1
|
Salmasi S, Heidar MS, Khaksary Mahabady M, Rashidi B, Mirzaei H. MicroRNAs, endometrial receptivity and molecular pathways. Reprod Biol Endocrinol 2024; 22:139. [PMID: 39529197 PMCID: PMC11552404 DOI: 10.1186/s12958-024-01304-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
MicroRNAs (miRNAs) are a type of specific molecules that control the activities of the uterus, such as the process of cellular maturing and evolution. A lot of substances like growth factors, cytokines, and transcription factors play a role in embryo-endometrial interaction. MiRNAs could regulate various these factors by attaching to the 3' UTR of their mRNAs. Moreover, current research show that miRNAs participate in formation of blood vessels in endometrium (miR-206, miR-17-5p, miR-16-5p…), decidualization (miR-154, miR-181, miR-9…), epithelial-mesenchymal transition (miR-30a-3p), immune response (miR-888, miR-376a, miR-300…) embryo attachment (miR-145, miR-27a,451…) and pinopod formation (mir-223-3p, mir-449a, mir-200c). In this study, the focus is on the role of miRNAs in managing the uterus' receptivity to an embryo and its ability to facilitate attachment. More specifically, we are exploring the mechanisms by which miRNAs regulate the presence of specific molecules involved in this crucial physiological process.
Collapse
Affiliation(s)
- Soheila Salmasi
- Department of Anatomical Sciences & Cognitive Neuroscience, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Saeed Heidar
- Faculty of life sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Bahman Rashidi
- Department of Anatomical Sciences & Cognitive Neuroscience, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Kumar R, Srikrishna S. JNK Kinase regulates cachexia like syndrome in scribble knockdown tumor model of Drosophila melanogaster. Dev Biol 2024; 517:28-38. [PMID: 39293747 DOI: 10.1016/j.ydbio.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
Cachexia and systemic organ wasting are metabolic syndrome often associated with cancer. However, the exact mechanism of cancer associated cachexia like syndrome still remain elusive. In this study, we utilized a scribble (scrib) knockdown induced hindgut tumor to investigate the role of JNK kinase in cachexia like syndrome. Scrib, a cell polarity regulator, also acts as a tumor suppressor gene. Its loss and mis-localization are reported in various type of malignant cancer-like breast, colon and prostate cancer. The scrib knockdown flies exhibited male lethality, reduced life span, systemic organ wasting and increased pJNK level in hindgut of female flies. Interestingly, knocking down of human JNK Kinase analogue, hep, in scrib knockdown background in hindgut leads to restoration of loss of scrib mediated lethality and systemic organ wasting. Our data showed that scrib loss in hindgut is capable of inducing cancer associated cachexia like syndrome. Here, we firstly report that blocking the JNK signaling pathway effectively rescued the cancer cachexia induced by scrib knockdown, along with its associated gut barrier disruption. These findings have significantly advanced our understanding of cancer cachexia and have potential implications for the development of therapeutic strategies. However, more research is needed to fully understand the complex mechanisms underlying this condition.
Collapse
|
3
|
Li JP, Liu YJ, Li Y, Yin Y, Ye QW, Lu ZH, Dong YW, Zhou JY, Zou X, Chen YG. Spatiotemporal heterogeneity of LMOD1 expression summarizes two modes of cell communication in colorectal cancer. J Transl Med 2024; 22:549. [PMID: 38849852 PMCID: PMC11161970 DOI: 10.1186/s12967-024-05369-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024] Open
Abstract
Cellular communication (CC) influences tumor development by mediating intercellular junctions between cells. However, the role and underlying mechanisms of CC in malignant transformation remain unknown. Here, we investigated the spatiotemporal heterogeneity of CC molecular expression during malignant transformation. It was found that although both tight junctions (TJs) and gap junctions (GJs) were involved in maintaining the tumor microenvironment (TME), they exhibited opposite characteristics. Mechanistically, for epithelial cells (parenchymal component), the expression of TJ molecules consistently decreased during normal-cancer transformation and is a potential oncogenic factor. For fibroblasts (mesenchymal component), the expression of GJs consistently increased during normal-cancer transformation and is a potential oncogenic factor. In addition, the molecular profiles of TJs and GJs were used to stratify colorectal cancer (CRC) patients, where subtypes characterized by high GJ levels and low TJ levels exhibited enhanced mesenchymal signals. Importantly, we propose that leiomodin 1 (LMOD1) is biphasic, with features of both TJs and GJs. LMOD1 not only promotes the activation of cancer-associated fibroblasts (CAFs) but also inhibits the Epithelial-mesenchymal transition (EMT) program in cancer cells. In conclusion, these findings demonstrate the molecular heterogeneity of CC and provide new insights into further understanding of TME heterogeneity.
Collapse
Affiliation(s)
- Jie-Pin Li
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Hanzhong Road No.155, Nanjing, 210029, Jiangsu, China
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Nanjing, 210029, Jiangsu, China
- Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Yuan-Jie Liu
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Hanzhong Road No.155, Nanjing, 210029, Jiangsu, China
- Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Yang Li
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Hanzhong Road No.155, Nanjing, 210029, Jiangsu, China
- Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Yi Yin
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Hanzhong Road No.155, Nanjing, 210029, Jiangsu, China
- Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Qian-Wen Ye
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Hanzhong Road No.155, Nanjing, 210029, Jiangsu, China
- Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Zhi-Hua Lu
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Hanzhong Road No.155, Nanjing, 210029, Jiangsu, China
- Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Yu-Wei Dong
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Hanzhong Road No.155, Nanjing, 210029, Jiangsu, China
- Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Jin-Yong Zhou
- Central Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Xi Zou
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Hanzhong Road No.155, Nanjing, 210029, Jiangsu, China.
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Nanjing, 210029, Jiangsu, China.
- Institute of Chinese & Western Medicine and Oncology Clinical Research, Nanjing, 210029, Jiangsu, China.
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing, 210029, Jiangsu, China.
| | - Yu-Gen Chen
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Hanzhong Road No.155, Nanjing, 210029, Jiangsu, China.
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Nanjing, 210029, Jiangsu, China.
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
4
|
Sharafutdinov I, Harrer A, Müsken M, Rottner K, Sticht H, Täger C, Naumann M, Tegtmeyer N, Backert S. Cortactin-dependent control of Par1b-regulated epithelial cell polarity in Helicobacter infection. CELL INSIGHT 2024; 3:100161. [PMID: 38646547 PMCID: PMC11033139 DOI: 10.1016/j.cellin.2024.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 04/23/2024]
Abstract
Cell polarity is crucial for gastric mucosal barrier integrity and mainly regulated by polarity-regulating kinase partitioning-defective 1b (Par1b). During infection, the carcinogen Helicobacter pylori hijacks Par1b via the bacterial oncoprotein CagA leading to loss of cell polarity, but the precise molecular mechanism is not fully clear. Here we discovered a novel function of the actin-binding protein cortactin in regulating Par1b, which forms a complex with cortactin and the tight junction protein zona occludens-1 (ZO-1). We found that serine phosphorylation at S405/418 and the SH3 domain of cortactin are important for its interaction with both Par1b and ZO-1. Cortactin knockout cells displayed disturbed Par1b cellular localization and exhibited morphological abnormalities that largely compromised transepithelial electrical resistance, epithelial cell polarity, and apical microvilli. H. pylori infection promoted cortactin/Par1b/ZO-1 abnormal interactions in the tight junctions in a CagA-dependent manner. Infection of human gastric organoid-derived mucosoids supported these observations. We therefore hypothesize that CagA disrupts gastric epithelial cell polarity by hijacking cortactin, and thus Par1b and ZO-1, suggesting a new signaling pathway for the development of gastric cancer by Helicobacter.
Collapse
Affiliation(s)
- Irshad Sharafutdinov
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058, Erlangen, Germany
| | - Aileen Harrer
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058, Erlangen, Germany
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, D-38124, Braunschweig, Germany
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, D-38124, Braunschweig, Germany
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, D-38106, Braunschweig, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Christian Täger
- Otto von Guericke University, Institute of Experimental Internal Medicine, Medical Faculty, D-39120, Magdeburg, Germany
| | - Michael Naumann
- Otto von Guericke University, Institute of Experimental Internal Medicine, Medical Faculty, D-39120, Magdeburg, Germany
| | - Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058, Erlangen, Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058, Erlangen, Germany
| |
Collapse
|
5
|
Göttig L, Schreiner S. E4orf1: The triple agent of adenovirus - Unraveling its roles in oncogenesis, infectious obesity and immune responses in virus replication and vector therapy. Tumour Virus Res 2024; 17:200277. [PMID: 38428735 PMCID: PMC10937242 DOI: 10.1016/j.tvr.2024.200277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024] Open
Abstract
Human Adenoviruses (HAdV) are nearly ubiquitous pathogens comprising numerous sub-types that infect various tissues and organs. Among many encoded proteins that facilitate viral replication and subversion of host cellular processes, the viral E4orf1 protein has emerged as an intriguing yet under-investigated player in the complex interplay between the virus and its host. E4orf1 has gained attention as a metabolism activator and oncogenic agent, while recent research is showing that E4orf1 may play a more important role in modulating cellular pathways such as PI3K-Akt-mTOR, Ras, the immune response and further HAdV replication stages than previously anticipated. In this review, we aim to explore the structure, molecular mechanisms, and biological functions of E4orf1, shedding light on its potentially multifaceted roles during HAdV infection, including metabolic diseases and oncogenesis. Furthermore, we discuss the role of functional E4orf1 in biotechnological applications such as Adenovirus (AdV) vaccine vectors and oncolytic AdV. By dissecting the intricate relationships between HAdV types and E4orf1 proteins, this review provides valuable insights into viral pathogenesis and points to promising areas of future research.
Collapse
Affiliation(s)
- Lilian Göttig
- Institute of Virology, School of Medicine, Technical University of Munich, Germany
| | - Sabrina Schreiner
- Institute of Virology, School of Medicine, Technical University of Munich, Germany; Institute of Virology, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (Resolving Infection Susceptibility; EXC 2155), Hannover, Germany; Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany.
| |
Collapse
|
6
|
Baral B, Kandpal M, Ray A, Jana A, Yadav DS, Sachin K, Mishra A, Baig MS, Jha HC. Helicobacter pylori and Epstein-Barr virus infection in cell polarity alterations. Folia Microbiol (Praha) 2024; 69:41-57. [PMID: 37672163 DOI: 10.1007/s12223-023-01091-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023]
Abstract
The asymmetrical distribution of the cellular organelles inside the cell is maintained by a group of cell polarity proteins. The maintenance of polarity is one of the vital host defense mechanisms against pathogens, and the loss of it contributes to infection facilitation and cancer progression. Studies have suggested that infection of viruses and bacteria alters cell polarity. Helicobacter pylori and Epstein-Barr virus are group I carcinogens involved in the progression of multiple clinical conditions besides gastric cancer (GC) and Burkitt's lymphoma, respectively. Moreover, the coinfection of both these pathogens contributes to a highly aggressive form of GC. H. pylori and EBV target the host cell polarity complexes for their pathogenesis. H. pylori-associated proteins like CagA, VacA OipA, and urease were shown to imbalance the cellular homeostasis by altering the cell polarity. Similarly, EBV-associated genes LMP1, LMP2A, LMP2B, EBNA3C, and EBNA1 also contribute to altered cell asymmetry. This review summarized all the possible mechanisms involved in cell polarity deformation in H. pylori and EBV-infected epithelial cells. We have also discussed deregulated molecular pathways like NF-κB, TGF-β/SMAD, and β-catenin in H. pylori, EBV, and their coinfection that further modulate PAR, SCRIB, or CRB polarity complexes in epithelial cells.
Collapse
Affiliation(s)
- Budhadev Baral
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Meenakshi Kandpal
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Anushka Ray
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Ankit Jana
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Dhirendra Singh Yadav
- Central Forensic Science Laboratory, Pune, DFSS, Ministry of Home Affairs, Govt. of India, Talegaon MIDC Phase-1, Near JCB Factory, Pune, Maharashtra, 410506, India
| | - Kumar Sachin
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Ram Nagar, Jolly Grant, Dehradun, Uttarakhand, 248 016, India
| | - Amit Mishra
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65 Nagaur Road, Karwar, Jodhpur District, Rajasthan, 342037, India
| | - Mirza S Baig
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India.
| |
Collapse
|
7
|
Kamakura S, Hayase J, Kohda A, Iwakiri Y, Chishiki K, Izaki T, Sumimoto H. TMEM25 is a Par3-binding protein that attenuates claudin assembly during tight junction development. EMBO Rep 2024; 25:144-167. [PMID: 38177906 PMCID: PMC10897455 DOI: 10.1038/s44319-023-00018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024] Open
Abstract
The tight junction (TJ) in epithelial cells is formed by integral membrane proteins and cytoplasmic scaffolding proteins. The former contains the claudin family proteins with four transmembrane segments, while the latter includes Par3, a PDZ domain-containing adaptor that organizes TJ formation. Here we show the single membrane-spanning protein TMEM25 localizes to TJs in epithelial cells and binds to Par3 via a PDZ-mediated interaction with its C-terminal cytoplasmic tail. TJ development during epithelial cell polarization is accelerated by depletion of TMEM25, and delayed by overexpression of TMEM25 but not by that of a C-terminally deleted protein, indicating a regulatory role of TMEM25. TMEM25 associates via its N-terminal extracellular domain with claudin-1 and claudin-2 to suppress their cis- and trans-oligomerizations, both of which participate in TJ strand formation. Furthermore, Par3 attenuates TMEM25-claudin association via binding to TMEM25, implying its ability to affect claudin oligomerization. Thus, the TJ protein TMEM25 appears to negatively regulate claudin assembly in TJ formation, which regulation is modulated by its interaction with Par3.
