1
|
Li X, Quan P, Si Y, Liu F, Fan Y, Ding F, Sun L, Liu H, Huang S, Sun L, Yang F, Yao L. The microRNA-211-5p/P2RX7/ERK/GPX4 axis regulates epilepsy-associated neuronal ferroptosis and oxidative stress. J Neuroinflammation 2024; 21:13. [PMID: 38191407 PMCID: PMC10773122 DOI: 10.1186/s12974-023-03009-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/28/2023] [Indexed: 01/10/2024] Open
Abstract
Ferroptosis is an iron-dependent cell death mechanism involving the accumulation of lipid peroxides. As a critical regulator, glutathione peroxidase 4 (GPX4) has been demonstrated to be downregulated in epilepsy. However, the mechanism of ferroptosis in epilepsy remains unclear. In this study, bioinformatics analysis, analysis of epilepsy patient blood samples and cell and mouse experiments revealed strong associations among epilepsy, ferroptosis, microRNA-211-5p and purinergic receptor P2X 7 (P2RX7). P2RX7 is a nonselective ligand-gated homotrimeric cation channel, and its activation mainly increases neuronal activity during epileptic seizures. In our study, the upregulation of P2RX7 in epilepsy was attributed to the downregulation of microRNA (miR)-211-5p. Furthermore, P2RX7 has been found to regulate GPX4/HO-1 by alleviating lipid peroxidation induced by suppression of the MAPK/ERK signaling pathway in murine models. The dynamic decrease in miR-211-5p expression induces hypersynchronization and both nonconvulsive and convulsive seizures, and forebrain miR-211-5p suppression exacerbates long-lasting pentylenetetrazole-induced seizures. Additionally, in this study, induction of miR-211-5p expression or genetic-silencing of P2RX7 significantly reduced the seizure score and duration in murine models through the abovementioned pathways. These results suggest that the miR-211-5p/P2RX7 axis is a novel target for suppressing both ferroptosis and epilepsy.
Collapse
Affiliation(s)
- Xueying Li
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Pusheng Quan
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
- Department of Neurology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yao Si
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Fei Liu
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Yuwei Fan
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Feifan Ding
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Lina Sun
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Han Liu
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Shuo Huang
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Linlin Sun
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China.
| | - Fan Yang
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China.
| | - Lifen Yao
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
2
|
Yamamuro-Tanabe A, Kosuge Y, Ishimaru Y, Yoshioka Y. Schwann cell derived-peroxiredoxin protects motor neurons against hydrogen peroxide-induced cell death in mouse motor neuron cell line NSC-34. J Pharmacol Sci 2023; 153:73-83. [PMID: 37640472 DOI: 10.1016/j.jphs.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/31/2023] Open
Abstract
Schwann cells and oligodendrocytes secrete proteins that promote neuron survival, but their role in amyotrophic lateral sclerosis (ALS) is unclear. To address this question, we evaluated the effect of molecules secreted by Schwann cells on reactive oxygen species (ROS)-induced motor neuronal cell death. We observed that in motor neuron cell line NSC-34 cultures, the conditioned medium (CM) from Schwann cell line YST-1 (YST-1 CM) cultures had a protective effect against hydrogen peroxide-induced cell death. However, this protective effect of YST-1 CM was abolished by removing peroxiredoxin 1-4 (PRDX1-4) from the CM. We found that the expression of PRDX1 mRNA was markedly downregulated in the lumbar spinal cord of the superoxide dismutase 1 (SOD1)G93A mouse model of ALS. We also found that transient transfection of YST-1 cells with G93A SOD1 resulted in reduced PRDX1 mRNA expression. Additionally, in the mutant transfected cells, YST-1 CM showed decreased neuroprotective effect against hydrogen peroxide-induced NSC-34 cell death compared to those transfected with WT SOD1. Our results suggest that Schwann cells protect motor neurons from oxidative stress by secreting PRDX1 and that the reduction of PRDX secreted from Schwann cells contributes to increased ROS and associated motor neuronal death in ALS.
Collapse
Affiliation(s)
- Akiko Yamamuro-Tanabe
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Yasuhiro Kosuge
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba 274-8555, Japan
| | - Yuki Ishimaru
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Yasuhiro Yoshioka
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan.
| |
Collapse
|
3
|
Wang JL, Chen WG, Zhang JJ, Xu CJ. Nogo-A-Δ20/EphA4 interaction antagonizes apoptosis of neural stem cells by integrating p38 and JNK MAPK signaling. J Mol Histol 2021; 52:521-537. [PMID: 33555537 DOI: 10.1007/s10735-021-09960-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/25/2021] [Indexed: 11/26/2022]
Abstract
Nogo-A protein consists of two main extracellular domains: Nogo-66 (rat amino acid [aa] 1019-1083) and Nogo-A-Δ20 (extracellular, active 180 amino acid Nogo-A region), which serve as strong inhibitors of axon regeneration in the adult CNS (Central Nervous System). Although receptors S1PR2 and HSPGs have been identified as Nogo-A-Δ20 binding proteins, it remains at present elusive whether other receptors directly interacting with Nogo-A-Δ20 exist, and decrease cell death. On the other hand, the key roles of EphA4 in the regulation of glioblastoma, axon regeneration and NSCs (Neural Stem Cells) proliferation or differentiation are well understood, but little is known the relationship between EphA4 and Nogo-A-Δ20 in NSCs apoptosis. Thus, we aim to determine whether Nogo-A-Δ20 can bind to EphA4 and affect survival of NSCs. Here, we discover that EphA4, belonging to a member of erythropoietin-producing hepatocellular (Eph) receptors family, could be acting as a high affinity ligand for Nogo-A-Δ20. Trans-membrane protein of EphA4 is needed for Nogo-A-Δ20-triggered inhibition of NSCs apoptosis, which are mediated by balancing p38 inactivation and JNK MAPK pathway activation. Finally, we predict at the atomic level that essential residues Lys-205, Ile-190, Pro-194 in Nogo-A-Δ20 and EphA4 residues Gln-390, Asn-425, Pro-426 might play critical roles in Nogo-A-Δ20/EphA4 binding via molecular docking.
Collapse
Affiliation(s)
- Jun-Ling Wang
- Center for Reproductive Medicine, Affiliated Hospital 1 of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Wei-Guang Chen
- Department of Histology & Embryology, School of Basic Medical Science, Wenzhou Medical University, Cha Shan University Town, No.1 Central North Road, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Jia-Jia Zhang
- School of 1St Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Chao-Jin Xu
- Department of Histology & Embryology, School of Basic Medical Science, Wenzhou Medical University, Cha Shan University Town, No.1 Central North Road, Wenzhou, 325035, Zhejiang, People's Republic of China.
| |
Collapse
|
4
|
Abstract
Nogo-A is considered one of the most important inhibitors of myelin-associated axonal regeneration in the central nervous system. It is mainly expressed by oligodendrocytes. Although previous studies have found regulatory roles for Nogo-A in neurite outgrowth inhibition, neuronal homeostasis, precursor migration, plasticity, and neurodegeneration, its functions in the process of oxidative injury are largely uncharacterized. In this study, oligodendrocytes were extracted from the cerebral cortex of newborn Sprague-Dawley rats. We used hydrogen peroxide (H2O2) to induce an in vitro oligodendrocyte oxidative damage model and found that endogenously expressed Nogo-A is significantly upregulated in oligodendrocytes. After recombinant virus Ad-ZsGreen-rat Nogo-A infection of oligodendrocytes, Nogo-A expression was increased, and the infected oligodendrocytes were more susceptible to acute oxidative insults and exhibited a markedly elevated rate of cell death. Furthermore, knockdown of Nogo-A expression in oligodendrocytes by Ad-ZsGreen-shRNA-Nogo-A almost completely protected against oxidative stress induced by exogenous H2O2. Intervention with a Nogo-66 antibody, a LINGO1 blocker, or Y27632, an inhibitor in the Nogo-66-NgR/p75/LINGO-1-RhoA-ROCK pathway, did not affect the death of oligodendrocytes. Ad-ZsGreen-shRNA-Nogo-A also increased the levels of phosphorylated extracellular signal-regulated kinase 1/2 and inhibited BCL2 expression in oligodendrocytes. In conclusion, Nogo-A aggravated reactive oxygen species damage in oligodendrocytes, and phosphorylated extracellular signal-regulated kinase 1/2 and BCL2 might be involved in this process. This study was approved by the Ethics Committee of Peking University People’s Hospital, China (approval No. 2018PHC081) on December 18, 2018.
