1
|
Říhová K, Lapčík P, Veselá B, Knopfová L, Potěšil D, Pokludová J, Šmarda J, Matalová E, Bouchal P, Beneš P. Caspase-9 Is a Positive Regulator of Osteoblastic Cell Migration Identified by diaPASEF Proteomics. J Proteome Res 2024; 23:2999-3011. [PMID: 38498986 PMCID: PMC11301665 DOI: 10.1021/acs.jproteome.3c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Caspase-9 is traditionally considered the initiator caspase of the intrinsic apoptotic pathway. In the past decade, however, other functions beyond initiation/execution of cell death have been described including cell type-dependent regulation of proliferation, differentiation/maturation, mitochondrial, and endosomal/lysosomal homeostasis. As previous studies revealed nonapoptotic functions of caspases in osteogenesis and bone homeostasis, this study was performed to identify proteins and pathways deregulated by knockout of caspase-9 in mouse MC3T3-E1 osteoblasts. Data-independent acquisition-parallel accumulation serial fragmentation (diaPASEF) proteomics was used to compare protein profiles of control and caspase-9 knockout cells. A total of 7669 protein groups were quantified, and 283 upregulated/141 downregulated protein groups were associated with the caspase-9 knockout phenotype. The deregulated proteins were mainly enriched for those associated with cell migration and motility and DNA replication/repair. Altered migration was confirmed in MC3T3-E1 cells with the genetic and pharmacological inhibition of caspase-9. ABHD2, an established regulator of cell migration, was identified as a possible substrate of caspase-9. We conclude that caspase-9 acts as a modulator of osteoblastic MC3T3-E1 cell migration and, therefore, may be involved in bone remodeling and fracture repair.
Collapse
Affiliation(s)
- Kamila Říhová
- Department
of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, Brno 602 00, Czech Republic
| | - Petr Lapčík
- Department
of Biochemistry, Faculty of Science, Masaryk
University, Brno 625 00, Czech Republic
| | - Barbora Veselá
- Laboratory
of Odontogenesis and Osteogenesis, Institute of Animal Physiology
and Genetics, Czech Academy of Sciences, Brno 602 00, Czech Republic
| | - Lucia Knopfová
- Department
of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, Brno 602 00, Czech Republic
| | - David Potěšil
- Proteomics
Core Facility, Central European Institute for Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Jana Pokludová
- Department
of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, Brno 602 00, Czech Republic
| | - Jan Šmarda
- Department
of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Eva Matalová
- Laboratory
of Odontogenesis and Osteogenesis, Institute of Animal Physiology
and Genetics, Czech Academy of Sciences, Brno 602 00, Czech Republic
- Department
of Physiology, Faculty of Veterinary Medicine, University of Veterinary Sciences, Brno 612 42, Czech Republic
| | - Pavel Bouchal
- Department
of Biochemistry, Faculty of Science, Masaryk
University, Brno 625 00, Czech Republic
| | - Petr Beneš
- Department
of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, Brno 602 00, Czech Republic
| |
Collapse
|
2
|
Svandova E, Vesela B, Janeckova E, Chai Y, Matalova E. Exploring caspase functions in mouse models. Apoptosis 2024; 29:938-966. [PMID: 38824481 PMCID: PMC11263464 DOI: 10.1007/s10495-024-01976-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 06/03/2024]
Abstract
Caspases are enzymes with protease activity. Despite being known for more than three decades, caspase investigation still yields surprising and fascinating information. Initially associated with cell death and inflammation, their functions have gradually been revealed to extend beyond, targeting pathways such as cell proliferation, migration, and differentiation. These processes are also associated with disease mechanisms, positioning caspases as potential targets for numerous pathologies including inflammatory, neurological, metabolic, or oncological conditions. While in vitro studies play a crucial role in elucidating molecular pathways, they lack the context of the body's complexity. Therefore, laboratory animals are an indispensable part of successfully understanding and applying caspase networks. This paper aims to summarize and discuss recent knowledge, understanding, and challenges in caspase knock-out mice.
Collapse
Affiliation(s)
- Eva Svandova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetic, Brno, Czech Republic.
| | - Barbora Vesela
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetic, Brno, Czech Republic
| | - Eva Janeckova
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, USA
| | - Eva Matalova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetic, Brno, Czech Republic
- Department of Physiology, University of Veterinary Sciences, Brno, Czech Republic
| |
Collapse
|
3
|
Li S, Qiao Z, Huang M, Lao Q, Zhang Q, Xing Y, Pan S, Martin FL, Liu H, Pang W. Combined exposure of polystyrene microplastics and benzo[a]pyrene in rat: Study of the oxidative stress effects in the liver. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116390. [PMID: 38705037 DOI: 10.1016/j.ecoenv.2024.116390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
Microplastics (MPs) and benzo[a]pyrene (B[a]P) are prevalent environmental pollutants. Numerous studies have extensively reported their individual adverse effects on organisms. However, the combined effects and mechanisms of exposure in mammals remain unknown. Thus, this study aims to investigate the potential effects of oral administration of 0.5μm polystyrene (PS) MPs (1 mg/mL or 5 mg/mL), B[a]P (1 mg/mL or 5 mg/mL) and combined (1 mg/mL or 5 mg/mL) on 64 male SD rats by gavage method over 6-weeks. The results demonstrate that the liver histopathological examination showed that the liver lobules in the combined (5 mg/kg) group had blurred and loose boundaries, liver cord morphological disorders, and significant steatosis. The levels of AST, ALT, TC, and TG in the combined dose groups were significantly higher than those in the other groups, the combined (5 mg/kg) group had the lowest levels of antioxidant enzymes and the highest levels of oxidants. The expression of Nrf2 was lowest and the expression of P38, NF-κB, and TNF-α was highest in the combined (5 mg/kg) group. In conclusion, these findings indicate that the combination of PSMPs and B[a]P can cause the highest levels of oxidative stress and elicit markedly enhanced toxic effects, which cause severe liver damage.
Collapse
Affiliation(s)
- Shengle Li
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Zipeng Qiao
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Meidie Huang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Qiufeng Lao
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Qingquan Zhang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Yu Xing
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Songying Pan
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Francis L Martin
- Biocel UK Ltd, Hull HU10 6TS, UK; Department of Cellular Pathology, Blackpool Teaching Hospitals NHS Foundation Trust, Whinney Heys Road, Blackpool FY3 8NR, UK
| | - Hui Liu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China.
| | - Weiyi Pang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China; School of Humanities and Management, Guilin Medical University, Guilin, Guangxi 541199, China.
| |
Collapse
|
4
|
Dong Y, Hu Q, Zhao L, Ma G, Ma N, Zhang J, Ji Y, Liu L. A novel neuroprotective peptide YVYAETY identified and screened from Flammulina velutipes protein hydrolysates attenuates scopolamine-induced cognitive impairment in mice. Food Funct 2024; 15:6082-6094. [PMID: 38757389 DOI: 10.1039/d4fo00871e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Flammulina velutipes protein hydrolysates are known for their abundant amino acids and excellent developmental values. This study aimed to identify and screen neuroprotective peptides from F. velutipes protein hydrolysates in vitro and validate the protective effects of YVYAETY on memory impairment in scopolamine-induced mice. The F. velutipes protein was hydrolyzed by simulated gastrointestinal digestion, followed by purification through ultrafiltration and gel chromatography. The fraction exhibiting the strongest neuroprotective activity was analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The main identified peptides (SDLKPADF, WNDHYY, YVYAETY, and WFHPLF) effectively mitigated excessive ROS production by increasing SOD and GSH-px activities while inhibiting cell apoptosis and mitochondrial membrane potential (MMP) collapse against oxidative stress in Aβ25-35-induced HT22 cells. By molecular docking, the interaction between peptides and the active site of the Keap1-Kelch domain reveals their capacity to regulate the Keap1/Nrf2/HO-1 pathway. In vitro, the peptide YVYAETY had the best effect and can be further validated in vivo. The behavioral tests showed that YVYAETY improved scopolamine-induced cognitive impairment in mice. YVYAETY also alleviated neuron damage including neuron vacuolation and pyknotic nuclei in the hippocampus. Furthermore, it significantly inhibited oxidative stress and suppressed the activation of the Nrf2 pathway. Therefore, this study revealed that YVYAETY had the potential to serve as a novel neuroprotective agent.
Collapse
Affiliation(s)
- Yutong Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiuhui Hu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Gaoxing Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Ning Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Junmiao Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Ji
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Li Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Liu S, Joshi K, Zhang L, Li W, Mack R, Runde A, Hagen PA, Barton K, Breslin P, Ji HL, Kini AR, Wang Z, Zhang J. Caspase 8 deletion causes infection/inflammation-induced bone marrow failure and MDS-like disease in mice. Cell Death Dis 2024; 15:278. [PMID: 38637559 PMCID: PMC11026525 DOI: 10.1038/s41419-024-06660-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of pre-leukemic hematopoietic disorders characterized by cytopenia in peripheral blood due to ineffective hematopoiesis and normo- or hypercellularity and morphologic dysplasia in bone marrow (BM). An inflammatory BM microenvironment and programmed cell death of hematopoietic stem/progenitor cells (HSPCs) are thought to be the major causes of ineffective hematopoiesis in MDS. Pyroptosis, apoptosis and necroptosis (collectively, PANoptosis) are observed in BM tissues of MDS patients, suggesting an important role of PANoptosis in MDS pathogenesis. Caspase 8 (Casp8) is a master regulator of PANoptosis, which is downregulated in HSPCs from most MDS patients and abnormally spliced in HSPCs from MDS patients with SRSF2 mutation. To study the role of PANoptosis in hematopoiesis, we generated inducible Casp8 knockout mice (Casp8-/-). Mx1-Cre-Casp8-/- mice died of BM failure within 10 days of polyI:C injections due to depletion of HSPCs. Rosa-ERT2Cre-Casp8-/- mice are healthy without significant changes in BM hematopoiesis within the first 1.5 months after Casp8 deletion. Such mice developed BM failure upon infection or low dose polyI:C/LPS injections due to the hypersensitivity of Casp8-/- HSPCs to infection or inflammation-induced necroptosis which can be prevented by Ripk3 deletion. However, impaired self-renewal capacity of Casp8-/- HSPCs cannot be rescued by Ripk3 deletion due to activation of Ripk1-Tbk1 signaling. Most importantly, mice transplanted with Casp8-/- BM cells developed MDS-like disease within 4 months of transplantation as demonstrated by anemia, thrombocytopenia and myelodysplasia. Our study suggests an essential role for a balance in Casp8, Ripk3-Mlkl and Ripk1-Tbk1 activities in the regulation of survival and self-renewal of HSPCs, the disruption of which induces inflammation and BM failure, resulting in MDS-like disease.
