1
|
Liu W, Liu X, Li L, Tai Z, Li G, Liu JX. EPC1/2 regulate hematopoietic stem and progenitor cell proliferation by modulating H3 acetylation and DLST. iScience 2024; 27:109263. [PMID: 38439957 PMCID: PMC10910311 DOI: 10.1016/j.isci.2024.109263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/21/2023] [Accepted: 02/14/2024] [Indexed: 03/06/2024] Open
Abstract
Enhancers of polycomb 1 (EPC1) and 2 (EPC2) are involved in multiple biological processes as components of histone acetyltransferases/deacetylase complexes and transcriptional cofactors, and their dysfunction was associated with developmental defects and diseases. However, it remains unknown how their dysfunction induces hematopoietic stem and progenitor cell (HSPC) defects. Here, we show that depletion of EPC1/2 significantly reduced the number of hematopoietic stem and progenitor cells (HSPCs) in the aorta-gonad mesonephros and caudal hematopoietic tissue regions by impairing HSPC proliferation, and consistently downregulated the expression of HSPC genes in K562 cells. This study demonstrates the functions of EPC1/2 in regulating histone H3 acetylation, and in regulating DLST (dihydrolipoamide S-succinyltransferase) via H3 acetylation and cooperating with transcription factors serum response factor and FOXR2 together, and in the subsequent HSPC emergence and proliferation. Our results demonstrate the essential roles of EPC1/2 in regulating H3 acetylation, and DLST as a linkage between EPC1 and EPC2 with mitochondria metabolism, in HSPC emergence and proliferation.
Collapse
Affiliation(s)
- WenYe Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - LingYa Li
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - ZhiPeng Tai
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - GuoLiang Li
- College of Informatics, Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Ramamoorthi Elangovan V, Saadat N, Ghnenis A, Padmanabhan V, Vyas AK. Developmental programming: adverse sexually dimorphic transcriptional programming of gestational testosterone excess in cardiac left ventricle of fetal sheep. Sci Rep 2023; 13:2682. [PMID: 36792653 PMCID: PMC9932081 DOI: 10.1038/s41598-023-29212-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Adverse in-utero insults during fetal life alters offspring's developmental trajectory, including that of the cardiovascular system. Gestational hyperandrogenism is once such adverse in-utero insult. Gestational testosterone (T)-treatment, an environment of gestational hyperandrogenism, manifests as hypertension and pathological left ventricular (LV) remodeling in adult ovine offspring. Furthermore, sexual dimorphism is noted in cardiomyocyte number and morphology in fetal life and at birth. This study investigated transcriptional changes and potential biomarkers of prenatal T excess-induced adverse cardiac programming. Genome-wide coding and non-coding (nc) RNA expression were compared between prenatal T-treated (T propionate 100 mg intramuscular twice weekly from days 30 to 90 of gestation; Term: 147 days) and control ovine LV at day 90 fetus in both sexes. Prenatal T induced differential expression of mRNAs in the LV of female (2 down, 5 up) and male (3 down, 1 up) (FDR < 0.05, absolute log2 fold change > 0.5); pathways analysis demonstrated 205 pathways unique to the female, 382 unique to the male and 23 common pathways. In the male, analysis of ncRNA showed differential regulation of 15 lncRNAs (14 down, 1 up) and 27 snoRNAs (26 down and 1 up). These findings suggest sexual dimorphic modulation of cardiac coding and ncRNA with gestational T excess.
Collapse
Affiliation(s)
| | - Nadia Saadat
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Adel Ghnenis
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | - Arpita K Vyas
- College of Medicine, California Northstate University, Elk Grove, CA, USA.
- Department of Pediatrics, Division of Pediatric Endocrinology, School of Medicine, Washington University, St Louis, MO, USA.
