1
|
Jiang M, Wang Y, Zhang J, Fan X, Jieensi M, Ding F, Wang Y, Sun X. Temperature and Ultrasound-Responsive Nanoassemblies for Enhanced Organ Targeting and Reduced Cardiac Toxicity. Int J Nanomedicine 2024; 19:11397-11413. [PMID: 39524922 PMCID: PMC11550713 DOI: 10.2147/ijn.s470465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Background Biocompatible nanocarriers are widely employed as drug-delivery vehicles for treatment. Nevertheless, indiscriminate drug release, insufficient organ-specific targeting, and systemic toxicity hamper nanocarrier effectiveness. Stimuli-responsive nano-sized drug delivery systems (DDS) are an important strategy for enhancing drug delivery efficiency and reducing unexpected drug release. Methods This study introduces a temperature- and ultrasound-responsive nano-DDS in which the copolymer p-(MEO2MA-co-THPMA) is grafted onto mesoporous iron oxide nanoparticles (MIONs) to construct an MPL-p nano-DDS. The copolymer acts as a nanopore gatekeeper, assuming an open conformation at sub-physiological temperatures that allows drug encapsulation and a closed conformation at physiological temperatures that prevents unexpected drug release during circulation. Lactoferrin was conjugated to the nanoparticle surface via polyethylene glycol to gain organ-targeting ability. External ultrasonic irradiation of the nanoparticles in the targeted organs caused a conformational change of the copolymer and reopened the pores, facilitating controlled drug release. Results MPL-p exhibited excellent biocompatibility and rare drug release in circulation. When targeting delivery to the brain, ultrasound promoted the release of the loaded drugs in the brain without accumulation in other organs, avoiding the related adverse reactions, specifically those affecting the heart. Conclusion This study established a novel temperature- and ultrasound-responsive DDS that reduced systemic adverse reactions compared with traditional DDS, especially in the heart, and demonstrated excellent organ delivery efficiency.
Collapse
Affiliation(s)
- Mingzhou Jiang
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Yiming Wang
- Department of Cardiology, Huashan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Jinjin Zhang
- Department of Cardiology, Huashan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Xi Fan
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Milayi Jieensi
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Fang Ding
- Department of Cardiology, Huashan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Yiqing Wang
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Xiaotian Sun
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
2
|
Kong FB, Shi ZY, Huang YL, Chen HH, Deng QM, Wu K, Zhu Z, Li L, Xu S, Zhong XG, Yang JR, Wang XT. SIVA-1 interaction with PCBP1 serves as a predictive biomarker for cisplatin sensitivity in gastric cancer and its inhibitory effect on tumor growth in vivo. J Cancer 2024; 15:4301-4312. [PMID: 38947376 PMCID: PMC11212092 DOI: 10.7150/jca.92963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/30/2024] [Indexed: 07/02/2024] Open
Abstract
Background: SIVA-1 has been reported to play a key role in cell apoptosis and gastric cancer (GC) chemoresistance in vitro. Nevertheless, the clinical significance of SIVA-1 in GC chemotherapy remains unclear. Methods and results: Immunohistochemistry and histoculture drug response assays were used to determine SIVA-1 expression and the inhibition rate (IR) of agents to GC and to further analyze the relationship between these two phenomena. Additionally, cisplatin (DDP)-resistant GC cells were used to elucidate the role and mechanism of SIVA-1 in vivo. The results demonstrated that SIVA-1 expression was positively correlated with the IR of DDP to GC but not with those of 5-fluorouracil (5-FU) or adriamycin (ADM). Furthermore, SIVA-1 overexpression with DDP treatment synergistically inhibited tumor growth in vivo by increasing PCBP1 and decreasing Bcl-2 and Bcl-xL expression. Conclusions: Our study demonstrated that SIVA-1 may serve as an indicator of the GC sensitivity to DDP, and the mechanism of SIVA-1 in GC resistance to DDP was preliminarily revealed.
