1
|
Zhao L, Zhang Y, Tian Y, Ding X, Lin R, Xiao L, Peng F, Zhang K, Yang Z. Role of ENPP1 in cancer pathogenesis: Mechanisms and clinical implications (Review). Oncol Lett 2024; 28:590. [PMID: 39411204 PMCID: PMC11474142 DOI: 10.3892/ol.2024.14722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Cancer is a significant societal, public health and economic challenge in the 21st century, and is the primary cause of death from disease globally. Ectonucleotide pyrophosphatase/phosphodiesterase (ENPP) serves a crucial role in several biochemical processes, including adenosine triphosphate hydrolysis, purine metabolism and regulation of signaling pathways. Specifically, ENPP1, a type II transmembrane glycoprotein and key member of the ENPP family, may be upregulated in tumor cells and implicated in the pathogenesis of multiple human cancers. The present review provides an overview of the structural, pathological and physiological roles of ENPP1 and discusses the potential mechanisms of ENPP1 in the development of cancers such as breast, colon, gallbladder, liver and lung cancers, and also summarizes the four major signaling pathways in tumors. Furthermore, the present review demonstrates that ENPP1 serves a crucial role in cell migration, proliferation and invasion, and that corresponding inhibitors have been developed and associated with clinical characterization.
Collapse
Affiliation(s)
- Lujie Zhao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| | - Yu Zhang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| | - Yahui Tian
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| | - Xin Ding
- School of Clinical Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| | - Runling Lin
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| | - Lin Xiao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| | - Fujun Peng
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
- Weifang Key L2aboratory of Collaborative Innovation of Intelligent Diagnosis and Treatment and Molecular Diseases, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Kai Zhang
- Genetic Testing Centre, Qingdao University Women's and Children's Hospital, Qingdao, Shandong 266000, P.R. China
| | - Zhongfa Yang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| |
Collapse
|
2
|
Zhang N, Wu P, Mu M, Niu C, Hu S. Exosomal circZNF800 Derived from Glioma Stem-like Cells Regulates Glioblastoma Tumorigenicity via the PIEZO1/Akt Axis. Mol Neurobiol 2024; 61:6556-6571. [PMID: 38324181 PMCID: PMC11338982 DOI: 10.1007/s12035-024-04002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 01/30/2024] [Indexed: 02/08/2024]
Abstract
Exosomes play a crucial role in regulating crosstalk between tumor and tumor stem-like cells through their cargo molecules. Circular RNAs (circRNAs) have recently been demonstrated to be critical factors in tumorigenesis. This study focuses on the molecular mechanism by which circRNAs from glioma stem-like cell (GSLC) exosomes regulate glioblastoma (GBM) tumorigenicity. In this study, we validated that GSLC exosomes accelerated the malignant phenotype of GBM. Subsequently, we found that circZNF800 was highly expressed in GSLC exosomes and was negatively associated with GBM patients. CircZNF800 promoted GBM cell proliferation and migration and inhibited GBM cell apoptosis in vitro. Silencing circZNF800 could improve the GBM xenograft model survival rate. Mechanistic studies revealed that circZNF800 activated the PIEZO1/Akt signaling pathway by sponging miR-139-5p. CircZNF800 derived from GSLC exosomes promoted GBM cell tumorigenicity and predicted poor prognosis in GBM patients. CircZNF800 has the potential to serve as a promising target for further therapeutic exploration.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, People's Republic of China
| | - Pengfei Wu
- Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, People's Republic of China
| | - Maolin Mu
- Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, People's Republic of China
| | - Chaoshi Niu
- Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China.
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, People's Republic of China.
- Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, Anhui, 230001, People's Republic of China.
- Anhui Provincial Clinical Research Center for Neurosurgical Disease, Hefei, Anhui, 230001, People's Republic of China.
| | - Shanshan Hu
- Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China.
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, People's Republic of China.
- Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, Anhui, 230001, People's Republic of China.
- Anhui Provincial Clinical Research Center for Neurosurgical Disease, Hefei, Anhui, 230001, People's Republic of China.
| |
Collapse
|
3
|
Ednacot EMQ, Nabhani A, Dinh DM, Morehouse BR. Pharmacological potential of cyclic nucleotide signaling in immunity. Pharmacol Ther 2024; 258:108653. [PMID: 38679204 DOI: 10.1016/j.pharmthera.2024.108653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/16/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Cyclic nucleotides are important signaling molecules that play many critical physiological roles including controlling cell fate and development, regulation of metabolic processes, and responding to changes in the environment. Cyclic nucleotides are also pivotal regulators in immune signaling, orchestrating intricate processes that maintain homeostasis and defend against pathogenic threats. This review provides a comprehensive examination of the pharmacological potential of cyclic nucleotide signaling pathways within the realm of immunity. Beginning with an overview of the fundamental roles of cAMP and cGMP as ubiquitous second messengers, this review delves into the complexities of their involvement in immune responses. Special attention is given to the challenges associated with modulating these signaling pathways for therapeutic purposes, emphasizing the necessity for achieving cell-type specificity to avert unintended consequences. A major focus of the review is on the recent paradigm-shifting discoveries regarding specialized cyclic nucleotide signals in the innate immune system, notably the cGAS-STING pathway. The significance of cyclic dinucleotides, exemplified by 2'3'-cGAMP, in controlling immune responses against pathogens and cancer, is explored. The evolutionarily conserved nature of cyclic dinucleotides as antiviral agents, spanning across diverse organisms, underscores their potential as targets for innovative immunotherapies. Findings from the last several years have revealed a striking diversity of novel bacterial cyclic nucleotide second messengers which are involved in antiviral responses. Knowledge of the existence and precise identity of these molecules coupled with accurate descriptions of their associated immune defense pathways will be essential to the future development of novel antibacterial therapeutic strategies. The insights presented herein may help researchers navigate the evolving landscape of immunopharmacology as it pertains to cyclic nucleotides and point toward new avenues or lines of thinking about development of therapeutics against the pathways they regulate.