Collapse
Affiliation(s)
- Sachiko Kamakura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Junya Hayase
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Akira Kohda
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yuko Iwakiri
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kanako Chishiki
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Tomoko Izaki
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hideki Sumimoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
| |
Collapse
|
8
|
Tian A, Wang X, Xu Y, Morejon V, Huang Y, Nwapuda C, Deng W. EGFR signaling controls directionality of epithelial multilayer formation upon loss of cell polarity. EMBO J 2023; 42:e113856. [PMID: 37953688 PMCID: PMC10711663 DOI: 10.15252/embj.2023113856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023] Open
Abstract
Apical-basal polarity is maintained by distinct protein complexes that reside in membrane junctions, and polarity loss in monolayered epithelial cells can lead to formation of multilayers, cell extrusion, and/or malignant overgrowth. Yet, how polarity loss cooperates with intrinsic signals to control directional invasion toward neighboring epithelial cells remains elusive. Using the Drosophila ovarian follicular epithelium as a model, we found that posterior follicle cells with loss of lethal giant larvae (lgl) or Discs large (Dlg) accumulate apically toward germline cells, whereas cells with loss of Bazooka (Baz) or atypical protein kinase C (aPKC) expand toward the basal side of wildtype neighbors. Further studies revealed that these distinct multilayering patterns in the follicular epithelium were determined by epidermal growth factor receptor (EGFR) signaling and its downstream target Pointed, a zinc-finger transcription factor. Additionally, we identified Rho kinase as a Pointed target that regulates formation of distinct multilayering patterns. These findings provide insight into how cell polarity genes and receptor tyrosine kinase signaling interact to govern epithelial cell organization and directional growth that contribute to epithelial tumor formation.
Collapse
Affiliation(s)
- Aiguo Tian
- Department of Biochemistry and Molecular BiologyTulane University School of Medicine, Louisiana Cancer Research CenterNew OrleansLAUSA
- Tulane Aging CenterTulane University School of MedicineNew OrleansLAUSA
| | - Xian‐Feng Wang
- Department of Biochemistry and Molecular BiologyTulane University School of Medicine, Louisiana Cancer Research CenterNew OrleansLAUSA
| | - Yuting Xu
- Department of Biochemistry and Molecular BiologyTulane University School of Medicine, Louisiana Cancer Research CenterNew OrleansLAUSA
| | - Virginia Morejon
- Department of Biochemistry and Molecular BiologyTulane University School of Medicine, Louisiana Cancer Research CenterNew OrleansLAUSA
| | - Yi‐Chun Huang
- Department of Biochemistry and Molecular BiologyTulane University School of Medicine, Louisiana Cancer Research CenterNew OrleansLAUSA
| | - Chidi Nwapuda
- Department of Biochemistry and Molecular BiologyTulane University School of Medicine, Louisiana Cancer Research CenterNew OrleansLAUSA
| | - Wu‐Min Deng
- Department of Biochemistry and Molecular BiologyTulane University School of Medicine, Louisiana Cancer Research CenterNew OrleansLAUSA
- Tulane Aging CenterTulane University School of MedicineNew OrleansLAUSA
| |
Collapse
|
9
|
Luo B, Song L, Chen L, Cai Y, Zhang M, Wang S. Loss of polarity protein Par3 in the intestinal epithelium promotes colitis-associated colorectal cancer progression by damaging tight junction assembly. Mol Carcinog 2023; 62:1990-2004. [PMID: 37702006 DOI: 10.1002/mc.23630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023]
Abstract
Partitioning defective 3 (Par3) is a polarity protein critical in establishing epithelial cell polarity and tight junctions (TJs). Impaired intestinal epithelial barrier integrity is closely associated with colitis-associated colorectal cancer (CRC) progression. According to the GEO and TCGA database analyses, we first observed that the expression of Par3 was reduced in CRC patients. To understand how Par3 is related to CRC, we investigated the role of Par3 in the development of CRC using an in vivo genetic approach. Our results show that the intestinal epithelium-specific PAR3 deletion mice demonstrated a more severe CRC phenotype in the context of azoxymethane/dextran sodium sulfate (AOM/DSS) treatment, with a corresponding increase in tumor number and inflammatory cytokines profile. Mechanistically, loss of Par3 disrupts the TJs of the intestinal epithelium and increases mucosal barrier permeability. The interaction of Par3 with ZO-1 prevents intramolecular interactions within ZO-1 protein and facilitates the binding of occludin to ZO-1, hence preserving TJs integrity. Our results suggest that Par3 deficiency permits pathogenic bacteria and their endotoxins to penetrate the intestinal submucosa and activate TLR4/MyD88/NF-κB signaling, promoting inflammation-driven CRC development and that Par3 may be a novel potential molecular marker for the diagnosis of early-stage CRC.
Collapse
Affiliation(s)
- Binbin Luo
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Department of Science and Education, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Linyi Song
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Department of Science and Education, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Limiao Chen
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yue Cai
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Mingwei Zhang
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Shenyi Wang
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
10
|
Wang K, Kong F, Qiu Y, Chen T, Fu J, Jin X, Su Y, Gu Y, Hu Z, Li J. Autophagy regulation and protein kinase activity of PIK3C3 controls sertoli cell polarity through its negative regulation on SCIN (scinderin). Autophagy 2023; 19:2934-2957. [PMID: 37450577 PMCID: PMC10549198 DOI: 10.1080/15548627.2023.2235195] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 06/25/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Sertoli cells are highly polarized testicular cells that provide a nurturing environment for germ cell development and maturation during spermatogenesis. The class III phosphatidylinositol 3-kinase (PtdIns3K) plays core roles in macroautophagy in various cell types; however, its role in Sertoli cells remains unclear. Here, we generated a mouse line in which the gene encoding the catalytic subunit, Pik3c3, was specifically deleted in Sertoli cells (cKO) and found that after one round of normal spermatogenesis, the cKO mice quickly became infertile and showed disruption of Sertoli cell polarity and impaired spermiogenesis. Subsequent proteomics and phosphoproteomics analyses enriched the F-actin cytoskeleton network involved in the disorganized Sertoli-cell structure in cKO testis which we identified a significant increase of the F-actin negative regulator SCIN (scinderin) and the reduced phosphorylation of HDAC6, an α-tubulin deacetylase. Our results further demonstrated that the accumulation of SCIN in cKO Sertoli cells caused the disorder and disassembly of the F-actin cytoskeleton, which was related to the failure of SCIN degradation through the autophagy-lysosome pathway. Additionally, we found that the phosphorylation of HDAC6 at site S59 by PIK3C3 was essential for its degradation through the ubiquitin-proteasome pathway. As a result, the HDAC6 that accumulated in cKO Sertoli cells deacetylated SCIN at site K189 and led to a disorganized F-actin cytoskeleton. Taken together, our findings elucidate a new mechanism for PIK3C3 in maintaining the polarity of Sertoli cells, in which both its autophagy regulation or protein kinase activities are required for the stabilization of the actin cytoskeleton.Abbreviations: ACTB: actin, beta; AR: androgen receptor; ATG14: autophagy related 14; BafA1: bafilomycin A1; BECN1: beclin 1, autophagy related; BTB: blood-testis barrier; CASP3: caspase 3; CDC42: cell division cycle 42; CDH2: cadherin 2; CHX: cycloheximide; CTNNA1: catenin (cadherin associated protein), alpha 1; CYP11A1: cytochrome P450, family 11, subfamily A, polypeptide 1; EBSS: Earle's balanced salt solution; ES: ectoplasmic specialization; FITC: fluorescein isothiocyanate; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GCNA: germ cell nuclear acidic protein; GJA1: gap junction protein, alpha 1; H2AX: H2A.X variant histone; HDAC6: histone deacetylase 6; KIT: KIT proto-oncogene, receptor tyrosine kinase; LAMP1: lysosomal associated membrane protein 1; MAP3K5: mitogen-activated protein kinase kinase kinase 5; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; OCLN: occludin; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PIK3R4: phosphoinositide-3-kinase regulatory subunit 4; PNA: arachis hypogaea lectin; RAC1: Rac family small GTPase 1; SCIN: scinderin; SQSTM1/p62: sequestosome 1; SSC: spermatogonia stem cell; STK11: serine/threonine kinase 11; TJP1: tight junction protein 1; TubA: tubastatin A; TUBB3: tubulin beta 3 class III; TUNEL: TdT-mediated dUTP nick-end labeling; UB: ubiquitin; UVRAG: UV radiation resistance associated gene; VIM: vimentin; WT1: WT1 transcription factor; ZBTB16: zinc finger and BTB domain containing 16.
Collapse
Affiliation(s)
- Kehan Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feifei Kong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuexin Qiu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiayi Fu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Jin
- Department of Center of Reproductive Medicine, Wuxi Maternity and Child Health Care Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Youqiang Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Yayun Gu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology and Biostatistics, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Oh A, Pardo M, Rodriguez A, Yu C, Nguyen L, Liang O, Chorzalska A, Dubielecka PM. NF-κB signaling in neoplastic transition from epithelial to mesenchymal phenotype. Cell Commun Signal 2023; 21:291. [PMID: 37853467 PMCID: PMC10585759 DOI: 10.1186/s12964-023-01207-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 06/25/2023] [Indexed: 10/20/2023] Open
Abstract
NF-κB transcription factors are critical regulators of innate and adaptive immunity and major mediators of inflammatory signaling. The NF-κB signaling is dysregulated in a significant number of cancers and drives malignant transformation through maintenance of constitutive pro-survival signaling and downregulation of apoptosis. Overactive NF-κB signaling results in overexpression of pro-inflammatory cytokines, chemokines and/or growth factors leading to accumulation of proliferative signals together with activation of innate and select adaptive immune cells. This state of chronic inflammation is now thought to be linked to induction of malignant transformation, angiogenesis, metastasis, subversion of adaptive immunity, and therapy resistance. Moreover, accumulating evidence indicates the involvement of NF-κB signaling in induction and maintenance of invasive phenotypes linked to epithelial to mesenchymal transition (EMT) and metastasis. In this review we summarize reported links of NF-κB signaling to sequential steps of transition from epithelial to mesenchymal phenotypes. Understanding the involvement of NF-κB in EMT regulation may contribute to formulating optimized therapeutic strategies in cancer. Video Abstract.
Collapse
Affiliation(s)
- Amy Oh
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, One Hoppin St., Coro West, Suite 5.01, RI, 02903, Providence, USA
| | - Makayla Pardo
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, One Hoppin St., Coro West, Suite 5.01, RI, 02903, Providence, USA
| | - Anaelena Rodriguez
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, One Hoppin St., Coro West, Suite 5.01, RI, 02903, Providence, USA
| | - Connie Yu
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, One Hoppin St., Coro West, Suite 5.01, RI, 02903, Providence, USA
| | - Lisa Nguyen
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, One Hoppin St., Coro West, Suite 5.01, RI, 02903, Providence, USA
| | - Olin Liang
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, One Hoppin St., Coro West, Suite 5.01, RI, 02903, Providence, USA
| | - Anna Chorzalska
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, One Hoppin St., Coro West, Suite 5.01, RI, 02903, Providence, USA
| | - Patrycja M Dubielecka
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, One Hoppin St., Coro West, Suite 5.01, RI, 02903, Providence, USA.
| |
Collapse
|
12
|
Dornan AJ, Halberg KV, Beuter LK, Davies SA, Dow JAT. Compromised junctional integrity phenocopies age-dependent renal dysfunction in Drosophila Snakeskin mutants. J Cell Sci 2023; 136:jcs261118. [PMID: 37694602 PMCID: PMC10565245 DOI: 10.1242/jcs.261118] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
Transporting epithelia provide a protective barrier against pathogenic insults while allowing the controlled exchange of ions, solutes and water with the external environment. In invertebrates, these functions depend on formation and maintenance of 'tight' septate junctions (SJs). However, the mechanism by which SJs affect transport competence and tissue homeostasis, and how these are modulated by ageing, remain incompletely understood. Here, we demonstrate that the Drosophila renal (Malpighian) tubules undergo an age-dependent decline in secretory capacity, which correlates with mislocalisation of SJ proteins and progressive degeneration in cellular morphology and tissue homeostasis. Acute loss of the SJ protein Snakeskin in adult tubules induced progressive changes in cellular and tissue architecture, including altered expression and localisation of junctional proteins with concomitant loss of cell polarity and barrier integrity, demonstrating that compromised junctional integrity is sufficient to replicate these ageing-related phenotypes. Taken together, our work demonstrates a crucial link between epithelial barrier integrity, tubule transport competence, renal homeostasis and organismal viability, as well as providing novel insights into the mechanisms underpinning ageing and renal disease.