Collapse
Affiliation(s)
- Fan-Biao Kong
- Department of Colorectal and Anal Surgery, Guangxi Academy of Medical Sciences, People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Minimally Invasive Technology and Applications Guangxi Academy of Medical Sciences. 6 Taoyuan Road, Nanning, Guangxi Zhuang autonomous region 530021, People's Republic of China
| | - Zheng-Yi Shi
- Department of Colorectal and Anal Surgery, Guangxi Academy of Medical Sciences, People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Minimally Invasive Technology and Applications Guangxi Academy of Medical Sciences. 6 Taoyuan Road, Nanning, Guangxi Zhuang autonomous region 530021, People's Republic of China
| | - Yu-Liang Huang
- Department of Colorectal and Anal Surgery, Guangxi Academy of Medical Sciences, People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Minimally Invasive Technology and Applications Guangxi Academy of Medical Sciences. 6 Taoyuan Road, Nanning, Guangxi Zhuang autonomous region 530021, People's Republic of China
| | - Huan-Huan Chen
- Department of Colorectal and Anal Surgery, Guangxi Academy of Medical Sciences, People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Minimally Invasive Technology and Applications Guangxi Academy of Medical Sciences. 6 Taoyuan Road, Nanning, Guangxi Zhuang autonomous region 530021, People's Republic of China
| | - Qiao-Ming Deng
- Department of Surgery, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, 530023, People's Republic of China
| | - Kun Wu
- Department of Surgery, Minzu hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530001, People's Republic of China
| | - Zhou Zhu
- Department of Colorectal and Anal Surgery, Guangxi Academy of Medical Sciences, People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Minimally Invasive Technology and Applications Guangxi Academy of Medical Sciences. 6 Taoyuan Road, Nanning, Guangxi Zhuang autonomous region 530021, People's Republic of China
| | - Lei Li
- Departments of Gastrointestinal, Hernia and Enterofistula Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Minimally Invasive Technology and Applications Guangxi Academy of Medical Sciences. 6 Taoyuan Road, Nanning, Guangxi Zhuang autonomous region 530021, People's Republic of China
| | - Sheng Xu
- Departments of Gastrointestinal, Hernia and Enterofistula Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Minimally Invasive Technology and Applications Guangxi Academy of Medical Sciences. 6 Taoyuan Road, Nanning, Guangxi Zhuang autonomous region 530021, People's Republic of China
| | - Xiao-Gang Zhong
- Department of Colorectal and Anal Surgery, Guangxi Academy of Medical Sciences, People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Minimally Invasive Technology and Applications Guangxi Academy of Medical Sciences. 6 Taoyuan Road, Nanning, Guangxi Zhuang autonomous region 530021, People's Republic of China
| | - Jian-Rong Yang
- Department of Hepatobiliary, Pancreas and Spleen Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Minimally Invasive Technology and Applications Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health. 6 Taoyuan Road, Nanning, Guangxi Zhuang autonomous region 530021, People's Republic of China
| | - Xiao-Tong Wang
- Departments of Gastrointestinal, Hernia and Enterofistula Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Minimally Invasive Technology and Applications Guangxi Academy of Medical Sciences. 6 Taoyuan Road, Nanning, Guangxi Zhuang autonomous region 530021, People's Republic of China
| |
Collapse
|
3
|
Vermehren-Schmaedick A, Peto M, Wagoner W, Chiotti KE, Ramsey E, Wang X, Rakshe S, Minnier J, Sears R, Spellman P, Luoh SW. Mutation of SIVA, a candidate metastasis gene identified from clonally related bilateral breast cancers, promotes breast cancer cell spread in vitro and in vivo. PLoS One 2024; 19:e0302856. [PMID: 38722955 PMCID: PMC11081324 DOI: 10.1371/journal.pone.0302856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/12/2024] [Indexed: 05/13/2024] Open
Abstract