Collapse
Affiliation(s)
- Eirene Marie Q Ednacot
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Ali Nabhani
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - David M Dinh
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Benjamin R Morehouse
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92697, USA; Center for Virus Research, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
4
|
Mardjuki R, Wang S, Carozza J, Zirak B, Subramanyam V, Abhiraman G, Lyu X, Goodarzi H, Li L. Identification of the extracellular membrane protein ENPP3 as a major cGAMP hydrolase and innate immune checkpoint. Cell Rep 2024; 43:114209. [PMID: 38749434 DOI: 10.1016/j.celrep.2024.114209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/05/2024] [Accepted: 04/23/2024] [Indexed: 05/28/2024] Open
Abstract
2'3'-Cyclic guanosine monophosphate (GMP)-AMP (cGAMP) is a second messenger synthesized upon detection of cytosolic double-stranded DNA (dsDNA) and passed between cells to facilitate downstream immune signaling. Ectonucleotide pyrophosphatase phosphodiesterase I (ENPP1), an extracellular enzyme, was the only metazoan hydrolase known to regulate cGAMP levels to dampen anti-cancer immunity. Here, we uncover ENPP3 as the second and likely the only other metazoan cGAMP hydrolase under homeostatic conditions. ENPP3 has a tissue expression pattern distinct from ENPP1's and accounts for all cGAMP hydrolysis activity in ENPP1-deficient mice. Importantly, we also show that, as with ENPP1, selectively abolishing ENPP3's cGAMP hydrolysis activity results in diminished cancer growth and metastasis of certain tumor types in a stimulator of interferon genes (STING)-dependent manner. Both ENPP1 and ENPP3 are extracellular enzymes, suggesting the dominant role that extracellular cGAMP must play as a mediator of cell-cell innate immune communication. Our work demonstrates that ENPP1 and ENPP3 non-redundantly dampen extracellular cGAMP-STING signaling, pointing to ENPP3 as a target for cancer immunotherapy.
Collapse
Affiliation(s)
- Rachel Mardjuki
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Arc Institute, Palo Alto, CA 94304, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Songnan Wang
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Arc Institute, Palo Alto, CA 94304, USA
| | | | - Bahar Zirak
- Arc Institute, Palo Alto, CA 94304, USA; Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biophysics & Biochemistry, University of California, San Francisco, San Francisco, CA 94143, USA; Baker Computational Health Science Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Vishvak Subramanyam
- Arc Institute, Palo Alto, CA 94304, USA; Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biophysics & Biochemistry, University of California, San Francisco, San Francisco, CA 94143, USA; Baker Computational Health Science Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gita Abhiraman
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Xuchao Lyu
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Hani Goodarzi
- Arc Institute, Palo Alto, CA 94304, USA; Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biophysics & Biochemistry, University of California, San Francisco, San Francisco, CA 94143, USA; Baker Computational Health Science Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lingyin Li
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Arc Institute, Palo Alto, CA 94304, USA.
| |
Collapse
|
5
|
Li L. Stimulating STING for cancer therapy: Taking the extracellular route. Cell Chem Biol 2024; 31:851-861. [PMID: 38723635 DOI: 10.1016/j.chembiol.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/14/2024] [Accepted: 04/09/2024] [Indexed: 05/19/2024]
Abstract
Ten years ago, the second messenger cGAMP was discovered as the activator of the anti-cancer STING pathway. The characterization of cGAMP's paracrine action and dominant extracellular hydrolase ENPP1 cemented cGAMP as an intercellular immunotransmitter that coordinates the innate and adaptive immune systems to fight cancer. In this Perspective, I look back at a decade of discovery of extracellular cGAMP biology and drug development aiming to supply or preserve extracellular cGAMP for cancer treatment. Reviewing our understanding of the cell type-specific regulatory mechanisms of STING agonists, including their transporters and degradation enzymes, I explain on a molecular and cellular level the successes and challenges of direct STING agonists for cancer therapy. Based on what we know now, I propose new ways to stimulate the STING pathway in a manner that is not only cancer specific, but also cell type specific to fully harness the anti-cancer effect of cGAMP while avoiding collateral damage.
Collapse
Affiliation(s)
- Lingyin Li
- Arc Institute, Palo Alto, CA, 94304 USA; Department of Biochemistry and Sarafan ChEM-H Institute, Stanford University, Stanford, CA, 94305 USA.
| |
Collapse
|
6
|
Ma XY, Chen MM, Meng LH. Second messenger 2'3'-cyclic GMP-AMP (2'3'-cGAMP): the cell autonomous and non-autonomous roles in cancer progression. Acta Pharmacol Sin 2024; 45:890-899. [PMID: 38177693 PMCID: PMC11053103 DOI: 10.1038/s41401-023-01210-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Cytosolic double-stranded DNA (dsDNA) is frequently accumulated in cancer cells due to chromosomal instability or exogenous stimulation. Cyclic GMP-AMP synthase (cGAS) acts as a cytosolic DNA sensor, which is activated upon binding to dsDNA to synthesize the crucial second messenger 2'3'-cyclic GMP-AMP (2'3'-cGAMP) that in turn triggers stimulator of interferon genes (STING) signaling. The canonical role of cGAS-cGAMP-STING pathway is essential for innate immunity and viral defense. Recent emerging evidence indicates that 2'3'-cGAMP plays an important role in cancer progression via cell autonomous and non-autonomous mechanisms. Beyond its role as an intracellular messenger to activate STING signaling in tumor cells, 2'3'-cGAMP also serves as an immunotransmitter produced by cancer cells to modulate the functions of non-tumor cells especially immune cells in the tumor microenvironment by activating STING signaling. In this review, we summarize the synthesis, transmission, and degradation of 2'3'-cGAMP as well as the dual functions of 2'3'-cGAMP in a STING-dependent manner. Additionally, we discuss the potential therapeutic strategies that harness the cGAMP-mediated antitumor response for cancer therapy.
Collapse
Affiliation(s)
- Xiao-Yu Ma
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Man-Man Chen
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ling-Hua Meng
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Huang R, Ning Q, Zhao J, Zhao X, Zeng L, Yi Y, Tang S. Targeting ENPP1 for cancer immunotherapy: Killing two birds with one stone. Biochem Pharmacol 2024; 220:116006. [PMID: 38142838 DOI: 10.1016/j.bcp.2023.116006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Cancer immunotherapy, particularly with immune checkpoint inhibitors, has revolutionized the paradigm of cancer treatment. Nevertheless, the efficacy of cancer immunotherapy remains limited in most clinical settings due to the lack of a preexisting antitumor T-cell response in tumors. Therefore, the clinical outcomes of cancer immunotherapy must be improved crucially. With increased awareness of the importance of the innate immune response in the recruitment of T cells, as well as the onset and maintenance of the T cell response, great interest has been shown in activating the cGAS-STING signaling pathway to awaken the innate immune response, thereby orchestrating both innate and adaptive immune responses to induce tumor clearance. However, tumor cells have evolved to overexpress ectonucleotide pyrophosphate phosphodiesterase 1 (ENPP1), which degrades the immunotransmitter 2',3'-cGAMP and promotes the production of immune-suppressing adenosine, resulting in inhibition of the anticancer immune response in the tumor microenvironment. Clinically, ENPP1 overexpression is closely associated with poor prognosis in patients with cancer. Conversely, depleting or inhibiting ENPP1 has been verified to elevate extracellular 2',3'-cGAMP levels and inhibit the generation of adenosine, thereby reinvigorating the anticancer immune response for tumor elimination. A variety of ENPP1 inhibitors have recently been developed and have demonstrated significant promise for cancer immunotherapy. In this review, we provide an overview of ENPP1, dissect its immunosuppressive mechanisms, and discuss the development of ENPP1 inhibitors with the potential to further improve the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Ruilei Huang
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Qian Ning
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jihui Zhao
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Xuhong Zhao
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Luting Zeng
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Yi Yi
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Shengsong Tang
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, and Institute of Pharmacy & Pharmacology, University of South China, Hengyang 421001, China.