Collapse
Affiliation(s)
- Shanhui Liu
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Department of Cancer Biology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Lanzhou University Second Hospital, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou, Gansu, 730030, China
| | - Kanak Joshi
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Department of Cancer Biology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
| | - Lei Zhang
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Department of Cancer Biology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Diseases, Soochow University, Suzhou, 215123, China
| | - Wenyan Li
- Lanzhou University Second Hospital, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou, Gansu, 730030, China
| | - Ryan Mack
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Department of Cancer Biology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
| | - Austin Runde
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Department of Cancer Biology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
| | - Patrick A Hagen
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Department of Medicine, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
| | - Kevin Barton
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Department of Medicine, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
| | - Peter Breslin
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Department of Cancer Biology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Departments of Biology and Molecular/Cellular Physiology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Hong-Long Ji
- Department of Surgery, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
| | - Ameet R Kini
- Departments of Pathology and Radiation Oncology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
| | - Zhiping Wang
- Lanzhou University Second Hospital, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou, Gansu, 730030, China.
| | - Jiwang Zhang
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA.
- Department of Cancer Biology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA.
- Departments of Pathology and Radiation Oncology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
6
|
Dawar S, Benitez MC, Lim Y, Dite TA, Yousef JM, Thio N, Garciaz S, Jackson TD, Milne JV, Dagley LF, Phillips WA, Kumar S, Clemons NJ. Caspase-2 protects against ferroptotic cell death. Cell Death Dis 2024; 15:182. [PMID: 38429264 PMCID: PMC10907636 DOI: 10.1038/s41419-024-06560-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 03/03/2024]
Abstract
Caspase-2, one of the most evolutionarily conserved members of the caspase family, is an important regulator of the cellular response to oxidative stress. Given that ferroptosis is suppressed by antioxidant defense pathways, such as that involving selenoenzyme glutathione peroxidase 4 (GPX4), we hypothesized that caspase-2 may play a role in regulating ferroptosis. This study provides the first demonstration of an important and unprecedented function of caspase-2 in protecting cancer cells from undergoing ferroptotic cell death. Specifically, we show that depletion of caspase-2 leads to the downregulation of stress response genes including SESN2, HMOX1, SLC7A11, and sensitizes mutant-p53 cancer cells to cell death induced by various ferroptosis-inducing compounds. Importantly, the canonical catalytic activity of caspase-2 is not required for its role and suggests that caspase-2 regulates ferroptosis via non-proteolytic interaction with other proteins. Using an unbiased BioID proteomics screen, we identified novel caspase-2 interacting proteins (including heat shock proteins and co-chaperones) that regulate cellular responses to stress. Finally, we demonstrate that caspase-2 limits chaperone-mediated autophagic degradation of GPX4 to promote the survival of mutant-p53 cancer cells. In conclusion, we document a novel role for caspase-2 as a negative regulator of ferroptosis in cells with mutant p53. Our results provide evidence for a novel function of caspase-2 in cell death regulation and open potential new avenues to exploit ferroptosis in cancer therapy.
Collapse
Affiliation(s)
- Swati Dawar
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Mariana C Benitez
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Yoon Lim
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5001, Australia
| | - Toby A Dite
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Jumana M Yousef
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Niko Thio
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Sylvain Garciaz
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Thomas D Jackson
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Julia V Milne
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Laura F Dagley
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Wayne A Phillips
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Surgery (St Vincent's Hospital), The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5001, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5000, Australia
| | - Nicholas J Clemons
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
7
|
Abruscato G, Chiarelli R, Lazzara V, Punginelli D, Sugár S, Mauro M, Librizzi M, Di Stefano V, Arizza V, Vizzini A, Vazzana M, Luparello C. In Vitro Cytotoxic Effect of Aqueous Extracts from Leaves and Rhizomes of the Seagrass Posidonia oceanica (L.) Delile on HepG2 Liver Cancer Cells: Focus on Autophagy and Apoptosis. BIOLOGY 2023; 12:biology12040616. [PMID: 37106816 PMCID: PMC10135731 DOI: 10.3390/biology12040616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023]
Abstract
Aqueous extracts from Posidonia oceanica's green and brown (beached) leaves and rhizomes were prepared, submitted to phenolic compound and proteomic analysis, and examined for their potential cytotoxic effect on HepG2 liver cancer cells in culture. The chosen endpoints related to survival and death were cell viability and locomotory behavior, cell-cycle analysis, apoptosis and autophagy, mitochondrial membrane polarization, and cell redox state. Here, we show that 24 h exposure to both green-leaf- and rhizome-derived extracts decreased tumor cell number in a dose-response manner, with a mean half maximal inhibitory concentration (IC50) estimated at 83 and 11.5 μg of dry extract/mL, respectively. Exposure to the IC50 of the extracts appeared to inhibit cell motility and long-term cell replicating capacity, with a more pronounced effect exerted by the rhizome-derived preparation. The underlying death-promoting mechanisms identified involved the down-regulation of autophagy, the onset of apoptosis, the decrease in the generation of reactive oxygen species, and the dissipation of mitochondrial transmembrane potential, although, at the molecular level, the two extracts appeared to elicit partially differentiating effects, conceivably due to their diverse composition. In conclusion, P. oceanica extracts merit further investigation to develop novel promising prevention and/or treatment agents, as well as beneficial supplements for the formulation of functional foods and food-packaging material with antioxidant and anticancer properties.
Collapse
Affiliation(s)
- Giulia Abruscato
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| | - Roberto Chiarelli
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| | - Valentina Lazzara
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| | - Diletta Punginelli
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| | - Simon Sugár
- MS Proteomics Research Group, Research Centre for Natural Sciences, Eötvös Loránd Research Network, 1117 Budapest, Hungary
| | - Manuela Mauro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| | - Mariangela Librizzi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| | - Vita Di Stefano
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| | - Vincenzo Arizza
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| | - Aiti Vizzini
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| | - Mirella Vazzana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| | - Claudio Luparello
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| |
Collapse
|
8
|
Jiang Z, Wang H, Yang Y, Yao Y, Ma H. Genistein activated SIRT1-AMPK signaling pathway mediated by ERβ-FOXO1-Nampt to reduce fat accumulation in chicken hepatocytes. Life Sci 2023; 312:121259. [PMID: 36463943 DOI: 10.1016/j.lfs.2022.121259] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
Excessive fat accumulation in broiler chickens would seriously threaten the poultry industry. It leads to lower feed conversion rate and worse meat quality. Even worse, it harms the consumers' health due to the intake of high-fat chicken products. Dietary supplements with bioactive ingredients have been considered an effective way to solve this problem. Genistein is the primary phytoestrogen in soybean. Its fat-reduction effect has been reported, but the molecular mechanism is unclear. The present study found that genistein reduced lipid droplets accumulation by regulating lipid metabolism-related factors expression in chicken hepatocytes. The research showed that genistein significantly increased phosphor (p)-AMP-activated protein kinase (p-AMPK) and Sirtuin 1 (SIRT1) protein expressions. The effect of genistein on reducing lipid droplets accumulation and upregulating p-AMPK protein level was blocked entirely when pretreated with SIRT1 inhibitor. These results implied that SIRT1 is required to activate AMPK. Furthermore, genistein treatment significantly upregulated the SIRT1 protein level when pretreated with AMPK inhibitor. We demonstrated that the activation of estrogen receptor β-Forkhead box O1-Nicotinamide phosphoribosyl transferase (ERβ-FOXO1-Nampt) signaling pathway upregulated the NAD+ concentration in hepatocytes, and activated SIRT1 ultimately. In summary, we demonstrated that genistein suppressed lipid droplets accumulation in chicken hepatocytes by activating SIRT1-AMPK. The SIRT1-AMPK signaling pathway was mediated by ERβ-FOXO1-Nampt. These findings increase our understanding of the mechanisms of genistein on fat reduction, and provide compelling evidence for it as a nutritional supplement to prevent excessive fat deposition and lipid metabolism-related diseases in animals and even humans.
Collapse
Affiliation(s)
- Zhihao Jiang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Huihui Wang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Yang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yao Yao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
9
|
Selenium Effects on Oxidative Stress-Induced Calcium Signaling Pathways in Parkinson’s Disease. Indian J Clin Biochem 2022; 37:257-266. [DOI: 10.1007/s12291-022-01031-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/02/2022] [Indexed: 02/07/2023]
|
10
|
The role of caspases as executioners of apoptosis. Biochem Soc Trans 2021; 50:33-45. [PMID: 34940803 DOI: 10.1042/bst20210751] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022]
Abstract
Caspases are a family of cysteine aspartyl proteases mostly involved in the execution of apoptotic cell death and in regulating inflammation. This article focuses primarily on the evolutionarily conserved function of caspases in apoptosis. We summarise which caspases are involved in apoptosis, how they are activated and regulated, and what substrates they target for cleavage to orchestrate programmed cell death by apoptosis.
Collapse
|
11
|
Sule G, Abuaita BH, Steffes PA, Fernandes AT, Estes SK, Dobry C, Pandian D, Gudjonsson JE, Kahlenberg JM, O'Riordan MX, Knight JS. Endoplasmic reticulum stress sensor IRE1α propels neutrophil hyperactivity in lupus. J Clin Invest 2021; 131:137866. [PMID: 33561013 DOI: 10.1172/jci137866] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 02/05/2021] [Indexed: 12/29/2022] Open
Abstract
Neutrophils amplify inflammation in lupus through the release of neutrophil extracellular traps (NETs). The endoplasmic reticulum stress sensor inositol-requiring enzyme 1 α (IRE1α) has been implicated as a perpetuator of inflammation in various chronic diseases; however, IRE1α has been little studied in relation to neutrophil function or lupus pathogenesis. Here, we found that neutrophils activated by lupus-derived immune complexes demonstrated markedly increased IRE1α ribonuclease activity. Importantly, in neutrophils isolated from patients with lupus, we also detected heightened IRE1α activity that was correlated with global disease activity. Immune complex-stimulated neutrophils produced both mitochondrial ROS (mitoROS) and the activated form of caspase-2 in an IRE1α-dependent fashion, whereas inhibition of IRE1α mitigated immune complex-mediated NETosis (in both human neutrophils and a mouse model of lupus). Administration of an IRE1α inhibitor to lupus-prone MRL/lpr mice over 8 weeks reduced mitoROS levels in peripheral blood neutrophils, while also restraining plasma cell expansion and autoantibody formation. In summary, these data identify a role for IRE1α in the hyperactivity of lupus neutrophils and show that this pathway is upstream of mitochondrial dysfunction, mitoROS formation, and NETosis. We believe that inhibition of the IRE1α pathway is a novel strategy for neutralizing NETosis in lupus, and potentially other inflammatory conditions.