Metastasis is the most dreaded outcome after a breast cancer diagnosis, and little is known regarding what triggers or promotes breast cancer to spread distally, or how to prevent or eradicate metastasis effectively. Bilateral breast cancers are an uncommon form of breast cancers. In our study, a percentage of bilateral breast cancers were clonally related based on copy number variation profiling. Whole exome sequencing and comparative sequence analysis revealed that a limited number of somatic mutations were acquired in this "breast-to-breast" metastasis that might promote breast cancer distant spread. One somatic mutation acquired was SIVA-D160N that displayed pro-metastatic phenotypes in vivo and in vitro. Over-expression of SIVA-D160N promoted migration and invasion of human MB-MDA-231 breast cancer cells in vitro, consistent with a dominant negative interfering function. When introduced via tail vein injection, 231 cells over-expressing SIVA-D160N displayed enhanced distant spread on IVIS imaging. Over-expression of SIVA-D160N promoted invasion and anchorage independent growth of mouse 4T1 breast cancer cells in vitro. When introduced orthotopically via mammary fat pad injection in syngeneic Balb/c mice, over-expression of SIVA-D160N in 4T1 cells increased orthotopically implanted mammary gland tumor growth as well as liver metastasis. Clonally related bilateral breast cancers represented a novel system to investigate metastasis and revealed a role of SIVA-D160N in breast cancer metastasis. Further characterization and understanding of SIVA function, and that of its interacting proteins, may elucidate mechanisms of breast cancer metastasis, providing clinically useful biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Anke Vermehren-Schmaedick
- Veterans Administration Portland Health Care System, Portland, Oregon, United States of America
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Myron Peto
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Wendy Wagoner
- Veterans Administration Portland Health Care System, Portland, Oregon, United States of America
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Kami E. Chiotti
- Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Elizabeth Ramsey
- Veterans Administration Portland Health Care System, Portland, Oregon, United States of America
- Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Xiaoyan Wang
- Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Shauna Rakshe
- Knight Cancer Institute, Biostatistics Shared Resource, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jessica Minnier
- Knight Cancer Institute, Biostatistics Shared Resource, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Rosalie Sears
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
- Brenden-Colson Center for Pancreatic Care, School of Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Paul Spellman
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- University of California Los Angeles, Los Angeles, California, United States of America
| | - Shiuh-Wen Luoh
- Veterans Administration Portland Health Care System, Portland, Oregon, United States of America
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, Oregon, United States of America
| |
Collapse
|
4
|
Ashton AW. Preparing to strike: Acute events in signaling by the serpentine receptor for thromboxane A 2. Pharmacol Ther 2023:108478. [PMID: 37321373 DOI: 10.1016/j.pharmthera.2023.108478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Over the last two decades, awareness of the (patho)physiological roles of thromboxane A2 signaling has been greatly extended. From humble beginnings as a short-lived stimulus that activates platelets and causes vasoconstriction to a dichotomous receptor system involving multiple endogenous ligands capable of modifying tissue homeostasis and disease generation in almost every tissue of the body. Thromboxane A2 receptor (TP) signal transduction is associated with the pathogenesis of cancer, atherosclerosis, heart disease, asthma, and host response to parasitic infection amongst others. The two receptors mediating these cellular responses (TPα and TPβ) are derived from a single gene (TBXA2R) through alternative splicing. Recently, knowledge about the mechanism(s) of signal propagation by the two receptors has undergone a revolution in understanding. Not only have the structural relationships associated with G-protein coupling been established but the modulation of that signaling by post-translational modification to the receptor has come sharply into focus. Moreover, the signaling of the receptor unrelated to G-protein coupling has become a burgeoning field of endeavor with over 70 interacting proteins currently identified. These data are reshaping the concept of TP signaling from a mere guanine nucleotide exchange factors for Gα activation to a nexus for the convergence of diverse and poorly characterized signaling pathways. This review summarizes the advances in understanding in TP signaling, and the potential for new growth in a field that after almost 50 years is finally coming of age.
Collapse
Affiliation(s)
- Anthony W Ashton
- Division of Cardiovascular Medicine, Lankenau Institute for Medical Research, Rm 128, 100 E Lancaster Ave, Wynnewood, PA 19096, USA; Division of Perinatal Research, Kolling Institute of Medical Research, Faculty of Medicine and Health, University of Sydney, St Leonards, NSW 2065, Australia.