| |
Collapse
|
8
|
Mardjuki R, Wang S, Carozza JA, Abhiraman GC, Lyu X, Li L. Identification of extracellular membrane protein ENPP3 as a major cGAMP hydrolase, cementing cGAMP's role as an immunotransmitter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575449. [PMID: 38260585 PMCID: PMC10802559 DOI: 10.1101/2024.01.12.575449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
cGAMP is a second messenger that is synthesized in the cytosol upon detection of cytosolic dsDNA and passed between cells to facilitate downstream immune signaling. ENPP1, an extracellular enzyme, was the only metazoan cGAMP hydrolase known to regulate cGAMP levels to dampen anti-cancer immunity. Here, we uncover ENPP3 as the second and only other metazoan cGAMP hydrolase under homeostatic conditions. ENPP3 has a tissue expression pattern distinct from that of ENPP1 and accounts for all remaining cGAMP hydrolysis activity in mice lacking ENPP1. Importantly, we also show that as with ENPP1, selectively abolishing ENPP3's cGAMP hydrolase activity results in diminished cancer growth and metastasis of certain tumor types. Both ENPP1 and ENPP3 are extracellular enzymes, suggesting the dominant role that extracellular cGAMP must play as a mediator of cell-cell innate immune communication. Our work clearly shows that ENPP1 and ENPP3 non-redundantly dampen extracellular cGAMP-STING signaling, pointing to ENPP3 as a new target for cancer immunotherapy.
Collapse
|
9
|
Wang S, Böhnert V, Joseph AJ, Sudaryo V, Skariah G, Swinderman JT, Yu FB, Subramanyam V, Wolf DM, Lyu X, Gilbert LA, van’t Veer LJ, Goodarzi H, Li L. ENPP1 is an innate immune checkpoint of the anticancer cGAMP-STING pathway in breast cancer. Proc Natl Acad Sci U S A 2023; 120:e2313693120. [PMID: 38117852 PMCID: PMC10756298 DOI: 10.1073/pnas.2313693120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/10/2023] [Indexed: 12/22/2023] Open
Abstract
Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) expression correlates with poor prognosis in many cancers, and we previously discovered that ENPP1 is the dominant hydrolase of extracellular cGAMP: a cancer-cell-produced immunotransmitter that activates the anticancer stimulator of interferon genes (STING) pathway. However, ENPP1 has other catalytic activities and the molecular and cellular mechanisms contributing to its tumorigenic effects remain unclear. Here, using single-cell RNA-seq, we show that ENPP1 in both cancer and normal tissues drives primary breast tumor growth and metastasis by dampening extracellular 2'3'-cyclic-GMP-AMP (cGAMP)-STING-mediated antitumoral immunity. ENPP1 loss-of-function in both cancer cells and normal tissues slowed primary tumor growth and abolished metastasis. Selectively abolishing the cGAMP hydrolysis activity of ENPP1 phenocopied ENPP1 knockout in a STING-dependent manner, demonstrating that restoration of paracrine cGAMP-STING signaling is the dominant anti-cancer mechanism of ENPP1 inhibition. Finally, ENPP1 expression in breast tumors deterministically predicated whether patients would remain free of distant metastasis after pembrolizumab (anti-PD-1) treatment followed by surgery. Altogether, ENPP1 blockade represents a strategy to exploit cancer-produced extracellular cGAMP for controlled local activation of STING and is therefore a promising therapeutic approach against breast cancer.
Collapse
Affiliation(s)
- Songnan Wang
- Department of Biochemistry, Stanford University, Stanford, CA94305
- ChEM-H Institute, Stanford University, Stanford, CA94305
- Arc Institute, Palo Alto, CA94304
| | - Volker Böhnert
- Department of Biochemistry, Stanford University, Stanford, CA94305
- ChEM-H Institute, Stanford University, Stanford, CA94305
| | - Alby J. Joseph
- Department of Biochemistry, Stanford University, Stanford, CA94305
- ChEM-H Institute, Stanford University, Stanford, CA94305
- Arc Institute, Palo Alto, CA94304
| | - Valentino Sudaryo
- Department of Biochemistry, Stanford University, Stanford, CA94305
- ChEM-H Institute, Stanford University, Stanford, CA94305
- Arc Institute, Palo Alto, CA94304
| | - Gemini Skariah
- Department of Biochemistry, Stanford University, Stanford, CA94305
- ChEM-H Institute, Stanford University, Stanford, CA94305
| | - Jason T. Swinderman
- Arc Institute, Palo Alto, CA94304
- Department of Urology, University of California, San Francisco, CA94143
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA94158
| | | | - Vishvak Subramanyam
- Department of Urology, University of California, San Francisco, CA94143
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA94158
- Department of Biophysics & Biochemistry, University of California, San Francisco, CA94143
- Baker Computational Health Science Institute, University of California, San Francisco, CA94143
| | - Denise M. Wolf
- Department of Laboratory Medicine, University of California, San Francisco, CA94115
| | - Xuchao Lyu
- ChEM-H Institute, Stanford University, Stanford, CA94305
- Department of Pathology, Stanford University School of Medicine, Stanford, CA94305
| | - Luke A. Gilbert
- Arc Institute, Palo Alto, CA94304
- Department of Urology, University of California, San Francisco, CA94143
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA94158
| | - Laura J. van’t Veer
- Department of Laboratory Medicine, University of California, San Francisco, CA94115
| | - Hani Goodarzi
- Department of Urology, University of California, San Francisco, CA94143
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA94158
- Department of Biophysics & Biochemistry, University of California, San Francisco, CA94143
- Baker Computational Health Science Institute, University of California, San Francisco, CA94143
| | - Lingyin Li
- Department of Biochemistry, Stanford University, Stanford, CA94305
- ChEM-H Institute, Stanford University, Stanford, CA94305
- Arc Institute, Palo Alto, CA94304
| |
Collapse
|
10
|
Wang S, Böhnert V, Joseph AJ, Sudaryo V, Swinderman J, Yu FB, Lyu X, Skariah G, Subramanyam V, Gilbert LA, Goodarzi H, Lingyin L. ENPP1 is an innate immune checkpoint of the anticancer cGAMP-STING pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.543353. [PMID: 37333273 PMCID: PMC10274658 DOI: 10.1101/2023.06.01.543353] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
ENPP1 expression correlates with poor prognosis in many cancers, and we previously discovered that ENPP1 is the dominant hydrolase of extracellular cGAMP: a cancer-cell-produced immunotransmitter that activates the anticancer STING pathway. However, ENPP1 has other catalytic activities and the molecular and cellular mechanisms contributing to its tumorigenic effects remain unclear. Here, using single cell RNA-seq (scRNA-seq), we show that ENPP1 overexpression drives primary breast tumor growth and metastasis by synergistically dampening extracellular cGAMP-STING mediated antitumoral immunity and activating immunosuppressive extracellular adenosine (eADO) signaling. In addition to cancer cells, stromal and immune cells in the tumor microenvironment (TME) also express ENPP1 that restrains their response to tumor-derived cGAMP. Enpp1 loss-of-function in both cancer cells and normal tissues slowed primary tumor initiation and growth and prevented metastasis in an extracellular cGAMP- and STING-dependent manner. Selectively abolishing the cGAMP hydrolysis activity of ENPP1 phenocopied total ENPP1 knockout, demonstrating that restoration of paracrine cGAMP-STING signaling is the dominant anti-cancer mechanism of ENPP1 inhibition. Strikingly, we find that breast cancer patients with low ENPP1 expression have significantly higher immune infiltration and improved response to therapeutics impacting cancer immunity upstream or downstream of the cGAMP-STING pathway, like PARP inhibitors and anti-PD1. Altogether, selective inhibition of ENPP1's cGAMP hydrolase activity alleviates an innate immune checkpoint to boost cancer immunity and is therefore a promising therapeutic approach against breast cancer that may synergize with other cancer immunotherapies.