| |
Collapse
|
3
|
Liu J, Feng X, Tian Y, Wang K, Gao F, Yang L, Li H, Tian Y, Yang R, Zhao L, Miao X, Huang J, Liu Q, Zhang W, Li Y, Wang C, Duan H, Liu S. Knockdown of TRIM27 expression suppresses the dysfunction of mesangial cells in lupus nephritis by FoxO1 pathway. J Cell Physiol 2019; 234:11555-11566. [PMID: 30648253 DOI: 10.1002/jcp.27810] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 11/05/2018] [Indexed: 12/29/2022]
Abstract
TRIM27 (tripartite motif-containing 27) is a member of the TRIM (tripartite motif) protein family and participates in a variety of biological processes. Some research has reported that TRIM27 was highly expressed in certain kinds of carcinoma cells and tissues and played an important role in the proliferation of carcinoma cells. However, whether TRIM27 takes part in the progression of lupus nephritis (LN) especially in cells proliferation remains unclear. Our study revealed that the overexpression of TRIM27 was observed in the kidneys of patients with LN, lupus mice and mesangial cells exposed to LN plasma which correlated with the proliferation of mesangial cells and ECM (extracellular matrix) deposition. Downregulation of TRIM27 expression suppressed the proliferation of mesangial cells and ECM accumulation in MRL/lpr mice and cultured human mesangial cells (HMCs) by regulating the FoxO1 pathway. Furthermore, the overexpression of FoxO1 remarkably decreased HMCs proliferation level and ECM accumulation in LN plasma-treated HMCs. In addition, the protein kinase B (Akt) signal pathway inhibitor LY294002 significantly reduced the expression of TRIM27 and inhibited the dysfunction of mesangial cells. These above data suggested that TRIM27 mediated abnormal mesangial cell proliferation in kidney of lupus and might be the potential target for treating mesangial cell proliferation of lupus nephritis.
Collapse
Affiliation(s)
- Jinxi Liu
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Xiaojuan Feng
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Yu Tian
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Kexin Wang
- Clinical Medicine, College of Basic Medicine,Hebei Medical University, Shijiazhuang, China
| | - Fan Gao
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Lin Yang
- Department of Nephrology, the Second Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongbo Li
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Yuexin Tian
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Ran Yang
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Lu Zhao
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Xinyan Miao
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Jie Huang
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Qingjuan Liu
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Wei Zhang
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Yuzhe Li
- Clinical Medicine, College of Basic Medicine,Hebei Medical University, Shijiazhuang, China
| | - Chunlin Wang
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | | | | |
Collapse
|
4
|
Sumoylation of histone deacetylase 1 regulates MyoD signaling during myogenesis. Exp Mol Med 2018; 50:e427. [PMID: 29328071 PMCID: PMC5799798 DOI: 10.1038/emm.2017.236] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 02/07/2023] Open
Abstract
Sumoylation, the conjugation of a small ubiquitin-like modifier (SUMO) protein to a target, has diverse cellular effects. However, the functional roles of the SUMO modification during myogenesis have not been fully elucidated. Here, we report that basal sumoylation of histone deacetylase 1 (HDAC1) enhances the deacetylation of MyoD in undifferentiated myoblasts, whereas further sumoylation of HDAC1 contributes to switching its binding partners from MyoD to Rb to induce myocyte differentiation. Differentiation in C2C12 skeletal myoblasts induced new immunoblot bands above HDAC1 that were gradually enhanced during differentiation. Using SUMO inhibitors and sumoylation assays, we showed that the upper band was caused by sumoylation of HDAC1 during differentiation. Basal deacetylase activity was not altered in the SUMO modification-resistant mutant HDAC1 K444/476R (HDAC1 2R). Either differentiation or transfection of SUMO1 increased HDAC1 activity that was attenuated in HDAC1 2R. Furthermore, HDAC1 2R failed to deacetylate MyoD. Binding of HDAC1 to MyoD was attenuated by K444/476R. Binding of HDAC1 to MyoD was gradually reduced after 2 days of differentiation. Transfection of SUMO1 induced dissociation of HDAC1 from MyoD but potentiated its binding to Rb. SUMO1 transfection further attenuated HDAC1-induced inhibition of muscle creatine kinase luciferase activity that was reversed in HDAC1 2R. HDAC1 2R failed to inhibit myogenesis and muscle gene expression. In conclusion, HDAC1 sumoylation plays a dual role in MyoD signaling: enhancement of HDAC1 deacetylation of MyoD in the basally sumoylated state of undifferentiated myoblasts and dissociation of HDAC1 from MyoD during myogenesis.