Collapse
Affiliation(s)
- Gautam Sule
- Division of Rheumatology, Department of Internal Medicine
| | | | - Paul A Steffes
- Division of Rheumatology, Department of Internal Medicine
| | | | - Shanea K Estes
- Division of Rheumatology, Department of Internal Medicine
| | - Craig Dobry
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | - Jason S Knight
- Division of Rheumatology, Department of Internal Medicine
| |
Collapse
|
12
|
Sladky VC, Villunger A. Uncovering the PIDDosome and caspase-2 as regulators of organogenesis and cellular differentiation. Cell Death Differ 2020; 27:2037-2047. [PMID: 32415279 PMCID: PMC7308375 DOI: 10.1038/s41418-020-0556-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 02/08/2023] Open
Abstract
The PIDDosome is a multiprotein complex that drives activation of caspase-2, an endopeptidase originally implicated in apoptosis. Yet, unlike other caspases involved in cell death and inflammation, caspase-2 seems to exert additional versatile functions unrelated to cell death. These emerging roles range from control of transcription factor activity to ploidy surveillance. Thus, caspase-2 and the PIDDosome act as a critical regulatory unit controlling cellular differentiation processes during organogenesis and regeneration. These newly established functions of the PIDDosome and its downstream effector render its components attractive targets for drug-development aiming to prevent fatty liver diseases, neurodegenerative disorders or osteoporosis. ![]()
Collapse
Affiliation(s)
- Valentina C Sladky
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria. .,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, 1090, Vienna, Austria. .,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria.
| |
Collapse
|
13
|
Qi R, Jiang R, Xiao H, Wang Z, He S, Wang L, Wang Y. Ginsenoside Rg1 protects against d-galactose induced fatty liver disease in a mouse model via FOXO1 transcriptional factor. Life Sci 2020; 254:117776. [PMID: 32437790 DOI: 10.1016/j.lfs.2020.117776] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023]
Abstract
AIMS Rg1 is the most active component of traditional Chinese medicine ginseng, having anti-aging and anti-oxidative stress features in multiple organs. Cellular senescence of hepatocytes is involved in the progression of a wide spectrum of chronic liver diseases. In this study, we investigated the potential benefits and mechanism of action of Rg1 on aging-driven chronic liver diseases. MATERIALS AND METHODS A total of 40 male C57BL/6 mice were randomly divided into four groups: control group; Rg1 group; Rg1+d-gal group; and d-gal group. Blood and liver tissue samples were collected for determination of liver function, biochemical and molecular markers, as well as histopathological investigation. KEY FINDINGS Rg1 played an anti-aging role in reversing d-galactose induced increase in senescence-associated SA-β-gal staining and p53, p21 protein in hepatocytes of mice and sustained mitochondria homeostasis. Meanwhile, Rg1 protected livers from d-galactose caused abnormal elevation of ALT and AST in serum, hepatic steatosis, reduction in hepatic glucose production, hydrogenic degeneration, inflammatory phenomena including senescence-associated secretory phenotype (SASP) IL-1β, IL-6, MCP-1 elevation and lymphocyte infiltration. Furthermore, Rg1 suppressed drastic elevation in FOXO1 phosphorylation resulting in maintaining FOXO1 protein level in the liver after d-galactose treatment, followed by FOXO1 targeted antioxidase SOD and CAT significant up-regulation concurrent with marked decrease in lipid peroxidation marker MDA. SIGNIFICANCE Rg1 exerts pharmaceutic effects of maintaining FOXO1 activity in liver, which enhances anti-oxidation potential of Rg1 to ameliorate SASP and to inhibit inflammation, also promotes metabolic homeostasis, and thus protects livers from senescence induced fatty liver disease. The study provides a potential therapeutic strategy for alleviating chronic liver pathology.
Collapse
Affiliation(s)
- Rongjia Qi
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Medical University, Chongqing 400016, China
| | - Rong Jiang
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Medical University, Chongqing 400016, China
| | - Hanxianzhi Xiao
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Medical University, Chongqing 400016, China
| | - Ziling Wang
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Medical University, Chongqing 400016, China
| | - Siyuan He
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Medical University, Chongqing 400016, China
| | - Lu Wang
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Medical University, Chongqing 400016, China.
| | - Yaping Wang
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Medical University, Chongqing 400016, China.
| |
Collapse
|
14
|
Chen H, Wang S, Zhou A, Miao J, Liu J, Benjakul S. A novel antioxidant peptide purified from defatted round scad (Decapterus maruadsi) protein hydrolysate extends lifespan in Caenorhabditis elegans. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103907] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
15
|
Zhao F, Wang J, Lu H, Fang L, Qin H, Liu C, Min W. Neuroprotection by Walnut-Derived Peptides through Autophagy Promotion via Akt/mTOR Signaling Pathway against Oxidative Stress in PC12 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3638-3648. [PMID: 32090563 DOI: 10.1021/acs.jafc.9b08252] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Natural-derived peptides are effective substances in attenuating oxidative stress. However, their specific mechanisms have not been fully elucidated, especially in peptide-mediated autophagy. In the present study, TWLPLPR, YVLLPSPK, and KVPPLLY, novel peptides from Juglans mandshurica Maxim, prevented reactive oxygen species (ROS) production, elevated glutathione peroxidase (GSH-Px) activity and adenosine 5'-triphosphate (ATP) levels, and ameliorated apoptosis in Aβ25-35 (at a concentration of 50 μM for 24 h)-induced PC12 cells (P < 0.01). Both western blot and immunofluorescence analysis illustrated that the peptides regulated Akt/mTOR signaling through p-Akt (Ser473) and p-mTOR (S2481) and promoted autophagy by increasing the levels of LC3-II/LC3-I and Beclin-1 while lowering p62 expression (P < 0.01). The autophagy inhibitor (3-methyladenine, 3-MA) and inducer (rapamycin, RAPA) were combined used to confirm the contribution of peptide-regulated autophagy in antioxidative effects. Moreover, the peptides increased the levels of LAMP1, LAMP2, and Cathepsin D (P < 0.05) and promoted the fusion with lysosomes to form autolysosomes, accelerating ROS removal. These data suggested that walnut-derived peptides regulated oxidative stress by promoting autophagy in the Aβ25-35-induced PC12 cells.
Collapse
Affiliation(s)
- Fanrui Zhao
- College of Food Science and Engineering, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, P. R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, P. R. China
| | - Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, P. R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, P. R. China
| | - Hongyan Lu
- College of Food Science and Engineering, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, P. R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, P. R. China
| | - Li Fang
- College of Food Science and Engineering, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, P. R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, P. R. China
| | - Hanxiong Qin
- College of Food Science and Engineering, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, P. R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, P. R. China
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, P. R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, P. R. China
| | - Weihong Min
- College of Food Science and Engineering, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, P. R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, P. R. China
| |
Collapse
|
16
|
Kaku H, Rothstein TL. FAIM Is a Non-redundant Defender of Cellular Viability in the Face of Heat and Oxidative Stress and Interferes With Accumulation of Stress-Induced Protein Aggregates. Front Mol Biosci 2020; 7:32. [PMID: 32175331 PMCID: PMC7056718 DOI: 10.3389/fmolb.2020.00032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/11/2020] [Indexed: 11/13/2022] Open
Abstract
A key element of cellular homeostasis lies in the way in which misfolded and dysfunctional proteins are handled. Cellular pathways that include proteasomal destruction and autophagic disposal are components of normal proteostasis. Here we report a novel molecule that plays a non-redundant role in maintaining homeostasis, Fas Apoptosis Inhibitory Molecule (FAIM). FAIM is highly conserved throughout evolution and bears no homology to any other protein. We found that FAIM counteracts heat and oxidative stress-induced loss of cell viability. FAIM is recruited to ubiquitinated proteins induced by cellular stress and the levels of stress-induced protein aggregates are much greater in FAIM-deficient cell lines. Primary fibroblasts from FAIM-deficient mice showed the same proteostasis deficits as cell lines. Administration of a mediator of oxidative stress to FAIM-deficient animals induced more ubiquitinated protein aggregates and more organ damage as compared to wild type mice. These results identify a completely new actor that protects cells against stress-induced loss of viability by preventing protein aggregation.
Collapse
Affiliation(s)
- Hiroaki Kaku
- Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States.,Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Thomas L Rothstein
- Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States.,Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| |
Collapse
|
17
|
Leon-Martinez D, Robinson JF, Zdravkovic T, Genbacev O, Gormley M, Mcmaster M, Fisher SJ, Bianco K. Trisomy 21 is Associated with Caspase-2 Upregulation in Cytotrophoblasts at the Maternal-Fetal Interface. Reprod Sci 2020; 27:100-109. [PMID: 32046398 DOI: 10.1007/s43032-019-00002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 02/28/2019] [Indexed: 11/26/2022]
Abstract
Impaired placentation is implicated in poor perinatal outcomes associated with Trisomy 21. Earlier studies revealed abnormal cytotrophoblast differentiation along the invasive pathway as a contributing mechanism. To further elucidate the causes, we evaluated Caspase-2 expression at the protein level (immunolocalization and immunoblot) in samples from Trisomy 21 (n = 9) and euploid (n = 4) age-matched placentas. Apoptosis was investigated via the TUNEL assay. An immunolocalization approach was used to characterize Caspase-3, Fas (CD95), and Fas ligand in the same samples. Caspase-2 was significantly overexpressed in Trisomy 21 placentas, with the highest expression in villous cores and invasive cytotrophoblasts. Immunolocalization showed that Caspase-3 had a similar expression pattern as Caspase-2. Using the TUNEL approach, we observed high variability in the number of apoptotic cells in biopsies from different regions of the same placenta and among different placentas. However, Trisomy 21 placentas had more apoptotic cells, specifically in cell columns and basal plates. Furthermore, Caspase-2 co-immunolocalized with Fas (CD95) and FasL in TUNEL-positive extravillous cytotrophoblasts, but not in villous cores. These results help explain the higher levels of apoptosis among placental cells of Trisomy 21 pregnancies in molecular terms. Specifically, the co-expression of Caspase-2 and Caspase-3 with other regulators of the apoptotic process in TUNEL-positive cells suggests these molecules may cooperate in launching the observed apoptosis. Among trophoblasts, only the invasive subpopulation showed this pattern, which could help explain the higher rates of adverse outcomes in these pregnancies. In future experiments, this relationship will be further examined at a functional level in cultured human trophoblasts.
Collapse
Affiliation(s)
- Daisy Leon-Martinez
- Department of Obstetrics and Gynecology, Yale University, New Haven, CT, USA
| | - Joshua F Robinson
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, 94143, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Tamara Zdravkovic
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, 94143, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Olga Genbacev
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, 94143, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Matthew Gormley
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, 94143, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Michael Mcmaster
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, 94143, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Susan J Fisher
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, 94143, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Katherine Bianco
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Stanford University, 300 Pasteur Dr. HH333 MC 5317, Stanford, CA, 94305, USA.
| |
Collapse
|
18
|
Phenotypic spectrum associated with a CRADD founder variant underlying frontotemporal predominant pachygyria in the Finnish population. Eur J Hum Genet 2019; 27:1235-1243. [PMID: 30914828 DOI: 10.1038/s41431-019-0383-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/13/2019] [Accepted: 03/07/2019] [Indexed: 12/26/2022] Open
Abstract
Intellectual disability (ID), megalencephaly, frontal predominant pachygyria, and seizures, previously called "thin" lissencephaly, are reported to be caused by recessive variants in CRADD. Among five families of different ethnicities identified, one homozygous missense variant, c.509G>A p.(Arg170His), was of Finnish ancestry. Here we report on the phenotypic variability associated for this potential CRADD founder variant in 22 Finnish individuals. Exome sequencing was used to identify candidate genes in Finnish patients presenting with ID. Targeted Sanger sequencing and restriction enzyme analysis were applied to screen for the c.509G>A CRADD variant in cohorts from Finland. Detailed phenotyping and genealogical studies were performed. Twenty two patients were identified with the c.509G>A p.(Arg170His) homozygous variant in CRADD. The majority of the ancestors originated from Northeastern Finland indicating a founder effect. The hallmark of the disease is frontotemporal predominant pachygyria with mild cortical thickening. All patients show ID of variable severity. Aggressive behavior was found in nearly half of the patients, EEG abnormalities in five patients and megalencephaly in three patients. This study provides detailed data about the phenotypic spectrum of patients with lissencephaly due to a CRADD variant that affects function. High inter- and intrafamilial phenotypic heterogeneity was identified in patients with pachygyria caused by the homozygous CRADD founder variant. The phenotype variability suggests that additional genetic and/or environmental factors play a role in the clinical presentation. Since frontotemporal pachygyria is the hallmark of the disease, brain imaging studies are essential to support the molecular diagnosis for individuals with ID and a CRADD variant.