Collapse
Affiliation(s)
- Anthony J. Dornan
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Kenneth V. Halberg
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen DK-2100, Denmark
| | - Liesa-Kristin Beuter
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Department of Animal Ecology and Systematics, Justus-Liebig-University Giessen, Giessen D-35392, Germany
| | - Shireen-Anne Davies
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Julian A. T. Dow
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
13
|
Kotian S, Carnes RM, Stern JL. Enhancing Transcriptional Reprogramming of Mesenchymal Glioblastoma with Grainyhead-like 2 and HDAC Inhibitors Leads to Apoptosis and Cell-Cycle Dysregulation. Genes (Basel) 2023; 14:1787. [PMID: 37761927 PMCID: PMC10530281 DOI: 10.3390/genes14091787] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Glioblastoma (GBM) tumor cells exhibit mesenchymal properties which are thought to play significant roles in therapeutic resistance and tumor recurrence. An important question is whether impairment of the mesenchymal state of GBM can sensitize these tumors to therapeutic intervention. HDAC inhibitors (HDACi) are being tested in GBM for their ability promote mesenchymal-to-epithelial transcriptional (MET) reprogramming, and for their cancer-specific ability to dysregulate the cell cycle and induce apoptosis. We set out to enhance the transcriptional reprogramming and apoptotic effects of HDACi in GBM by introducing an epithelial transcription factor, Grainyhead-like 2 (GRHL2), to specifically counter the mesenchymal state. GRHL2 significantly enhanced HDACi-mediated MET reprogramming. Surprisingly, we found that inducing GRHL2 in glioma stem cells (GSCs) altered cell-cycle drivers and promoted aneuploidy. Mass spectrometry analysis of GRHL2 interacting proteins revealed association with several key mitotic factors, suggesting their exogenous expression disrupted the established mitotic program in GBM. Associated with this cell-cycle dysregulation, the combination of GRHL2 and HDACi induced elevated levels of apoptosis. The key implication of our study is that although genetic strategies to repress the mesenchymal properties of glioblastoma may be effective, biological interactions of epithelial factors in mesenchymal cancer cells may dysregulate normal homeostatic cellular mechanisms.
Collapse
Affiliation(s)
| | | | - Josh L. Stern
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
14
|
Cai T, Peng J, Omrane M, Benzoubir N, Samuel D, Gassama-Diagne A. Septin 9 Orients the Apico-Basal Polarity Axis and Controls Plasticity Signals. Cells 2023; 12:1815. [PMID: 37508480 PMCID: PMC10377970 DOI: 10.3390/cells12141815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The cytoskeleton is a master organizer of the cellular cortex and membrane trafficking and therefore plays a crucial role in apico-basal polarity. Septins form a family of GTPases that assemble into non-polar filaments, which bind to membranes and recruit cytoskeletal elements such as microtubules and actin using their polybasic (PB) domains, to perform their broad biological functions. Nevertheless, the role of septins and the significance of their membrane-binding ability in apico-basal polarity remains under-investigated. Here, using 3D cultures, we demonstrated that septin 9 localizes to the basolateral membrane (BM). Its depletion induces an inverted polarity phenotype, decreasing β-catenin at BM and increasing transforming growth factor (TGFβ) and Epithelial-Mesenchymal Transition (EMT) markers. Similar effects were observed after deleting its two PB domains. The mutant became cytoplasmic and apical. The cysts with an inverted polarity phenotype displayed an invasive phenotype, with src and cortactin accumulating at the peripheral membrane. The inhibition of TGFβ-receptor and RhoA rescued the polarized phenotype, although the cysts from overexpressed septin 9 overgrew and presented a filled lumen. Both phenotypes corresponded to tumor features. This suggests that septin 9 expression, along with its assembly through the two PB domains, is essential for establishing and maintaining apico-basal polarity against tumor development.
Collapse
Affiliation(s)
- Tingting Cai
- Unité 1193 INSERM, F-94800 Villejuif, France
- Université Paris-Saclay, UMR-S 1193, F-94800 Villejuif, France
| | - Juan Peng
- Unité 1193 INSERM, F-94800 Villejuif, France
- Université Paris-Saclay, UMR-S 1193, F-94800 Villejuif, France
| | - Mohyeddine Omrane
- Unité 1193 INSERM, F-94800 Villejuif, France
- Université Paris-Saclay, UMR-S 1193, F-94800 Villejuif, France
| | - Nassima Benzoubir
- Unité 1193 INSERM, F-94800 Villejuif, France
- Université Paris-Saclay, UMR-S 1193, F-94800 Villejuif, France
| | - Didier Samuel
- Unité 1193 INSERM, F-94800 Villejuif, France
- Université Paris-Saclay, UMR-S 1193, F-94800 Villejuif, France
- AP-HP Hôpital Paul Brousse, Centre Hepato-Biliaire, F-94800 Villejuif, France
| | - Ama Gassama-Diagne
- Unité 1193 INSERM, F-94800 Villejuif, France
- Université Paris-Saclay, UMR-S 1193, F-94800 Villejuif, France
| |
Collapse
|
15
|
Jia F, Li Y, Gao Y, Wang X, Lu J, Cui X, Pan Z, Xu C, Deng X, Wu Y. Sequential-delivery nanocomplex for combined anti-angiogenesis and gene therapy against colorectal cancer. Int J Pharm 2023; 637:122850. [PMID: 36990169 DOI: 10.1016/j.ijpharm.2023.122850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/18/2023] [Accepted: 03/11/2023] [Indexed: 03/29/2023]
Abstract
Neovascularization can provide tumors with essential nutrients and oxygen, as well as maintain a microenvironment for tumor cell growth. In this study, we combined anti-angiogenic therapy and gene therapy for synergistic anti-tumor therapy. We co-delivered the vascular endothelial growth factor receptor inhibitor fruquintinib (Fru) and small interfering RNA CCAT1 (siCCAT1) inhibiting epithelial-mesenchymal transition using 1,2-distearoyl-snglycero-3-phosphoethanolamine-N- [methoxy (polyethylene glycol)] with a pH-responsive benzoic imine linker bond (DSPE-Hyd-mPEG) and polyethyleneimine-poly (d, l-lactide) (PEI-PDLLA) nanocomplex (Fru and siCCAT1 co-delivery NP, FCNP). Due to the characteristics of pH-response, DSPE-Hyd-mPEG removed from FCNP after enrichment at the tumor site, which had a protective effect in the body. Meanwhile, Fru acting on the peritumor blood vessels was rapidly released, and then the nanoparticles loaded with siCCAT1 (CNP) was engulfed by cancer cells and facilitate the successful lysosomal escape of siCCAT1 in, playing the role of silencing CCAT1. Efficient silencing of CCAT1 by FCNP was observed, and simultaneously, the expression of VEGFR-1 was also down-regulated. Furthermore, FCNP elicited significant synergistic antitumor efficacy via anti-angiogenesis and gene therapy in the SW480 subcutaneous xenograft model with favorable biosafety and biocompatibility during the treatment. Overall, FCNP was considered a promising strategy for the combined anti-angiogenesis-gene treatment against colorectal cancer.
Collapse
|
16
|
Harms J, Lüttgenau SM, Emming C, Guske J, Weber K, Wagner T, Schowe L, Nedvetsky P, Krahn MP. Pals1 functions in redundancy with SMAP1 to inhibit Arf6 in order to prevent Rac1-dependent colorectal cancer cell migration and invasion. Cancer Gene Ther 2023; 30:497-506. [PMID: 36494580 PMCID: PMC10014575 DOI: 10.1038/s41417-022-00570-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022]
Abstract
Downregulation of cell-cell adhesion and increased motility are prerequisites for the metastasis of cancer cells. We have recently shown that downregulation of the tight junction adapter protein Pals1 in colorectal cancer cells results in an increase of cell migration, invasion, and metastasis due to the enhanced activation of Arf6 and Rac1. We now reveal a redundancy between the Arf6-GAP SMAP1 and Pals1 in regulating Arf6 activity and thereby Rac1-dependent cell migration. The gene encoding SMAP1 is frequently disrupted in microsatellite instable colorectal cancer specimen and cell lines. In cells expressing SMAP1, deletion of Pals1 leads to disturbed formation of tight junctions but has no impact on Arf6 activity and cell migration. In contrast, inactivation of both SMAP1 and Pals1 results in enhanced Arf6/Rac1 activity and increased cell migration and invasion. Furthermore, analyzing patient cohorts, we found a significant decrease in patient's survival when both genes were downregulated, in contrast to cases, when expression of only one of both genes was affected. Taken together, we identified a redundancy between SMAP1 and Pals1 in the regulation of activation of Arf6/Rac1, thereby controlling cell migration, invasion, and metastasis of colorectal cancer cells.
Collapse
Affiliation(s)
- Julia Harms
- Medical Clinic D, Medical Cell Biology, University Hospital of Münster, Münster, Germany
| | | | - Christin Emming
- Medical Clinic D, Medical Cell Biology, University Hospital of Münster, Münster, Germany
| | - Justine Guske
- Medical Clinic D, Medical Cell Biology, University Hospital of Münster, Münster, Germany
| | - Katrin Weber
- Medical Clinic D, Medical Cell Biology, University Hospital of Münster, Münster, Germany
| | - Thomas Wagner
- Medical Clinic D, Medical Cell Biology, University Hospital of Münster, Münster, Germany
| | - Larissa Schowe
- Medical Clinic D, Medical Cell Biology, University Hospital of Münster, Münster, Germany
| | - Pavel Nedvetsky
- Medical Clinic D, Medical Cell Biology, University Hospital of Münster, Münster, Germany
| | - Michael P Krahn
- Medical Clinic D, Medical Cell Biology, University Hospital of Münster, Münster, Germany.
| |
Collapse
|
17
|
Chatterjee D, Cong F, Wang XF, Machado Costa CA, Huang YC, Deng WM. Cell polarity opposes Jak/STAT-mediated Escargot activation that drives intratumor heterogeneity in a Drosophila tumor model. Cell Rep 2023; 42:112061. [PMID: 36709425 PMCID: PMC10374876 DOI: 10.1016/j.celrep.2023.112061] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 11/28/2022] [Accepted: 01/18/2023] [Indexed: 01/30/2023] Open
Abstract
In proliferating neoplasms, microenvironment-derived selective pressures promote tumor heterogeneity by imparting diverse capacities for growth, differentiation, and invasion. However, what makes a tumor cell respond to signaling cues differently from a normal cell is not well understood. In the Drosophila ovarian follicle cells, apicobasal-polarity loss induces heterogeneous epithelial multilayering. When exacerbated by oncogenic-Notch expression, this multilayer displays an increased consistency in the occurrence of morphologically distinguishable cells adjacent to the polar follicle cells. Polar cells release the Jak/STAT ligand Unpaired (Upd), in response to which neighboring polarity-deficient cells exhibit a precursor-like transcriptomic state. Among the several regulons active in these cells, we could detect and further validate the expression of Snail family transcription factor Escargot (Esg). We also ascertain a similar relationship between Upd and Esg in normally developing ovaries, where establishment of polarity determines early follicular differentiation. Overall, our results indicate that epithelial-cell polarity acts as a gatekeeper against microenvironmental selective pressures that drive heterogeneity.
Collapse
Affiliation(s)
- Deeptiman Chatterjee
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Fei Cong
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Xian-Feng Wang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Caique Almeida Machado Costa
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Yi-Chun Huang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Wu-Min Deng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA.
| |
Collapse
|
18
|
Javorsky A, Maddumage JC, Mackie ERR, Soares da Costa TP, Humbert PO, Kvansakul M. Structural insight into the Scribble PDZ domains interaction with the oncogenic Human T-cell lymphotrophic virus-1 (HTLV-1) Tax1 PBM. FEBS J 2023; 290:974-987. [PMID: 36029163 PMCID: PMC10952772 DOI: 10.1111/febs.16607] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/14/2022] [Accepted: 08/25/2022] [Indexed: 11/28/2022]
Abstract
Scribble (Scrib) is a highly conserved cell polarity regulator that harbours potent tumour suppressor activity and plays an important role in cell migration. Dysregulation of polarity is associated with poor prognosis during viral infections. Human T-cell lymphotrophic virus-1 (HTLV-1) encodes for the oncogenic Tax1 protein, a modulator of the transcription of viral and human proteins that can cause cell cycle dysregulation as well as a loss of genomic integrity. Previous studies established that Scribble interacts with Tax1 via its C-terminal PDZ-binding motif (PBM), leading to aggregation of polarity regulators and subsequent perturbation of host cell adhesion, proliferation, and signalling. Using isothermal titration calorimetry, we now show that all four PDZ domains of Scribble bind to Tax1 PBM. We then determined crystal structures of Scribble PDZ1, PDZ2 and PDZ3 domains bound to Tax1 PBM. Our findings establish a structural basis for Tax1-mediated subversion of Scribble-mediated cell polarity signalling and provide the platform for mechanistic studies to examine Tax1 induced mislocalization of Scribble and the associated changes in cellular architecture and subsequent tumorigenesis.