Collapse
Affiliation(s)
- Songnan Wang
- Department of Biochemistry, Stanford University, Stanford 94305, USA
- ChEM-H Institute, Stanford University, Stanford 94305, USA
- Arc Institute, Palo Alto 94304, USA
| | - Volker Böhnert
- Department of Biochemistry, Stanford University, Stanford 94305, USA
- ChEM-H Institute, Stanford University, Stanford 94305, USA
| | - Alby J. Joseph
- Department of Biochemistry, Stanford University, Stanford 94305, USA
- ChEM-H Institute, Stanford University, Stanford 94305, USA
- Arc Institute, Palo Alto 94304, USA
| | - Valentino Sudaryo
- Department of Biochemistry, Stanford University, Stanford 94305, USA
- ChEM-H Institute, Stanford University, Stanford 94305, USA
- Arc Institute, Palo Alto 94304, USA
| | - Jason Swinderman
- Arc Institute, Palo Alto 94304, USA
- Department of Urology, University of California, San Francisco, San Francisco 94143, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Xuchao Lyu
- ChEM-H Institute, Stanford University, Stanford 94305, USA
| | - Gemini Skariah
- Department of Biochemistry, Stanford University, Stanford 94305, USA
- ChEM-H Institute, Stanford University, Stanford 94305, USA
| | - Vishvak Subramanyam
- Department of Urology, University of California, San Francisco, San Francisco 94143, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Biophysics & Biochemistry, University of California, San Francisco, San Francisco 94143, USA
- UCSF Baker Computational Health Science Institute, University of California, San Francisco, 94143, USA
| | - Luke A. Gilbert
- Arc Institute, Palo Alto 94304, USA
- Department of Urology, University of California, San Francisco, San Francisco 94143, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hani Goodarzi
- Department of Urology, University of California, San Francisco, San Francisco 94143, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Biophysics & Biochemistry, University of California, San Francisco, San Francisco 94143, USA
- UCSF Baker Computational Health Science Institute, University of California, San Francisco, 94143, USA
| | - Li Lingyin
- Department of Biochemistry, Stanford University, Stanford 94305, USA
- ChEM-H Institute, Stanford University, Stanford 94305, USA
- Arc Institute, Palo Alto 94304, USA
| |
Collapse
|
11
|
Deregulated E2F Activity as a Cancer-Cell Specific Therapeutic Tool. Genes (Basel) 2023; 14:genes14020393. [PMID: 36833320 PMCID: PMC9956157 DOI: 10.3390/genes14020393] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The transcription factor E2F, the principal target of the tumor suppressor pRB, plays crucial roles in cell proliferation and tumor suppression. In almost all cancers, pRB function is disabled, and E2F activity is enhanced. To specifically target cancer cells, trials have been undertaken to suppress enhanced E2F activity to restrain cell proliferation or selectively kill cancer cells, utilizing enhanced E2F activity. However, these approaches may also impact normal growing cells, since growth stimulation also inactivates pRB and enhances E2F activity. E2F activated upon the loss of pRB control (deregulated E2F) activates tumor suppressor genes, which are not activated by E2F induced by growth stimulation, inducing cellular senescence or apoptosis to protect cells from tumorigenesis. Deregulated E2F activity is tolerated in cancer cells due to inactivation of the ARF-p53 pathway, thus representing a feature unique to cancer cells. Deregulated E2F activity, which activates tumor suppressor genes, is distinct from enhanced E2F activity, which activates growth-related genes, in that deregulated E2F activity does not depend on the heterodimeric partner DP. Indeed, the ARF promoter, which is specifically activated by deregulated E2F, showed higher cancer-cell specific activity, compared to the E2F1 promoter, which is also activated by E2F induced by growth stimulation. Thus, deregulated E2F activity is an attractive potential therapeutic tool to specifically target cancer cells.
Collapse
|
12
|
Shahin AI, Zaraei SO, AlKubaisi BO, Ullah S, Anbar HS, El-Gamal R, Menon V, Abdel-Maksoud MS, Oh CH, El-Awady R, Gelsleichter NE, Pelletier J, Sévigny J, Iqbal J, Al-Tel TH, El-Gamal MI. Design and synthesis of new adamantyl derivatives as promising antiproliferative agents. Eur J Med Chem 2023; 246:114958. [PMID: 36470105 DOI: 10.1016/j.ejmech.2022.114958] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
A series of adamantyl carboxamide derivatives containing sulfonate or sulfonamide moiety were designed as multitargeted inhibitors of ectonucleotide pyrophosphatases/phosphodiesterases (NPPs) and carbonic anhydrases (CAs). The target compounds were investigated for their antiproliferative activity against NCI-60 cancer cell lines panel. Three main series composed of 3- and 4-aminophenol, 4-aminoaniline, and 5-hydroxyindole scaffolds were designed based on a lead compound (A). Compounds 1e (benzenesulfonyl) and 1i (4-fluorobenzenesulfonyl) of 4-aminophenol backbone exhibited the most promising antiproliferative activity. Both compounds exhibited a broad-spectrum and potent inhibition against all the nine tested cancer subtypes. Both compounds showed nanomolar IC50 values over several cancer cell lines that belong to leukemia and colon cancer such as K-562, RPMI-8226, SR, COLO 205, HCT-116, HCT-15, HT29, KM12, and SW-620 cell lines. Compounds 1e and 1i induced apoptosis in K-562 leukemia cells in a dose-dependent manner. Compound 1i showed the highest cytotoxic activity with IC50 value of 200 nM against HT29 cell line. In addition, compounds 1e and 1i were tested against normal breast cells (HME1) and normal skin fibroblast cells (F180) and the results revealed that the compounds are safe toward normal cells compared to cancers cells. Enzymatic assays against NPP1-3 and carbonic anhydrases II, IX, and XII were performed to investigate the possible molecular target(s) of compounds 1e and 1i. Furthermore, a molecular docking study was performed to predict the binding modes of compounds 1e and 1i in the active site of the most sensitive enzymes subtypes.