Collapse
Affiliation(s)
- Yang-Yang Wang
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Na Han
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Dao-Jun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Jun Zhang
- Department of Neurology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
5
|
Jia JN, Yin XX, Li Q, Guan QW, Yang N, Chen KN, Zhou HH, Mao XY. Neuroprotective Effects of the Anti-cancer Drug Lapatinib Against Epileptic Seizures via Suppressing Glutathione Peroxidase 4-Dependent Ferroptosis. Front Pharmacol 2020; 11:601572. [PMID: 33362556 PMCID: PMC7758233 DOI: 10.3389/fphar.2020.601572] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
Epilepsy is a complex neurological disorder characterized by recurrent and unprovoked seizures. Neuronal death process is implicated in the development of repetitive epileptic seizures. Therefore, cell death can be harnessed for ceasing seizures and epileptogenesis. Oxidative stress is regarded as a contributing factor of neuronal death activation and there is compelling evidence supporting antioxidants hold promise in abrogating seizure-related cell modality. Lapatinib, a well-known anti-cancer drug, has been traditionally reported to exert anti-tumor effect via modulating oxidative stress and a recent work illustrates the improvement of encephalomyelitis in rodent models after lapatinib treatment. However, whether lapatinib is beneficial for inhibiting neuronal death and epileptic seizure remains unknown. Here, we found that lapatinib remarkably prevented kainic acid (KA)-epileptic seizures in mice and ferroptosis, a newly defined cell death which is associated with oxidative stress, was involved in the neuroprotection of lapatinib. In the ferroptotic cell death model, lapatinib exerted neuroprotection via restoring glutathione peroxidase 4 (GPX4). Treatment with GPX4 inhibitor ras-selective lethal small molecule 3 (RSL3) abrogated its anti-ferroptotic potential. In a mouse model of KA-triggered seizure, it was also validated that lapatinib blocked GPX4-dependent ferroptosis. It is concluded that lapatinib has neuroprotective potential against epileptic seizures via suppressing GPX4-mediated ferroptosis.
Collapse
Affiliation(s)
- Ji-Ning Jia
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Xi-Xi Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Qin Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Qi-Wen Guan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Nan Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Kang-Ni Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| |
Collapse
|
6
|
Zemmar A, Chen CC, Weinmann O, Kast B, Vajda F, Bozeman J, Isaad N, Zuo Y, Schwab ME. Oligodendrocyte- and Neuron-Specific Nogo-A Restrict Dendritic Branching and Spine Density in the Adult Mouse Motor Cortex. Cereb Cortex 2019; 28:2109-2117. [PMID: 28505229 PMCID: PMC6018724 DOI: 10.1093/cercor/bhx116] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Indexed: 01/27/2023] Open
Abstract
Nogo-A has been well described as a myelin-associated inhibitor of neurite outgrowth and functional neuroregeneration after central nervous system (CNS) injury. Recently, a new role of Nogo-A has been identified as a negative regulator of synaptic plasticity in the uninjured adult CNS. Nogo-A is present in neurons and oligodendrocytes. However, it is yet unclear which of these two pools regulate synaptic plasticity. To address this question we used newly generated mouse lines in which Nogo-A is specifically knocked out in (1) oligodendrocytes (oligoNogo-A KO) or (2) neurons (neuroNogo-A KO). We show that both oligodendrocyte- and neuron-specific Nogo-A KO mice have enhanced dendritic branching and spine densities in layer 2/3 cortical pyramidal neurons. These effects are compartmentalized: neuronal Nogo-A affects proximal dendrites whereas oligodendrocytic Nogo-A affects distal regions. Finally, we used two-photon laser scanning microscopy to measure the spine turnover rate of adult mouse motor cortex layer 5 cells and find that both Nogo-A KO mouse lines show enhanced spine remodeling after 4 days. Our results suggest relevant control functions of glial as well as neuronal Nogo-A for synaptic plasticity and open new possibilities for more selective and targeted plasticity enhancing strategies.
Collapse
Affiliation(s)
- Ajmal Zemmar
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland.,Department of Biology and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland.,Department of Neurosurgery, University Hospital Zurich, University of Zurich, CH-8091, Zurich, Switzerland
| | - Chia-Chien Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Oliver Weinmann
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland.,Department of Biology and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland
| | - Brigitt Kast
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland.,Department of Biology and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland
| | - Flora Vajda
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland.,Department of Biology and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland
| | - James Bozeman
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Noel Isaad
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Martin E Schwab
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland.,Department of Biology and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
7
|
Heng Li S, Wang LT, Deng X, NanJiao Y, Kong L, Fu M, Jia LQ, Yang JX, Ren L. Electroacupuncture Rescued the Impairment of Hippocampal Neurons in Perimenopausal Depression Rats via Activating the CREB/BDNF Pathway. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.164.178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Mao XY, Jin MZ, Chen JF, Zhou HH, Jin WL. Live or let die: Neuroprotective and anti-cancer effects of nutraceutical antioxidants. Pharmacol Ther 2017; 183:137-151. [PMID: 29055715 DOI: 10.1016/j.pharmthera.2017.10.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diet sources are closely involved in the pathogenesis of diverse neuropsychiatric disorders and cancers, in addition to inherited factors. Currently, natural products or nutraceuticals (commonly called medical foods) are increasingly employed for adjunctive therapy of these patients. However, the potential molecular mechanisms of the nutrient efficacy remain elusive. In this review, we summarized the neuroprotective and anti-cancer mechanisms of nutraceuticals. It was concluded that the nutraceuticals exerted neuroprotection and suppressed tumor growth possibly through the differential modulations of redox homeostasis. In addition, the balance between reactive oxygen species (ROS) production and ROS elimination was manipulated by multiple molecular mechanisms, including cell signaling pathways, inflammation, transcriptional regulation and epigenetic modulation, which were involved in the therapeutic potential of nutraceutical antioxidants against neurological diseases and cancers. We specifically proposed that ROS scavenging was integral in the neuroprotective potential of nutraceuticals, while alternation of ROS level (either increase or decrease) or disruption of redox homeostasis (ROS addiction) constituted the anti-cancer property of these compounds. We also hypothesized that ROS-associated ferroptosis, a novel type of lipid ROS-dependent regulatory cell death, was likely to be a critical mechanism for the nutraceutical antioxidants. Targeting ferroptosis is advantageous to develop new nutraceuticals with more effective and lower adverse reactions for curing patients with neuropsychiatric diseases or carcinomas.
Collapse
Affiliation(s)
- Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China.
| | - Ming-Zhu Jin
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Jin-Fei Chen
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, PR China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, PR China.
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Wei-Lin Jin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shaanxi Key Laboratory of Brain Disorders and School of Basic Medical Sciences, Xi'an Medical University, Xi'an 710021, PR China.
| |
Collapse
|
9
|
Liu N, Zhang L, Wang Z, Cheng Y, Zhang P, Wang X, Wen W, Yang H, Liu H, Jin W, Zhang Y, Tu Y. MicroRNA-101 inhibits proliferation, migration and invasion of human glioblastoma by targeting SOX9. Oncotarget 2017; 8:19244-19254. [PMID: 27911279 PMCID: PMC5386681 DOI: 10.18632/oncotarget.13706] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/22/2016] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant tumors originating in the brain parenchyma. At present, GBM patients have a poor prognosis despite the continuous progress in therapeutic technologies including surgery, radiotherapy, photodynamic therapy, and chemotherapy. Recent studies revealed that miR-101 was remarkably down-regulated in kinds of human cancers and was associated with aggressive tumor cell proliferation and stem cell self-renewal. Data also showed that miR-101 was down-regulated in primary glioma samples and cell lines, but the underlying molecular mechanism of the deregulation of miR-101 in glioma remained largely unknown. In this study, we found that miR-101 could inhibit the proliferation and invasion of glioma cells both in vitro and in vivo by directly targeting SOX9 [sex-determining region Y (SRY)-box9 protein]. Silencing of SOX9 exerted similar effects with miR-101 overexpression on glioma cells proliferation and invasion. Quantitative reverse transcription PCR and Western blotting analysis revealed a negative relationship between miR-101 and SOX9 in human glioma U251MG and U87MG cells, and the luciferase assay indicated that miR-101 altered SOX9 expression by directly targeting on 3'UTR. Taken together, our findings suggest that miR-101 regulates glioma proliferation, migration and invasion via directly down-regulating SOX9 both in vitro and in vivo, and miR-101 may be a potential therapeutic target for future glioma treatment.