Collapse
Affiliation(s)
- Airah Javorsky
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVic.Australia
| | - Janesha C. Maddumage
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVic.Australia
| | - Emily R. R. Mackie
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVic.Australia
| | - Tatiana P. Soares da Costa
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVic.Australia
| | - Patrick O. Humbert
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVic.Australia
- Research Centre for Molecular Cancer PreventionLa Trobe UniversityMelbourneVic.Australia
- Department of Biochemistry & PharmacologyUniversity of MelbourneMelbourneVic.Australia
- Department of Clinical PathologyUniversity of MelbourneMelbourneVic.Australia
| | - Marc Kvansakul
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVic.Australia
- Research Centre for Molecular Cancer PreventionLa Trobe UniversityMelbourneVic.Australia
| |
Collapse
|
19
|
Chen YH, Hsu JY, Chu CT, Chang YW, Fan JR, Yang MH, Chen HC. Loss of cell-cell adhesion triggers cell migration through Rac1-dependent ROS generation. Life Sci Alliance 2023; 6:6/2/e202201529. [PMID: 36446524 PMCID: PMC9711860 DOI: 10.26508/lsa.202201529] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
Epithelial cells usually trigger their "migratory machinery" upon loss of adhesion to their neighbors. This default is important for both physiological (e.g., wound healing) and pathological (e.g., tumor metastasis) processes. However, the underlying mechanism for such a default remains unclear. In this study, we used the human head and neck squamous cell carcinoma (HNSCC) SAS cells as a model and found that loss of cell-cell adhesion induced reactive oxygen species (ROS) generation and vimentin expression, both of which were required for SAS cell migration upon loss of cell-cell adhesion. We demonstrated that Tiam1-mediated Rac1 activation was responsible for the ROS generation through NADPH-dependent oxidases. Moreover, the ROS-Src-STAT3 signaling pathway that led to vimentin expression was important for SAS cell migration. The activation of ROS, Src, and STAT3 was also detected in tumor biopsies from HNSCC patients. Notably, activated STAT3 was more abundant at the tumor invasive front and correlated with metastatic progression of HNSCC. Together, our results unveil a mechanism of how cells trigger their migration upon loss of cell-cell adhesion and highlight an important role of the ROS-Src-STAT3 signaling pathway in the progression of HNSCC.
Collapse
Affiliation(s)
- Yu-Hsuan Chen
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jinn-Yuan Hsu
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Tung Chu
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yao-Wen Chang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jia-Rong Fan
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Muh-Hwa Yang
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hong-Chen Chen
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan .,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
20
|
Wright BA, Kvansakul M, Schierwater B, Humbert PO. Cell polarity signalling at the birth of multicellularity: What can we learn from the first animals. Front Cell Dev Biol 2022; 10:1024489. [PMID: 36506100 PMCID: PMC9729800 DOI: 10.3389/fcell.2022.1024489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
The innovation of multicellularity has driven the unparalleled evolution of animals (Metazoa). But how is a multicellular organism formed and how is its architecture maintained faithfully? The defining properties and rules required for the establishment of the architecture of multicellular organisms include the development of adhesive cell interactions, orientation of division axis, and the ability to reposition daughter cells over long distances. Central to all these properties is the ability to generate asymmetry (polarity), coordinated by a highly conserved set of proteins known as cell polarity regulators. The cell polarity complexes, Scribble, Par and Crumbs, are considered to be a metazoan innovation with apicobasal polarity and adherens junctions both believed to be present in all animals. A better understanding of the fundamental mechanisms regulating cell polarity and tissue architecture should provide key insights into the development and regeneration of all animals including humans. Here we review what is currently known about cell polarity and its control in the most basal metazoans, and how these first examples of multicellular life can inform us about the core mechanisms of tissue organisation and repair, and ultimately diseases of tissue organisation, such as cancer.
Collapse
Affiliation(s)
- Bree A. Wright
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Marc Kvansakul
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia,Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, VIC, Australia
| | - Bernd Schierwater
- Institute of Animal Ecology and Evolution, University of Veterinary Medicine Hannover, Foundation, Bünteweg, Hannover, Germany
| | - Patrick O. Humbert
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia,Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, VIC, Australia,Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC, Australia,Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia,*Correspondence: Patrick O. Humbert,
| |
Collapse
|
21
|
pTINCR microprotein promotes epithelial differentiation and suppresses tumor growth through CDC42 SUMOylation and activation. Nat Commun 2022; 13:6840. [PMID: 36369429 PMCID: PMC9652315 DOI: 10.1038/s41467-022-34529-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
The human transcriptome contains thousands of small open reading frames (sORFs) that encode microproteins whose functions remain largely unexplored. Here, we show that TINCR lncRNA encodes pTINCR, an evolutionary conserved ubiquitin-like protein (UBL) expressed in many epithelia and upregulated upon differentiation and under cellular stress. By gain- and loss-of-function studies, we demonstrate that pTINCR is a key inducer of epithelial differentiation in vitro and in vivo. Interestingly, low expression of TINCR associates with worse prognosis in several epithelial cancers, and pTINCR overexpression reduces malignancy in patient-derived xenografts. At the molecular level, pTINCR binds to SUMO through its SUMO interacting motif (SIM) and to CDC42, a Rho-GTPase critical for actin cytoskeleton remodeling and epithelial differentiation. Moreover, pTINCR increases CDC42 SUMOylation and promotes its activation, triggering a pro-differentiation cascade. Our findings suggest that the microproteome is a source of new regulators of cell identity relevant for cancer.
Collapse
|
22
|
Chatterjee D, Costa CAM, Wang XF, Jevitt A, Huang YC, Deng WM. Single-cell transcriptomics identifies Keap1-Nrf2 regulated collective invasion in a Drosophila tumor model. eLife 2022; 11:80956. [PMID: 36321803 PMCID: PMC9708074 DOI: 10.7554/elife.80956] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/01/2022] [Indexed: 11/30/2022] Open
Abstract
Apicobasal cell polarity loss is a founding event in epithelial-mesenchymal transition and epithelial tumorigenesis, yet how pathological polarity loss links to plasticity remains largely unknown. To understand the mechanisms and mediators regulating plasticity upon polarity loss, we performed single-cell RNA sequencing of Drosophila ovaries, where inducing polarity-gene l(2)gl-knockdown (Lgl-KD) causes invasive multilayering of the follicular epithelia. Analyzing the integrated Lgl-KD and wildtype transcriptomes, we discovered the cells specific to the various discernible phenotypes and characterized the underlying gene expression. A genetic requirement of Keap1-Nrf2 signaling in promoting multilayer formation of Lgl-KD cells was further identified. Ectopic expression of Keap1 increased the volume of delaminated follicle cells that showed enhanced invasive behavior with significant changes to the cytoskeleton. Overall, our findings describe the comprehensive transcriptome of cells within the follicle cell tumor model at the single-cell resolution and identify a previously unappreciated link between Keap1-Nrf2 signaling and cell plasticity at early tumorigenesis.
Collapse
Affiliation(s)
- Deeptiman Chatterjee
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, United States
| | - Caique Almeida Machado Costa
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, United States
| | - Xian-Feng Wang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, United States
| | - Allison Jevitt
- Department of Biological Science, Florida State University, Tallahassee, United States
| | - Yi-Chun Huang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, United States
| | - Wu-Min Deng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, United States.,Department of Biological Science, Florida State University, Tallahassee, United States
| |
Collapse
|
23
|
Kajitani N, Schwartz S. The role of RNA-binding proteins in the processing of mRNAs produced by carcinogenic papillomaviruses. Semin Cancer Biol 2022; 86:482-496. [PMID: 35181475 DOI: 10.1016/j.semcancer.2022.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/08/2023]
Abstract
Human papillomaviruses (HPV) are epitheliotropic DNA tumor viruses that are prevalent in the human population. A subset of the HPVs termed high-risk HPVs (HR-HPVs) are causative agents of anogenital cancers and head-and-neck cancers. Cancer is the result of persistent high-risk HPV infections that have not been cleared by the immune system of the host. These infections are characterized by dysregulated HPV gene expression, in particular constitutive high expression of the HPV E6 and E7 oncogenes and absence of the highly immunogenic viral L1 and L2 capsid proteins. HPVs make extensive use of alternative mRNA splicing to express its genes and are therefore highly dependent on cellular RNA-binding proteins for proper gene expression. Levels of RNA-binding proteins are altered in HPV-containing premalignant cervical lesions and in cervical cancer. Here we review our current knowledge of RNA-binding proteins that control HPV gene expression. We focus on RNA-binding proteins that control expression of the E6 and E7 oncogenes since they initiate and drive development of cancer and on the immunogenic L1 and L2 proteins as there silencing may contribute to immune evasion during carcinogenesis. Furthermore, cellular RNA-binding proteins are essential for HPV gene expression and as such may be targets for therapy to HPV infections and HPV-driven cancers.
Collapse
Affiliation(s)
- Naoko Kajitani
- Department of Medical Biochemistry and Microbiology (IMBIM), Uppsala University, BMC-B9, 751 23, Uppsala, Sweden; Department of Laboratory Medicine, Lund University, BMC-B13, 221 84, Lund, Sweden
| | - Stefan Schwartz
- Department of Medical Biochemistry and Microbiology (IMBIM), Uppsala University, BMC-B9, 751 23, Uppsala, Sweden; Department of Laboratory Medicine, Lund University, BMC-B13, 221 84, Lund, Sweden.
| |
Collapse
|
24
|
Cartón-García F, Brotons B, Anguita E, Dopeso H, Tarragona J, Nieto R, García-Vidal E, Macaya I, Zagyva Z, Dalmau M, Sánchez-Martín M, van Ijzendoorn SCD, Landolfi S, Hernandez-Losa J, Schwartz Jr S, Matias-Guiu X, Ramón y Cajal S, Martínez-Barriocanal Á, Arango D. Myosin Vb as a tumor suppressor gene in intestinal cancer. Oncogene 2022; 41:5279-5288. [DOI: 10.1038/s41388-022-02508-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
|
25
|
Huang M, Ye Y, Chen Y, Zhu J, Xu L, Cheng W, Lu X, Yan F. Identification and validation of an inflammation-related lncRNAs signature for improving outcomes of patients in colorectal cancer. Front Genet 2022; 13:955240. [PMID: 36246600 PMCID: PMC9561096 DOI: 10.3389/fgene.2022.955240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/29/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Colorectal cancer is the fourth most deadly cancer worldwide. Although current treatment regimens have prolonged the survival of patients, the prognosis is still unsatisfactory. Inflammation and lncRNAs are closely related to tumor occurrence and development in CRC. Therefore, it is necessary to establish a new prognostic signature based on inflammation-related lncRNAs to improve the prognosis of patients with CRC. Methods: LASSO-penalized Cox analysis was performed to construct a prognostic signature. Kaplan-Meier curves were used for survival analysis and ROC curves were used to measure the performance of the signature. Functional enrichment analysis was conducted to reveal the biological significance of the signature. The R package "maftool" and GISTIC2.0 algorithm were performed for analysis and visualization of genomic variations. The R package "pRRophetic", CMap analysis and submap analysis were performed to predict response to chemotherapy and immunotherapy. Results: An effective and independent prognostic signature, IRLncSig, was constructed based on sixteen inflammation-related lncRNAs. The IRLncSig was proved to be an independent prognostic indicator in CRC and was superior to clinical variables and the other four published signatures. The nomograms were constructed based on inflammation-related lncRNAs and detected by calibration curves. All samples were classified into two groups according to the median value, and we found frequent mutations of the TP53 gene in the high-risk group. We also found some significantly amplificated regions in the high-risk group, 8q24.3, 20q12, 8q22.3, and 20q13.2, which may regulate the inflammatory activity of cancer cells in CRC. Finally, we identified chemotherapeutic agents for high-risk patients and found that these patients were more likely to respond to immunotherapy, especially anti-CTLA4 therapy. Conclusion: In short, we constructed a new signature based on sixteen inflammation-related lncRNAs to improve the outcomes of patients in CRC. Our findings have proved that the IRLncSig can be used as an effective and independent marker for predicting the survival of patients with CRC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaofan Lu
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fangrong Yan
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
26
|
Single-Cell RNA Sequencing Reveals the Role of Epithelial Cell Marker Genes in Predicting the Prognosis of Colorectal Cancer Patients. DISEASE MARKERS 2022; 2022:8347125. [PMID: 35968507 PMCID: PMC9372514 DOI: 10.1155/2022/8347125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/09/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
Single-cell RNA sequencing (scRNA-seq) is increasingly used in studies on gastrointestinal cancers. This study investigated the prognostic value of epithelial cell-associated biomarkers in colorectal cancer (CRC) using scRNA-seq data. We downloaded and analysed scRNA-seq data from four CRC samples from the Gene Expression Omnibus (GEO), and we identified marker genes of malignant epithelial cells (MECs) using CRC transcriptome and clinical data downloaded from The Cancer Genome Atlas (TCGA) and GEO as training and validation cohorts, respectively. In the TCGA training cohort, weighted gene correlation network analysis, univariate Cox proportional hazard model (Cox) analysis, and least absolute shrinkage and selection operator regression analysis were performed on the marker genes of MEC subsets to identify a signature of nine prognostic MEC-related genes (MECRGs) and calculate a risk score based on the signature. CRC patients were divided into high- and low-risk groups according to the median risk score. We found that the MECRG risk score was significantly correlated with the clinical features and overall survival of CRC patients, and that CRC patients in the high-risk group showed a significantly shorter survival time. The univariate and multivariate Cox regression analyses showed that the MECRG risk score can serve as an independent prognostic factor for CRC patients. Gene set enrichment analysis revealed that the MECRG signature genes are involved in fatty acid metabolism, p53 signalling, and other pathways. To increase the clinical application value, we constructed a MECRG nomogram by combining the MECRG risk score with other independent prognostic factors. The validity of the nomogram is based on receiver operating characteristics and calibration curves. The MECRG signature and nomogram models were well validated in the GEO dataset. In conclusion, we established an epithelial cell marker gene-based risk assessment model based on scRNA-seq analysis of CRC samples for predicting the prognosis of CRC patients.