Collapse
|
19
|
Transcriptome profiling of caspase-2 deficient EμMyc and Th-MYCN mouse tumors identifies distinct putative roles for caspase-2 in neuronal differentiation and immune signaling. Cell Death Dis 2019; 10:56. [PMID: 30670683 PMCID: PMC6343006 DOI: 10.1038/s41419-018-1296-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/12/2018] [Indexed: 01/09/2023]
Abstract
Caspase-2 is a highly conserved cysteine protease with roles in apoptosis and tumor suppression. Our recent findings have also demonstrated that the tumor suppression function of caspase-2 is context specific. In particular, while caspase-2 deficiency augments lymphoma development in the EμMyc mouse model, it leads to delayed neuroblastoma development in Th-MYCN mice. However, it is unclear how caspase-2 mediates these differential outcomes. Here we utilized RNA sequencing to define the transcriptomic changes caused by caspase-2 (Casp2−/−) deficiency in tumors from EμMyc and Th-MYCN mice. We describe key changes in both lymphoma and neuroblastoma-associated genes and identified differential expression of the EGF-like domain-containing gene, Megf6, in the two tumor types that may contribute to tumor outcome following loss of Casp2. We identified a panel of genes with altered expression in Th-MYCN/Casp2−/− tumors that are strongly associated with neuroblastoma outcome, with roles in melanogenesis, Wnt and Hippo pathway signaling, that also contribute to neuronal differentiation. In contrast, we found that key changes in gene expression in the EμMyc/Casp2−/− tumors, are associated with increased immune signaling and T-cell infiltration previously associated with more aggressive lymphoma progression. In addition, Rap1 signaling pathway was uniquely enriched in Casp2 deficient EμMyc tumors. Our findings suggest that Casp2 deficiency augments immune signaling pathways that may be in turn, enhance lymphomagenesis. Overall, our study has identified new genes and pathways that contribute to the caspase-2 tumor suppressor function and highlight distinct roles for caspase-2 in different tissues.
Collapse
|
20
|
Wilson CH, Kumar S. Caspases in metabolic disease and their therapeutic potential. Cell Death Differ 2018; 25:1010-1024. [PMID: 29743560 PMCID: PMC5988802 DOI: 10.1038/s41418-018-0111-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/26/2018] [Accepted: 03/22/2018] [Indexed: 12/13/2022] Open
Abstract
Caspases, a family of cysteine-dependent aspartate-specific proteases, are central to the maintenance of cellular and organismal homoeostasis by functioning as key mediators of the inflammatory response and/or apoptosis. Both metabolic inflammation and apoptosis play a central role in the pathogenesis of metabolic disease such as obesity and the progression of nonalcoholic steatohepatisis (NASH) to more severe liver disease. Obesity and nonalcoholic fatty liver disease (NAFLD) are the leading global health challenges associated with the development of numerous comorbidities including insulin resistance, type-2 diabetes and early mortality. Despite the high prevalence, current treatment strategies including lifestyle, dietary, pharmaceutical and surgical interventions, are often limited in their efficacy to manage or treat obesity, and there are currently no clinical therapies for NAFLD/NASH. As mediators of inflammation and cell death, caspases are attractive therapeutic targets for the treatment of these metabolic diseases. As such, pan-caspase inhibitors that act by blocking apoptosis have reached phase I/II clinical trials in severe liver disease. However, there is still a lack of knowledge of the specific and differential functions of individual caspases. In addition, cross-talk between alternate cell death pathways is a growing concern for long-term caspase inhibition. Evidence is emerging of the important cell-death-independent, non-apoptotic functions of caspases in metabolic homoeostasis that may be of therapeutic value. Here, we review the current evidence for roles of caspases in metabolic disease and discuss their potential targeting as a therapeutic strategy.
Collapse
Affiliation(s)
- Claire H Wilson
- Centre for Cancer Biology, University of South Australia & SA Pathology, Adelaide, SA, 5001, Australia.
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia & SA Pathology, Adelaide, SA, 5001, Australia.
| |
Collapse
|
21
|
Forsberg J, Li X, Zamaraev AV, Panaretakis T, Zhivotovsky B, Olsson M. Caspase-2 associates with FAN through direct interaction and overlapping functionality. Biochem Biophys Res Commun 2018; 499:822-828. [PMID: 29621545 DOI: 10.1016/j.bbrc.2018.03.230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 03/31/2018] [Indexed: 11/30/2022]
Abstract
Caspase-2 has been implicated in diverse cellular processes, and the identification of factors with which it interacts has steadily increased. In the present study, we report a direct interaction between caspase-2 and factor associated with neutral sphingomyelinase activation (FAN) using yeast two-hybrid screening and co-immunoprecipitation. Further, stable suppression of caspase-2 expression in HEK293T and HeLa cells enabled a systematic investigation of putative novel enzyme functionalities, especially with respect to ceramide production, cell migration, IL-6 production and vesicular homeostasis, all of which have been previously reported to be associated with FAN. Lipidomics excluded the involvement of caspase-2 in the generation of ceramide species, but caspase-2-dependent deregulation of IL-6 release, vesicular size and delayed cell relocation supported an association between caspase-2 and FAN. Collectively, these data identify a novel caspase-2-interacting factor, FAN, and expand the role for the enzyme in seemingly non-apoptotic cellular mechanisms.
Collapse
Affiliation(s)
- Jeremy Forsberg
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Xinge Li
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Theocharis Panaretakis
- Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA; Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Boris Zhivotovsky
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.
| | - Magnus Olsson
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
22
|
Songane M, Khair M, Saleh M. An updated view on the functions of caspases in inflammation and immunity. Semin Cell Dev Biol 2018; 82:137-149. [PMID: 29366812 DOI: 10.1016/j.semcdb.2018.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/21/2017] [Accepted: 01/02/2018] [Indexed: 12/14/2022]
Abstract
The binary classification of mammalian caspases as either apoptotic or inflammatory is now obsolete. Emerging data indicate that all mammalian caspases are intricately involved in the regulation of inflammation and immunity. They participate in embryonic and adult tissue homeostasis, control leukocyte differentiation, activation and effector functions, and mediate innate and adaptive immunity signaling. Caspases also promote host resistance by regulating anti-oxidant defense and pathogen clearance through regulation of phagosomal maturation, actin dynamics and phagosome-lysosome fusion. Beyond apoptosis, they regulate inflammatory cell death, eliciting rapid pyroptosis of infected cells, while inhibiting necroptosis-mediated tissue destruction and chronic inflammation. In this review, we describe the cellular and molecular mechanisms underlying non-apoptotic functions of caspases in inflammation and immunity and provide an updated view of their functions as central regulators of tissue homeostasis and host defense.
Collapse
Affiliation(s)
- Mario Songane
- Department of Medicine, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Mostafa Khair
- Department of Medicine, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Maya Saleh
- Department of Medicine, McGill University, Montréal, Québec H3G 0B1, Canada.
| |
Collapse
|
23
|
Forsberg J, Li X, Akpinar B, Salvatori R, Ott M, Zhivotovsky B, Olsson M. A caspase-2-RFXANK interaction and its implication for MHC class II expression. Cell Death Dis 2018; 9:80. [PMID: 29362422 PMCID: PMC5833739 DOI: 10.1038/s41419-017-0144-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022]
Abstract
Despite recent achievements implicating caspase-2 in tumor suppression, the enzyme stands out from the apoptotic caspase family as a factor whose function requires further clarification. To specify enzyme characteristics through the definition of interacting proteins in apoptotic or non-apoptotic settings, a yeast 2-hybrid (Y2H) screen was performed using the full-length protein as bait. The current report describes the analysis of a captured prey and putative novel caspase-2 interacting factor, the regulatory factor X-associated ankyrin-containing protein (RFXANK), previously associated with CIITA, the transactivator regulating cell-type specificity and inducibility of MHC class II gene expression. The interaction between caspase-2 and RFXANK was verified by co-immunoprecipitations using both exogenous and endogenous proteins, where the latter approach suggested that binding of the components occurs in the cytoplasm. Cellular co-localization was confirmed by transfection of fluorescently conjugated proteins. Enhanced caspase-2 processing in RFXANK-overexpressing HEK293T cells treated with chemotherapeutic agents further supported Y2H data. Yet, no distinct differences with respect to MHC class II expression were observed in plasma membranes of antigen-presenting cells derived from wild type and caspase-2-/- mice. In contrast, increased levels of the total MHC class II protein was evident in protein lysates from caspase-2 RNAi-silenced leukemia cell lines and B-cells isolated from gene-targeted mice. Together, these data identify a novel caspase-2-interacting factor, RFXANK, and indicate a potential non-apoptotic role for the enzyme in the control of MHC class II gene regulation.
Collapse
Affiliation(s)
- Jeremy Forsberg
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Xinge Li
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Birce Akpinar
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Roger Salvatori
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Boris Zhivotovsky
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden. .,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.
| | - Magnus Olsson
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
24
|
Sun T, Zhang Y, Zhong S, Gao F, Chen Y, Wang B, Cai W, Zhang Z, Li W, Lu S, Zheng F, Shi G. N-n-Butyl Haloperidol Iodide, a Derivative of the Anti-psychotic Haloperidol, Antagonizes Hypoxia/Reoxygenation Injury by Inhibiting an Egr-1/ROS Positive Feedback Loop in H9c2 Cells. Front Pharmacol 2018; 9:19. [PMID: 29422863 PMCID: PMC5789774 DOI: 10.3389/fphar.2018.00019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/08/2018] [Indexed: 02/05/2023] Open
Abstract
Early growth response-1 (Egr-1), a transcription factor which often underlies the molecular basis of myocardial ischemia/reperfusion (I/R) injury, and oxidative stress, is key to myocardial I/R injury. Silent information regulator of transcription 1(SIRT1) not only interacts with and is inhibited by Egr-1, but also downregulates reactive oxygen species (ROS) via the Forkhead box O1(FOXO1)/manganese superoxide dismutase (Mn-SOD) signaling pathway. N-n-butyl haloperidol iodide (F2), a new patented compound, protects the myocardium against myocardial I/R injury in various animal I/R models in vivo and various heart-derived cell hypoxia/reoxygenation (H/R) models in vitro. In addition, F2 can regulate the abnormal ROS/Egr-1 signaling pathway in cardiac microvascular endothelial cells (CMECs) and H9c2 cells after H/R. We studied whether there is an inverse Egr-1/ROS signaling pathway in H9c2 cells and whether the SIRT1/FOXO1/Mn-SOD signaling pathway mediates this. We verified a ROS/Egr-1 signaling loop in H9c2 cells during H/R and that F2 protects against myocardial H/R injury by affecting SIRT1-related signaling pathways. Knockdown of Egr-1, by siRNA interference, reduced ROS generation, and alleviated oxidative stress injury induced by H/R, as shown by upregulated mitochondrial membrane potential, increased glutathione peroxidase (GSH-px) and total SOD anti-oxidative enzyme activity, and downregulated MDA. Decreases in FOXO1 protein expression and Mn-SOD activity occurred after H/R, but could be blocked by Egr-1 siRNA. F2 treatment attenuated H/R-induced Egr-1 expression, ROS generation and other forms of oxidative stress injury such as MDA, and prevented H/R-induced decreases in FOXO1 and Mn-SOD activity. Nuclear co-localization between Egr-1 and SIRT1 was increased by H/R and decreased by either Egr-1 siRNA or F2. Therefore, our results suggest that Egr-1 inhibits the SIRT1/FOXO1/Mn-SOD antioxidant signaling pathway to increase ROS and perpetuate I/R injury. F2 inhibits induction of Egr-1 by H/R, thereby activating SIRT1/FOXO1/Mn-SOD antioxidant signaling and decreasing H/R-induced ROS, demonstrating an important mechanism by which F2 protects against myocardial H/R injury.