| |
Collapse
|
5
|
Pantazi D, Tselepis AD. Cardiovascular toxic effects of antitumor agents: Pathogenetic mechanisms. Thromb Res 2022; 213 Suppl 1:S95-S102. [DOI: 10.1016/j.thromres.2021.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 02/08/2023]
|
6
|
He Z, Deng F, Ma Z, Zhang Q, He J, Ye L, Chen H, Yang D, He L, Luo J, Yan T. Molecular characterization, expression, and apoptosis regulation of siva1 in protogynous hermaphrodite fish ricefield eel (Monopterus albus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1585-1596. [PMID: 34414556 DOI: 10.1007/s10695-021-00997-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Siva1, which induces extensive apoptosis, has been well characterized. To elucidate the molecular function of Siva1 in ricefield eel, molecular characterization and phylogenetic analysis were performed, and the mRNA expression in the ovary at different developmental stages and ovary tissues exposed to H2O2 and Z-VAD-FMK in vitro were also evaluated. The results indicated that ricefield eel Siva1 was highly conserved and contains three conserved motifs, despite 83 amino acid differences upstream of the initiation codon. Phylogenetic analysis demonstrated that ricefield eel Siva1 clusters together with the Siva1 protein of the other fish, with high sequence homology with that of Lates calcarifer. Quantitative real-time polymerase chain reaction analysis showed high siva1 expression levels in the ovary and low expression levels in the liver. The higher mRNA levels of siva1 were detected in the IE and IM, and the lower siva1 mRNA levels were found in the OM, IL, and TE during gonadal development. Additionally, siva1 expression levels in the ovarian tissues were significantly increased at 1 h post incubation (hpi) with H2O2 and then significantly decreased at 2 hpi; however, siva1 expression was upregulated significantly at 4 and 8 hpi, similar to the patterns observed with caspase3, which was used as a molecular marker of apoptosis. Moreover, the siva1 mRNAs were elevated significantly than that in control groups at 1 hpi, but the expression of siva1 was down-regulated dramatically at 2, 4, and 8 hpi, which were similar with that of caspase3 expression profiles after Z-VAD-FMK incubation. What's more, Pearson's correlation coefficients showed strongly positive relationships between siva1 and caspase3. These findings suggest that Siva1 plays an important apoptosis role in gonadal development of ricefield eel.
Collapse
Affiliation(s)
- Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Faqiang Deng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhijun Ma
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qian Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiayang He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lijuan Ye
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongjun Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Liang He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jie Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
7
|
Mamoshina P, Rodriguez B, Bueno-Orovio A. Toward a broader view of mechanisms of drug cardiotoxicity. CELL REPORTS MEDICINE 2021; 2:100216. [PMID: 33763655 PMCID: PMC7974548 DOI: 10.1016/j.xcrm.2021.100216] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiotoxicity, defined as toxicity that affects the heart, is one of the most common adverse drug effects. Numerous drugs have been shown to have the potential to induce lethal arrhythmias by affecting cardiac electrophysiology, which is the focus of current preclinical testing. However, a substantial number of drugs can also affect cardiac function beyond electrophysiology. Within this broader sense of cardiotoxicity, this review discusses the key drug-protein interactions known to be involved in cardiotoxic drug response. We cover adverse effects of anticancer, central nervous system, genitourinary system, gastrointestinal, antihistaminic, anti-inflammatory, and anti-infective agents, illustrating that many share mechanisms of cardiotoxicity, including contractility, mitochondrial function, and cellular signaling.