Collapse
Affiliation(s)
- Nan Liu
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Lei Zhang
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China.,Department of Orthopedics, Xi'an Children's Hospital, Xi'an 710003, China
| | - Zhen Wang
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Yingduan Cheng
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China.,Department of Research Office, Cipher Ground, North Brunswick, NJ 08902, USA
| | - Pengxing Zhang
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Weihong Wen
- Department of Immunology, Fourth Military Medical University, Xi'an 710032, China
| | - Hongwei Yang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hui Liu
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Weilin Jin
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongsheng Zhang
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Yanyang Tu
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China.,Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Ding Y, Gao BB, Zhou L, Ye XH, Li H, Lai L, Huang JY. Clinical implications of plasma Nogo-A levels in patients with coronary heart disease. Arch Med Sci 2017; 13:771-777. [PMID: 28721144 PMCID: PMC5510510 DOI: 10.5114/aoms.2016.58713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/28/2015] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION Nogo-A is an important neurite growth-regulatory protein in the adult and developing nervous system. Recently, increasing evidence has shown that Nogo-A plays important roles in cardiac development and may act as a potential indicator for heart failure. In addition, increased oxidative stress has been found in individuals with cardiovascular diseases. However, not much is known regarding the expression levels of Nogo-A and reactive oxygen species (ROS) in patients with coronary heart disease (CHD). Therefore, we sought to investigate the relationship between Nogo-A, ROS levels and CHD. MATERIAL AND METHODS The plasma Nogo-A and ROS concentrations of 122 acute coronary syndrome (ACS), 101 unstable angina pectoris (UAP), and 21 acute myocardial infarction (AMI) patients and 56 healthy controls were measured by enzyme-linked immunosorbent assay (ELISA). We further generated a receiver operating characteristic (ROC) curve to assess the diagnostic accuracy of Nogo-A and ROS in CHD. RESULTS The Nogo-A and ROS levels were significantly higher in patients with CHD than those in healthy controls. In addition, multivariate logistic regression analysis revealed that the level of Nogo-A (odds ratio (OR) = 1.624, 95% confidence interval: 1.125-2.293, p = 0.009) is a risk factor for prediction of CHD. Nogo-A has diagnostic value, with an optimal threshold of 5.466 ng/ml for maximized diagnostic performance (59% sensitivity and 78.6% specificity, area under curve, p < 0.05). However, ROS concentration is not a risk factor for prediction of CHD (OR = 0.999, 95% confidence interval: 0.997-1.001, p = 0.320). CONCLUSIONS Increased plasma Nogo-A level may be associated with CHD.
Collapse
Affiliation(s)
- Yu Ding
- Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - Bei-Bei Gao
- Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - Liang Zhou
- Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - Xian-Hua Ye
- Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - Hong Li
- Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - Lei Lai
- Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - Jin-Yu Huang
- Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| |
Collapse
|
11
|
Li P, Xu T, Zhou X, Liao L, Pang G, Luo W, Han L, Zhang J, Luo X, Xie X, Zhu K. Downregulation of miRNA-141 in breast cancer cells is associated with cell migration and invasion: involvement of ANP32E targeting. Cancer Med 2017; 6:662-672. [PMID: 28220627 PMCID: PMC5345683 DOI: 10.1002/cam4.1024] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/28/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) regulate many cellular activities, including cancer development, progression, and metastasis. Some miRNAs are involved in breast cancer (BC) migration and invasion, thus affect patients’ prognosis. Microarray analysis was performed to compare miRNA expression in BC tissues, and results confirmed by qPCR. BC cell migration and invasion were studied in vitro with MDA‐MB‐231 cells using microplate transwell assays. miRNA targeting was investigated using luciferase assays, qPCR, and Western blot analysis in cells with overexpression of miRNA mimics. Knockdown of miRNA targets was performed using target siRNA lentiviral infection. Results show that microRNA‐141 (miR‐141) was downregulated in breast cancer tumor tissues compared with matched surrounding tissues. Downregulation of miR‐141 expression correlated with tumor stage, lymph node involvement, and expressions of PCNA, Ki67, and HER2. Overexpression of miR‐141 inhibited BC cell proliferation, migration, and invasion in vitro. ANP32E gene was selected as one putative target for further studies based on results from in silico analysis. Results from a dual‐luciferase reporter system suggested ANP32E as a direct target of miR‐141. Overexpression of miR‐141 downregulated ANP32E expression at both mRNA and protein levels in BC cells. Knockdown of ANP32E inhibited BC cell proliferation, migration, and invasion in vitro, mimicking the effect of the overexpression of miR‐141. Our study revealed important roles miR‐141 plays in BC growth and metastasis. Moreover, for the first time, we identified ANP32E as one of the miR‐141 targets, and demonstrated its involvement in the regulation of cell proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Ping Li
- Medical Laboratory Center, First Affiliated Hospital, Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Changsha, 410007, China
| | - Tao Xu
- Department of Emergency Medicine, First Affiliated Hospital, Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Changsha, 410007, China
| | - Xin Zhou
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Liangying Liao
- Department of Scientific Research, First Affiliated Hospital, Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Changsha, 410007, China
| | - Guolian Pang
- Department of Pathology, First People's Hospital of Qujing, 1 Yuanlin Road, Qujing, 655000, China
| | - Wan Luo
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Lu Han
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Jiankun Zhang
- Department of Pathology, First People's Hospital of Qujing, 1 Yuanlin Road, Qujing, 655000, China
| | - Xianyong Luo
- Department of Pathology, First People's Hospital of Qujing, 1 Yuanlin Road, Qujing, 655000, China
| | - Xiaobing Xie
- Medical Laboratory Center, First Affiliated Hospital, Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Changsha, 410007, China
| | - Kuichun Zhu
- Labway Clinical Laboratories, Shanghai, 200000, China
| |
Collapse
|
12
|
Ma Y, Fu H, Zhang C, Cheng S, Gao J, Wang Z, Jin W, Conde J, Cui D. Chiral Antioxidant-based Gold Nanoclusters Reprogram DNA Epigenetic Patterns. Sci Rep 2016; 6:33436. [PMID: 27633378 PMCID: PMC5025748 DOI: 10.1038/srep33436] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/26/2016] [Indexed: 12/20/2022] Open
Abstract
Epigenetic modifications sit 'on top of' the genome and influence DNA transcription, which can force a significant impact on cellular behavior and phenotype and, consequently human development and disease. Conventional methods for evaluating epigenetic modifications have inherent limitations and, hence, new methods based on nanoscale devices are needed. Here, we found that antioxidant (glutathione) chiral gold nanoclusters induce a decrease of 5-hydroxymethylcytosine (5hmC), which is an important epigenetic marker that associates with gene transcription regulation. This epigenetic change was triggered partially through ROS activation and oxidation generated by the treatment with glutathione chiral gold nanoclusters, which may inhibit the activity of TET proteins catalyzing the conversion of 5-methylcytosine (5mC) to 5hmC. In addition, these chiral gold nanoclusters can downregulate TET1 and TET2 mRNA expression. Alteration of TET-5hmC signaling will then affect several downstream targets and be involved in many aspects of cell behavior. We demonstrate for the first time that antioxidant-based chiral gold nanomaterials have a direct effect on epigenetic process of TET-5hmC pathways and reveal critical DNA demethylation patterns.
Collapse
Affiliation(s)
- Yue Ma
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hualin Fu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- National Center for Translational Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Chunlei Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shangli Cheng
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Gao
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhen Wang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China
| | - Weilin Jin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- National Center for Translational Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - João Conde
- Massachusetts Institute of Technology, Institute for Medical Engineering and Science, Harvard-MIT Division for Health Sciences and Technology, Cambridge, Massachusetts, USA
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- National Center for Translational Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| |
Collapse
|
13
|
Abstract
The oligodendrocyte transcription factor Olig1 is critical for both oligodendrocyte development and remyelination in mice. Nuclear to cytoplasmic translocation of Olig1 protein occurs during brain development and in multiple sclerosis, but the detailed molecular mechanism of this translocation remains elusive. Here, we report that Olig1 acetylation and deacetylation drive its active translocation between the nucleus and the cytoplasm in both mouse and rat oligodendrocytes. We identified three functional nuclear export sequences (NES) localized in the basic helix-loop-helix domain and one specific acetylation site at Lys 150 (human Olig1) in NES1. Olig1 acetylation and deacetylation are regulated by the acetyltransferase CREB-binding protein and the histone deacetylases HDAC1, HDAC3, and HDAC10. Acetylation of Olig1 decreased its chromatin association, increased its interaction with inhibitor of DNA binding 2 and facilitated its retention in the cytoplasm of mature oligodendrocytes. These studies establish that acetylation of Olig1 regulates its chromatin dissociation and subsequent translocation to the cytoplasm and is required for its function in oligodendrocyte maturation.