Collapse
Affiliation(s)
- Ting Sun
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Yanmei Zhang
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Shuping Zhong
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA, United States
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Yicun Chen
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Bin Wang
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Wenfeng Cai
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Zhaojing Zhang
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Weiqiu Li
- Analytical Cytology Laboratory, Shantou University Medical College, Shantou, China
| | - Shishi Lu
- Department of Pharmacy, The First Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Fuchun Zheng
- Clinical Pharmacology Laboratory, The First Affiliated Hospital, Shantou University Medical College, Shantou, China
- *Correspondence: Ganggang Shi, Fuchun Zheng,
| | - Ganggang Shi
- Department of Pharmacology, Shantou University Medical College, Shantou, China
- *Correspondence: Ganggang Shi, Fuchun Zheng,
| |
Collapse
|
25
|
Yan Q, Zhu H, Lan L, Yi J, Yang J. Cleavage of Ku80 by caspase-2 promotes non-homologous end joining-mediated DNA repair. DNA Repair (Amst) 2017; 60:18-28. [DOI: 10.1016/j.dnarep.2017.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 10/06/2017] [Accepted: 10/08/2017] [Indexed: 12/12/2022]
|
26
|
Caspase-2 deficiency enhances whole-body carbohydrate utilisation and prevents high-fat diet-induced obesity. Cell Death Dis 2017; 8:e3136. [PMID: 29072701 PMCID: PMC5682682 DOI: 10.1038/cddis.2017.518] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 12/20/2022]
Abstract
Caspase-2 has been shown to be involved in metabolic homeostasis. Here, we show that caspase-2 deficiency alters basal energy metabolism by shifting the balance in fuel choice from fatty acid to carbohydrate usage. At 4 weeks of age, whole-body carbohydrate utilisation was increased in Casp2-/- mice and was maintained into adulthood. By 17 weeks of age, Casp2-/- mice had reduced white adipose mass, smaller white adipocytes decreased fasting blood glucose and plasma triglycerides but maintained normal insulin levels. When placed on a 12-week high-fat diet (HFD), Casp2-/- mice resisted the development of obesity, fatty liver, hyperinsulinemia and insulin resistance. In addition, HFD-fed Casp2-/- mice had reduced white adipocyte hypertrophy, apoptosis and expansion of both subcutaneous and visceral adipose depots. Increased expression of UCP1 and the maintenance of adiponectin levels in white adipose tissue of HFD-fed Casp2-/- mice indicated increased browning and adipocyte hyperplasia. We found that while the preference for whole-body carbohydrate utilisation was maintained, HFD-fed Casp2-/- mice were not impaired in their ability to switch to utilising fats as a fuel source. Our findings suggest that caspase-2 impacts basal energy metabolism by regulating adipocyte biology and fat expansion, most likely via a non-apoptotic function. Furthermore, we show that caspase-2 deficiency shifts the balance in fuel choice towards increased carbohydrate utilisation and propose that this is due to mild energy stress. As a consequence, Casp2-/- mice show an adaptive remodelling of adipose tissue that protects from HFD-induced obesity and improves glucose homeostasis while paradoxically increasing their susceptibility to oxidative stress induced damage and premature ageing.
Collapse
|
27
|
Harel T, Hacohen N, Shaag A, Gomori M, Singer A, Elpeleg O, Meiner V. Homozygous null variant in CRADD
, encoding an adaptor protein that mediates apoptosis, is associated with lissencephaly. Am J Med Genet A 2017; 173:2539-2544. [DOI: 10.1002/ajmg.a.38347] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 04/24/2017] [Accepted: 06/09/2017] [Indexed: 02/03/2023]
Affiliation(s)
- Tamar Harel
- Department of Genetics and Metabolic Diseases; Hadassah-Hebrew University Medical Center; Jerusalem Israel
| | - Nuphar Hacohen
- Department of Genetics and Metabolic Diseases; Hadassah-Hebrew University Medical Center; Jerusalem Israel
| | - Avraham Shaag
- Department of Genetics and Metabolic Diseases; Hadassah-Hebrew University Medical Center; Jerusalem Israel
- Monique and Jacques Roboh Department of Genetic Research; Hadassah-Hebrew University Medical Center; Jerusalem Israel
| | - Moshe Gomori
- Department of Radiology; Hadassah-Hebrew University Medical Center; Jerusalem Israel
| | - Amihood Singer
- Genetics Institute; Barzilai Medical Center; Ashkelon Israel
| | - Orly Elpeleg
- Department of Genetics and Metabolic Diseases; Hadassah-Hebrew University Medical Center; Jerusalem Israel
- Monique and Jacques Roboh Department of Genetic Research; Hadassah-Hebrew University Medical Center; Jerusalem Israel
| | - Vardiella Meiner
- Department of Genetics and Metabolic Diseases; Hadassah-Hebrew University Medical Center; Jerusalem Israel
| |
Collapse
|
28
|
Abstract
O’Byrne and Richard preview results from the Bouchier-Hayes group delineating two distinct pathways for caspase-2 activation in response to different stimuli Caspase-2 triggers apoptosis, but how it is activated by different stimuli is unclear. In this issue, Ando et al. (2017. J. Cell Biol.https://doi.org/10.1083/jcb.201608095) delineate two pathways of caspase-2 activation and show that, in response to DNA damage, caspase-2 forms a complex with the PIDDosome and NPM1 within the nucleolus.
Collapse
Affiliation(s)
- Kenneth J O'Byrne
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Woolloongabba QLD 4102, Australia
| | - Derek J Richard
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Woolloongabba QLD 4102, Australia
| |
Collapse
|
29
|
Millan MJ. Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer's disease: An integrative review. Prog Neurobiol 2017; 156:1-68. [PMID: 28322921 DOI: 10.1016/j.pneurobio.2017.03.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 02/06/2023]
Abstract
The human genome encodes a vast repertoire of protein non-coding RNAs (ncRNA), some specific to the brain. MicroRNAs, which interfere with the translation of target mRNAs, are of particular interest since their deregulation has been implicated in neurodegenerative disorders like Alzheimer's disease (AD). However, it remains challenging to link the complex body of observations on miRNAs and AD into a coherent framework. Using extensive graphical support, this article discusses how a diverse panoply of miRNAs convergently and divergently impact (and are impacted by) core pathophysiological processes underlying AD: neuroinflammation and oxidative stress; aberrant generation of β-amyloid-42 (Aβ42); anomalies in the production, cleavage and post-translational marking of Tau; impaired clearance of Aβ42 and Tau; perturbation of axonal organisation; disruption of synaptic plasticity; endoplasmic reticulum stress and the unfolded protein response; mitochondrial dysfunction; aberrant induction of cell cycle re-entry; and apoptotic loss of neurons. Intriguingly, some classes of miRNA provoke these cellular anomalies, whereas others act in a counter-regulatory, protective mode. Moreover, changes in levels of certain species of miRNA are a consequence of the above-mentioned anomalies. In addition to miRNAs, circular RNAs, piRNAs, long non-coding RNAs and other types of ncRNA are being increasingly implicated in AD. Overall, a complex mesh of deregulated and multi-tasking ncRNAs reciprocally interacts with core pathophysiological mechanisms underlying AD. Alterations in ncRNAs can be detected in CSF and the circulation as well as the brain and are showing promise as biomarkers, with the ultimate goal clinical exploitation as targets for novel modes of symptomatic and course-altering therapy.
Collapse
Affiliation(s)
- Mark J Millan
- Centre for Therapeutic Innovation in Neuropsychiatry, institut de recherche Servier, 125 chemin de ronde, 78290 Croissy sur Seine, France.
| |
Collapse
|
30
|
Miles M, Kitevska-Ilioski T, Hawkins C. Old and Novel Functions of Caspase-2. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 332:155-212. [DOI: 10.1016/bs.ircmb.2016.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Dawar S, Lim Y, Puccini J, White M, Thomas P, Bouchier-Hayes L, Green DR, Dorstyn L, Kumar S. Caspase-2-mediated cell death is required for deleting aneuploid cells. Oncogene 2016; 36:2704-2714. [PMID: 27991927 PMCID: PMC5442422 DOI: 10.1038/onc.2016.423] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/06/2016] [Accepted: 10/03/2016] [Indexed: 12/22/2022]
Abstract
Caspase-2, one of the most evolutionarily conserved of the caspase family, has been implicated in maintenance of chromosomal stability and tumour suppression. Caspase-2 deficient (Casp2−/−) mice develop normally but show premature ageing-related traits and when challenged by certain stressors, succumb to enhanced tumour development and aneuploidy. To test how caspase-2 protects against chromosomal instability, we utilized an ex vivo system for aneuploidy where primary splenocytes from Casp2−/− mice were exposed to anti-mitotic drugs and followed up by live cell imaging. Our data show that caspase-2 is required for deleting mitotically aberrant cells. Acute silencing of caspase-2 in cultured human cells recapitulated these results. We further generated Casp2C320S mutant mice to demonstrate that caspase-2 catalytic activity is essential for its function in limiting aneuploidy. Our results provide direct evidence that the apoptotic activity of caspase-2 is necessary for deleting cells with mitotic aberrations to limit aneuploidy.