Collapse
Affiliation(s)
- Afnan I Shahin
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Seyed-Omar Zaraei
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Bilal O AlKubaisi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Saif Ullah
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Hanan S Anbar
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, 19099, United Arab Emirates
| | - Randa El-Gamal
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Varsha Menon
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mohammed S Abdel-Maksoud
- Medicinal & Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre NRC (ID: 60014618), Dokki, Giza, 12622, Egypt
| | - Chang-Hyun Oh
- Center for Biomaterials, Korea Institute of Science and Technology, PO Box 131, Cheongryang, Seoul, 130-650, Republic of Korea; Department of Biomolecular Science, Korea University of Science and Technology, 113 Gwahangno, Yuseong-gu, Daejeon, 305-333, Republic of Korea
| | - Raafat El-Awady
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Nicolly Espindola Gelsleichter
- Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, G1V 4G2, Canada; Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, G1V 4G2, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, G1V 4G2, Canada; Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan.
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Mohammed I El-Gamal
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
13
|
Chu X, Baek DS, Li W, Shyp T, Mooney B, Hines MG, Morin GB, Sorensen PH, Dimitrov DS. Human antibodies targeting ENPP1 as candidate therapeutics for cancers. Front Immunol 2023; 14:1070492. [PMID: 36761762 PMCID: PMC9905232 DOI: 10.3389/fimmu.2023.1070492] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) is a type II transmembrane glycoprotein expressed in many tissues. High expression levels of ENPP1 have been observed in many cancer types such as lung cancer, ovarian cancer, and breast cancer. Such overexpression has been associated with poor prognosis in these diseases. Hence, ENPP1 is a potential target for immunotherapy across multiple cancers. Here, we isolated and characterized two high-affinity and specific anti-ENPP1 Fab antibody candidates, 17 and 3G12, from large phage-displayed human Fab libraries. After conversion to IgG1, the binding of both antibodies increased significantly due to avidity effects. Based on these antibodies, we generated antibody-drug conjugates (ADCs), IgG-based bispecific T-cell engagers (IbTEs), and CAR T-cells which all exhibited potent killing of ENPP1-expressing cells. Thus, these various antibody-derived modalities are promising therapeutic candidates for cancers expressing human ENPP1.
Collapse
Affiliation(s)
- Xiaojie Chu
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, United States
| | - Du-San Baek
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, United States
| | - Wei Li
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, United States
| | - Taras Shyp
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Brian Mooney
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Margaret G Hines
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, United States
| | - Gregg B Morin
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Poul H Sorensen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Dimiter S Dimitrov
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, United States.,Abound Bio, Pittsburgh, PA, United States
| |
Collapse
|
14
|
Grković I, Mitrović N, Dragić M, Zarić Kontić M. Enzyme histochemistry: a useful tool for examining the spatial distribution of brain ectonucleotidases in (patho)physiological conditions. Histol Histopathol 2022; 37:919-936. [PMID: 35575291 DOI: 10.14670/hh-18-471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Adenosine 5'-triphosphate (ATP) and other nucleotides and nucleosides, such as adenosine, are versatile signaling molecules involved in many physiological processes and pathological conditions in the nervous system, especially those with an inflammatory component. They can be released from nerve cells, glial cells, and vascular cells into the extracellular space where they exert their function via ionotropic (P2X) or metabotropic (P2Y) receptors. Signaling via extracellular nucleotides and adenosine is regulated by cell-surface located enzymes ectonucleotidases that hydrolyze the nucleotide to the respective nucleoside. This review summarizes a histochemical approach for detection of ectonucleotidase activities in the cryo-sections of brain tissue. The enzyme histochemistry (EHC) might be used as suitable replacement for immunohistochemistry, since it gives information about both localization and activity, thus adding a functional component to a classical histological approach. With this technique, it is possible to visualize spatial distribution and cell-specific localization of ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) and ecto-5'-nucleotidase (eN/CD73) activities during brain development, after different hormonal manipulations, during neurodegeneration, etc. EHC is also suitable for investigation of microglial morphology in different (patho)physiological conditions. Furthermore, the review describes how to quantify EHC results.
Collapse
Affiliation(s)
- Ivana Grković
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Nataša Mitrović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milorad Dragić
- Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marina Zarić Kontić
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
15
|
Identification of Downregulated Exosome-Associated Gene ENPP1 as a Novel Lipid Metabolism and Immune-Associated Biomarker for Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:4834791. [PMID: 36199794 PMCID: PMC9529392 DOI: 10.1155/2022/4834791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/11/2022] [Indexed: 12/29/2022]
Abstract
Exosome plays an important role in the occurrence and development of tumors, such as hepatocellular carcinoma (LIHC). However, the functions and mechanisms of exosome-associated molecules in LIHC are still underexplored. Here, we investigated the role of the exosome-related gene ENPP1 in LIHC. Comprehensive bioinformatics from multiple databases revealed that ENPP1 was significantly downregulated in LIHC tissues. The patients with downregulated ENPP1 displayed a poor prognosis. Immunohistochemistry (IHC) was used to further confirm the downregulated ENPP1 in LIHC tissues. In addition, the coexpression network of ENPP1 was also explored to understand its roles in the underlying signaling pathways, including fatty acid degradation and the PPAR signaling pathway. Simultaneously, GSEA analysis indicated the potential roles of ENPP1 in the lipid metabolism-associated signaling pathways in the pathogenesis of LIHC, including fatty acid metabolism, fatty acid synthesis, and so on. Finally, immunological analysis indicated that ENPP1 might also be involved in multiple immune-related features, including immunoinhibitors, immunostimulators, and chemokines. Taken together, these findings could enhance our understanding of ENPP1 in LIHC pathogenesis and immune response and provide a new target for ENPP1-related immunotherapy in clinical treatment.