Collapse
Affiliation(s)
| | - Blanca Rodriguez
- Department of Computer Science, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Alfonso Bueno-Orovio
- Department of Computer Science, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Wang XT, Li L, Kong FB, Zhong XG, Mai W. Lentivirus-Mediated Overexpression of SIVA-1 Reverses Cisplatin Resistance in Gastric Cancer in vitro. Cell Biochem Biophys 2020; 78:455-463. [PMID: 32648086 DOI: 10.1007/s12013-020-00929-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/24/2020] [Indexed: 11/26/2022]
Abstract
SIVA-1 plays a critical role in the induction of apoptosis in a number of different cell lines and participates in the mechanism of cisplatin (DDP)-mediated antitumor effects. However, the involvement of SIVA-1 in cisplatin resistance in gastric carcinoma has not been revealed. To explore the effect of SIVA-1 on DDP resistance, a recombinant pGV358-GFP-SIVA-1 lentiviral vector was constructed and transfected into human cisplatin-resistant MKN45/DDP gastric cancer cells. Subsequently, stable SIVA-1 overexpression was established in MKN45/DDP cells, which resulted in increased DDP sensitivity in MKN45/DDP cells in vitro. Flow cytometry demonstrated that SIVA-1 overexpression increased the percentage of apoptotic cells compared to that in the control. The colony formation assay clearly revealed that cell growth and proliferation were significantly suppressed following SIVA-1 overexpression. In addition, overexpression of SIVA-1 inhibited the migratory and invasive potential of MKN45/DDP cells in vitro. Western blot analysis indicated that SIVA-1 increased the expression levels of p53, p73, and p14ARF, whereas it reduced Bcl-2, MDM2, and Bcl-xL expression. In short, SIVA-1 upregulated the protein expression of p53, p73, and p14ARF and decreased that of Bcl-2, MDM2, and Bcl-xL in vitro and subsequently reversed cisplatin resistance in gastric cancer cells, suggesting that SIVA-1 serves as a valuable potential target for attenuating chemotherapy resistance.
Collapse
Affiliation(s)
- Xiao-Tong Wang
- Department of Gastrointestinal and Peripheral Vascular Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Lei Li
- Department of Gastrointestinal and Peripheral Vascular Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Fan-Biao Kong
- Department of Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.
| | - Xiao-Gang Zhong
- Department of Gastrointestinal and Peripheral Vascular Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.
| | - Wei Mai
- Department of Gastrointestinal and Peripheral Vascular Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.
| |
Collapse
|
9
|
Wang X, Zhou Z, Zhang T, Wang M, Xu R, Qin S, Zhang S. Overexpression of miR-664 is associated with poor overall survival and accelerates cell proliferation, migration and invasion in hepatocellular carcinoma. Onco Targets Ther 2019; 12:2373-2381. [PMID: 30992673 PMCID: PMC6445241 DOI: 10.2147/ott.s188658] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. This study aimed to investigate the expression patterns of microRNA-664 (miR-664) in HCC tissues and cells, and assess its clinical significance and functional role in HCC. Patients and methods One hundred and thirty-four paired HCC and non-cancerous tissues were collected from patients who underwent surgery in Qianfoshan Hospital affiliated to Shandong University (Shandong, China) between 2009 and 2012. Expression of miR-664 was measured by quantitative real-time polymerase chain reaction (qRT-PCR). Prognostic value of miR-664 in HCC was evaluated using Kaplan–Meier survival analysis and Cox regression analysis. Cell proliferation was analyzed using the CCK-8 assay, and cell migration and invasion of HCC cells was evaluated by the Transwell assay. Results Expression of miR-664 was significantly upregulated in HCC tissues and cells when compared with the normal controls (all P<0.05). MiR-664 expression was associated with lymph node metastasis, TNM stage and differentiation (all P<0.05) in the HCC patients. High miR-664 expression predicted poor overall survival (log-rank P=0.004) and acted as an independent prognostic factor (HR =1.945, 95% CI=1.078–3.508, P=0.027). According to cell experiments, the upregulation of miR-664 could promote, whereas the downregulation of miR-664 could inhibit proliferation, migration and invasion of HCC cells (all P<0.05). SIVA1 was predicted as a direct target gene of miR-664 in HCC. Conclusion All data indicated that overexpression of miR-664 is associated with poor prognosis of HCC patients, and may enhance tumor progression of HCC by targeting SIVA1. MiR-664 may be a candidate therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Xianming Wang