Collapse
|
14
|
Li K, Gao B, Li J, Chen H, Li Y, Wei Y, Gong D, Gao J, Zhang J, Tan W, Wen T, Zhang L, Huang L, Xiang R, Lin P, Wei Y. ZNF32 protects against oxidative stress-induced apoptosis by modulating C1QBP transcription. Oncotarget 2015; 6:38107-26. [PMID: 26497555 PMCID: PMC4741987 DOI: 10.18632/oncotarget.5646] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/06/2015] [Indexed: 02/05/2023] Open
Abstract
Reactive oxygen species (ROS)-driven oxidative stress has been recognized as a critical inducer of cancer cell death in response to therapeutic agents. Our previous studies have demonstrated that zinc finger protein (ZNF)32 is key to cell survival upon oxidant stimulation. However, the mechanisms by which ZNF32 mediates cell death remain unclear. Here, we show that at moderate levels of ROS, Sp1 directly binds to two GC boxes within the ZNF32 promoter to activate ZNF32 transcription. Alternatively, at cytotoxic ROS concentrations, ZNF32 expression is repressed due to decreased binding activity of Sp1. ZNF32 overexpression maintains mitochondrial membrane potential and enhances the antioxidant capacity of cells to detoxify ROS, and these effects promote cell survival upon pro-oxidant agent treatment. Alternatively, ZNF32-deficient cells are more sensitive and vulnerable to oxidative stress-induced cell injury. Mechanistically, we demonstrate that complement 1q-binding protein (C1QBP) is a direct target gene of ZNF32 that inactivates the p38 MAPK pathway, thereby exerting the protective effects of ZNF32 on oxidative stress-induced apoptosis. Taken together, our findings indicate a novel mechanism by which the Sp1-ZNF32-C1QBP axis protects against oxidative stress and implicate a promising strategy that ZNF32 inhibition combined with pro-oxidant anticancer agents for hepatocellular carcinoma treatment.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antioxidants/pharmacology
- Apoptosis/drug effects
- Binding Sites
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Dose-Response Relationship, Drug
- Female
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- Hep G2 Cells
- Humans
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/metabolism
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Membrane Potential, Mitochondrial
- Mice, Inbred BALB C
- Mice, Nude
- Middle Aged
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Oxidants/pharmacology
- Oxidative Stress/drug effects
- Promoter Regions, Genetic
- RNA Interference
- Reactive Oxygen Species/metabolism
- Signal Transduction
- Sp1 Transcription Factor/metabolism
- Time Factors
- Transcription, Genetic/drug effects
- Transcriptional Activation
- Transfection
- Xenograft Model Antitumor Assays
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Kai Li
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Bo Gao
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
- Department of Pathology, College of Clinical Medicine, Dali University, Dali, China
| | - Jun Li
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Haining Chen
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yanyan Li
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yuyan Wei
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Di Gong
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Junping Gao
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jie Zhang
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Weiwei Tan
- Department Biorepository, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Tianfu Wen
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Le Zhang
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lugang Huang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Xiang
- Department of Clinical Medicine, School of Medicine, Nankai University, and Collaborative Innovation Center for Biotherapy, Tianjin, China
| | - Ping Lin
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yuquan Wei
- Department of Cancer Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
15
|
Effects of Nogo-A Silencing on TNF-α and IL-6 Secretion and TH Downregulation in Lipopolysaccharide-Stimulated PC12 Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:817914. [PMID: 26583134 PMCID: PMC4637059 DOI: 10.1155/2015/817914] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 06/25/2015] [Indexed: 12/23/2022]
Abstract
Parkinson's disease (PD) is a common degenerative disease that lacks efficient treatment. Myelin-associated neurite outgrowth inhibitor A (Nogo-A) is relevant with inhibition of nerve regeneration and may play vital role in pathogenesis of PD. The study aimed to establish the shRNA expression plasmids of Nogo-A gene and explore the regulatory effects of Nogo-A silencing on the expression of inflammation factor tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) as well as tyrosine hydroxylase (TH) in lipopolysaccharide- (LPS-) stimulated rat PC12 cells. The results showed that both mRNA and protein levels of Nogo-A in pGenesil-nogoA-shRNA group were downregulated. The viabilities of PC12 cells decreased with increase of LPS concentrations. LPS significantly increased the supernatant TNF-alpha and IL-6 concentrations and reduced TH protein expression in PC12 cells, while silencing Nogo-A could block these effects. These results suggested that LPS can activate PC12 cells to secrete inflammatory cytokines and lower the TH expression, which can be regulated by Nogo-A gene silencing. Nogo-A silencing might provide new ideas for PD treatment in the future.
Collapse
|
16
|
Mi Y, Gao X, Dai J, Ma Y, Xu L, Jin W. A Novel Function of TET2 in CNS: Sustaining Neuronal Survival. Int J Mol Sci 2015; 16:21846-57. [PMID: 26378518 PMCID: PMC4613284 DOI: 10.3390/ijms160921846] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 08/19/2015] [Accepted: 09/01/2015] [Indexed: 11/16/2022] Open
Abstract
DNA dioxygenases Ten-Eleven Translocation (TET) proteins can catalyze the conversion of 5-methylcytosine (5mC) of DNA to 5-hydroxymethylcytosine (5hmC), and thereby alter the epigenetic state of DNA. The TET family includes TET1, TET2 and TET3 members in mammals. Recently, accumulative research uncovered that TET1-3 occur abundantly in the central nervous system (CNS), and their biological functions have just begun to be investigated. In the present study, we demonstrated that mRNA and protein of TET2 were highly expressed in the cerebral cortex and hippocampus along the whole brain-development process. Further studies showed that TET2 was expressed in various types of cells, especially in most neurons. Subcellular distribution pattern implicated that TET2 is localized in both nucleus and cytoplasm of neurons. Down-regulation of TET2 in cultured cortical neurons with RNA interference implied that TET2 was required for cell survival. In all, our results indicate that neuronal TET2 is positively involved in the regulation of cell survival.
Collapse
Affiliation(s)
- Yajing Mi
- State Key Laboratory of Military Stomatology, Department of Anesthesiology, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China.
- Institute of Basic Medicine Science, Xi'an Medical University, Xi'an 710021, China.
| | - Xingchun Gao
- Institute of Basic Medicine Science, Xi'an Medical University, Xi'an 710021, China.
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jinxiang Dai
- Department of Cell and Developmental Biology, University of Colorado Denver, Denver, CO 80045, USA.
| | - Yue Ma
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lixian Xu
- State Key Laboratory of Military Stomatology, Department of Anesthesiology, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China.
| | - Weilin Jin
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
17
|
Ding MH, Wang Z, Jiang L, Fu HL, Gao J, Lin XB, Zhang CL, Liu ZY, Shi YF, Qiu GZ, Ma Y, Cui DX, Hu GH, Jin WL. The transducible TAT-RIZ1-PR protein exerts histone methyltransferase activity and tumor-suppressive functions in human malignant meningiomas. Biomaterials 2015; 56:165-78. [DOI: 10.1016/j.biomaterials.2015.03.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 03/29/2015] [Accepted: 03/29/2015] [Indexed: 01/22/2023]
|
18
|
Li L, Deng B, Wang S, Zhong H, Liu Z, Jin W, Jiang T, Xiao Z, Wang Q. Asynchronous therapy targeting Nogo-A enhances neurobehavioral recovery by reducing neuronal loss and promoting neurite outgrowth after cerebral ischemia in mice. J Drug Target 2015; 24:13-23. [PMID: 26061295 DOI: 10.3109/1061186x.2015.1052070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Therapeutics targeting the Nogo-A signal pathway hold promise to promote recovery following brain injury. Based on the temporal characteristics of Nogo-A expression in the process of cerebral ischemia and reperfusion, we tested a novel asynchronous treatment, in which TAT-M9 was used in the early stage to decrease neuronal loss, and TAT-NEP1-40 was used in the delayed stage to promote neurite outgrowth after bilateral common carotid artery occlusion (BCCAO) in mice. Both TAT-M9 and TAT-NEP1-40 were efficiently delivered into the brains of mice by intraperitoneal injection. TAT-M9 treatment promoted neuron survival and inhibited neuronal apoptosis. Asynchronous therapy with TAT-M9 and TAT-NEP1-40 increased the expression of Tau, GAP43 and MAP-2 proteins, and enhanced short-term and long-term cognitive functions. In conclusion, the asynchronous treatment had a long-term neuroprotective effect, which reduced neurologic injury and apoptosis, promoted neurite outgrowth and enhanced functional recovery after ischemia. It suggests that this asynchronous treatment could be a promising therapy for cerebral ischemia in humans.