Collapse
|
27
|
Design, synthesis, in vitro, and in vivo anti-cancer evaluation of the novel spirobibenzopyrans on epithelial cancer model of Drosophila melanogaster. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02321-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Spuldaro TR, Wagner VP, Nör F, Gaio EJ, Squarize CH, Carrard VC, Rösing CK, Castilho RM. Periodontal disease affects oral cancer progression in a surrogate animal model for tobacco exposure. Int J Oncol 2022; 60:77. [PMID: 35514311 PMCID: PMC9097773 DOI: 10.3892/ijo.2022.5367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/12/2022] [Indexed: 11/11/2022] Open
Abstract
For decades, the link between poor oral hygiene and the increased prevalence of oral cancer has been suggested. Most recently, emerging evidence has suggested that chronic inflammatory diseases from the oral cavity (e.g., periodontal disease), to some extent, play a role in the development of oral squamous cell carcinoma (OSCC). The present study aimed to explore the direct impact of biofilm‑induced periodontitis in the carcinogenesis process using a tobacco surrogate animal model for oral cancer. A total of 42 Wistar rats were distributed into four experimental groups: Control group, periodontitis (Perio) group, 4‑nitroquinoline 1‑oxide (4‑NQO) group and 4NQO/Perio group. Periodontitis was stimulated by placing a ligature subgingivally, while oral carcinogenesis was induced by systemic administration of 4NQO in the drinking water for 20 weeks. It was observed that the Perio, 4NQO and 4NQO/Perio groups presented with significantly higher alveolar bone loss compared with that in the control group. Furthermore, all groups receiving 4NQO developed lesions on the dorsal surface of the tongue; however, the 4NQO/Perio group presented larger lesions compared with the 4NQO group. There was also a modest overall increase in the number of epithelial dysplasia and OSCC lesions in the 4NQO/Perio group. Notably, abnormal focal activation of cellular differentiation (cytokeratin 10‑positive cells) that extended near the basal cell layer of the mucosa was observed in rats receiving 4NQO alone, but was absent in rats receiving 4NQO and presenting with periodontal disease. Altogether, the presence of periodontitis combined with 4NQO administration augmented tumor size in the current rat model and tampered with the protective mechanisms of the cellular differentiation of epithelial cells.
Collapse
Affiliation(s)
- Tobias R. Spuldaro
- Department of Periodontology, Federal University of Rio Grande do Sul, Porto Alegre, RS 90010-150, Brazil
| | - Vivian P. Wagner
- Department of Oral Pathology, Federal University of Rio Grande do Sul, Porto Alegre, RS 90010-150, Brazil
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, Department of Clinical Dentistry, University of Sheffield, Sheffield S10 2TN, UK
| | - Felipe Nör
- Department of Oral Pathology, Federal University of Rio Grande do Sul, Porto Alegre, RS 90010-150, Brazil
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | - Eduardo J. Gaio
- Department of Periodontology, Federal University of Rio Grande do Sul, Porto Alegre, RS 90010-150, Brazil
| | - Cristiane H. Squarize
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI 48109-1078, USA
- Laboratory of Epithelial Biology, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109-0944, USA
| | - Vinicius C. Carrard
- Department of Oral Pathology, Federal University of Rio Grande do Sul, Porto Alegre, RS 90010-150, Brazil
- Department of Oral Medicine, Otorhinolaryngology Service, Porto Alegre General Hospital, Port Alegre, RS 90035-903, Brazil
| | - Cassiano K. Rösing
- Department of Periodontology, Federal University of Rio Grande do Sul, Porto Alegre, RS 90010-150, Brazil
| | - Rogerio M. Castilho
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI 48109-1078, USA
- Laboratory of Epithelial Biology, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109-0944, USA
| |
Collapse
|
29
|
Shah HP, Devergne O. Confocal and Super-Resolution Imaging of Polarized Intracellular Trafficking and Secretion of Basement Membrane Proteins During Drosophila Oogenesis. J Vis Exp 2022:10.3791/63778. [PMID: 35662240 PMCID: PMC10325488 DOI: 10.3791/63778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023] Open
Abstract
The basement membrane (BM) - a specialized sheet of extracellular matrix present at the basal side of epithelial cells - is critical for the establishment and maintenance of epithelial tissue morphology and organ morphogenesis. Moreover, the BM is essential for tissue modeling, serving as a signaling platform, and providing external forces to shape tissues and organs. Despite the many important roles that the BM plays during normal development and pathological conditions, the biological pathways controlling the intracellular trafficking of BM-containing vesicles and how basal secretion leads to the polarized deposition of BM proteins are poorly understood. The follicular epithelium of the Drosophila ovary is an excellent model system to study the basal deposition of BM membrane proteins, as it produces and secretes all major components of the BM. Confocal and super-resolution imaging combined with image processing in fixed tissues allows for the identification and characterization of cellular factors specifically involved in the intracellular trafficking and deposition of BM proteins. This article presents a detailed protocol for staining and imaging BM-containing vesicles and deposited BM using endogenously tagged proteins in the follicular epithelium of the Drosophila ovary. This protocol can be applied to address both qualitative and quantitative questions and it was developed to accommodate high-throughput screening, allowing for the rapid and efficient identification of factors involved in the polarized intracellular trafficking and secretion of vesicles during epithelial tissue development.
Collapse
Affiliation(s)
- Hemin P Shah
- Department of Biological Sciences, Northern Illinois University
| | - Olivier Devergne
- Department of Biological Sciences, Northern Illinois University;
| |
Collapse
|
30
|
Structural Basis of the Avian Influenza NS1 Protein Interactions with the Cell Polarity Regulator Scribble. Viruses 2022; 14:v14030583. [PMID: 35336989 PMCID: PMC8954747 DOI: 10.3390/v14030583] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Scribble is a highly conserved regulator of cell polarity, a process that enables the generation of asymmetry at the cellular and tissue level in higher organisms. Scribble acts in concert with Disc-large (Dlg) and Lethal-2-giant larvae (Lgl) to form the Scribble polarity complex, and its functional dysregulation is associated with poor prognosis during viral infections. Viruses have been shown to interfere with Scribble by targeting Scribble PDZ domains to subvert the network of interactions that enable normal control of cell polarity via Scribble, as well as the localisation of the Scribble module within the cell. The influenza A virus NS1 protein was shown to bind to human Scribble (SCRIB) via its C-terminal PDZ binding motif (PBM). It was reported that the PBM sequence ESEV is a virulence determinant for influenza A virus H5N1 whilst other sequences, such as ESKV, KSEV and RSKV, demonstrated no affinity towards Scribble. We now show, using isothermal titration calorimetry (ITC), that ESKV and KSEV bind to SCRIB PDZ domains and that ESEV unexpectedly displayed an affinity towards all four PDZs and not just a selected few. We then define the structural basis for the interactions of SCRIB PDZ1 domain with ESEV and ESKV PBM motifs, as well as SCRIB PDZ3 with the ESKV PBM motif. These findings will serve as a platform for understanding the role of Scribble PDZ domains and their interactions with different NS1 PBMs and the mechanisms that mediate cell polarity within the context of the pathogenesis of influenza A virus.
Collapse
|
31
|
Tian Q, Gao H, Zhou Y, Zhu L, Yang J, Wang B, Liu P, Yang J. RICH1 inhibits breast cancer stem cell traits through activating kinases cascade of Hippo signaling by competing with Merlin for binding to Amot-p80. Cell Death Dis 2022; 13:71. [PMID: 35064101 PMCID: PMC8782888 DOI: 10.1038/s41419-022-04516-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/20/2021] [Accepted: 01/10/2022] [Indexed: 01/02/2023]
Abstract
Cancer stem cells (CSCs) are regarded as the root of tumor recurrence and distant metastasis, as well as the major cause of resistance to conventional cancer therapies. Elucidating the mechanism of regulating CSCs is of great significance for the development of CSCs-targeting therapy strategies. YAP/TAZ are identified as key regulators of CSCs-related traits on breast cancer cells; however, the upstream regulatory mechanism of Hippo kinases cascade involved in regulating YAP/TAZ remains elusive. In this study, we found that the low expression of RICH1 in breast cancer was associated with poor prognosis. Depletion of RICH1 promoted the stemness and disrupted the normal epithelial architecture of MCF10A cells. Besides, RICH1 inhibited the migration and invasion of breast cancer cells and sensitized these cells to chemotherapeutic drugs. Mechanistically, RICH1 activated the kinases cascade of Hippo signaling via displacing Amot-p80 from the complex with Merlin. Further studies revealed that the deletion of the BAR domain of RICH1 abolished the function of attenuating the binding of Amot-p80 and Merlin, illustrating that the competitive binding to Amot-p80 with Merlin was mediated by the BAR domain of RICH1. In conclusion, our work elucidated the role and molecular mechanism of RICH1 in stemness regulation of breast cancer, and might provide opportunities for CSCs-targeting therapy.
Collapse
Affiliation(s)
- Qi Tian
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huan Gao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Zhou
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lizhe Zhu
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiao Yang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bo Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Peijun Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Jin Yang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
32
|
Zhao B, Fan Y, Li H, Zhang C, Han R, Che D. Mitigative effects of Eleutheroside E against the mechanical barrier dysfunction induced by soybean agglutinin in IPEC-J2 cell line. J Anim Physiol Anim Nutr (Berl) 2022; 106:664-670. [PMID: 35014099 DOI: 10.1111/jpn.13677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/06/2021] [Accepted: 11/14/2021] [Indexed: 01/20/2023]
Abstract
Soybean agglutinin (SBA) is an anti-nutritional factor which decreases the mechanical barrier function in intestinal porcine jejunum epithelial cells (IPEC-J2). Eleutheroside E (EE) is a key part of Acanthopanax senticosus to exert pharmacological effects. This study aims to investigate the effects of EE on the barrier function in IPEC-J2 cells and to determine the ability of EE to enhance the protective effect of barrier function against SBA exposure. The IPEC-J2 cells were cultured in mediums with concentration of 0.1 mg/ml EE, 0.5 ml/ml SBA and 0.1 mg/ml EE pre-treated then treated with 0.5 mg/ml SBA. Then, the transepithelial electric resistance (TEER) value, inflammatory cytokines mRNA expression, tight junction mRNA and protein expression were tested by epithelial Voltohm meter, q-PCR and Western blot method respectively. The results showed that cells treated with 0.1 mg/ml EE had lower permeability (p < 0.05) while 0.5 mg/ml SBA treatment had higher permeability through tested TEER, and higher tight junction proteins (Claudin-3 and ZO-1) expressions and genes (Claudin-3, Occludin and ZO-1) expressions (p < 0.05) in 0.1 mg/ml EE group. IPEC-J2 cells pre-treated with 0.1 mg/ml EE could significantly improve the inflammatory response caused by 0.5 mg/ml SBA by up-regulation for IL-10, TGF-β, and down-regulation gene expression of IL-6, TNF-α and IFN-γ (p < 0.05). In conclusion, 0.1 mg/ml EE can improve the mechanical barrier function and could protect the effects while 0.5 mg/ml of SBA-induced barrier dysfunction in IPEC-J2.