- Department of General Surgery, Qianfoshan Hospital Affiliated to Shandong University, Shandong 250014, China, ;
| | - Zhengtong Zhou
- Department of General Surgery, Qianfoshan Hospital Affiliated to Shandong University, Shandong 250014, China, ;
| | - Tao Zhang
- Department of General Surgery, Qianfoshan Hospital Affiliated to Shandong University, Shandong 250014, China, ;
| | - Minghai Wang
- Department of General Surgery, Qianfoshan Hospital Affiliated to Shandong University, Shandong 250014, China, ;
| | - Rongwei Xu
- Department of General Surgery, Qianfoshan Hospital Affiliated to Shandong University, Shandong 250014, China, ;
| | - Shiyong Qin
- Department of General Surgery, Qianfoshan Hospital Affiliated to Shandong University, Shandong 250014, China, ;
| | - Shuguang Zhang
- Department of General Surgery, Qianfoshan Hospital Affiliated to Shandong University, Shandong 250014, China, ;
| |
Collapse
|
10
|
Vachtenheim J, Lischke R, Vachtenheim J. Siva-1 emerges as a tissue-specific oncogene beyond its classic role of a proapoptotic gene. Onco Targets Ther 2018; 11:6361-6367. [PMID: 30319276 PMCID: PMC6171514 DOI: 10.2147/ott.s173001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Siva-1 is a typical apoptotic protein commonly activated by the p53 tumor suppressor protein and should therefore participate in a barrier against the development of cancer. It has proapoptotic activities in various cell systems. Recent findings suggest that Siva-1 possesses several other apoptosis-independent functions and interacts with many other proteins not directly involved in apoptosis. It harbors the ARF E3 ubiquitin protein ligase activity, a property that is clearly prooncogenic and leads to p53 degradation through the upregulation of the Hdm2 protein level. Surprisingly, recent evidence shows that Siva-1 absence prevents the development of non-small cell lung carcinomas in a mouse model and reveals the oncogenic roles in the same types of human cells, indicating its unique function as an oncogene in the cell context-dependent manner. Herein, we review reported activities of Siva-1 in various experimental settings and comment on its ambiguous function in tumor biology.
Collapse
Affiliation(s)
- Jiri Vachtenheim
- Third Department of Surgery, First Faculty of Medicine, Charles University Prague and University Hospital Motol, Prague, Czech Republic
| | - Robert Lischke
- Third Department of Surgery, First Faculty of Medicine, Charles University Prague and University Hospital Motol, Prague, Czech Republic
| | - Jiri Vachtenheim
- Department of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University Prague, Czech Republic,
| |
Collapse
|
11
|
Ma Y, Liu T, Song X, Tian Y, Wei Y, Wang J, Li X, Yang X. Siva 1 inhibits proliferation, migration and invasion by phosphorylating Stathmin in ovarian cancer cells. Oncol Lett 2017; 14:1512-1518. [PMID: 28789373 PMCID: PMC5529897 DOI: 10.3892/ol.2017.6307] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 03/03/2017] [Indexed: 12/22/2022] Open
Abstract
Ovarian cancer is one of the most common types of gynecologic malignant tumor, with high incidence and high mortality rates. It is difficult to diagnose ovarian cancer early due to the complex structure and function of the ovaries. Siva 1 is a well-known pro-apoptosis protein that functions in multiple types of cancer cells: There are several studies demonstrating that Siva 1 arrests apoptosis and facilitates cancer development in osteosarcoma and non-small cell lung cancer. Whether Siva 1 functions in ovarian cancer remains unknown. In the present study, it was established that Siva 1 was stably overexpressed in ovarian cancer cell lines, and demonstrated that the overexpression of Siva 1 inhibited proliferation, promoted apoptosis and suppressed migration and invasion by facilitating phosphorylation of Stathmin and polymerization of α-tubulin in ovarian cancer cells. These data provide specific novel insights into the molecular mechanism of ovarian cancer, and may be of significance for the clinical diagnosis and therapy of ovarian cancer.