Collapse
|
5
|
Searle NE, Pillus L. Critical genomic regulation mediated by Enhancer of Polycomb. Curr Genet 2017; 64:147-154. [PMID: 28884217 DOI: 10.1007/s00294-017-0742-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 01/28/2023]
Abstract
Enhancer of Polycomb (EPC) was first identified for its contributions to development in Drosophila and was soon-thereafter purified as a subunit of the NuA4/TIP60 acetyltransferase complex. Since then, EPC has often been left in the shadows as an essential, yet non-catalytic subunit of NuA4/TIP60; however, its deep conservation and disease association make clear that it warrants additional attention. In fact, recent studies in yeast demonstrated that its Enhancer of Polycomb, Epl1, was just as important for gene expression and acetylation as is the catalytic subunit of NuA4. Despite its conservation, studies of EPC have often remained siloed between organisms. Here, our goal is to provide a cohesive view of the current state of the EPC literature as it stands among the major model organisms in which it has been studied. EPC is involved in multiple processes, beginning with its cardinal role in regulating global and targeted histone acetylation. EPC also frequently serves as an important interaction partner in these basic cellular functions, as well as in multicellular development, such as in hematopoiesis and skeletal muscle differentiation, and in human disease. Taken together, a unifying theme from these studies highlights EPC as a critical genomic regulator.
Collapse
Affiliation(s)
- Naomi E Searle
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, UC San Diego Moores Cancer Center, 9500 Gilman Drive, La Jolla, CA, 92093-0347, USA.,UC San Diego Biomedical Sciences, La Jolla, CA, 92093-0685, USA
| | - Lorraine Pillus
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, UC San Diego Moores Cancer Center, 9500 Gilman Drive, La Jolla, CA, 92093-0347, USA.
| |
Collapse
|
6
|
Geyer SH, Maurer-Gesek B, Reissig LF, Weninger WJ. High-resolution Episcopic Microscopy (HREM) - Simple and Robust Protocols for Processing and Visualizing Organic Materials. J Vis Exp 2017. [PMID: 28715372 PMCID: PMC5609318 DOI: 10.3791/56071] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We provide simple protocols for generating digital volume data with the high-resolution episcopic microscopy (HREM) method. HREM is capable of imaging organic materials with volumes up to 5 x 5 x 7 mm3 in typical numeric resolutions between 1 x 1 x 1 and 5 x 5 x 5 µm3. Specimens are embedded in methacrylate resin and sectioned on a microtome. After each section an image of the block surface is captured with a digital video camera that sits on the phototube connected to the compound microscope head. The optical axis passes through a green fluorescent protein (GFP) filter cube and is aligned with a position, at which the bock holder arm comes to rest after each section. In this way, a series of inherently aligned digital images, displaying subsequent block surfaces are produced. Loading such an image series in three-dimensional (3D) visualization software facilitates the immediate conversion to digital volume data, which permit virtual sectioning in various orthogonal and oblique planes and the creation of volume and surface rendered computer models. We present three simple, tissue specific protocols for processing various groups of organic specimens, including mouse, chick, quail, frog and zebra fish embryos, human biopsy material, uncoated paper and skin replacement material.
Collapse
Affiliation(s)
- Stefan H Geyer
- Division of Anatomy, Center for Anatomy and Cell Biology & MIC, Medical University of Vienna
| | - Barbara Maurer-Gesek
- Division of Anatomy, Center for Anatomy and Cell Biology & MIC, Medical University of Vienna
| | - Lukas F Reissig
- Division of Anatomy, Center for Anatomy and Cell Biology & MIC, Medical University of Vienna
| | - Wolfgang J Weninger
- Division of Anatomy, Center for Anatomy and Cell Biology & MIC, Medical University of Vienna;
| |
Collapse
|
7
|
Mahajan V, Gaymalov Z, Alakhova D, Gupta R, Zucker IH, Kabanov AV. Horizontal gene transfer from macrophages to ischemic muscles upon delivery of naked DNA with Pluronic block copolymers. Biomaterials 2015; 75:58-70. [PMID: 26480472 DOI: 10.1016/j.biomaterials.2015.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 12/31/2022]
Abstract
Intramuscular administration of plasmid DNA (pDNA) with non-ionic Pluronic block copolymers increases gene expression in injected muscles and lymphoid organs. We studied the role of immune cells in muscle transfection upon inflammation. Local inflammation in murine hind limb ischemia model (MHLIM) drastically increased DNA, RNA and expressed protein levels in ischemic muscles injected with pDNA/Pluronic. The systemic inflammation (MHLIM or peritonitis) also increased expression of pDNA/Pluronic in the muscles. When pDNA/Pluronic was injected in ischemic muscles the reporter gene, Green Fluorescent Protein (GFP) co-localized with desmin(+) muscle fibers and CD11b(+) macrophages (MØs), suggesting transfection of MØs along with the muscle cells. P85 enhanced (∼ 4 orders) transfection of MØs with pDNA in vitro. Moreover, adoptively transferred MØs were shown to pass the transgene to inflamed muscle cells in MHLIM. Using a co-culture of myotubes (MTs) and transfected MØs expressing a reporter gene under constitutive (cmv-luciferase) or muscle specific (desmin-luciferase) promoter we demonstrated that P85 enhances horizontal gene transfer from MØ to MTs. Therefore, MØs can play an important role in muscle transfection with pDNA/Pluronic during inflammation, with both inflammation and Pluronic contributing to the increased gene expression. pDNA/Pluronic has potential for therapeutic gene delivery in muscle pathologies that involve inflammation.