Collapse
Affiliation(s)
- Bao Zhao
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Key Lab of Animal Production & Product Quality, and Security, Ministry of Education, Jilin Provincial Swine Industry Technical Innovation Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yueli Fan
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Key Lab of Animal Production & Product Quality, and Security, Ministry of Education, Jilin Provincial Swine Industry Technical Innovation Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Huijuan Li
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Key Lab of Animal Production & Product Quality, and Security, Ministry of Education, Jilin Provincial Swine Industry Technical Innovation Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Chun Zhang
- College of Animal Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Rui Han
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Key Lab of Animal Production & Product Quality, and Security, Ministry of Education, Jilin Provincial Swine Industry Technical Innovation Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Dongsheng Che
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Key Lab of Animal Production & Product Quality, and Security, Ministry of Education, Jilin Provincial Swine Industry Technical Innovation Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
33
|
Wu Q, Chen JD, Zhou Z. AVL9 promotes colorectal carcinoma cell migration via regulating EGFR expression. Biol Proced Online 2022; 24:1. [PMID: 34991461 PMCID: PMC8903581 DOI: 10.1186/s12575-021-00162-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/08/2021] [Indexed: 12/24/2022] Open
Abstract
Background Despite advanced treatments could inhibit progression of colorectal carcinoma (CRC), the recurrence and metastasis remain challenging issues. Accumulating evidences implicated that AVL9 played a vital role in human cancers, but it’s biological function and mechanism in CRC remain unclear. Aim To investigate the biological role and mechanism of AVL9 in colorectal carcinoma. Results AVL9 expression was significantly upregulated in tumor tissues than that in matched normal tissues both at mRNA and protein levels. High expression of AVL9 was closely correlated with M status, stages and poor prognosis of colorectal carcinoma (CRC) patients. Functionally, AVL9 overexpression promoted cell migration rather than cell proliferation in vitro, whereas AVL9 knockdown exhibited the contrary results. Mechanistically, AVL9 regulated EGFR expression, and knockdown of EGFR restrained AVL9-induced cell migration. Conclusion These findings demonstrated that AVL9 contributed to CRC cell migration by regulating EGFR expression, suggesting a potential biomarker and treatment target for CRC.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Jing De Chen
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| | - Zhuqing Zhou
- Department of Gastrointestinal Surgery, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
34
|
Huang H, Li Y, Wang L, Song Y, Zhang G. Membrane proteomic analysis identifies the polarity protein PARD3 as a novel antiviral protein against PEDV infection. J Proteomics 2021; 253:104462. [PMID: 34954106 PMCID: PMC8695312 DOI: 10.1016/j.jprot.2021.104462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/01/2021] [Accepted: 12/17/2021] [Indexed: 11/23/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly pathogenic enteric coronavirus causing lethal watery diarrhea in suckling piglets. PEDV could remodel host membrane structures for their replication, assembly and escape from host cells. However, little is known about the host membrane proteins of PEDV infection. In this study, we analyzed differentially abundant proteins (DAPs) between PEDV infection group and control group and identified the polarity protein PARD3 as one of the most significantly DAPs. PARD3 is implicated in the formation of tight junctions at epithelial cell-cell contacts. Then, we found that PEDV infection promoted the degradation of PARD3 via the ubiquitin proteasome pathway. Moreover, knockdown of PARD3 promoted the proliferation of PEDV. Further study showed that the downregulation of PARD3 altered the normal morphology of the tight junction proteins and promoted apical and basolateral virus proliferation. Tight junctions enable epithelial cells to form physical barriers, which act as an innate immune mechanism that can impede viral infection and PEDV affected the barrier functions by causing degradation of PARD3. Taken together, this work is the first time to investigate the membrane protein profile of PEDV-infected cells using quantitative proteomics and suggests that PARD3 could be a potential novel antiviral protein against PEDV infection. Significance Membrane proteins are involved in various physiological and biochemical functions critical for cellular function. It is also dynamic in nature, where many proteins are changed during in response to environmental stress. However, membrane proteins are difficult to study because of their hydrophobicity. Membrane proteomic methods using mass spectrometry analysis have been developed and applied for the characterization of the plasma membrane and subcellular organelles of various virus infected cells. Porcine epidemic diarrhea virus (PEDV) is an enteric pathogen of importance to the swine industry, causing high mortality in neonatal piglets. Because PEDV infected Vero cells can lead to significant changes in cell membrane morphology and form syncytial lesions. Here, we isolated the membrane proteins of PEDV infected and control cells and applied isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to quantitatively identify the differentially abundant proteins (DAPs) in PEDV-infected Vero cells and confirmed the DAPs by performing RT-qPCR and Western blot analysis. Among these differential proteins, we focused on a down-regulated protein PARD3 which is important for cell tight junction and cell polarity. Loss of PARD3 can destroy the tight junction of cells and promote the proliferation of PEDV in the apical and basolateral sides. These findings will provide valuable information to better understand the mechanisms underlying the host defense responses to PEDV infection.
Collapse
Affiliation(s)
- Huimin Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yongtao Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Li Wang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Huayuan Road No. 116, Zhengzhou 450002, China
| | - Yapeng Song
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Huayuan Road No. 116, Zhengzhou 450002, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| |
Collapse
|
35
|
La Marca JE, Willoughby LF, Allan K, Portela M, Goh PK, Tiganis T, Richardson HE. PTP61F Mediates Cell Competition and Mitigates Tumorigenesis. Int J Mol Sci 2021; 22:12732. [PMID: 34884538 PMCID: PMC8657627 DOI: 10.3390/ijms222312732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
Tissue homeostasis via the elimination of aberrant cells is fundamental for organism survival. Cell competition is a key homeostatic mechanism, contributing to the recognition and elimination of aberrant cells, preventing their malignant progression and the development of tumors. Here, using Drosophila as a model organism, we have defined a role for protein tyrosine phosphatase 61F (PTP61F) (orthologue of mammalian PTP1B and TCPTP) in the initiation and progression of epithelial cancers. We demonstrate that a Ptp61F null mutation confers cells with a competitive advantage relative to neighbouring wild-type cells, while elevating PTP61F levels has the opposite effect. Furthermore, we show that knockdown of Ptp61F affects the survival of clones with impaired cell polarity, and that this occurs through regulation of the JAK-STAT signalling pathway. Importantly, PTP61F plays a robust non-cell-autonomous role in influencing the elimination of adjacent polarity-impaired mutant cells. Moreover, in a neoplastic RAS-driven polarity-impaired tumor model, we show that PTP61F levels determine the aggressiveness of tumors, with Ptp61F knockdown or overexpression, respectively, increasing or reducing tumor size. These effects correlate with the regulation of the RAS-MAPK and JAK-STAT signalling by PTP61F. Thus, PTP61F acts as a tumor suppressor that can function in an autonomous and non-cell-autonomous manner to ensure cellular fitness and attenuate tumorigenesis.
Collapse
Affiliation(s)
- John E. La Marca
- Cell Polarity, Cell Signaling & Cancer Laboratory, Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; (J.E.L.M.); (K.A.); (M.P.)
| | - Lee F. Willoughby
- Cell Cycle & Development Laboratory, Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3002, Australia;
| | - Kirsten Allan
- Cell Polarity, Cell Signaling & Cancer Laboratory, Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; (J.E.L.M.); (K.A.); (M.P.)
| | - Marta Portela
- Cell Polarity, Cell Signaling & Cancer Laboratory, Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; (J.E.L.M.); (K.A.); (M.P.)
| | - Pei Kee Goh
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (P.K.G.); (T.T.)
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Tony Tiganis
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (P.K.G.); (T.T.)
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Helena E. Richardson
- Cell Polarity, Cell Signaling & Cancer Laboratory, Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; (J.E.L.M.); (K.A.); (M.P.)
- Cell Cycle & Development Laboratory, Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3002, Australia;
- Peter MacCallum Department of Oncology, Department of Anatomy & Neuroscience, Department of Biochemistry, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
36
|
Zhao Z, Li S, Li S, Wang J, Lin H, Fu W. High expression of oncogene cadherin-6 correlates with tumor progression and a poor prognosis in gastric cancer. Cancer Cell Int 2021; 21:493. [PMID: 34530820 PMCID: PMC8447617 DOI: 10.1186/s12935-021-02071-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/30/2021] [Indexed: 12/18/2022] Open
Abstract
Background Gastric cancer (GC) is one of the most common and fatal cancers worldwide. Effective biomarkers to aid the early diagnosis of GC, as well as predict the course of disease, are urgently needed. Hence, we explored the role and function of cadherin-6 (CDH6) in the diagnosis and prognosis of gastric cancer. Methods The expression levels of CDH6 in cancerous and normal gastric tissue were analyzed using multiple public databases. Gene set enrichment analysis (GSEA) was performed using The Cancer Genome Atlas (TCGA) dataset. The diagnostic efficiency of CDH6 expression in GC patients was determined through receiver operating characteristic (ROC) curve analysis. The associations between clinical variables and CDH6 expression were evaluated statistically, and the prognostic factors for overall survival were analyzed by univariate and multivariate Cox regression. 44 GC tissue samples, 20 donor-matched adjacent normal tissue samples, and associated detailed clinical information, were collected from the Tianjin Medical University General Hospital. CDH6 expression levels were determined for further validation. Results CDH6 was upregulated in GC samples compared to normal gastric tissue. Furthermore, GSEA identified the tricarboxylic acid (TCA) cycle, extracellular matrix (ECM) receptor interaction, glyoxylate and dicarboxylate metabolism, oxidative phosphorylation, and the pentose phosphate pathway as differentially enriched in GC tissue samples. According to the area under the ROC curve (AUC) values (AUC = 0.829 in the TCGA and 0.966 in the GSE54129 dataset), CDH6 expression was associated with high diagnostic efficacy. Patients with high CDH6 levels in their GC tissues had a higher T number (according to the TNM classification) and a worse prognosis than those with low CDH6 expression. Univariate and multivariate Cox regression analysis showed that CDH6 was an independent risk factor for overall survival (univariate: HR = 1.305, P = 0.002, multivariate: HR = 1.481, P < 0.001). Conclusion CDH6 was upregulated in GC, and high CDH6 expression was indicative of a higher T number and a worse prognosis. Therefore, CDH6 represents a potentially independent molecular biomarker for the diagnostic and prognostic prediction of GC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02071-y.
Collapse
Affiliation(s)
- Zongxian Zhao
- Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, China.
| | - Shuliang Li
- Department of Gastrointestinal Surgery, The Second People's Hospital of Liaocheng, Liaocheng, Shangdong, China.
| | - Shilong Li
- Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, China
| | - Jun Wang
- Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, China
| | - Hai Lin
- Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, China
| | - Weihua Fu
- Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, China.
| |
Collapse
|
37
|
Ma J, Du WW, Zeng K, Wu N, Fang L, Lyu J, Yee AJ, Yang BB. An antisense circular RNA circSCRIB enhances cancer progression by suppressing parental gene splicing and translation. Mol Ther 2021; 29:2754-2768. [PMID: 34365033 DOI: 10.1016/j.ymthe.2021.08.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/29/2021] [Accepted: 07/31/2021] [Indexed: 11/25/2022] Open
Abstract
Circular RNAs (circRNAs) represent a large group of non-coding RNAs that are widely detected in mammalian cells. Although most circRNAs are generated in a sense orientation, there is a group of circRNAs that are synthesized in an antisense orientation. High-throughput analysis of breast cancer specimens revealed a significant enrichment of 209 antisense circRNAs. The tumor suppressor SCRIB was shown to potentially produce thirteen circRNAs, three of which are in an antisense orientation. Among these three circRNAs, circSCRIB (hsa_circ_0001831) was the most enriched in the breast cancer panel. This antisense SCRIB circRNA was shown to span one intron and two exons. We hypothesized that this circRNA could decrease pre-mRNA splicing and mRNA translation. To test this, we generated a hsa_circ_0001831 expression construct. We found that there was decreased SCRIB mRNA production but increased cancer cell proliferation, migration, and invasion. In comparison, an exonic sequence construct did not affect mRNA splicing but decreased protein translation, leading to increased E-cadherin expression and decreased expression of N-cadherin and vimentin. Thus, there was increased cell migration, invasion, proliferation, colony formation, and tumorigenesis. Our study suggests a novel modulatory role of antisense circRNAs on their parental transcripts. This may represent a promising approach for developing circRNA-directed therapy.
Collapse
Affiliation(s)
- Jian Ma
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - William W Du
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Kaixuan Zeng
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Nan Wu
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Ling Fang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada; China-Japan Union Hospital of Jilin University, Jilin, China
| | - Juanjuan Lyu
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Albert J Yee
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Burton B Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
38
|
Hara T, Saeki K, Jinnouchi H, Kazuno S, Miura Y, Yokomizo T. The c-terminal region of BLT2 restricts its localization to the lateral membrane in a LIN7C-dependent manner. FASEB J 2021; 35:e21364. [PMID: 33481310 DOI: 10.1096/fj.202002640r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 11/11/2022]
Abstract
Leukotriene B4 receptor type 2 (BLT2) is a G protein-coupled receptor (GPCR) mainly expressed in epithelial cells, where it enhances barrier function. A unique characteristic of BLT2 is its restricted localization to the lateral membrane. However, the molecular mechanism underlying the localization of BLT2 to the lateral membrane and the physiological roles of laterally localized BLT2 are unknown. BLT1 is the most homologous GPCR to BLT2 and localizes to both the apical and lateral membranes. In this study, we generated chimeric receptors of BLT2 and BLT1 as well as deletion mutants of BLT2 to determine the region(s) of BLT2 responsible for its localization. Chimeric receptors containing the C-terminal domain of BLT2 localized only to the lateral membrane, and the C-terminal deletion mutant of BLT2 accumulated at the Golgi apparatus. Furthermore, the middle and C-terminal regions of BLT2 were important for maintaining epithelial barrier function. Proteomics analysis using the chimeric BLT-ascorbate peroxidase 2 biotinylation method showed that some proteins involved in intracellular protein transport, cell-cell junctions, and actin filament binding were located very close to the C-terminal domain of BLT2. Knockdown of lin-7 homolog C (LIN7C), a membrane trafficking protein, led to accumulation of BLT2 in the Golgi apparatus, resulting in diminished epithelial barrier function. These results suggest that the C-terminal region of BLT2 plays an important role in the transport of BLT2 from the Golgi apparatus to the plasma membrane in a LIN7C-dependent manner.