Collapse
Affiliation(s)
- Yifei Ma
- Department of Obstetrics and Gynecology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Ting Liu
- Department of Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiue Song
- Department of Obstetrics and Gynecology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Yuling Tian
- Department of Obstetrics and Gynecology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Yongqing Wei
- Department of Obstetrics and Gynecology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Jidong Wang
- Department of Obstetrics and Gynecology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Xiao Li
- Department of Obstetrics and Gynecology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Xingsheng Yang
- Department of Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
12
|
Zhang J, Lachance V, Schaffner A, Li X, Fedick A, Kaye LE, Liao J, Rosenfeld J, Yachelevich N, Chu ML, Mitchell WG, Boles RG, Moran E, Tokita M, Gorman E, Bagley K, Zhang W, Xia F, Leduc M, Yang Y, Eng C, Wong LJ, Schiffmann R, Diaz GA, Kornreich R, Thummel R, Wasserstein M, Yue Z, Edelmann L. A Founder Mutation in VPS11 Causes an Autosomal Recessive Leukoencephalopathy Linked to Autophagic Defects. PLoS Genet 2016; 12:e1005848. [PMID: 27120463 PMCID: PMC4847778 DOI: 10.1371/journal.pgen.1005848] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 01/15/2016] [Indexed: 11/24/2022] Open
Abstract
Genetic leukoencephalopathies (gLEs) are a group of heterogeneous disorders with white matter abnormalities affecting the central nervous system (CNS). The causative mutation in ~50% of gLEs is unknown. Using whole exome sequencing (WES), we identified homozygosity for a missense variant, VPS11: c.2536T>G (p.C846G), as the genetic cause of a leukoencephalopathy syndrome in five individuals from three unrelated Ashkenazi Jewish (AJ) families. All five patients exhibited highly concordant disease progression characterized by infantile onset leukoencephalopathy with brain white matter abnormalities, severe motor impairment, cortical blindness, intellectual disability, and seizures. The carrier frequency of the VPS11: c.2536T>G variant is 1:250 in the AJ population (n = 2,026). VPS11 protein is a core component of HOPS (homotypic fusion and protein sorting) and CORVET (class C core vacuole/endosome tethering) protein complexes involved in membrane trafficking and fusion of the lysosomes and endosomes. The cysteine 846 resides in an evolutionarily conserved cysteine-rich RING-H2 domain in carboxyl terminal regions of VPS11 proteins. Our data shows that the C846G mutation causes aberrant ubiquitination and accelerated turnover of VPS11 protein as well as compromised VPS11-VPS18 complex assembly, suggesting a loss of function in the mutant protein. Reduced VPS11 expression leads to an impaired autophagic activity in human cells. Importantly, zebrafish harboring a vps11 mutation with truncated RING-H2 domain demonstrated a significant reduction in CNS myelination following extensive neuronal death in the hindbrain and midbrain. Thus, our study reveals a defect in VPS11 as the underlying etiology for an autosomal recessive leukoencephalopathy disorder associated with a dysfunctional autophagy-lysosome trafficking pathway. Genetic leukoencephalopathies (gLEs) are a group of heterogeneous disorders with white matter abnormalities in the central nervous system (CNS). Patients affected with gLEs have brain white matter defects that can be seen on MRI and exhibit variable neurologic phenotypes including motor impairment, hypotonia, pyramidal dysfunction, dystonia and/or dyskinesias, ataxia, seizures, cortical blindness, optic atrophy, and impaired cognitive development. The exact etiology of half of gLEs is unknown. We studied three unrelated families affected with an undiagnosed gLE and discovered a homozygous germline mutation c.2536T>G in VPS11, a gene involved in membrane trafficking and fusion of lysosomes and endosomes, as a novel cause of a new gLE syndrome. The mutation in VPS11 results in protein instability and impaired protein complex assembly. In addition, we show that VPS11 is required for proper autophagic activities in human cells. Importantly, we characterized a zebrafish line carrying a vps11 mutation and confirmed its essential role in brain white matter development and neuron survival.