Collapse
Affiliation(s)
- Liya Li
- a Department of Anesthesiology , Xijing Hospital, Fourth Military Medical University , Xi' an , China .,b Department of Emergency , The Second Affiliated Hospital of Dalian Medical University , Dalian , China
| | - Bin Deng
- c Department of Anesthesiology , State Key Laboratory of Military Stomatology, School of Stomatology, Fourth Military Medical University , Xi'an , China , and
| | - Shiquan Wang
- a Department of Anesthesiology , Xijing Hospital, Fourth Military Medical University , Xi' an , China
| | - Haixing Zhong
- a Department of Anesthesiology , Xijing Hospital, Fourth Military Medical University , Xi' an , China
| | - Zhaoyu Liu
- a Department of Anesthesiology , Xijing Hospital, Fourth Military Medical University , Xi' an , China
| | - Weilin Jin
- d Institute of Neurosciences, School of Life Sciences and Biotechnology, Jiao Tong University , Shanghai , China
| | - Tao Jiang
- a Department of Anesthesiology , Xijing Hospital, Fourth Military Medical University , Xi' an , China
| | - Zhaoyang Xiao
- b Department of Emergency , The Second Affiliated Hospital of Dalian Medical University , Dalian , China
| | - Qiang Wang
- a Department of Anesthesiology , Xijing Hospital, Fourth Military Medical University , Xi' an , China
| |
Collapse
|
19
|
Ahn DG, Sharif T, Chisholm K, Pinto DM, Gujar SA, Lee PWK. Ras transformation results in cleavage of reticulon protein Nogo-B that is associated with impairment of IFN response. Cell Cycle 2015; 14:2301-10. [PMID: 25946643 DOI: 10.1080/15384101.2015.1044187] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Dysregulation of Ras signaling is the major cause of various cancers. Aberrant Ras signaling, however, provides a favorable environment for many viruses, making them suitable candidates as cancer-killing therapeutic agents. Susceptibility of cancer cells to such viruses is mainly due to impaired type I interferon (IFN) response, often as a result of activated Ras/ERK signaling in these cells. In this study, we searched for cellular factors modulated by Ras signaling and their potential involvement in promoting viral oncolysis. We found that upon Ras transformation of NIH-3T3 cells, the N-terminus of Nogo-B (reticulon 4) was proteolytically cleaved. Interestingly, Nogo knockdown (KD) in non-transformed and Ras-transformed cells both enhanced virus-induced IFN response, suggesting that both cleaved and uncleaved Nogo can suppress IFN response. However, pharmacological blockade of Nogo cleavage in Ras-transformed cells significantly enhanced virus-induced IFN response, suggesting that cleaved Nogo contributes to enhanced IFN suppression in these cells. We further showed that IFN suppression associated with Ras-induced Nogo-B cleavage was distinct from but synergistic with that associated with an activated Ras/ERK pathway. Our study therefore reveals an important and novel role of Nogo-B and its cleavage in the suppression of anti-viral immune responses by oncogenic Ras transformation.
Collapse
Affiliation(s)
- Dae-Gyun Ahn
- a Department of Microbiology and Immunology ; Dalhousie University ; Halifax , Nova Scotia , Canada
| | | | | | | | | | | |
Collapse
|
20
|
Gundimeda U, McNeill TH, Barseghian BA, Tzeng WS, Rayudu DV, Cadenas E, Gopalakrishna R. Polyphenols from green tea prevent antineuritogenic action of Nogo-A via 67-kDa laminin receptor and hydrogen peroxide. J Neurochem 2015; 132:70-84. [PMID: 25314656 DOI: 10.1111/jnc.12964] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/22/2014] [Accepted: 10/06/2014] [Indexed: 02/02/2023]
Abstract
Axonal regeneration after injury to the CNS is hampered by myelin-derived inhibitors, such as Nogo-A. Natural products, such as green tea, which are neuroprotective and safe for long-term therapy, would complement ongoing various pharmacological approaches. In this study, using nerve growth factor-differentiated neuronal-like Neuroscreen-1 cells, we show that extremely low concentrations of unfractionated green tea polyphenol mixture (GTPP) and its active ingredient, epigallocatechin-3-gallate (EGCG), prevent both the neurite outgrowth-inhibiting activity and growth cone-collapsing activity of Nogo-66 (C-terminal domain of Nogo-A). Furthermore, a synergistic interaction was observed among GTPP constituents. This preventive effect was dependent on 67-kDa laminin receptor (67LR) to which EGCG binds with high affinity. The antioxidants N-acetylcysteine and cell-permeable catalase abolished this preventive effect of GTPP and EGCG, suggesting the involvement of sublethal levels of H2 O2 in this process. Accordingly, exogenous sublethal concentrations of H2 O2 , added as a bolus dose (5 μM) or more effectively through a steady-state generation (1-2 μM), mimicked GTPP in counteracting the action of Nogo-66. Exogenous H2 O2 mediated this action by bypassing the requirement of 67LR. Taken together, these results show for the first time that GTPP and EGCG, acting through 67LR and elevating intracellular sublethal levels of H2 O2 , inhibit the antineuritogenic action of Nogo-A. Currently, several agents are being evaluated for overcoming axonal growth inhibitors to promote functional recovery after stroke and spinal cord injury. Epigallocatechin-3-gallate (EGCG), present in green tea polyphenol mixture (GTPP), prevents antineuritogenic activity of Nogo-A, a myelin-derived axonal growth inhibitor. The preventive action of EGCG involves the cell-surface-associated 67-kDa laminin receptor and H2 O2 . GTPP may complement ongoing efforts to treat neuronal injuries.>
Collapse
Affiliation(s)
- Usha Gundimeda
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
A novel centrosome and microtubules associated subcellular localization of Nogo-A: implications for neuronal development. Int J Biochem Cell Biol 2014; 57:1-6. [PMID: 25286302 DOI: 10.1016/j.biocel.2014.09.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/07/2014] [Accepted: 09/25/2014] [Indexed: 11/21/2022]
Abstract
Oligodendrocyte-derived neurite-outgrowth inhibitor Nogo-A and its restriction mechanism are well-known. Recently, Nogo-A is reported to be abundantly expressed in neurons, however, the concrete link between neuronal Nogo-A and neuronal development is poorly understood. In the present study, we used Neuro2A and COS7 cell lines to clarify that Nogo-A largely distributed in the centrosome and microtubules-rich regions. When endogenous Nogo-A was down-regulated with RNA interference, the percentage of cell differentiation and the total neurite length of Neuro2A exposed to valproic acid (VPA) decreased sharply. Furthermore, in primary neurons, acetylated α-tubulin decreased at the tips of neurites where endogenous Nogo-A was still highly expressed. In HEK293FT cell lines, Nogo-A overexpression could redistribute acetylated α-tubulin but not change the level of α-tubulin. Together, our data discovered that centrosome- and microtubules-localized Nogo-A positively regulates neuronal differentiation and neurite outgrowth of Neuro2A cell lines, implicating the essential roles of subcellular Nogo-A in neuronal development.
Collapse
|
22
|
Teng RJ, Rana U, Afolayan AJ, Zhao B, Miao QR, Konduri GG. Nogo-B receptor modulates angiogenesis response of pulmonary artery endothelial cells through eNOS coupling. Am J Respir Cell Mol Biol 2014; 51:169-77. [PMID: 24568601 DOI: 10.1165/rcmb.2013-0298oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Nogo-B, a reticulon-4 isoform, modulates the motility and adhesion of vascular endothelial cells after binding to its receptor, Nogo-B receptor (NgBR). Nogo-B/NgBR pathway contributes to vascular remodeling and angiogenesis, but the role of this pathway in the angiogenesis of developing lungs remains unknown. We previously reported that angiogenesis function of pulmonary artery endothelial cells (PAECs) is impaired by increased reactive oxygen species formation in a fetal lamb model of intrauterine pulmonary hypertension (IPH). Here, we report that Nogo-B/NgBR pathway is altered in IPH, and that decreased NgBR expression contributes to impaired angiogenesis in IPH. We observed a decrease in NgBR levels in lysates of whole lung or PAECs from fetal lambs with IPH compared with controls. Overexpression of NgBR in IPH PAECs rescued the in vitro angiogenesis defects and increased the phosphorylation of both Akt and endothelial nitric oxide synthase at serine(1179) as well as the levels of both manganese superoxide dismutase and GTP cyclohydrolase-1. Consistent with the phenotype of IPH PAECs, knockdown of NgBR in control PAECs decreased the levels of nitric oxide, increased the levels of reactive oxygen species, and impaired in vitro angiogenesis. Our data demonstrate that NgBR mediates PAEC angiogenesis response through the modulation of Akt/endothelial nitric oxide synthase functions, and its decreased expression is mechanistically linked to IPH-related angiogenesis defects in the developing lungs.
