorylation of the PIDD DD enables a binary switch through which cells elect to survive or die upon DNA injury.
Collapse
Affiliation(s)
- Kiyohiro Ando
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Manzl C, Peintner L, Krumschnabel G, Bock F, Labi V, Drach M, Newbold A, Johnstone R, Villunger A. PIDDosome-independent tumor suppression by Caspase-2. Cell Death Differ 2012; 19:1722-32. [PMID: 22595758 PMCID: PMC3438502 DOI: 10.1038/cdd.2012.54] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The PIDDosome, a multiprotein complex constituted of the ‘p53-induced protein with a death domain (PIDD), ‘receptor-interacting protein (RIP)-associated ICH-1/CED-3 homologous protein with a death domain' (RAIDD) and pro-Caspase-2 has been defined as an activating platform for this apoptosis-related protease. PIDD has been implicated in p53-mediated cell death in response to DNA damage but also in DNA repair and nuclear factor kappa-light-chain enhancer (NF-κB) activation upon genotoxic stress, together with RIP-1 kinase and Nemo/IKKγ. As all these cellular responses are critical for tumor suppression and deregulated expression of individual PIDDosome components has been noted in human cancer, we investigated their role in oncogenesis induced by DNA damage or oncogenic stress in gene-ablated mice. We observed that Pidd or Caspase-2 failed to suppress lymphoma formation triggered by γ-irradiation or 3-methylcholanthrene-driven fibrosarcoma development. In contrast, Caspase-2 showed tumor suppressive capacity in response to aberrant c-Myc expression, which did not rely on PIDD, the BH3-only protein Bid (BH3 interacting domain death agonist) or the death receptor ligand Trail (TNF-related apoptosis-inducing ligand), but associated with reduced rates of p53 loss and increased extranodal dissemination of tumor cells. In contrast, Pidd deficiency associated with abnormal M-phase progression and delayed disease onset, indicating that both proteins are differentially engaged upon oncogenic stress triggered by c-Myc, leading to opposing effects on tumor-free survival.
Collapse
Affiliation(s)
- C Manzl
- Division of Developmental Immunology, BIOCENTER, Medical University Innsbruck, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bock FJ, Peintner L, Tanzer M, Manzl C, Villunger A. P53-induced protein with a death domain (PIDD): master of puppets? Oncogene 2012; 31:4733-9. [PMID: 22266869 DOI: 10.1038/onc.2011.639] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
P53-induced protein with a death domain (PIDD) has been described as primary p53 target gene, induced upon DNA damage. More than 10 years after its discovery, its physiological role in the DNA damage response remains enigmatic, as it seems to be able to execute life-death decisions in vitro, yet genetic ablation in mice failed to reveal an obvious phenotype. Nonetheless, evidence is accumulating that it contributes to the fine-tuning of the DNA-damage response by orchestrating critical processes such as caspase activation or nuclear factor κB translocation and can also exert additional nuclear functions, for example, the modulation of translesion synthesis. In this review, we aim to integrate these observations and propose possible unexplored functions of PIDD.
Collapse
Affiliation(s)
- F J Bock
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
17
|
Janssens S, Tinel A. The PIDDosome, DNA-damage-induced apoptosis and beyond. Cell Death Differ 2011; 19:13-20. [PMID: 22095286 DOI: 10.1038/cdd.2011.162] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
P53-induced protein with a death domain (PIDD) was cloned as a death domain (DD)-containing protein whose expression is induced by p53. It was later described as the core of a molecular platform-activating caspase-2, named the PIDDosome. These first results pointed towards a role for PIDD in apoptosis, in response to DNA damage. Identification of new PIDDosome complexes involved in DNA repair and nuclear factor-κB signaling challenged this early concept. PIDD functions are growing as new complexes and new interaction partners are being discovered, and as additional functions are being revealed. A fascinating feature of PIDD lies within its complex and tight regulation mechanisms, which allow the molecule to fine-tune its different functions: from transcriptional regulation to the expression of different isoforms, and from the interaction with regulatory proteins to an ingenious post-translational cleavage mechanism generating various active fragments with specific functions. Further studies still need to be carried out to provide answers to many unresolved issues and to reconcile conflicting results. This review aims at providing an overview of the current PIDD knowledge status.
Collapse
Affiliation(s)
- S Janssens
- GROUP-ID Consortium, Department of Pulmonary Medicine, University Hospital of Ghent, Ghent, Belgium.
| | | |
Collapse
|
18
|
Abstract
Despite an abundance of literature on the role of caspase-2 in apoptosis, there exists much controversy about this protease making it difficult to place caspase-2 correctly in the apoptotic cascade, and hence its role in apoptosis remains unclear. The identification of the PIDDosome as a signaling platform for caspase-2 activation prompted intense investigation into the true role of this orphan caspase. What has emerged is the idea that caspase-2 may not be mandatory for apoptosis and that activation of this caspase in response to some forms of stress has other effects on the cell such as regulation of cell cycle progression. This idea is particularly relevent to the discovery that caspase-2 may act as a tumor suppressor. Here, we discuss the proposed mechanisms through which caspase-2 signals, in particular those involving PIDD, and their impact on cellular fate.
Collapse
|
19
|
Caspase-2-mediated cleavage of Mdm2 creates a p53-induced positive feedback loop. Mol Cell 2011; 43:57-71. [PMID: 21726810 DOI: 10.1016/j.molcel.2011.06.012] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/11/2011] [Accepted: 06/09/2011] [Indexed: 02/01/2023]
Abstract
Caspase-2 is an evolutionarily conserved caspase, yet its biological function and cleavage targets are poorly understood. Caspase-2 is activated by the p53 target gene product PIDD (also known as LRDD) in a complex called the Caspase-2-PIDDosome. We show that PIDD expression promotes growth arrest and chemotherapy resistance by a mechanism that depends on Caspase-2 and wild-type p53. PIDD-induced Caspase-2 directly cleaves the E3 ubiquitin ligase Mdm2 at Asp 367, leading to loss of the C-terminal RING domain responsible for p53 ubiquitination. As a consequence, N-terminally truncated Mdm2 binds p53 and promotes its stability. Upon DNA damage, p53 induction of the Caspase-2-PIDDosome creates a positive feedback loop that inhibits Mdm2 and reinforces p53 stability and activity, contributing to cell survival and drug resistance. These data establish Mdm2 as a cleavage target of Caspase-2 and provide insight into a mechanism of Mdm2 inhibition that impacts p53 dynamics upon genotoxic stress.
Collapse
|