Collapse
|
16
|
Development of Novel Ecto-Nucleotide Pyrophosphatase/Phosphodiesterase 1 (ENPP1) Inhibitors for Tumor Immunotherapy. Int J Mol Sci 2022; 23:ijms23137104. [PMID: 35806118 PMCID: PMC9266353 DOI: 10.3390/ijms23137104] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/15/2022] Open
Abstract
The cyclic guanosine monophosphate–adenosine monophosphate synthase–stimulator of interferon genes–TANK-binding kinase 1–interferon regulating factor 3 (cGAS-STING-TBK1-IRF3) axis is now acknowledged as the major signaling pathway in innate immune responses. However, 2′,3′-cGAMP as a STING stimulator is easily recognized and degraded by ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), which reduces the effect of tumor immunotherapy and promotes metastatic progression. In this investigation, the structure-based virtual screening strategy was adopted to discover eight candidate compounds containing zinc-binding quinazolin-4(3H)-one scaffold as ENPP1 inhibitors. Subsequently, these novel inhibitors targeting ENPP1 were synthesized and characterized by NMR and high-resolution mass spectra (HRMS). In bioassays, 7-fluoro-2-(((5-methoxy-1H-imidazo[4,5-b]pyridin-2-yl)thio)methyl)quina-zolin-4(3H)-one(compound 4e) showed excellent activity against the ENPP1 at the molecular and cellular levels, with IC50 values of 0.188 μM and 0.732 μM, respectively. Additionally, compound 4e had superior selectivity towards metastatic breast cancer cells (4T1) than towards normal cells (LO2 and 293T) in comparison with cisplatin, indicating that compound 4e can potentially be used in metastatic breast cancer therapy. On the other hand, compound 4e upgraded the expression levels of IFN-β in vivo by preventing the ENPP1 from hydrolyzing the cGAMP to stimulate a more potent innate immune response. Therefore, this compound might be applied to boost antitumor immunity for cancer immunotherapy. Overall, our work provides a strategy for the development of a promising drug candidate targeting ENPP1 for tumor immunotherapy.
Collapse
|
17
|
Chen X, Niu W, Fan X, Yang H, Zhao C, Fan J, Yao X, Fang Z. Oct4A palmitoylation modulates tumorigenicity and stemness in human glioblastoma cells. Neuro Oncol 2022; 25:82-96. [PMID: 35727735 PMCID: PMC9825352 DOI: 10.1093/neuonc/noac157] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Glioblastoma multiforme and other solid malignancies are heterogeneous, containing subpopulations of tumor cells that exhibit stem characteristics. Oct4, also known as POU5F1, is a key transcription factor in the self-renewal, proliferation, and differentiation of stem cells. Although it has been detected in advanced gliomas, the biological function of Oct4, and transcriptional machinery maintained by the stemness of Oct4 protein-mediated glioma stem cells (GSC), has not been fully determined. METHODS The expression of Oct4 variants was evaluated in brain cancer cell lines, and in brain tumor tissues, by quantitative real-time PCR, western blotting, and immunohistochemical analysis. The palmitoylation level of Oct4A was determined by the acyl-biotin exchange method, and the effects of palmitoylation Oct4A on GSCs were investigated by a series of in vitro (neuro-sphere formation assay, double immunofluorescence, pharmacological treatment, luciferase assay, and coimmunoprecipitation) and in vivo (xenograft model) experiments. RESULTS Here, we report that all three variants of Oct4 are expressed in different types of cerebral cancer, while Oct4A is important for maintaining tumorigenicity in GSCs. Palmitoylation mediated by ZDHHC17 was indispensable for preserving Oct4A from lysosome degradation to maintain its protein stability. Oct4A palmitoylation also helped to integrate Sox4 and Oct4A in the SOX2 enhancement subregion to maintain the stem performance of GSCs. We also designed Oct4A palmitoylation competitive inhibitors, inhibiting the self-renewal ability and tumorigenicity of GSCs. CONCLUSIONS These findings indicate that Oct4A acts on the tumorigenic activity of glioblastoma, and Oct4A palmitoylation is a candidate therapeutic target.
Collapse
Affiliation(s)
- Xueran Chen
- Corresponding Authors: Xueran Chen, PhD, Anhui Province Key Laboratory of Medical Physics and Technology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China (); Xuebiao Yao, PhD, MOE Key Laboratory for Cellular Dynamics, University of Science & Technology of China, No.96, Jin Zhai Road, Hefei, Anhui 230027, China (); Zhiyou Fang, PhD, Anhui Province Key Laboratory of Medical Physics and Technology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China ()
| | - Wanxiang Niu
- Anhui Province Key Laboratory of Medical Physics and Technology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China,Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, China
| | - Xiaoqing Fan
- Anhui Province Key Laboratory of Medical Physics and Technology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China,Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, China,Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Haoran Yang
- Anhui Province Key Laboratory of Medical Physics and Technology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China,Department of Laboratory Medicine, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Chenggang Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China,Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, China
| | - Junqi Fan
- Anhui Province Key Laboratory of Medical Physics and Technology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China,Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, China
| | - Xuebiao Yao
- Corresponding Authors: Xueran Chen, PhD, Anhui Province Key Laboratory of Medical Physics and Technology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China (); Xuebiao Yao, PhD, MOE Key Laboratory for Cellular Dynamics, University of Science & Technology of China, No.96, Jin Zhai Road, Hefei, Anhui 230027, China (); Zhiyou Fang, PhD, Anhui Province Key Laboratory of Medical Physics and Technology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China ()
| | - Zhiyou Fang
- Corresponding Authors: Xueran Chen, PhD, Anhui Province Key Laboratory of Medical Physics and Technology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China (); Xuebiao Yao, PhD, MOE Key Laboratory for Cellular Dynamics, University of Science & Technology of China, No.96, Jin Zhai Road, Hefei, Anhui 230027, China (); Zhiyou Fang, PhD, Anhui Province Key Laboratory of Medical Physics and Technology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China ()
| |
Collapse
|
18
|
Design, synthesis and biological evaluation studies of novel small molecule ENPP1 inhibitors for cancer immunotherapy. Bioorg Chem 2021; 119:105549. [PMID: 34929517 DOI: 10.1016/j.bioorg.2021.105549] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/25/2021] [Accepted: 12/05/2021] [Indexed: 01/07/2023]
Abstract
Ecto-nucleotide pyrophosphatase/phosphodiesterases 1 (ENPP1 or NPP1), is an attractive therapeutic target for various diseases, primarily cancer and mineralization disorders. The ecto-enzyme is located on the cell surface and has been implicated in the control of extracellular levels of nucleotide, nucleoside and (di) phosphate. Recently, it has emerged as a critical phosphodiesterase that hydrolyzes cyclic 2'3'- cGAMP, the endogenous ligand for STING (STimulator of INterferon Genes). STING plays an important role in innate immunity by activating type I interferon in response to cytosolic 2'3'-cGAMP. ENPP1 negatively regulates the STING pathway and hence its inhibition makes it an attractive therapeutic target for cancer immunotherapy. Herein, we describe the design, optimization and biological evaluation studies of a series of novel non-nucleotidic thioguanine based small molecule inhibitors of ENPP1. The lead compound 43 has shown good in vitro potency, stability in SGF/SIF/PBS, selectivity, ADME properties and pharmacokinetic profile and finally potent anti-tumor response in vivo. These compounds are a good starting point for the development of potentially effective cancer immunotherapy agents.