Collapse
|
23
|
Cell type-specific Nogo-A gene ablation promotes axonal regeneration in the injured adult optic nerve. Cell Death Differ 2014; 22:323-35. [PMID: 25257170 DOI: 10.1038/cdd.2014.147] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 01/23/2023] Open
Abstract
Nogo-A is a well-known myelin-enriched inhibitory protein for axonal growth and regeneration in the central nervous system (CNS). Besides oligodendrocytes, our previous data revealed that Nogo-A is also expressed in subpopulations of neurons including retinal ganglion cells, in which it can have a positive role in the neuronal growth response after injury, through an unclear mechanism. In the present study, we analyzed the opposite roles of glial versus neuronal Nogo-A in the injured visual system. To this aim, we created oligodendrocyte (Cnp-Cre(+/-)xRtn4/Nogo-A(flox/flox)) and neuron-specific (Thy1-Cre(tg+)xRtn4(flox/flox)) conditional Nogo-A knock-out (KO) mouse lines. Following complete intraorbital optic nerve crush, both spontaneous and inflammation-mediated axonal outgrowth was increased in the optic nerves of the glia-specific Nogo-A KO mice. In contrast, neuron-specific deletion of Nogo-A in a KO mouse line or after acute gene recombination in retinal ganglion cells mediated by adeno-associated virus serotype 2.Cre virus injection in Rtn4(flox/flox) animals decreased axon sprouting in the injured optic nerve. These results therefore show that selective ablation of Nogo-A in oligodendrocytes and myelin in the optic nerve is more effective at enhancing regrowth of injured axons than what has previously been observed in conventional, complete Nogo-A KO mice. Our data also suggest that neuronal Nogo-A in retinal ganglion cells could participate in enhancing axonal sprouting, possibly by cis-interaction with Nogo receptors at the cell membrane that may counteract trans-Nogo-A signaling. We propose that inactivating Nogo-A in glia while preserving neuronal Nogo-A expression may be a successful strategy to promote axonal regeneration in the CNS.
Collapse
|
24
|
Gao X, Mi Y, Ma Y, Jin W. LEF1 regulates glioblastoma cell proliferation, migration, invasion, and cancer stem-like cell self-renewal. Tumour Biol 2014; 35:11505-11. [PMID: 25128061 DOI: 10.1007/s13277-014-2466-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 08/06/2014] [Indexed: 01/01/2023] Open
Abstract
Glioblastoma multiforme (GBM; WHO grade IV) is one of the most common primary tumors of the central nervous system. This disease remains one of the incurable human malignancies because the molecular mechanism driving the GBM development and recurrence is still largely unknown. Here, we show that knockdown of lymphocyte enhancer factor-1 (LEF1), a major transcription factor of Wnt pathway, inhibits U251 cell migration, invasion, and proliferation. Furthermore, downregulation of LEF1 expression inhibits the self-renewal capacity of U251 GBM stem-like cells and decreases the expression level of the GBM stem-like cell (GSC) markers such as CD133 and nestin. Our findings reveal that LEF1 maintains the GBM cell proliferation, migration, and GBM stem-like cell self-renewal. Taken together, these results suggest that LEF1 may be a novel therapeutic target for GBM suppression.
Collapse
Affiliation(s)
- Xingchun Gao
- Institute of Basic Medicine Science, Xi'an Medical University, 1 Xin Wang Road, Xi'an, 710021, China,
| | | | | | | |
Collapse
|
25
|
Recent updates on drug abuse analyzed by neuroproteomics studies: Cocaine, Methamphetamine and MDMA. TRANSLATIONAL PROTEOMICS 2014. [DOI: 10.1016/j.trprot.2014.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
26
|
Narayana PA, Herrera JJ, Bockhorst KH, Esparza-Coss E, Xia Y, Steinberg JL, Moeller FG. Chronic cocaine administration causes extensive white matter damage in brain: diffusion tensor imaging and immunohistochemistry studies. Psychiatry Res 2014; 221:220-30. [PMID: 24507117 PMCID: PMC3943678 DOI: 10.1016/j.pscychresns.2014.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 12/21/2013] [Accepted: 01/14/2014] [Indexed: 12/14/2022]
Abstract
The effect of chronic cocaine exposure on multiple white matter structures in rodent brain was examined using diffusion tensor imaging (DTI), locomotor behavior, and end point histology. The animals received either cocaine at a dose of 100mg/kg (N=19), or saline (N=17) for 28 days through an implanted osmotic minipump. The animals underwent serial DTI scans, locomotor assessment, and end point histology for determining the expressions of myelin basic protein (MBP), neurofilament-heavy protein (NF-H), proteolipid protein (PLP), Nogo-A, aquaporin-4 (AQP-4), and growth associated protein-43 (GAP-43). Differences in the DTI measures were observed in the splenium (scc) and genu (gcc) of the corpus callosum (cc), fimbria (fi), and the internal capsule (ic). A significant increase in the activity in the fine motor movements and a significant decrease in the number of rearing events were observed in the cocaine-treated animals. Reduced MBP and Nogo-A and increased GAP-43 expressions were most consistently observed in these structures. A decrease in the NF-H expression was observed in fi and ic. The reduced expression of Nogo-A and the increased expression of GAP-43 may suggest destabilization of axonal connectivity and increased neurite growth with aberrant connections. Increased GAP-43 suggests drug-induced plasticity or a possible repair mechanism response. The findings indicated that multiple white matter tracts are affected following chronic cocaine exposure.
Collapse
Affiliation(s)
- Ponnada A Narayana
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Juan J Herrera
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kurt H Bockhorst
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Emilio Esparza-Coss
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ying Xia
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Joel L Steinberg
- Department of Psychiatry, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - F Gerard Moeller
- Department of Psychiatry, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| |
Collapse
|
27
|
A link between the nuclear-localized srGAP3 and the SWI/SNF chromatin remodeler Brg1. Mol Cell Neurosci 2014; 60:10-25. [PMID: 24561795 DOI: 10.1016/j.mcn.2014.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 02/06/2014] [Accepted: 02/11/2014] [Indexed: 11/21/2022] Open
Abstract
The Slit-Robo GTPase activating protein 3 (srGAP3) is an important modulator of actin cytoskeletal dynamics and has an important influence on a variety of neurodevelopmental processes. Mutations in the SRGAP3 gene on chromosome 3p25 have been found in patients with intellectual disability. Genome-wide association studies and behavioral assays of knockout mice had also revealed SRGAP3 as a risk gene for schizophrenia. We have recently shown that srGAP3 protein undergoes regulated shuttling between the cytoplasm and the nucleus during neuronal development. It is shown here that nuclear-localized srGAP3 interacts with the SWI/SNF remodeling factor Brg1. This interaction is mediated by the C-terminal of srGAP3 and the ATPase motif of Brg1. In the primary cultured rat cortical neurons, the levels of nuclear-localized srGAP3 and its interaction with Brg1 have a significant impact on dendrite complexity. Furthermore, the interaction between srGAP3 and Brg1 was also involved in valproic acid (VPA) -induced neuronal differentiation of Neuro2a cells. We then show that GTP-bound Rac1 and GAP-43 may be potential mediators of nuclear srGAP3 and Brg1. Our results not only indicate a novel signaling pathway that contributes to neuronal differentiation and dendrite morphology, but also implicate a novel molecular mechanism underlying srGAP3 regulation of gene expression.
Collapse
|
28
|
Deng B, Gao F, Liu FF, Zhao XH, Yu CY, Ju G, Xu LX, Wang J. Two monoclonal antibodies recognising aa 634-668 and aa 1026-1055 of NogoA enhance axon extension and branching in cultured neurons. PLoS One 2014; 9:e88554. [PMID: 24533107 PMCID: PMC3922884 DOI: 10.1371/journal.pone.0088554] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/07/2014] [Indexed: 01/16/2023] Open
Abstract
In a previous study, we generated two monoclonal antibodies (mAbs) in mice, aNogoA-N and aNogo-66 mAb, which were raised against recombinant N-terminal fragments of rat NogoA and Nogo-66, respectively. When compared with the commercial rabbit anti-rat NogoA polyclonal antibody (pAb), which can specifically recognise NogoA, the two mAbs were also specific for the NogoA antigen in immunofluorescence histochemical (IHC) staining and Western blot (WB) analysis. Serial truncations of NogoA covering the N-terminal region of NogoA (aa 570–691) and Nogo-66 (aa 1026–1091) were expressed in E. coli. The epitopes recognised by aNogoA-N and aNogo-66 are located in the aa 634–668 and aa 1026–1055 regions of NogoA, respectively. Both mAbs remarkably enhanced the axon growth and branching of cultured hippocampal neurons in vitro. These results suggest that the antibodies that bind to aa 634–668 and aa 1026–1055 of NogoA may have stimulatory effects on axon growth and branching. Additionally, the two mAbs that we generated are specific for NogoA and significantly block NogoA function. In conclusion, two sites in NogoA located within aa 634–668 and aa 1026–1055 are recognised by our two antibodies and are novel and potentially promising targets for repair after central nervous system (CNS) injury.