Collapse
Affiliation(s)
- Vivek Mahajan
- Division of Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | - Zagit Gaymalov
- Division of Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA; Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | - Daria Alakhova
- Division of Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Richa Gupta
- Division of Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | - Alexander V Kabanov
- Division of Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA; Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA; Laboratory of Chemical Design of Bionanomaterials, Faculty of Chemistry, M.V. Lomonosov Moscow State University, 119899 Moscow, Russia.
| |
Collapse
|
8
|
Wang Y, Alla V, Goody D, Gupta SK, Spitschak A, Wolkenhauer O, Pützer BM, Engelmann D. Epigenetic factor EPC1 is a master regulator of DNA damage response by interacting with E2F1 to silence death and activate metastasis-related gene signatures. Nucleic Acids Res 2015; 44:117-33. [PMID: 26350215 PMCID: PMC4705687 DOI: 10.1093/nar/gkv885] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/24/2015] [Indexed: 12/31/2022] Open
Abstract
Transcription factor E2F1 is a key regulator of cell proliferation and apoptosis. Recently, it has been shown that aberrant E2F1 expression often detectable in advanced cancers contributes essentially to cancer cell propagation and characterizes the aggressive potential of a tumor. Conceptually, this requires a subset of malignant cells capable of evading apoptotic death through anticancer drugs. The molecular mechanism by which the pro-apoptotic activity of E2F1 is antagonized is widely unclear. Here we report a novel function for EPC1 (enhancer of polycomb homolog 1) in DNA damage protection. Depletion of EPC1 potentiates E2F1-mediated apoptosis in response to genotoxic treatment and abolishes tumor cell motility. We found that E2F1 directly binds to the EPC1 promoter and EPC1 vice versa physically interacts with bifunctional E2F1 to modulate its transcriptional activity in a target gene-specific manner. Remarkably, nuclear-colocalized EPC1 activates E2F1 to upregulate the expression of anti-apoptotic survival genes such as BCL-2 or Survivin/BIRC5 and inhibits death-inducing targets. The uncovered cooperativity between EPC1 and E2F1 triggers a metastasis-related gene signature in advanced cancers that predicts poor patient survival. These findings unveil a novel oncogenic function of EPC1 for inducing the switch into tumor progression-relevant gene expression that may help to set novel therapies.
Collapse
Affiliation(s)
- Yajie Wang
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Vijay Alla
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Deborah Goody
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Shailendra K Gupta
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
| | - Alf Spitschak
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
| | - Brigitte M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - David Engelmann
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
9
|
Masilamani TJ, Loiselle JJ, Sutherland LC. Assessment of reference genes for real-time quantitative PCR gene expression normalization during C2C12 and H9c2 skeletal muscle differentiation. Mol Biotechnol 2014; 56:329-39. [PMID: 24146429 DOI: 10.1007/s12033-013-9712-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Skeletal muscle differentiation occurs during muscle development and regeneration. To initiate and maintain the differentiated state, a multitude of gene expression changes occur. Accurate assessment of these differentiation-related gene expression changes requires good quality template, but more specifically, appropriate internal controls for normalization. Two cell line-based models used for in vitro analyses of muscle differentiation incorporate mouse C2C12 and rat H9c2 cells. In this study, we set out to identify the most appropriate controls for mRNA expression normalization during C2C12 and H9c2 differentiation. We assessed the expression profiles of Actb, Gapdh, Hprt, Rps12 and Tbp during C2C12 differentiation and of Gapdh and Rps12 during H9c2 differentiation. Using NormFinder, we validated the stability of the genes individually and of the geometric mean generated from different gene combinations. We verified our results using Myogenin. Our study demonstrates that using the geometric mean of a combination of specific reference genes for normalization provides a platform for more precise test gene expression assessment during myoblast differentiation than using the absolute expression value of an individual gene and reinforces the necessity of reference gene validation.