Collapse
Affiliation(s)
- S Dawar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| | - Y Lim
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| | - J Puccini
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia.,Departments of Biochemistry and Molecular Pharmacology and Medicine, New York University, New York City, NY, USA
| | - M White
- SA Genome Editing Facility, School of Biological Sciences and Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - P Thomas
- SA Genome Editing Facility, School of Biological Sciences and Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - L Bouchier-Hayes
- Department of Pediatrics-Hematology, Baylor College of Medicine, Houston, TX, USA
| | - D R Green
- Immunology Department, St Jude Children's Research Hospital, Memphis, TN, USA
| | - L Dorstyn
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| | - S Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
32
|
Impaired haematopoietic stem cell differentiation and enhanced skewing towards myeloid progenitors in aged caspase-2-deficient mice. Cell Death Dis 2016; 7:e2509. [PMID: 27906175 PMCID: PMC5260989 DOI: 10.1038/cddis.2016.406] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/26/2016] [Accepted: 11/07/2016] [Indexed: 12/24/2022]
Abstract
The apoptotic cysteine protease caspase-2 has been shown to suppress tumourigenesis in mice and its reduced expression correlates with poor prognosis in some human malignancies. Caspase-2-deficient mice develop normally but show ageing-related traits and, when challenged by oncogenic stimuli or certain stress, show enhanced tumour development, often accompanied by extensive aneuploidy. As stem cells are susceptible to acquiring age-related functional defects because of their self-renewal and proliferative capacity, we examined whether loss of caspase-2 promotes such defects with age. Using young and aged Casp2−/− mice, we demonstrate that deficiency of caspase-2 results in enhanced aneuploidy and DNA damage in bone marrow (BM) cells with ageing. Furthermore, we demonstrate for the first time that caspase-2 loss results in significant increase in immunophenotypically defined short-term haematopoietic stem cells (HSCs) and multipotent progenitors fractions in BM with a skewed differentiation towards myeloid progenitors with ageing. Caspase-2 deficiency leads to enhanced granulocyte macrophage and erythroid progenitors in aged mice. Colony-forming assays and long-term culture-initiating assay further recapitulated these results. Our results provide the first evidence of caspase-2 in regulating HSC and progenitor differentiation, as well as aneuploidy, in vivo.
Collapse
|
33
|
Mutations in CRADD Result in Reduced Caspase-2-Mediated Neuronal Apoptosis and Cause Megalencephaly with a Rare Lissencephaly Variant. Am J Hum Genet 2016; 99:1117-1129. [PMID: 27773430 PMCID: PMC5097945 DOI: 10.1016/j.ajhg.2016.09.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/19/2016] [Indexed: 12/02/2022] Open
Abstract
Lissencephaly is a malformation of cortical development typically caused by deficient neuronal migration resulting in cortical thickening and reduced gyration. Here we describe a “thin” lissencephaly (TLIS) variant characterized by megalencephaly, frontal predominant pachygyria, intellectual disability, and seizures. Trio-based whole-exome sequencing and targeted re-sequencing identified recessive mutations of CRADD in six individuals with TLIS from four unrelated families of diverse ethnic backgrounds. CRADD (also known as RAIDD) is a death-domain-containing adaptor protein that oligomerizes with PIDD and caspase-2 to initiate apoptosis. TLIS variants cluster in the CRADD death domain, a platform for interaction with other death-domain-containing proteins including PIDD. Although caspase-2 is expressed in the developing mammalian brain, little is known about its role in cortical development. CRADD/caspase-2 signaling is implicated in neurotrophic factor withdrawal- and amyloid-β-induced dendritic spine collapse and neuronal apoptosis, suggesting a role in cortical sculpting and plasticity. TLIS-associated CRADD variants do not disrupt interactions with caspase-2 or PIDD in co-immunoprecipitation assays, but still abolish CRADD’s ability to activate caspase-2, resulting in reduced neuronal apoptosis in vitro. Homozygous Cradd knockout mice display megalencephaly and seizures without obvious defects in cortical lamination, supporting a role for CRADD/caspase-2 signaling in mammalian brain development. Megalencephaly and lissencephaly associated with defective programmed cell death from loss of CRADD function in humans implicate reduced apoptosis as an important pathophysiological mechanism of cortical malformation. Our data suggest that CRADD/caspase-2 signaling is critical for normal gyration of the developing human neocortex and for normal cognitive ability.
Collapse
|
34
|
Nestal de Moraes G, Bella L, Zona S, Burton MJ, Lam EWF. Insights into a Critical Role of the FOXO3a-FOXM1 Axis in DNA Damage Response and Genotoxic Drug Resistance. Curr Drug Targets 2016; 17:164-77. [PMID: 25418858 PMCID: PMC5403963 DOI: 10.2174/1389450115666141122211549] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/06/2014] [Accepted: 11/19/2014] [Indexed: 11/22/2022]
Abstract
FOXO3a and FOXM1 are two forkhead transcription factors with antagonistic roles in cancer and DNA damage response. FOXO3a functions like a typical tumour suppressor, whereas FOXM1 is a potent oncogene aberrantly overexpressed in genotoxic resistant cancers. FOXO3a not only represses FOXM1 expression but also its transcriptional output. Recent research has provided novel insights into a central role for FOXO3a and FOXM1 in DNA damage response. The FOXO3a-FOXM1 axis plays a pivotal role in DNA damage repair and the accompanied cellular response through regulating the expression of genes essential for DNA damage sensing, mediating, signalling and repair as well as for senescence, cell cycle and cell death control. In this manner, the FOXO3a-FOXM1 axis also holds the key to cell fate decision in response to genotoxic therapeutic agents and controls the equilibrium between DNA repair and cell termination by cell death or senescence. As a consequence, inhibition of FOXM1 or reactivation of FOXO3a in cancer cells could enhance the efficacy of DNA damaging cancer therapies by decreasing the rate of DNA repair and cell survival while increasing senescence and cell death. Conceptually, targeting FOXO3a and FOXM1 may represent a promising molecular therapeutic option for improving the efficacy and selectivity of DNA damage agents, particularly in genotoxic agent resistant cancer. In addition, FOXO3a, FOXM1 and their downstream transcriptional targets may also be reliable diagnostic biomarkers for predicting outcome, for selecting therapeutic options, and for monitoring treatments in DNA-damaging agent therapy.
Collapse
Affiliation(s)
| | | | | | | | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
35
|
Shalini S, Nikolic A, Wilson CH, Puccini J, Sladojevic N, Finnie J, Dorstyn L, Kumar S. Caspase-2 deficiency accelerates chemically induced liver cancer in mice. Cell Death Differ 2016; 23:1727-36. [PMID: 27518436 DOI: 10.1038/cdd.2016.81] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 06/05/2016] [Accepted: 07/07/2016] [Indexed: 02/07/2023] Open
Abstract
Aberrant cell death/survival has a critical role in the development of hepatocellular carcinoma (HCC). Caspase-2, a cell death protease, limits oxidative stress and chromosomal instability. To study its role in reactive oxygen species (ROS) and DNA damage-induced liver cancer, we assessed diethylnitrosamine (DEN)-mediated tumour development in caspase-2-deficient (Casp2(-/-)) mice. Following DEN injection in young animals, tumour development was monitored for 10 months. We found that DEN-treated Casp2(-/-) mice have dramatically elevated tumour burden and accelerated tumour progression with increased incidence of HCC, accompanied by higher oxidative damage and inflammation. Furthermore, following acute DEN injection, liver injury, DNA damage, inflammatory cytokine release and hepatocyte proliferation were enhanced in mice lacking caspase-2. Our study demonstrates for the first time that caspase-2 limits the progression of tumourigenesis induced by an ROS producing and DNA damaging reagent. Our findings suggest that after initial DEN-induced DNA damage, caspase-2 may remove aberrant cells to limit liver damage and disease progression. We propose that Casp2(-/-) mice, which are more susceptible to genomic instability, are limited in their ability to respond to DNA damage and thus carry more damaged cells resulting in accelerated tumourigenesis.
Collapse
Affiliation(s)
- S Shalini
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5000, Australia
| | - A Nikolic
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5000, Australia
| | - C H Wilson
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5000, Australia
| | - J Puccini
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5000, Australia
| | - N Sladojevic
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5000, Australia
| | - J Finnie
- SA Pathology and School of Medical and Veterinary Science, University of Adelaide, Adelaide, SA 5000, Australia
| | - L Dorstyn
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5000, Australia
| | - S Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
36
|
Affiliation(s)
- C H Wilson
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - L Dorstyn
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - S Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| |
Collapse
|
37
|
Sex-specific alterations in glucose homeostasis and metabolic parameters during ageing of caspase-2-deficient mice. Cell Death Discov 2016; 2:16009. [PMID: 27551503 PMCID: PMC4979492 DOI: 10.1038/cddiscovery.2016.9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 01/20/2023] Open
Abstract
Gender-specific differences are commonly found in metabolic pathways and in response to nutritional manipulation. Previously, we identified a role for caspase-2 in age-related glucose homeostasis and lipid metabolism using male caspase-2-deficient (Casp2−/−) mice. Here we show that the resistance to age-induced glucose tolerance does not occur in female Casp2−/− mice and it appears to be independent of insulin sensitivity in males. Using fasting (18 h) as a means to further investigate the role of caspase-2 in energy and lipid metabolism, we identified sex-specific differences in the fasting response and lipid mobilization. In aged (18–22 months) male Casp2−/− mice, a significant decrease in fasting liver mass, but not total body weight, was observed while in females, total body weight, but not liver mass, was reduced when compared with wild-type (WT) animals. Fasting-induced lipolysis of adipose tissue was enhanced in male Casp2−/− mice as indicated by a significant reduction in white adipocyte cell size, and increased serum-free fatty acids. In females, white adipocyte cell size was significantly smaller in both fed and fasted Casp2−/− mice. No difference in fasting-induced hepatosteatosis was observed in the absence of caspase-2. Further analysis of white adipose tissue (WAT) indicated that female Casp2−/− mice may have enhanced fatty acid recycling and metabolism with expression of genes involved in glyceroneogenesis and fatty acid oxidation increased. Loss of Casp2 also increased fasting-induced autophagy in both male and female liver and in female skeletal muscle. Our observations suggest that caspase-2 can regulate glucose homeostasis and lipid metabolism in a tissue and sex-specific manner.
Collapse
|
38
|
Machado MV, Michelotti GA, Jewell ML, Pereira TA, Xie G, Premont RT, Diehl AM. Caspase-2 promotes obesity, the metabolic syndrome and nonalcoholic fatty liver disease. Cell Death Dis 2016; 7:e2096. [PMID: 26890135 PMCID: PMC5399190 DOI: 10.1038/cddis.2016.19] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 01/18/2023]
Abstract
Obesity and its resulting metabolic disturbances are major health threats. In response to energy surplus, overtaxed adipocytes release fatty acids and pro-inflammatory factors into the circulation, promoting organ fat accumulation (including nonalcoholic fatty liver disease), insulin resistance and the metabolic syndrome. Recently, caspase-2 was linked to lipoapoptosis, so we hypothesized that caspase-2 might be a critical determinant of metabolic syndrome pathogenesis. Caspase-2-deficient and wild-type mice were fed a Western diet (high-fat diet, enriched with saturated fatty acids and 0.2% cholesterol, supplemented with fructose and glucose in the drinking water) for 16 weeks. Metabolic and hepatic outcomes were evaluated. In vitro studies assessed the role of caspase-2 in adipose tissue proliferative properties and susceptibility for lipoapoptosis. Caspase-2-deficient mice fed a Western diet were protected from abdominal fat deposition, diabetes mellitus, dyslipidemia and hepatic steatosis. Adipose tissue in caspase-2-deficient mice was more proliferative, upregulated mitochondrial uncoupling proteins consistent with browning, and was resistant to cell hypertrophy and cell death. The liver was protected from steatohepatitis through a decrease in circulating fatty acids and more efficient hepatic fat metabolism, and from fibrosis as a consequence of reduced fibrogenic stimuli from fewer lipotoxic hepatocytes. Caspase-2 deficiency protected mice from diet-induced obesity, metabolic syndrome and nonalcoholic fatty liver disease. Further studies are necessary to assess caspase-2 as a therapeutic target for those conditions.