Collapse
|
19
|
Cao X, Cordova AF, Li L. Therapeutic Interventions Targeting Innate Immune Receptors: A Balancing Act. Chem Rev 2021; 122:3414-3458. [PMID: 34870969 DOI: 10.1021/acs.chemrev.1c00716] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The innate immune system is an organism's first line of defense against an onslaught of internal and external threats. The downstream adaptive immune system has been a popular target for therapeutic intervention, while there is a relative paucity of therapeutics targeting the innate immune system. However, the innate immune system plays a critical role in many human diseases, such as microbial infection, cancer, and autoimmunity, highlighting the need for ongoing therapeutic research. In this review, we discuss the major innate immune pathways and detail the molecular strategies underpinning successful therapeutics targeting each pathway as well as previous and ongoing efforts. We will also discuss any recent discoveries that could inform the development of novel therapeutic strategies. As our understanding of the innate immune system continues to develop, we envision that therapies harnessing the power of the innate immune system will become the mainstay of treatment for a wide variety of human diseases.
Collapse
|
20
|
Huang C, Ma L, Duan F, Li R, Zhang Y, Wang Y, Luo M, He Z, Luo Z. MicroRNA-485-5p inhibits glioblastoma progression by suppressing E2F transcription factor 1 under cisplatin treatment. Bioengineered 2021; 12:8020-8030. [PMID: 34726120 PMCID: PMC8806419 DOI: 10.1080/21655979.2021.1982269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cisplatin (CDDP) has been widely used for glioblastoma treatment. miR-485-5p and E2F transcription factor 1 (E2F1) dysfunction has been reported in glioblastoma. Nonetheless, whether CDDP affects glioblastoma progression via the miR-485-5p-E2F1 axis requires investigation. The expression of miR-485-5p and E2F1 was investigated by quantitative real-time polymerase chain reaction or western blotting in glioblastoma tissues and cell lines. The interaction between miR-485-5p and E2F1 was confirmed using a luciferase assay. The malignancy of glioblastoma was detected using Cell Counting Kit-8, bromodeoxyuridine (BrdU), cell adhesion, flow cytometry, and transwell assays. We identified miR-485-5p downregulation and E2F1 upregulation in glioblastoma, and miR-485-5p inhibited cell growth and elevated cell apoptosis in glioblastoma cells after CDDP treatment. Moreover, miR-485-5p targeting E2F1 repressed cell growth and improved cell apoptosis in glioblastoma cells after CDDP treatment. Our study revealed that CDDP retarded glioblastoma cell development via the miR-485-5p-E2F1 axis, which may be a new direction for glioblastoma therapy.
Collapse
Affiliation(s)
- Conggang Huang
- Department of Neurosurgery, The First Hospital of Wuhan, Wuhan, Hubei, China
| | - Lan Ma
- Department of Neurosurgery, The First Hospital of Wuhan, Wuhan, Hubei, China
| | - Faliang Duan
- Department of Neurosurgery, The First Hospital of Wuhan, Wuhan, Hubei, China
| | - Ruixue Li
- Department of Intensive Care Unit, The Sixth Hospital of Wuhan, Wuhan, Hubei, China
| | - Yanguo Zhang
- Department of Neurosurgery, The First Hospital of Wuhan, Wuhan, Hubei, China
| | - Yuan Wang
- Department of Neurosurgery, The First Hospital of Wuhan, Wuhan, Hubei, China
| | - Ming Luo
- Department of Neurosurgery, The First Hospital of Wuhan, Wuhan, Hubei, China
| | - Zhuqiang He
- Department of Neurosurgery, The First Hospital of Wuhan, Wuhan, Hubei, China
| | - Zhihua Luo
- Department of Neurosurgery, The First Hospital of Wuhan, Wuhan, Hubei, China
| |
Collapse
|
21
|
Glavan D, Gheorman V, Gresita A, Hermann DM, Udristoiu I, Popa-Wagner A. Identification of transcriptome alterations in the prefrontal cortex, hippocampus, amygdala and hippocampus of suicide victims. Sci Rep 2021; 11:18853. [PMID: 34552157 PMCID: PMC8458545 DOI: 10.1038/s41598-021-98210-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 08/30/2021] [Indexed: 11/09/2022] Open
Abstract
Suicide is one of the leading causes of death globally for all ages, and as such presents a very serious problem for clinicians worldwide. However, the underlying neurobiological pathology remains to a large extent unknown. In order to address this gap, we have carried out a genome-wide investigation of the gene expression in the amygdala, hippocampus, prefrontal cortex and thalamus in post-mortem brain samples obtained from 20 suicide completers and 7 control subjects. By KEGG enrichment analysis indicated we identified novel clusters of downregulated pathways involved in antigen neutralization and autoimmune thyroid disease (amygdala, thalamus), decreased axonal plasticity in the hippocampus. Two upregulated pathways were involved in neuronal death in the hippocampus and olfactory transduction in the thalamus and the prefrontal cortex. Autoimmune thyroid disease pathway was downregulated only in females. Metabolic pathways involved in Notch signaling amino acid metabolism and unsaturated lipid synthesis were thalamus-specific. Suicide-associated changes in the expression of several genes and pseudogenes that point to various functional mechanisms possibly implicated in the pathology of suicide. Two genes (SNORA13 and RNU4-2) involved in RNA processing were common to all brain regions analyzed. Most of the identified gene expression changes were related to region-specific dysregulated manifestation of genetic and epigenetic mechanisms underlying neurodevelopmental disorders (SNORD114-10, SUSd1), motivation, addiction and motor disorders (CHRNA6), long-term depression (RAB3B), stress response, major depression and schizophrenia (GFAP), signal transduction at the neurovascular unit (NEXN) and inhibitory neurotransmission in spatial learning, neural plasticity (CALB2; CLIC6, ENPP1). Some of the differentially expressed genes were brain specific non-coding RNAs involved in the regulation of translation (SNORA13). One, (PARM1) is a potential oncogene and prognostic biomarker for colorectal cancer with no known function in the brain. Disturbed gene expression involved in antigen neutralization, autoimmunity, neural plasticity, stress response, signal transduction at the neurovascular unit, dysregulated nuclear RNA processing and translation and epigenetic imprinting signatures is associated with suicide and point to regulatory non-coding RNAs as potential targets of new drugs development.