Collapse
Affiliation(s)
- Twinkle J Masilamani
- Biomolecular Sciences Program, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, P3E 2C6, Canada,
| | | | | |
Collapse
|
10
|
Joung H, Eom GH, Choe N, Lee HM, Ko JH, Kwon DH, Nam YS, Min H, Shin S, Kook J, Cho YK, Kim JC, Seo SB, Baik YH, Nam KI, Kook H. Ret finger protein mediates Pax7-induced ubiquitination of MyoD in skeletal muscle atrophy. Cell Signal 2014; 26:2240-8. [PMID: 25025573 DOI: 10.1016/j.cellsig.2014.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/09/2014] [Indexed: 01/07/2023]
Abstract
Skeletal muscle atrophy results from the net loss of muscular proteins and organelles and is caused by pathologic conditions such as nerve injury, immobilization, cancer, and other metabolic diseases. Recently, ubiquitination-mediated degradation of skeletal-muscle-specific transcription factors was shown to be involved in muscle atrophy, although the mechanisms have yet to be defined. Here we report that ret finger protein (RFP), also known as TRIM27, works as an E3 ligase in Pax7-induced degradation of MyoD. Muscle injury induced by sciatic nerve transection up-regulated RFP and RFP physically interacted with both Pax7 and MyoD. RFP and Pax7 synergistically reduced the protein amounts of MyoD but not the mRNA. RFP-induced reduction of MyoD protein was blocked by proteasome inhibitors. The Pax7-induced reduction MyoD was attenuated by RFP siRNA and by MG132, a proteasome inhibitor. RFPΔR, an RFP construct that lacks the RING domain, failed to reduce MyoD amounts. RFP ubiquitinated MyoD, but RFPΔR failed to do so. Forced expression of RFP, but not RFPΔR, enhanced Pax7-induced ubiquitination of MyoD, whereas RFP siRNA blocked the ubiquitination. Sciatic nerve injury-induced muscle atrophy as well the reduction in MyoD was attenuated in RFP knockout mice. Taken together, our results show that RFP works as a novel E3 ligase in the Pax7-mediated degradation of MyoD in response to skeletal muscle atrophy.
Collapse
Affiliation(s)
- Hosouk Joung
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea; BK21 Center for Biomedical Human Resources, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Gwang Hyeon Eom
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea; Department of Pharmacology, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea; BK21 Center for Biomedical Human Resources, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Nakwon Choe
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Hye Mi Lee
- Department of Anatomy, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Jeong-Hyeon Ko
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Duk-Hwa Kwon
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea; BK21 Center for Biomedical Human Resources, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Yoon Seok Nam
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea; BK21 Center for Biomedical Human Resources, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Hyunki Min
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea; BK21 Center for Biomedical Human Resources, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Sera Shin
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Jeewon Kook
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea; BK21 Center for Biomedical Human Resources, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Young Kuk Cho
- Department of Pediatrics, Chonnam National University Hospital, Gwangju 501-746, Republic of Korea
| | - Jeong Chul Kim
- Department of Surgery, Chonnam National University Hospital, Gwangju 501-746, Republic of Korea
| | - Sang Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Yung Hong Baik
- Department of Pharmacology, College of Medicine, Seonam University, Namwon, Republic of Korea
| | - Kwang-Il Nam
- Department of Anatomy, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea; BK21 Center for Biomedical Human Resources, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Hyun Kook
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea; Department of Pharmacology, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea; BK21 Center for Biomedical Human Resources, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea.
| |
Collapse
|
11
|
Kwon DH, Eom GH, Kee HJ, Nam YS, Cho YK, Kim DK, Koo JY, Kim HS, Nam KI, Kim KK, Lee IK, Park SB, Choi HS, Kook H. Estrogen-related receptor gamma induces cardiac hypertrophy by activating GATA4. J Mol Cell Cardiol 2013; 65:88-97. [DOI: 10.1016/j.yjmcc.2013.09.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 10/26/2022]
|