Collapse
Affiliation(s)
- M V Machado
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA.,Gastroenterology Department, Hospital de Santa Maria, Lisbon, Portugal
| | - G A Michelotti
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - M L Jewell
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - T A Pereira
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - G Xie
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - R T Premont
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - A M Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
39
|
Fujiwara T, Duscher D, Rustad KC, Kosaraju R, Rodrigues M, Whittam AJ, Januszyk M, Maan ZN, Gurtner GC. Extracellular superoxide dismutase deficiency impairs wound healing in advanced age by reducing neovascularization and fibroblast function. Exp Dermatol 2016; 25:206-11. [PMID: 26663425 DOI: 10.1111/exd.12909] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2015] [Indexed: 12/21/2022]
Abstract
Advanced age is characterized by impairments in wound healing, and evidence is accumulating that this may be due in part to a concomitant increase in oxidative stress. Extended exposure to reactive oxygen species (ROS) is thought to lead to cellular dysfunction and organismal death via the destructive oxidation of intra-cellular proteins, lipids and nucleic acids. Extracellular superoxide dismutase (ecSOD/SOD3) is a prime antioxidant enzyme in the extracellular space that eliminates ROS. Here, we demonstrate that reduced SOD3 levels contribute to healing impairments in aged mice. These impairments include delayed wound closure, reduced neovascularization, impaired fibroblast proliferation and increased neutrophil recruitment. We further establish that SOD3 KO and aged fibroblasts both display reduced production of TGF-β1, leading to decreased differentiation of fibroblasts into myofibroblasts. Taken together, these results suggest that wound healing impairments in ageing are associated with increased levels of ROS, decreased SOD3 expression and impaired extracellular oxidative stress regulation. Our results identify SOD3 as a possible target to correct age-related cellular dysfunction in wound healing.
Collapse
Affiliation(s)
- Toshihiro Fujiwara
- Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Dominik Duscher
- Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Kristine C Rustad
- Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Revanth Kosaraju
- Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Melanie Rodrigues
- Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexander J Whittam
- Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Januszyk
- Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Zeshaan N Maan
- Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Geoffrey C Gurtner
- Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
40
|
Bioactive Peptides from Angelica sinensis Protein Hydrolyzate Delay Senescence in Caenorhabditis elegans through Antioxidant Activities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8956981. [PMID: 26941890 PMCID: PMC4752986 DOI: 10.1155/2016/8956981] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 12/30/2015] [Indexed: 02/02/2023]
Abstract
Since excessive reactive oxygen species (ROS) is known to be associated with aging and age-related diseases, strategies modulating ROS level and antioxidant defense systems may contribute to the delay of senescence. Here we show that the protein hydrolyzate from Angelica sinensis was capable of increasing oxidative survival of the model animal Caenorhabditis elegans intoxicated by paraquat. The hydrolyzate was then fractionated by ultrafiltration, and the antioxidant fraction (<3 kDa) was purified by gel filtration to obtain the antioxidant A. sinensis peptides (AsiPeps), which were mostly composed of peptides with <20 amino acid residues. Further studies demonstrate that AsiPeps were able to reduce the endogenous ROS level, increase the activities of the antioxidant enzymes superoxide dismutase and catalase, and decrease the content of the lipid peroxidation product malondialdehyde in nematodes treated with paraquat or undergoing senescence. AsiPeps were also shown to reduce age pigments accumulation and extend lifespan but did not affect the food-intake behavior of the nematodes. Taken together, our results demonstrate that A. sinensis peptides (AsiPeps) are able to delay aging process in C. elegans through antioxidant activities independent of dietary restriction.
Collapse
|
41
|
Callaway DA, Riquelme MA, Sharma R, Lopez-Cruzan M, Herman BA, Jiang JX. Caspase-2 modulates osteoclastogenesis through down-regulating oxidative stress. Bone 2015; 76:40-8. [PMID: 25796569 PMCID: PMC9387198 DOI: 10.1016/j.bone.2015.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 02/25/2015] [Accepted: 03/11/2015] [Indexed: 11/15/2022]
Abstract
The loss of caspase-2 (Casp-2) in mice results in an osteopenic phenotype associated with increased numbers of osteoclasts in vivo. In this study, we show that Casp-2 is involved in osteoclastogenesis. Protein levels of Casp-2 decrease during the differentiation of macrophages to osteoclasts. Furthermore, siRNA-mediated Casp-2 knockdown in osteoclast precursors or differentiation of bone marrow macrophage (BMM) precursors from Casp2(-/-) mice results in increased osteoclast numbers and tartrate-resistant acid phosphatase (TRAP) activity. Casp2(-/-) osteoclasts are larger in size compared to wild-type osteoclasts and exhibited increased numbers of nuclei, perhaps due to increased precursor fusion. The loss of Casp-2 did not alter earlier stages of differentiation, but had a greater consequence on later stages involving NFATc1 auto-amplification and pre-osteoclast fusion. We have previously shown that the loss of Casp-2 results in increased oxidative stress in the bone. Reactive oxygen species (ROS) is known to play a critical role in late osteoclast differentiation and we show that total ROS and specifically, mitochondrial ROS, significantly increased in Casp2(-/-) BMM precursors after RANKL administration, with a concomitant reduction in FoxO3a and its target antioxidant enzymes, catalase and superoxide 2 (SOD2). Because mitochondrial ROS has been identified as a putative regulator of the later stages of differentiation, the heightened ROS levels in Casp2(-/-) cells likely promote precursor fusion and increased osteoclast numbers. In conclusion, our results indicate a novel role of Casp-2 in the osteoclast as a modulator of total and mitochondrial ROS and osteoclast differentiation.
Collapse
Affiliation(s)
- Danielle A Callaway
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Manuel A Riquelme
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Ramaswamy Sharma
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Marisa Lopez-Cruzan
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Brian A Herman
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Jean X Jiang
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA.
| |
Collapse
|
42
|
Tiwari M, Sharma LK, Vanegas D, Callaway DA, Bai Y, Lechleiter JD, Herman B. A nonapoptotic role for CASP2/caspase 2: modulation of autophagy. Autophagy 2015; 10:1054-70. [PMID: 24879153 PMCID: PMC4091168 DOI: 10.4161/auto.28528] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
CASP2/caspase 2 plays a role in aging, neurodegeneration, and cancer. The contributions of CASP2 have been attributed to its regulatory role in apoptotic and nonapoptotic processes including the cell cycle, DNA repair, lipid biosynthesis, and regulation of oxidant levels in the cells. Previously, our lab demonstrated CASP2-mediated modulation of autophagy during oxidative stress. Here we report the novel finding that CASP2 is an endogenous repressor of autophagy. Knockout or knockdown of CASP2 resulted in upregulation of autophagy in a variety of cell types and tissues. Reinsertion of Caspase-2 gene (Casp2) in mouse embryonic fibroblast (MEFs) lacking Casp2 (casp2(-/-)) suppresses autophagy, suggesting its role as a negative regulator of autophagy. Loss of CASP2-mediated autophagy involved AMP-activated protein kinase, mechanistic target of rapamycin, mitogen-activated protein kinase, and autophagy-related proteins, indicating the involvement of the canonical pathway of autophagy. The present study also demonstrates an important role for loss of CASP2-induced enhanced reactive oxygen species production as an upstream event in autophagy induction. Additionally, in response to a variety of stressors that induce CASP2-mediated apoptosis, casp2(-/-) cells demonstrate a further upregulation of autophagy compared with wild-type MEFs, and upregulated autophagy provides a survival advantage. In conclusion, we document a novel role for CASP2 as a negative regulator of autophagy, which may provide important insight into the role of CASP2 in various processes including aging, neurodegeneration, and cancer.
Collapse
Affiliation(s)
- Meenakshi Tiwari
- Department of Cellular and Structural Biology; University of Texas Health Science Center at San Antonio; South Texas Research Facility; San Antonio, TX USA; Department of Pathology and Laboratory Medicine; All India Institute of Medical Sciences; Patna, India
| | - Lokendra K Sharma
- Department of Cellular and Structural Biology; University of Texas Health Science Center at San Antonio; South Texas Research Facility; San Antonio, TX USA
| | - Difernando Vanegas
- Department of Cellular and Structural Biology; University of Texas Health Science Center at San Antonio; South Texas Research Facility; San Antonio, TX USA
| | - Danielle A Callaway
- Department of Cellular and Structural Biology; University of Texas Health Science Center at San Antonio; South Texas Research Facility; San Antonio, TX USA
| | - Yidong Bai
- Department of Cellular and Structural Biology; University of Texas Health Science Center at San Antonio; South Texas Research Facility; San Antonio, TX USA
| | - James D Lechleiter
- Department of Cellular and Structural Biology; University of Texas Health Science Center at San Antonio; South Texas Research Facility; San Antonio, TX USA
| | - Brian Herman
- Department of Cellular and Structural Biology; University of Texas Health Science Center at San Antonio; South Texas Research Facility; San Antonio, TX USA
| |
Collapse
|
43
|
Hegedűs C, Robaszkiewicz A, Lakatos P, Szabó É, Virág L. Poly(ADP-ribose) in the bone: from oxidative stress signal to structural element. Free Radic Biol Med 2015; 82:179-86. [PMID: 25660995 DOI: 10.1016/j.freeradbiomed.2015.01.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/20/2015] [Accepted: 01/26/2015] [Indexed: 01/16/2023]
Abstract
Contrary to common perception bone is a dynamic organ flexibly adapting to changes in mechanical loading by shifting the delicate balance between bone formation and bone resorption carried out by osteoblasts and osteoclasts, respectively. In the past decades numerous studies demonstrating production of reactive oxygen or nitrogen intermediates, effects of different antioxidants, and involvement of prototypical redox control mechanisms (Nrf2-Keap1, Steap4, FoxO, PAMM, caspase-2) have proven the central role of redox regulation in the bone. Poly(ADP-ribosyl)ation (PARylation), a NAD-dependent protein modification carried out by poly(ADP-ribose) polymerase (PARP) enzymes recently emerged as a new regulatory mechanism fine-tuning osteoblast differentiation and mineralization. Interestingly PARylation does not simply serve as a signaling mechanism during osteoblast differentiation but also couples it to osteoblast death. Even more strikingly, the poly(ADP-ribose) polymer likely released from succumbed cells at the terminal stage of differentiation is incorporated into the bone matrix representing the first structural role of this versatile biopolymer. Moreover, this new paradigm explains why and how osteodifferentiation and death of cells entering this pathway are closely coupled to each other. Here we review the role of reactive oxygen and nitrogen intermediates as well as PARylation in osteoblast and osteoclast differentiation, function, and cell death.
Collapse
Affiliation(s)
- Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Agnieszka Robaszkiewicz
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Department of Environmental Pollution Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| | - Petra Lakatos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Éva Szabó
- Division of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, H-4032 Debrecen, Hungary.