Collapse
Affiliation(s)
- Bin Deng
- Institute of Neurosciences, the Fourth Military Medical University, Xi'an, China
- Department of Anesthesiology, Stomatological College, Fourth Military Medical University, Xi'an, China
| | - Fei Gao
- Department of Clinical Laboratory, No. 174 Hospital of People's Liberation Army, Xiamen, China
| | - Fang-Fang Liu
- Institute of Neurosciences, the Fourth Military Medical University, Xi'an, China
| | - Xiang-Hui Zhao
- Institute of Neurosciences, the Fourth Military Medical University, Xi'an, China
| | - Cai-Yong Yu
- Institute of Neurosciences, the Fourth Military Medical University, Xi'an, China
| | - Gong Ju
- Institute of Neurosciences, the Fourth Military Medical University, Xi'an, China
| | - Li-Xian Xu
- Department of Anesthesiology, Stomatological College, Fourth Military Medical University, Xi'an, China
- * E-mail: (JW); (LXX)
| | - Jian Wang
- Institute of Neurosciences, the Fourth Military Medical University, Xi'an, China
- * E-mail: (JW); (LXX)
| |
Collapse
|
29
|
Nogo-A couples with Apg-1 through interaction and co-ordinate expression under hypoxic and oxidative stress. Biochem J 2013; 455:217-27. [PMID: 23909438 PMCID: PMC3806365 DOI: 10.1042/bj20130579] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Nogo-A is the largest isoform of the Nogo/RTN4 (reticulon 4) proteins and has been characterized as a major myelin-associated inhibitor of regenerative nerve growth in the adult CNS (central nervous system). Apart from the myelin sheath, Nogo-A is expressed at high levels in principal neurons of the CNS. The specificity of Nogo-A resides in its central domain, NiG. We identified Apg-1, a member of the stress-induced Hsp110 (heat-shock protein of 110 kDa) family, as a novel interactor of NiG/Nogo-A. The interaction is selective because Apg-1 interacts with Nogo-A/RTN4-A, but not with RTN1-A, the closest paralogue of Nogo-A. Conversely, Nogo-A binds to Apg-1, but not to Apg-2 or Hsp105, two other members of the Hsp110 family. We characterized the Nogo-A–Apg-1 interaction by affinity precipitation, co-immunoprecipitation and proximity ligation assay, using primary hippocampal neurons derived from Nogo-deficient mice. Under conditions of hypoxic and oxidative stress we found that Nogo-A and Apg-1 were tightly co-regulated in hippocampal neurons. Although both proteins were up-regulated under hypoxic conditions, their expression levels were reduced upon the addition of hydrogen peroxide. Taken together, we suggest that Nogo-A is closely involved in the neuronal response to hypoxic and oxidative stress, an observation that may be of relevance not only in stroke-induced ischaemia, but also in neuroblastoma formation. The nerve growth inhibitor Nogo-A selectively binds to the heat-shock protein Apg-1 and the expression levels of these two interactors are co-regulated under different forms of stress in neurons.
Collapse
|
30
|
Teng FYH, Tang BL. Nogo/RTN4 isoforms and RTN3 expression protect SH-SY5Y cells against multiple death insults. Mol Cell Biochem 2013; 384:7-19. [PMID: 23955438 DOI: 10.1007/s11010-013-1776-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/09/2013] [Indexed: 01/27/2023]
Abstract
Among the members of the reticulon (RTN) family, Nogo-A/RTN4A, a prominent myelin-associated neurite growth inhibitory protein, and RTN3 are highly expressed in neurons. However, neuronal cell-autonomous functions of Nogo-A, as well as other members of the RTN family, are unclear. We show here that SH-SY5Y neuroblastoma cells stably over-expressing either two of the three major isoforms of Nogo/RTN4 (Nogo-A and Nogo-B) or a major isoform of RTN3 were protected against cell death induced by a battery of apoptosis-inducing agents (including serum deprivation, staurosporine, etoposide, and H2O2) compared to vector-transfected control cells. Nogo-A, -B, and RTN3 are particularly effective in terms of protection against H2O2-induced increase in intracellular reactive oxygen species levels and ensuing apoptotic and autophagic cell death. Expression of these RTNs upregulated basal levels of Bax, activated Bax, and activated caspase 3, but did not exhibit an enhanced ER stress response. The protective effect of RTNs is also not dependent on classical survival-promoting signaling pathways such as Akt and Erk kinase pathways. Neuron-enriched Nogo-A/Rtn4A and RTN3 may, therefore, exert a protective effect on neuronal cells against death stimuli, and elevation of their levels during injury may have a cell-autonomous survival-promoting function.
Collapse
Affiliation(s)
- Felicia Yu Hsuan Teng
- Department of Biochemistry, National University of Singapore, MD7, 8 Medical Drive, Singapore, 117597, Republic of Singapore
| | | |
Collapse
|
31
|
Tu Y, Gao X, Li G, Fu H, Cui D, Liu H, Jin W, Zhang Y. MicroRNA-218 inhibits glioma invasion, migration, proliferation, and cancer stem-like cell self-renewal by targeting the polycomb group gene Bmi1. Cancer Res 2013; 73:6046-55. [PMID: 23950210 DOI: 10.1158/0008-5472.can-13-0358] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Malignant gliomas are the most common central nervous system tumors and the molecular mechanism driving their development and recurrence is still largely unknown, limiting the treatment of this disease. Here, we show that restoring the expression of miR-218, a microRNA commonly downregulated in glioma, dramatically reduces the migration, invasion, and proliferation of glioma cells. Quantitative reverse transcription PCR and Western blotting analysis revealed that expression of the stem cell-promoting oncogene Bmi1 was decreased after overexpression of miR-218 in glioma cells. Mechanistic investigations defined Bmi1 as a functional downstream target of miR-218 through which miR-218 ablated cell migration and proliferation. We documented that miR-218 also blocked the self-renewal of glioma stem-like cells, consistent with the suggested role of Bmi1 in stem cell growth. Finally, we showed that miR-218 regulated a broad range of genes involved in glioma cell development, including Wnt pathways that suppress glioma cell stem-like qualities. Taken together, our findings reveal miR-218 as a tumor suppressor that prevents migration, invasion, proliferation, and stem-like qualities in glioma cells.
Collapse
Affiliation(s)
- Yanyang Tu
- Authors' Affiliations: Departments of Experimental Surgery, Neurosurgery, and Administration, Tangdu Hospital, Fourth Military Medical University; Department of Cell Biology, School of Basic Medical Sciences, Xi'an Medical University, Xi'an; Department of Bio-Nano-Science and Engineering, Institute of Micro-Nano Science and Technology; and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Guo F, Wang H, Li L, Zhou H, Wei H, Jin W, Wang Q, Xiong L. A novel domain of amino-Nogo-A protects HT22 cells exposed to oxygen glucose deprivation by inhibiting NADPH oxidase activity. Cell Mol Neurobiol 2013; 33:443-52. [PMID: 23354671 DOI: 10.1007/s10571-013-9911-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 01/16/2013] [Indexed: 12/18/2022]
Abstract
This study aimed to investigate the protective effect of the M9 region (residues 290-562) of amino-Nogo-A fused to the human immunodeficiency virus trans-activator TAT in an in vitro model of ischemia-reperfusion induced by oxygen-glucose deprivation (OGD) in HT22 hippocampal neurons, and to investigate the role of NADPH oxidase in this protection. Transduction of TAT-M9 was analyzed by immunofluorescence staining and western blot. The biologic activity of TAT-M9 was assessed by its effects against OGD-induced HT22 cell damage, compared with a mutant M9 fusion protein or vehicle. Cellular viability and lactate dehydrogenase (LDH) release were assessed. Neuronal apoptosis was evaluated by flow cytometry. The Bax/Bcl-2 ratio was determined by western blotting. Reactive oxygen species (ROS) levels and NADPH oxidase activity were also measured in the presence or absence of an inhibitor or activator of NADPH oxidase. Our results confirmed the delivery of the protein into HT22 cells by immunofluorescence and western blot. Addition of 0.4 μmol/L TAT-M9 to the culture medium effectively improved neuronal cell viability and reduced LDH release induced by OGD. The fusion protein also protected HT22 cells from apoptosis, suppressed overexpression of Bax, and inhibited the reduction in Bcl-2 expression. Furthermore, TAT-M9, as well as apocynin, decreased NADPH oxidase activity and ROS content. The protective effects of the TAT-M9 were reversed by TBCA, an agonist of NADPH oxidase. In conclusion, TAT-M9 could be successfully transduced into HT22 cells, and protected HT22 cells against OGD damage by inhibiting NADPH oxidase-mediated oxidative stress. These findings suggest that the TAT-M9 protein may be an efficient therapeutic agent for neuroprotection.