Collapse
Affiliation(s)
- Takuya Hara
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan.,Fuji Research Laboratories, Kowa Co., Ltd, Shizuoka, Japan
| | - Kazuko Saeki
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiromi Jinnouchi
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Saiko Kazuno
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshiki Miura
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
39
|
Ren G, Zheng X, Sharma V, Letson J, Nestor-Kalinoski AL, Furuta S. Loss of Nitric Oxide Induces Fibrogenic Response in Organotypic 3D Co-Culture of Mammary Epithelia and Fibroblasts-An Indicator for Breast Carcinogenesis. Cancers (Basel) 2021; 13:cancers13112815. [PMID: 34198735 PMCID: PMC8201212 DOI: 10.3390/cancers13112815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Fibrosis, which is often caused by chronic diseases and environmental substances, is closely associated with cancer. Thus, the development of a robust method allowing for deep studies of the linkage between fibrosis and cancer is essential. Here, we tested whether our novel three-dimensional (3D) co-culture of breast epithelia and fibroblasts would be a suitable model for that purpose. We compared the phenotypic effects of L-NAME, an inhibitor of nitric oxide (NO) production, on 3D mono- and co-cultures. We previously reported that prolonged NO depletion with L-NAME caused fibrosis and tumorigenesis in mouse mammary glands. Such in vivo effects of L-NAME were well recapitulated in 3D co-cultures, but not in 3D mono-cultures of epithelia and fibroblasts. These results support not only the essential roles of the presence of the stroma in cancer development, but also the utility of this co-culture in studying the causal relationship between fibrosis and cancer. Abstract Excessive myofibroblast activation, which leads to dysregulated collagen deposition and the stiffening of the extracellular matrix (ECM), plays pivotal roles in cancer initiation and progression. Cumulative evidence attests to the cancer-causing effects of a number of fibrogenic factors found in the environment, diseases and drugs. While identifying such factors largely depends on epidemiological studies, it would be of great importance to develop a robust in vitro method to demonstrate the causal relationship between fibrosis and cancer. Here, we tested whether our recently developed organotypic three-dimensional (3D) co-culture would be suitable for that purpose. This co-culture system utilizes the discontinuous ECM to separately culture mammary epithelia and fibroblasts in the discrete matrices to model the complexity of the mammary gland. We observed that pharmaceutical deprivation of nitric oxide (NO) in 3D co-cultures induced myofibroblast differentiation of the stroma as well as the occurrence of epithelial–mesenchymal transition (EMT) of the parenchyma. Such in vitro response to NO deprivation was unique to co-cultures and closely mimicked the phenotype of NO-depleted mammary glands exhibiting stromal desmoplasia and precancerous lesions undergoing EMT. These results suggest that this novel 3D co-culture system could be utilized in the deep mechanistic studies of the linkage between fibrosis and cancer.
Collapse
Affiliation(s)
- Gang Ren
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA; (G.R.); (X.Z.); (V.S.); (J.L.)
| | - Xunzhen Zheng
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA; (G.R.); (X.Z.); (V.S.); (J.L.)
| | - Vandana Sharma
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA; (G.R.); (X.Z.); (V.S.); (J.L.)
| | - Joshua Letson
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA; (G.R.); (X.Z.); (V.S.); (J.L.)
| | - Andrea L. Nestor-Kalinoski
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA;
| | - Saori Furuta
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA; (G.R.); (X.Z.); (V.S.); (J.L.)
- Correspondence:
| |
Collapse
|
40
|
Du T, Wang D, Wan X, Xu J, Xiao Q, Liu B. Regulatory effect of microRNA-223-3p on breast cancer cell processes via the Hippo/Yap signaling pathway. Oncol Lett 2021; 22:516. [PMID: 33986876 PMCID: PMC8114478 DOI: 10.3892/ol.2021.12777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 12/17/2020] [Indexed: 12/29/2022] Open
Abstract
According to the 2018 global cancer statistics, the incidence and mortality rates of breast cancer are increasing gradually, which seriously threatens the health of women. MicroRNA-223-3p (miR-223-3p) can promote the proliferation and invasion of breast cancer cells. Hippo/Yes-related protein (Yap) signaling pathway activation has been found in a variety of tumors. The present study aimed to investigate the potential mechanism of miR-223-3p in breast cancer. The Cell Counting Kit-8 assay was used to detect cell viability and flow cytometry was used to detect apoptosis. The abilities of cell migration and invasion were detected using scratch and Transwell assays, as well as reverse transcription-quantitative PCR and western blotting to detect gene and protein expression, respectively. The current results demonstrated that miR-223-3p transcription levels were increased in breast cancer cells, and inhibition of miR-223-3p gene expression decreased cell proliferation, migration and invasion. Additionally, inhibition of miR-223-3p expression inhibited epithelial-mesenchymal transition (EMT) in breast cancer cells. miR-223-3p promoted cell proliferation, migration, invasion and EMT, and the western blotting results demonstrated that miR-223-3p inhibition increased the phosphorylation of Yap1 and the protein expression levels of large tumor suppressor kinase 1. In conclusion, results from the present results suggested that miR-223-3p may promote cell proliferation, migration, invasion and EMT through the Hippo/Yap signaling pathway. Therefore, miR-223-3p may be a potential biomarker for breast cancer.
Collapse
Affiliation(s)
- Tonghua Du
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Dan Wang
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Xiaoyu Wan
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jingwei Xu
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Qi Xiao
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Bin Liu
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
41
|
Shen H, Huang C, Wu J, Li J, Hu T, Wang Z, Zhang H, Shao Y, Fu Z. SCRIB Promotes Proliferation and Metastasis by Targeting Hippo/YAP Signalling in Colorectal Cancer. Front Cell Dev Biol 2021; 9:656359. [PMID: 33937255 PMCID: PMC8084105 DOI: 10.3389/fcell.2021.656359] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/24/2021] [Indexed: 12/24/2022] Open
Abstract
The complex in which scribble planar cell polarity protein (SCRIB) is located is one of the three main polar protein complexes that play an important role in maintaining epithelial polarity and affecting tumour growth. However, the role of SCRIB in colorectal cancer (CRC) remains largely unknown. This study used date from The Cancer Genome Atlas (TCGA) and clinical samples to determine the expression of SCRIB in CRC and explored its mechanism through bioinformatics analysis and in vivo and in vitro experiments. In this study, SCRIB was found to be highly expressed in CRC patients, and it was often associated with malignant characteristics, such as proliferation, apoptosis, and epithelial-mesenchymal transition (EMT). Furthermore, we found that SCRIB may interact with the Hippo signalling pathway and affect the phosphorylation of YAP and its distribution inside and outside of the nucleus. We concluded that increased expression of SCRIB is likely to inhibit the Hippo signalling pathway by promoting YAP phosphorylation. This role of SCRIB in the progression of CRC provides an important information for the treatment of CRC.
Collapse
Affiliation(s)
- Hengyang Shen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Changzhi Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jingyu Wu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jie Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Tao Hu
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenling Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Hongqiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Yu Shao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Zan Fu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| |
Collapse
|
42
|
Vakilian M, Ghaedi K. A new hypothetical model for pancreatic development based on change in the cell division orientation. Gene 2021; 785:145607. [PMID: 33775847 DOI: 10.1016/j.gene.2021.145607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/05/2021] [Accepted: 03/19/2021] [Indexed: 11/15/2022]
Abstract
Although lifelong renewal and additional compensatory growth in response to demand are undeniable facts, so far, no specific stem cells have been found for pancreatic cells. According to the consensus model, the development of pancreas results from the hierarchical differentiation of pluripotent stem cells towards the appearance of the first endocrine and exocrine cells at approximately 7.5 to 8th gestation week (GW) of human embryo. However, the primitive endocrine cells arising from the embryonic phase of development do not appear to be mature or fully functional. Asymmetric localization of cellular components, such as Numb, partition protein complexes (PAR), planar cell polarity components, and certain mRNAs on the apical and basal sides of epithelial cells, causes cellular polarization. According to our model, the equal distribution of cellular components during symmetric cell division yields similar daughter cells that are associated with duct expansion. In contrast, asymmetric cell division is associated with uneven distribution of cellular components among daughter cells, resulting in different fates. Asymmetric cell division leads to duct branching and the development of acinar and stellate cells by a daughter cell, as well as the development of islet progenitor cells through partial epithelial-to-mesenchymal transition (EMT) and delamination of another daughter cell. Recently, we have developed an efficient method to obtain insulin-secreting cells from the transdifferentiation of hESC-derived ductal cells inducing a partial EMT by treatment with Wnt3A and activin A in a hypoxic environment. Similar models can be offered for other tissues and organs such as mammary glands, lungs, prostate, liver, etc. This model may open a new horizon in the field of regenerative medicine and be useful in explaining the cause of certain abnormalities, such as the occurrence of certain cysts and tumors.
Collapse
Affiliation(s)
- Mehrdad Vakilian
- Department of Cell Regeneration and Advanced Therapies, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Sevilla, Spain; Department of Cell Biology, Genetics and Physiology, University of Malaga (UMA), The Institute of Biomedical Research in Malaga (IBIMA), Málaga, Spain
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science & Technology, University of Isfahan, Hezar Jerib Ave., Azadi Sq., Isfahan, Iran.
| |
Collapse
|
43
|
Nerve growth factor regulates liver cancer cell polarity and motility. Mol Med Rep 2021; 23:288. [PMID: 33649819 PMCID: PMC7905331 DOI: 10.3892/mmr.2021.11927] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
Nerve growth factor (NGF), a prototypical neurotrophic factor essential for neuronal cell proliferation and survival, has been implicated as a marker of tumor progression, as well as a potential target for novel therapeutic approaches in cancer. To investigate the functional potential of NGF in liver cancer in the present study, a stable NGF-overexpressing HepG2 cell line was generated. The scratch-wound assay was used to investigate cell motility and polarity. Western blotting was performed to evaluate the expression levels of epithelial-mesenchymal transition (EMT)-related proteins, including E-cadherin, N-cadherin and vimentin. Moreover, immunofluorescence was performed to investigate the arrangement of the actin cytoskeleton. Cell anoikis resistance was examined using a suspension culture model and cell apoptosis was examined via flow cytometry. The present results indicated that NGF overexpression in HepG2 cells disrupted HepG2 cell polarity and promoted cell motility. Furthermore, NGF overexpression induced EMT and actin cytoskeleton rearrangement in HepG2 cells, as well as enhanced anoikis resistance and prevented cellular apoptosis. Notably, a tropomyosin receptor kinase A receptor inhibitor blocked NGF-induced cell motility and apoptosis. Therefore, it was suggested that NGF serves a critical role in the invasion and metastasis of liver cancer. The use of NGF as a biomarker or potential new target could lead to the development of novel factors for diagnosis or for improving therapeutic strategies in liver cancer.
Collapse
|
44
|
Kumar B, Ahmad R, Giannico GA, Zent R, Talmon GA, Harris RC, Clark PE, Lokeshwar V, Dhawan P, Singh AB. Claudin-2 inhibits renal clear cell carcinoma progression by inhibiting YAP-activation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:77. [PMID: 33622361 PMCID: PMC7901196 DOI: 10.1186/s13046-021-01870-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/08/2021] [Indexed: 12/28/2022]
Abstract
Background Claudin-2 expression is upregulated in multiple cancers and promotes cancer malignancy. Remarkably, the regulation of claudin-2 expression in kidney cell lines contrasts its reported regulation in other organs. However, claudin-2 role in renal clear cell carcinoma (RCC) remains unknown despite its predominant expression in the proximal tubular epithelium (PTE), the site of RCC origin. Methods Publicly available and independent patient databases were examined for claudin-2 association with RCC. The novel protein function was validated in vitro and in vivo by gain or loss of function assays. Mechanistic results were concluded by Mass spectroscopy, immunoprecipitation and mutational studies, and functional evaluations. Results We show that the significant decrease in claudin-2 expression characterized PTE cells and Ex-vivo cultured mouse kidney subjected to dedifferentiation. Inhibition of claudin-2 was enough to induce mesenchymal plasticity and invasive mobility in these models. Further, a progressive loss of claudin-2 expression associated with the RCC progression and poor patient survival. Overexpression of claudin-2 in RCC-derived cancer cells inhibited tumorigenic abilities and xenograft tumor growth. These data supported a novel tumor-suppressive role of claudin-2 in RCC. Mechanistic insights further revealed that claudin-2 associates with YAP-protein and modulates its phosphorylation (S127) and nuclear expression. The tumor suppressive effects of claudin-2 expression were lost upon deletion of its PDZ-binding motif emphasizing the critical role of the PDZ-domain in claudin-2 interaction with YAP in regulating RCC malignancy. Conclusions Our results demonstrate a novel kidney specific tumor suppressive role for claudin-2 protein and further demonstrate that claudin-2 co-operates with the YAP signaling in regulating the RCC malignancy. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01870-5.