Collapse
Affiliation(s)
- Jinglan Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Véronik Lachance
- Department of Neurology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Adam Schaffner
- Department of Neurology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Xianting Li
- Department of Neurology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Anastasia Fedick
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Lauren E. Kaye
- Departments of Anatomy/Cell Biology and Ophthalmology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Jun Liao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Jill Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Naomi Yachelevich
- Clinical Genetics Services, New York University Hospitals Center, New York, New York, United States of America
| | - Mary-Lynn Chu
- Department of Neurology, New York University School of Medicine, New York, New York, United States of America
| | - Wendy G. Mitchell
- Neurology Division, Children's Hospital Los Angeles, Los Angeles, California, United States of America
| | - Richard G. Boles
- Division of Medical Genetics, Children's Hospital Los Angeles, Los Angeles, California, United States of America
- Courtagen Life Sciences, Woburn, Massachusetts, United States of America
| | - Ellen Moran
- Clinical Genetics Services, NYU Langone Hospital for Joint Diseases, New York, New York, United States of America
| | - Mari Tokita
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Elizabeth Gorman
- Baylor Miraca Genetics Laboratories, Houston, Texas, United States of America
| | - Kaytee Bagley
- Baylor Miraca Genetics Laboratories, Houston, Texas, United States of America
| | - Wei Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Fan Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Magalie Leduc
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Christine Eng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lee-Jun Wong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Raphael Schiffmann
- Institute of Metabolic Disease, Baylor Research Institute, Dallas, Texas, United States of America
| | - George A. Diaz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ruth Kornreich
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ryan Thummel
- Departments of Anatomy/Cell Biology and Ophthalmology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Melissa Wasserstein
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Zhenyu Yue
- Department of Neurology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail: (ZY); (LE)
| | - Lisa Edelmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail: (ZY); (LE)
| |
Collapse
|
13
|
Ge GZ, Xu TR, Chen C. Tobacco carcinogen NNK-induced lung cancer animal models and associated carcinogenic mechanisms. Acta Biochim Biophys Sin (Shanghai) 2015; 47:477-87. [PMID: 26040315 DOI: 10.1093/abbs/gmv041] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/11/2015] [Indexed: 12/18/2022] Open
Abstract
Tobacco usage is a major risk factor in the development, progression, and outcomes for lung cancer. Of the carcinogens associated with lung cancer, tobacco-specific nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is among the most potent ones. The oncogenic mechanisms of NNK are not entirely understood, hindering the development of effective strategies for preventing and treating smoking-associated lung cancers. Here, we introduce the NNK-induced lung cancer animal models in different species and its potential mechanisms. Finally, we summarize several chemopreventive agents developed from these animal models.
Collapse
Affiliation(s)
- Guang-Zhe Ge
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Tian-Rui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
14
|
Zhang YH, Yu LG, Zhu WZ, Wang SL, Wang DD, Yang YX, Yu X. Preliminary Research on the Expression, Purification and Function of the Apoptotic Fusion Protein, Sival. Asian Pac J Cancer Prev 2014; 15:8685-8. [DOI: 10.7314/apjcp.2014.15.20.8685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
15
|
Han J, Liu T, Huen MSY, Hu L, Chen Z, Huang J. SIVA1 directs the E3 ubiquitin ligase RAD18 for PCNA monoubiquitination. ACTA ACUST UNITED AC 2014; 205:811-27. [PMID: 24958773 PMCID: PMC4068132 DOI: 10.1083/jcb.201311007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Translesion DNA synthesis (TLS) is a universal DNA damage tolerance mechanism conserved from yeast to mammals. A key event in the regulation of TLS is the monoubiquitination of proliferating cell nuclear antigen (PCNA). Extensive evidence indicates that the RAD6-RAD18 ubiquitin-conjugating/ligase complex specifically monoubiquitinates PCNA and regulates TLS repair. However, the mechanism by which the RAD6-RAD18 complex is targeted to PCNA has remained elusive. In this study, we used an affinity purification approach to isolate the PCNA-containing complex and have identified SIVA1 as a critical regulator of PCNA monoubiquitination. We show that SIVA1 constitutively interacts with PCNA via a highly conserved PCNA-interacting peptide motif. Knockdown of SIVA1 compromised RAD18-dependent PCNA monoubiquitination and Polη focus formation, leading to elevated ultraviolet sensitivity and mutation. Furthermore, we demonstrate that SIVA1 interacts with RAD18 and serves as a molecular bridge between RAD18 and PCNA, thus targeting the E3 ligase activity of RAD18 onto PCNA. Collectively, our results provide evidence that the RAD18 E3 ligase requires an accessory protein for binding to its substrate PCNA.
Collapse
Affiliation(s)
- Jinhua Han
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ting Liu
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Michael S Y Huen
- Department of Anatomy and Center for Cancer Research, The University of Hong Kong, Hong Kong, China Department of Anatomy and Center for Cancer Research, The University of Hong Kong, Hong Kong, China
| | - Lin Hu
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhiqiu Chen
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jun Huang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|