Collapse
Affiliation(s)
- Fan Guo
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Myelin-based inhibitors of oligodendrocyte myelination: clues from axonal growth and regeneration. Neurosci Bull 2013; 29:177-88. [PMID: 23516141 DOI: 10.1007/s12264-013-1319-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/06/2013] [Indexed: 12/20/2022] Open
Abstract
The differentiation of and myelination by oligodendrocytes (OLs) are exquisitely regulated by a series of intrinsic and extrinsic mechanisms. As each OL can make differing numbers of myelin segments with variable lengths along similar axon tracts, myelination can be viewed as a graded process shaped by inhibitory/inductive cues during development. Myelination by OLs is a prime example of an adaptive process determined by the microenvironment and architecture of the central nervous system (CNS). in this review, we discuss how myelin formation by OLs may be controlled by the heterogeneous microenvironment of the CNS. Then we address recent findings demonstrating that neighboring OLs may compete for available axon space, and highlight our current understanding of myelin-based inhibitors of axonal regeneration that are potentially responsible for the reciprocal dialogue between OLs and determine the numbers and lengths of myelin internodes. Understanding the mechanisms that control the spatiotemporal regulation of myelinogenic potential during development may provide valuable insight into therapeutic strategies for promoting remyelination in an inhibitory microenvironment.
Collapse
|
34
|
Guo F, Jin WL, Li LY, Song WY, Wang HW, Gou XC, Mi YJ, Wang Q, Xiong L. M9, a novel region of amino-Nogo-A, attenuates cerebral ischemic injury by inhibiting NADPH oxidase-derived superoxide production in mice. CNS Neurosci Ther 2013; 19:319-28. [PMID: 23490284 DOI: 10.1111/cns.12083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/27/2013] [Accepted: 02/02/2013] [Indexed: 01/09/2023] Open
Abstract
AIMS In acute stroke, neurological damage is due to oxidative stress and neuronal apoptotic death. This study investigated whether Nogo-A 290-562 residues region (M9), fused to the transduction domain of the HIV trans-activator (TAT) protein, is neuroprotective against cerebral ischemia and the mechanisms. METHODS Transient focal cerebral ischemia was induced by middle cerebral artery occlusion in male C57BL/6J mice. TAT-M9, its mutation or vehicle was applied via intraperitoneal injection at the onset of reperfusion. The neurobehavioral scores, infarction volumes, neuronal apoptosis, and the ratio of Bax/Bcl-2 were evaluated. Malondialdehyde (MDA), reactive oxygen species (ROS) levels, and NADPH oxidase activation were measured in the presence or absence of the NADPH oxidase inhibitor apocynin or activator tetrabromocinnamic acid (TBCA). RESULTS Immunofluorescence results confirmed that TAT-M9 was transduced into brain parenchyma, and it significantly improved neurological behavior, reduced infarct volumes, protected neuronal cells from apoptosis, inhibited activation of NADPH oxidase, and decreased MDA and ROS contents. Furthermore, apocynin imitated the beneficial effects of TAT-M9, while TBCA abolished them. CONCLUSIONS Our results demonstrate that TAT-M9 administration attenuates cerebral ischemia by inhibiting NADPH oxidase-mediated oxidative damage and neuronal apoptosis in mice. TAT-M9 may be a potential treatment for cerebrovascular disease.
Collapse
Affiliation(s)
- Fan Guo
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Suzuki N, Mittler R. Reactive oxygen species-dependent wound responses in animals and plants. Free Radic Biol Med 2012; 53:2269-76. [PMID: 23085520 DOI: 10.1016/j.freeradbiomed.2012.10.538] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 01/20/2023]
Abstract
Animals and plants evolved sophisticated mechanisms that regulate their responses to mechanical injury. Wound response in animals mainly promotes wound healing processes, nerve cell regeneration, and immune system responses at the vicinity of the wound site. In contrast, wound response in plants is primarily directed at sealing the wound site via deposition of various compounds and generating systemic signals that activate multiple defense mechanisms in remote tissues. Despite these differences between animals and plants, recent studies have shown that reactive oxygen species (ROS) play very common signaling and coordination roles in the wound responses of both systems. This review provides an update on recent findings related to ROS-regulated coordination of intercellular communications and signal transduction during wound response in plants and animals. In particular, differences and similarities in H2O2-dependent long-distance signaling between zebrafish and Arabidopsis thaliana are discussed.
Collapse
Affiliation(s)
- Nobuhiro Suzuki
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, TX 76203-5017, USA
| | - Ron Mittler
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, TX 76203-5017, USA.
| |
Collapse
|
36
|
Yang J, Han Y, Ye W, Liu F, Zhuang K, Wu G. Alpha tocopherol treatment reduces the expression of Nogo-A and NgR in rat brain after traumatic brain injury. J Surg Res 2012. [PMID: 23207171 DOI: 10.1016/j.jss.2012.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Neurite outgrowth inhibitor-A (Nogo-A), myelin-associated glycoprotein, and oligodendrocyte myelin glycoprotein are three myelin-associated proteins that act as inhibitors to central nervous system regeneration. Neurite outgrowth inhibitor-A imposes the strongest effect on inhibiting axonal regeneration after traumatic brain injury. Alpha-tocopherol, a member of the vitamin E family, is recognized as an active antioxidative substance. Its use has not been well studied in brain injury research, especially in axonal regeneration research. METHODS We obtained 99 intact adult male Sprague-Dawley rats (200-250 g) from the Experimental Animal Center of Central South University. We used the modified method of Freeney to generate moderate brain injury in the rats. We injected 600 mg/kg α-tocopherol intraperitoneally daily as traumatic brain injury (TBI) treatment. Then, we performed behavioral tests in the corresponding time point, examined brain tissues after hematoxylin-eosin staining to identify changes in cell morphology, and performed immunohistochemical staining and quantitative real-time polymerase chain reaction to detect the expression of NoGo and Nogo receptor (NgR) in brain tissue. RESULTS For the Neurological Severity Scores of rats, there were obvious differences among the three groups at the corresponding time points. Standard hematoxylin-eosin staining showed that the brain structure of a sham-operated group of rats was clear, uniform, and compact. A TBI group exhibited hemorrhage, edema, inflammatory cell infiltration, condensed nuclei, and necrosis. We also saw glial cells and fibrous tissue proliferation. The α-tocopherol-treated TBI group had similar but less severe changes than the TBI group. Expression of Nogo-A and NgR increased after TBI compared with the sham-operated group. However, Nogo-A and NgR expression was significantly lower in the α-tocopherol-treated TBI group compared with the TBI group. Similarly, results showed that functional neurological deficits among rats in the α-tocopherol-treated TBI group were less pronounced than in the TBI group (model group). CONCLUSIONS Our data demonstrate that α-tocopherol-treated rats had reduced microscopic evidence of brain damage. Alpha-tocopherol reduced Nogo-A and NgR expression in brain tissue after traumatic brain injury and promoted nerve regeneration. Alpha-tocopherol treatment of TBI rats had a neuroprotective role in their recovery.
Collapse
Affiliation(s)
- Jinfu Yang
- Department of Neurosurgery, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | | | | | | | | | | |
Collapse
|
37
|
Pernet V, Schwab ME. The role of Nogo-A in axonal plasticity, regrowth and repair. Cell Tissue Res 2012; 349:97-104. [PMID: 22588543 DOI: 10.1007/s00441-012-1432-6] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/05/2012] [Indexed: 12/13/2022]
Abstract
Axonal damage leads to permanent deficits in the adult central nervous system (CNS) not only because of the weak intrinsic ability of adult neurons to activate their growth program but importantly also because of the presence of specific growth inhibitors in the CNS tissue and the environment of the damaged axons. The well-studied myelin-derived protein Nogo-A is involved in various cellular and molecular events contributing to the failure of CNS axons to regrow and reconnect after transection. Recent studies have shown that, by acting in a negative way on the cytoskeleton and on the growth program of axotomized neurons, Nogo-A exerts fast and chronic inhibitory effects on neurite outgrowth. On the other hand, the blockade of Nogo-A results in a marked enhancement of compensatory and regenerative axonal extension in vivo; this enhancement is often paralleled by significant functional recovery, for example, of locomotion or skilled forelimb reaching after spinal cord or stroke lesions in rats and monkeys. Surprisingly, the blockade of Nogo-A or its receptor NgR in the hippocampus has recently been demonstrated to enhance long-term potentiation. A role of Nogo-A in synaptic plasticity/stability might therefore represent an additional, new and important aspect of CNS circuit remodeling. Function-blocking anti-Nogo-A antibodies are currently being tested in a clinical trial for improved outcome after spinal cord injury.
Collapse
Affiliation(s)
- Vincent Pernet
- Brain Research Institute, University of Zürich/ETH, Department of Health Sciences and Technology ETH Zürich, Winterthurerstrasse 190, Room 55J34a, 8057 Zürich, Switzerland.
| | | |
Collapse
|
38
|
Wang T, Xiong JQ, Ren XB, Sun W. The role of Nogo-A in neuroregeneration: A review. Brain Res Bull 2012; 87:499-503. [DOI: 10.1016/j.brainresbull.2012.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 02/21/2012] [Accepted: 02/24/2012] [Indexed: 01/24/2023]
|