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary.
| |
Collapse
|
44
|
Shalini S, Kumar S. Caspase-2 and the oxidative stress response. Mol Cell Oncol 2015; 2:e1004956. [PMID: 27308499 PMCID: PMC4905344 DOI: 10.1080/23723556.2015.1004956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 12/28/2014] [Accepted: 12/28/2014] [Indexed: 11/17/2022]
Abstract
Caspase-2, one of the earliest discovered caspases, has emerged as a multifunctional enzyme with roles that are not limited to cell death. It acts as a tumor suppressor, prevents genetic instability, and protects against aging by playing a crucial role in sensing alterations in cellular redox status and activating the antioxidant defense system. These apparent non-apoptotic functions, only discovered recently, emphasize the importance of this often-neglected protease.
Collapse
Affiliation(s)
- Sonia Shalini
- Center for Cancer Biology; University of South Australia ; Adelaide, SA, Australia
| | - Sharad Kumar
- Center for Cancer Biology; University of South Australia ; Adelaide, SA, Australia
| |
Collapse
|
45
|
Age-related proteostasis and metabolic alterations in Caspase-2-deficient mice. Cell Death Dis 2015; 6:e1615. [PMID: 25611376 PMCID: PMC4669765 DOI: 10.1038/cddis.2014.567] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 12/21/2022]
Abstract
Ageing is a complex biological process for which underlying biochemical changes are still largely unknown. We performed comparative profiling of the cellular proteome and metabolome to understand the molecular basis of ageing in Caspase-2-deficient (Casp2−/−) mice that are a model of premature ageing in the absence of overt disease. Age-related changes were determined in the liver and serum of young (6–9 week) and aged (18–24 month) wild-type and Casp2−/− mice. We identified perturbed metabolic pathways, decreased levels of ribosomal and respiratory complex proteins and altered mitochondrial function that contribute to premature ageing in the Casp2−/− mice. We show that the metabolic profile changes in the young Casp2−/− mice resemble those found in aged wild-type mice. Intriguingly, aged Casp2−/− mice were found to have reduced blood glucose and improved glucose tolerance. These results demonstrate an important role for caspase-2 in regulating proteome and metabolome remodelling during ageing.
Collapse
|
46
|
Caspase-2 protects against oxidative stress in vivo. Oncogene 2014; 34:4995-5002. [PMID: 25531319 DOI: 10.1038/onc.2014.413] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/22/2014] [Accepted: 11/10/2014] [Indexed: 12/30/2022]
Abstract
Caspase-2 belongs to the caspase family of cysteine proteases with established roles in apoptosis. Recently, caspase-2 has been implicated in nonapoptotic functions including maintenance of genomic stability and tumor suppression. Our previous studies demonstrated that caspase-2 also regulates cellular redox status and delays the onset of several ageing-related traits. In the current study, we tested stress tolerance ability in caspase-2-deficient (Casp2(-/-)) mice by challenging both young and old mice with a low dose of the potent reactive oxygen species (ROS) generator, PQ that primarily affects lungs. In both groups of mice, PQ induced pulmonary damage. However, the lesions in caspase-2 knockout mice were consistently and reproducibly more severe than those in wild-type (WT) mice. Furthermore, serum interleukin (IL)-1β and IL-6 levels were higher in PQ-exposed aged Casp2(-/-) mice indicating increased inflammation. Interestingly, livers from Casp2(-/-) mice displayed karyomegaly, a feature commonly associated with ageing and aneuploidy. Given that Casp2(-/-) mice show impaired antioxidant defense, we tested oxidative damage in these mice. Protein oxidation significantly increased in PQ-injected old Casp2(-/-) mice. Moreover, FoxO1, SOD2 and Nrf2 expression levels were reduced and induction of superoxide dismutase (SOD) and glutathione peroxidase activity was not observed in PQ-treated Casp2(-/-) mice. Strong c-Jun amino-terminal kinase (JNK) activation was observed in Casp2(-/-) mice, indicative of increased stress. Together, our data strongly suggest that caspase-2 deficiency leads to increased cellular stress largely because these mice fail to respond to oxidative stress by upregulating their antioxidant defense mechanism. This makes the mice more vulnerable to exogenous challenges and may partly explain the shorter lifespan of Casp2(-/-) mice.
Collapse
|
47
|
Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death Differ 2014; 22:526-39. [PMID: 25526085 DOI: 10.1038/cdd.2014.216] [Citation(s) in RCA: 889] [Impact Index Per Article: 88.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 11/13/2014] [Accepted: 11/19/2014] [Indexed: 12/26/2022] Open
Abstract
Caspases are proteases with a well-defined role in apoptosis. However, increasing evidence indicates multiple functions of caspases outside apoptosis. Caspase-1 and caspase-11 have roles in inflammation and mediating inflammatory cell death by pyroptosis. Similarly, caspase-8 has dual role in cell death, mediating both receptor-mediated apoptosis and in its absence, necroptosis. Caspase-8 also functions in maintenance and homeostasis of the adult T-cell population. Caspase-3 has important roles in tissue differentiation, regeneration and neural development in ways that are distinct and do not involve any apoptotic activity. Several other caspases have demonstrated anti-tumor roles. Notable among them are caspase-2, -8 and -14. However, increased caspase-2 and -8 expression in certain types of tumor has also been linked to promoting tumorigenesis. Increased levels of caspase-3 in tumor cells causes apoptosis and secretion of paracrine factors that promotes compensatory proliferation in surrounding normal tissues, tumor cell repopulation and presents a barrier for effective therapeutic strategies. Besides this caspase-2 has emerged as a unique caspase with potential roles in maintaining genomic stability, metabolism, autophagy and aging. The present review focuses on some of these less studied and emerging functions of mammalian caspases.
Collapse
Affiliation(s)
- S Shalini
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - L Dorstyn
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - S Dawar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - S Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| |
Collapse
|
48
|
Eaton GJ, Zhang QS, Diallo C, Matsuzawa A, Ichijo H, Steinbeck MJ, Freeman TA. Inhibition of apoptosis signal-regulating kinase 1 enhances endochondral bone formation by increasing chondrocyte survival. Cell Death Dis 2014; 5:e1522. [PMID: 25393478 PMCID: PMC4260738 DOI: 10.1038/cddis.2014.480] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 10/07/2014] [Indexed: 11/20/2022]
Abstract
Endochondral ossification is the result of chondrocyte differentiation, hypertrophy,
death and replacement by bone. The careful timing and progression of this process is
important for normal skeletal bone growth and development, as well as fracture
repair. Apoptosis Signal-Regulating Kinase 1 (ASK1) is a mitogen-activated protein
kinase (MAPK), which is activated by reactive oxygen species and other cellular
stress events. Activation of ASK1 initiates a signaling cascade known to regulate
diverse cellular events including cytokine and growth factor signaling, cell cycle
regulation, cellular differentiation, hypertrophy, survival and apoptosis. ASK1 is
highly expressed in hypertrophic chondrocytes, but the role of ASK1 in skeletal
tissues has not been investigated. Herein, we report that ASK1 knockout (KO) mice
display alterations in normal growth plate morphology, which include a shorter
proliferative zone and a lengthened hypertrophic zone. These changes in growth plate
dynamics result in accelerated long bone mineralization and an increased formation of
trabecular bone, which can be attributed to an increased resistance of terminally
differentiated chondrocytes to undergo cell death. Interestingly, under normal cell
culture conditions, mouse embryonic fibroblasts (MEFs) derived from ASK1 KO mice show
no differences in either MAPK signaling or osteogenic or chondrogenic differentiation
when compared with wild-type (WT) MEFs. However, when cultured with stress
activators, H2O2 or staurosporine, the KO cells show enhanced
survival, an associated decrease in the activation of proteins involved in death
signaling pathways and a reduction in markers of terminal differentiation.
Furthermore, in both WT mice treated with the ASK1 inhibitor, NQDI-1, and ASK1 KO
mice endochondral bone formation was increased in an ectopic ossification model.
These findings highlight a previously unrealized role for ASK1 in regulating
endochondral bone formation. Inhibition of ASK1 has clinical potential to treat
fractures or to slow osteoarthritic progression by enhancing chondrocyte survival and
slowing hypertrophy.
Collapse
Affiliation(s)
- G J Eaton
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Q-S Zhang
- 1] Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA [2] Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - C Diallo
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - A Matsuzawa
- Laboratory of Cell Signaling, University of Tokyo, Tokyo 113-0033, Japan
| | - H Ichijo
- Open Innovation Center for Drug Discovery, University of Tokyo, Tokyo 113-0033, Japan
| | - M J Steinbeck
- School of Biomedical Engineering, Science & Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - T A Freeman
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
49
|
Dorstyn L, Puccini J, Nikolic A, Shalini S, Wilson CH, Norris MD, Haber M, Kumar S. An unexpected role for caspase-2 in neuroblastoma. Cell Death Dis 2014; 5:e1383. [PMID: 25144718 PMCID: PMC4454317 DOI: 10.1038/cddis.2014.342] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 07/11/2014] [Indexed: 12/12/2022]
Abstract
Caspase-2 has been implicated in various cellular functions, including cell death by apoptosis, oxidative stress response, maintenance of genomic stability and tumor suppression. The loss of the caspase-2 gene (Casp2) enhances oncogene-mediated tumorigenesis induced by E1A/Ras in athymic nude mice, and also in the Eμ-Myc lymphoma and MMTV/c-neu mammary tumor mouse models. To further investigate the function of caspase-2 in oncogene-mediated tumorigenesis, we extended our studies in the TH-MYCN transgenic mouse model of neuroblastoma. Surprisingly, we found that loss of caspase-2 delayed tumorigenesis in the TH-MYCN neuroblastoma model. In addition, tumors from TH-MYCN/Casp2−/− mice were predominantly thoracic paraspinal tumors and were less vascularized compared with tumors from their TH-MYCN/Casp2+/+ counterparts. We did not detect any differences in the expression of neuroblastoma-associated genes in TH-MYCN/Casp2−/− tumors, or in the activation of Ras/MAPK signaling pathway that is involved in neuroblastoma progression. Analysis of expression array data from human neuroblastoma samples showed a correlation between low caspase-2 levels and increased survival. However, caspase-2 levels correlated with clinical outcome only in the subset of MYCN-non-amplified human neuroblastoma. These observations indicate that caspase-2 is not a suppressor in MYCN-induced neuroblastoma and suggest a tissue and context-specific role for caspase-2 in tumorigenesis.
Collapse
Affiliation(s)
- L Dorstyn
- 1] Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia [2] Department of Medicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - J Puccini
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - A Nikolic
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - S Shalini
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - C H Wilson
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - M D Norris
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, NSW 2052, Australia
| | - M Haber
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, NSW 2052, Australia
| | - S Kumar
- 1] Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia [2] Department of Medicine, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
50
|
Olsson M, Forsberg J, Zhivotovsky B. Caspase-2: the reinvented enzyme. Oncogene 2014; 34:1877-82. [DOI: 10.1038/onc.2014.139] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 04/16/2014] [Accepted: 04/16/2014] [Indexed: 12/11/2022]
|