Collapse
Affiliation(s)
- Balawant Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Rizwan Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Giovanna A Giannico
- Department of Pathology, Microbiology and Immunology, Vanderbilt Medical Center, Nashville, TN, USA
| | - Roy Zent
- Department of Medicine, Vanderbilt Medical Center, Nashville, TN, USA
| | - Geoffrey A Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Raymond C Harris
- Department of Medicine, Vanderbilt Medical Center, Nashville, TN, USA
| | | | - Vinata Lokeshwar
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA.,Member, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA.,VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Amar B Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA. .,Member, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA. .,VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA.
| |
Collapse
|
45
|
Liang J, Li K, Chen K, Liang J, Qin T, He J, Shi S, Tan Q, Wang Z. Regulation of ARHGAP19 in the endometrial epithelium: a possible role in the establishment of uterine receptivity. Reprod Biol Endocrinol 2021; 19:2. [PMID: 33407571 PMCID: PMC7788769 DOI: 10.1186/s12958-020-00689-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/17/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The establishment of uterine receptivity is essential for embryo implantation initiation and involves a significant morphological transformation in the endometrial epithelial cells (EECs). The remodeling of junctional complexes and membrane-associated cytoskeleton is crucial for epithelial transformation. However, little is known about how this process is regulated in EECs during the receptive phase. ARHGAP19 is a Rho GTPase-activating protein that participates in various cytoskeletal-related events, including epithelial morphogenesis. Here, we investigated the role of ARHGAP19 in endometrial epithelial transformation during the establishment of uterine receptivity. The upstream regulator of ARHGAP19 was also investigated. METHODS ARHGAP19 expression was examined in mouse uteri during early pregnancy and in human EEC lines. The role of ARHGAP19 was investigated by manipulating its expression in EECs. The effect of ARHGAP19 on junctional proteins in EECs was examined by western blotting and immunofluorescence. The effect of ARHGAP19 on microvilli was examined by scanning electron microscopy. The upstream microRNA (miRNA) was predicted using online databases and validated by the dual-luciferase assay. The in vivo and in vitro effect of miRNA on endogenous ARHGAP19 was examined by uterine injection of miRNA agomirs and transfection of miRNA mimics or inhibitors. RESULTS ARHGAP19 was upregulated in the receptive mouse uteri and human EECs. Overexpression of ARHGAP19 in non-receptive EECs downregulated the expression of junctional proteins and resulted in their redistribution. Meanwhile, upregulating ARHGAP19 reorganized the cytoskeletal structure of EECs, leading to a decline of microvilli and changes in cell configuration. These changes weakened epithelial cell polarity and promoted the transition of non-receptive EECs to a receptive phenotype. Besides, miR-192-5p, a miRNA that plays a key role in maintaining epithelial properties, was validated as an upstream regulator of ARHGAP19. CONCLUSION These results suggested that ARHGAP19 may contribute to the transition of EECs from a non-receptive to a receptive state by regulating the remodeling of junctional proteins and membrane-associated cytoskeleton.
Collapse
Affiliation(s)
- Jingjie Liang
- College of Animal Science, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, P. R. China
| | - Kui Li
- Zhejiang Animal Husbandry Techniques Extension Station, 310020, Hangzhou, P. R. China
| | - Kaiyu Chen
- College of Animal Science, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, P. R. China
| | - Junyong Liang
- College of Animal Science, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, P. R. China
| | - Ti Qin
- College of Animal Science, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, P. R. China
| | - Jiayi He
- College of Animal Science, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, P. R. China
| | - Shuang Shi
- College of Animal Science, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, P. R. China
| | - Qiang Tan
- College of Animal Science, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, P. R. China
| | - Zhengguang Wang
- College of Animal Science, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, P. R. China.
- Huzhou Southern Taihu Lake Modern Agricultural Technology Center, Zhejiang University, Huzhou, P. R. China.
| |
Collapse
|
46
|
Zhu L, Yang X, Zhu R, Yu L. Identifying Discriminative Biological Function Features and Rules for Cancer-Related Long Non-coding RNAs. Front Genet 2021; 11:598773. [PMID: 33391350 PMCID: PMC7772407 DOI: 10.3389/fgene.2020.598773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/23/2020] [Indexed: 01/17/2023] Open
Abstract
Cancer has been a major public health problem worldwide for many centuries. Cancer is a complex disease associated with accumulative genetic mutations, epigenetic aberrations, chromosomal instability, and expression alteration. Increasing lines of evidence suggest that many non-coding transcripts, which are termed as non-coding RNAs, have important regulatory roles in cancer. In particular, long non-coding RNAs (lncRNAs) play crucial roles in tumorigenesis. Cancer-related lncRNAs serve as oncogenic factors or tumor suppressors. Although many lncRNAs are identified as potential regulators in tumorigenesis by using traditional experimental methods, they are time consuming and expensive considering the tremendous amount of lncRNAs needed. Thus, effective and fast approaches to recognize tumor-related lncRNAs should be developed. The proposed approach should help us understand not only the mechanisms of lncRNAs that participate in tumorigenesis but also their satisfactory performance in distinguishing cancer-related lncRNAs. In this study, we utilized a decision tree (DT), a type of rule learning algorithm, to investigate cancer-related lncRNAs with functional annotation contents [gene ontology (GO) terms and KEGG pathways] of their co-expressed genes. Cancer-related and other lncRNAs encoded by the key enrichment features of GO and KEGG filtered by feature selection methods were used to build an informative DT, which further induced several decision rules. The rules provided not only a new tool for identifying cancer-related lncRNAs but also connected the lncRNAs and cancers with the combinations of GO terms. Results provided new directions for understanding cancer-related lncRNAs.
Collapse
Affiliation(s)
- Liucun Zhu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xin Yang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Rui Zhu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Lei Yu
- Department of Medical Oncology, Shanghai Concord Medical Cancer Center, Shanghai, China
| |
Collapse
|
47
|
Miao Y, Cao F, Li P, Liu P. DNA methylation of Hugl-2 is a prognostic biomarker in kidney renal clear cell carcinoma. Clin Exp Pharmacol Physiol 2021; 48:44-53. [PMID: 32754907 PMCID: PMC7821335 DOI: 10.1111/1440-1681.13390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/17/2020] [Accepted: 07/30/2020] [Indexed: 01/13/2023]
Abstract
It has been reported that loss of Hugl-2 contributes to tumour formation and progression in vitro and in vivo. However, whether Hugl-2 levels decrease during kidney renal clear cell carcinoma (KIRC) and the mechanism involved remain unknown. This study aimed to investigate whether DNA methylation of Hugl-2 reduces its expression, leading to the progression and poor prognosis of KIRC. Hugl-2 methylation and mRNA expression and KIRC clinicopathological data were extracted from The Cancer Genome Atlas (TCGA), and relationships among these factors were analyzed using UALCAN, MethHC, Wanderer and LinkedOmics web tools. We found that Hugl-2 mRNA and protein levels were reduced in KIRC tissues. Moreover, Hugl-2 mRNA levels were related to tumour grade and overall survival, and Hugl-2 methylation was increased in KIRC. According to the results of methylation-specific PCR, KIRC cells had higher Hugl-2 DNA methylation levels than HKC cells. Moreover, Hugl-2 DNA methylation correlated negatively with Hugl-2 mRNA and was also related to the pathology and T stage of KIRC patients. KIRC patients with high Hugl-2 DNA methylation also had shorter overall survival. Additionally, methylation of cg08827674, a Hugl-2 probe, was related to pathologic stage, T stage, neoplasm histologic grade, serum calcium level without laterality, M stage, N stage, and ethnicity. Furthermore, treatment with the DNA methylation inhibitor decitabine resulted in upregulation of Hugl-2 mRNA and protein levels in KIRC cell lines. These results indicate that Hugl-2 DNA methylation may be both a prognostic marker and a therapeutic target in KIRC.
Collapse
Affiliation(s)
- Yi Miao
- Center for Translational MedicineThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi ProvinceThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Fang Cao
- Center for Translational MedicineThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi ProvinceThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Pingping Li
- Center for Translational MedicineThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi ProvinceThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Peijun Liu
- Center for Translational MedicineThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi ProvinceThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| |
Collapse
|
48
|
Quadri R, Sertic S, Muzi-Falconi M. gRASping Depolarization: Contribution of RAS GTPases to Mitotic Polarity Clusters Resolution. Front Cell Dev Biol 2020; 8:589993. [PMID: 33178703 PMCID: PMC7593642 DOI: 10.3389/fcell.2020.589993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/31/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Roberto Quadri
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Sarah Sertic
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Marco Muzi-Falconi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
49
|
Wang T, Kwon SH, Peng X, Urdy S, Lu Z, Schmitz RJ, Dalton S, Mostov KE, Zhao S. A Qualitative Change in the Transcriptome Occurs after the First Cell Cycle and Coincides with Lumen Establishment during MDCKII Cystogenesis. iScience 2020; 23:101629. [PMID: 33089114 PMCID: PMC7567049 DOI: 10.1016/j.isci.2020.101629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/05/2020] [Accepted: 09/25/2020] [Indexed: 01/12/2023] Open
Abstract
Madin-Darby canine kidney II (MDCKII) cells are widely used to study epithelial morphogenesis. To better understand this process, we performed time course RNA-seq analysis of MDCKII 3D cystogenesis, along with polarized 2D cells for comparison. Our study reveals a biphasic change in the transcriptome that occurs after the first cell cycle and coincides with lumen establishment. This change appears to be linked to translocation of β-catenin, supported by analyses with AVL9- and DENND5A-knockdown clones, and regulation by HNF1B, supported by ATAC-seq study. These findings indicate a qualitative change model for transcriptome remodeling during epithelial morphogenesis, leading to cell proliferation decrease and cell polarity establishment. Furthermore, our study reveals that active mitochondria are retained and chromatin accessibility decreases in 3D cysts but not in 2D polarized cells. This indicates that 3D culture is a better model than 2D culture for studying epithelial morphogenesis. The transcriptome switches after the first cell cycle and during MDCKII lumenogenesis The transcriptome switch is linked to β-catenin translocation and HNF1B activation Chromatin accessibility decreases during MDCKII cystogenesis Active mitochondria are maintained in 3D, but not 2D, epithelial morphogenesis
Collapse
Affiliation(s)
- Tianfang Wang
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Sang-Ho Kwon
- Department of Anatomy, University of California, San Francisco, CA 94143-2140, USA.,Department of Cellular Biology and Anatomy, Augusta University, Medical College of Georgia, 1460 Laney Walker Boulevard, CB2820A, Augusta, GA 30912, USA
| | - Xiao Peng
- Department of Anatomy, University of California, San Francisco, CA 94143-2140, USA
| | - Severine Urdy
- Department of Anatomy, University of California, San Francisco, CA 94143-2140, USA
| | - Zefu Lu
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Stephen Dalton
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Keith E Mostov
- Department of Anatomy, University of California, San Francisco, CA 94143-2140, USA
| | - Shaying Zhao
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
50
|
Santoshi CK, Kumar JV, Bhagirath PV, Vinay BH, Prakash YJ. Morphometric analysis of basal cells of oral epithelium in predicting malignant transformation of oral potentially malignant disorders in patients with tobacco chewing habit. J Oral Maxillofac Pathol 2020; 24:579. [PMID: 33967506 PMCID: PMC8083430 DOI: 10.4103/jomfp.jomfp_55_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 10/07/2020] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Oral potentially malignant disorders (OPMDs) are a heterogenous group of disorders which precede the development of oral cancer. These are characterized by increased risk of malignant transformation to Oral cancer. AIMS & OBJECTIVES In this study, an attempt has been made to assess the morphological alterations of the nuclei of the basal cells in OPMDs and oral squamous cell carcinoma (OSCC). Our objective was to compare the alterations and to assess the predictive factor of such alterations of basal cells in malignant transformation of OPMDs to OSCC. MATERIALS AND METHODS This was a retrospective study conducted on tissue sections of 150 formalin fixed, paraffin embedded blocks obtained from the archives. The specimens were grouped into OSCC group (n= 50) and OPMDs (n= 100). Nuclear features were evaluated using computer- assisted microscopic image analysis. One- way ANOVA analysis was done to verify the difference between the groups for all variables. RESULTS Our results showed statistically significant difference for all parameters between the groups. Among OPMDs, leukoplakia showed significant increase in nuclear area, nuclear perimeter, Nuclear/Cytoplasm (N/C) ratio, density and loss of polarity, while OSF showed significance with only perimeter, density and loss of polarity. CONCLUSION Based on findings of present study, it is concluded that measurements using computer- aided morphometric analysis may provide an objective means for predicting the malignant transformation OPMDs to OSCC. Among OPMDs, Leukoplakia has a higher chance of malignant transformation than OSF.
Collapse
Affiliation(s)
- Chatraspalli Krishna Santoshi
- Department of Oral and Maxillofacial Pathology, Panineeya Mahavidyalaya Institute of Dental Sciences and Research Centre, Hyderabad, Telangana, India
| | - Jogishetty Vijay Kumar
- Department of Oral and Maxillofacial Pathology, Panineeya Mahavidyalaya Institute of Dental Sciences and Research Centre, Hyderabad, Telangana, India
| | - Pacha Venkat Bhagirath
- Department of Oral and Maxillofacial Pathology, Panineeya Mahavidyalaya Institute of Dental Sciences and Research Centre, Hyderabad, Telangana, India
| | - B Hari Vinay
- Department of Oral and Maxillofacial Pathology, Panineeya Mahavidyalaya Institute of Dental Sciences and Research Centre, Hyderabad, Telangana, India
| | - Y John Prakash
- Department of Oral and Maxillofacial Pathology, Panineeya Mahavidyalaya Institute of Dental Sciences and Research Centre, Hyderabad, Telangana, India
| |
Collapse
|