Collapse
Affiliation(s)
- Daniela Glavan
- Department of Psychiatry, University of Medicine and Pharmacy, Craiova, Romania
| | - Victor Gheorman
- Department of Psychiatry, University of Medicine and Pharmacy, Craiova, Romania
| | - Andrei Gresita
- Griffith University Menzies Health Institute of Queensland, Gold Coast Campus, Brisbane, QLD, 4000, Australia
| | - Dirk M Hermann
- Chair of Vascular Neurology, Dementia and Ageing Research, Department of Neurology, University Hospital Essen, University of Duisburg, Essen, Germany
| | - Ion Udristoiu
- Department of Psychiatry, University of Medicine and Pharmacy, Craiova, Romania.
| | - Aurel Popa-Wagner
- Griffith University Menzies Health Institute of Queensland, Gold Coast Campus, Brisbane, QLD, 4000, Australia. .,Chair of Vascular Neurology, Dementia and Ageing Research, Department of Neurology, University Hospital Essen, University of Duisburg, Essen, Germany.
| |
Collapse
|
22
|
Godoy PRDV, Donaires FS, Montaldi APL, Sakamoto-Hojo ET. Anti-Proliferative Effects of E2F1 Suppression in Glioblastoma Cells. Cytogenet Genome Res 2021; 161:372-381. [PMID: 34482308 DOI: 10.1159/000516997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/03/2021] [Indexed: 11/19/2022] Open
Abstract
Glioblastoma (GBM) is an aggressive malignant brain tumor; surgery, radiation, and temozolomide still remain the main treatments. There is evidence that E2F1 is overexpressed in various types of cancer, including GBM. E2F1 is a transcription factor that controls the cell cycle progression and regulates DNA damage responses and the proliferation of pluripotent and neural stem cells. To test the potentiality of E2F1 as molecular target for GBM treatment, we suppressed the E2F1 gene (siRNA) in the U87MG cell line, aiming to inhibit cellular proliferation and modulate the radioresistance of these cells. Following E2F1 suppression, associated or not with gamma-irradiation, several assays (cell proliferation, cell cycle analysis, neurosphere counting, and protein expression) were performed in U87MG cells grown as monolayer or neurospheres. We found that siE2F1-suppressed cells showed reduced cell proliferation and increased cell death (sub-G1 fraction) in monolayer cultures, and also a significant reduction in the number of neurospheres. In addition, in irradiated cells, E2F1 suppression caused similar effects, with reduction of the number of neurospheres and neurosphere cell numbers relative to controls; these results suggest that E2F1 plays a role in the maintenance of GBM stem cells, and our results obtained in neurospheres are relevant within the context of radiation resistance. Furthermore, E2F1 suppression inhibited or delayed GBM cell differentiation by maintaining a reasonable proportion of CD133+ cells when grown at differentiation condition. Therefore, E2F1 proved to be an interesting molecular target for therapeutic intervention in U87MG cells.
Collapse
Affiliation(s)
- Paulo R D V Godoy
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil,
| | - Flavia S Donaires
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Ana Paula L Montaldi
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Elza T Sakamoto-Hojo
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
23
|
Xie D, Pei Q, Li J, Wan X, Ye T. Emerging Role of E2F Family in Cancer Stem Cells. Front Oncol 2021; 11:723137. [PMID: 34476219 PMCID: PMC8406691 DOI: 10.3389/fonc.2021.723137] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
The E2F family of transcription factors (E2Fs) consist of eight genes in mammals. These genes encode ten proteins that are usually classified as transcriptional activators or transcriptional repressors. E2Fs are important for many cellular processes, from their canonical role in cell cycle regulation to other roles in angiogenesis, the DNA damage response and apoptosis. A growing body of evidence demonstrates that cancer stem cells (CSCs) are key players in tumor development, metastasis, drug resistance and recurrence. This review focuses on the role of E2Fs in CSCs and notes that many signals can regulate the activities of E2Fs, which in turn can transcriptionally regulate many different targets to contribute to various biological characteristics of CSCs, such as proliferation, self-renewal, metastasis, and drug resistance. Therefore, E2Fs may be promising biomarkers and therapeutic targets associated with CSCs pathologies. Finally, exploring therapeutic strategies for E2Fs may result in disruption of CSCs, which may prevent tumor growth, metastasis, and drug resistance.
Collapse
Affiliation(s)
- Dan Xie
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Qin Pei
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Jingyuan Li
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Xue Wan
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Ting Ye
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| |
Collapse
|
24
|
Gasparrini M, Sorci L, Raffaelli N. Enzymology of extracellular NAD metabolism. Cell Mol Life Sci 2021; 78:3317-3331. [PMID: 33755743 PMCID: PMC8038981 DOI: 10.1007/s00018-020-03742-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Extracellular NAD represents a key signaling molecule in different physiological and pathological conditions. It exerts such function both directly, through the activation of specific purinergic receptors, or indirectly, serving as substrate of ectoenzymes, such as CD73, nucleotide pyrophosphatase/phosphodiesterase 1, CD38 and its paralog CD157, and ecto ADP ribosyltransferases. By hydrolyzing NAD, these enzymes dictate extracellular NAD availability, thus regulating its direct signaling role. In addition, they can generate from NAD smaller signaling molecules, like the immunomodulator adenosine, or they can use NAD to ADP-ribosylate various extracellular proteins and membrane receptors, with significant impact on the control of immunity, inflammatory response, tumorigenesis, and other diseases. Besides, they release from NAD several pyridine metabolites that can be taken up by the cell for the intracellular regeneration of NAD itself. The extracellular environment also hosts nicotinamide phosphoribosyltransferase and nicotinic acid phosphoribosyltransferase, which inside the cell catalyze key reactions in NAD salvaging pathways. The extracellular forms of these enzymes behave as cytokines, with pro-inflammatory functions. This review summarizes the current knowledge on the extracellular NAD metabolome and describes the major biochemical properties of the enzymes involved in extracellular NAD metabolism, focusing on the contribution of their catalytic activities to the biological function. By uncovering the controversies and gaps in their characterization, further research directions are suggested, also to better exploit the great potential of these enzymes as therapeutic targets in various human diseases.
Collapse
Affiliation(s)
- Massimiliano Gasparrini
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Leonardo Sorci
- Division of Bioinformatics and Biochemistry, Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| |
Collapse
|
25
|
Integrated Metabolomics and Transcriptomics Analysis of Monolayer and Neurospheres from Established Glioblastoma Cell Lines. Cancers (Basel) 2021; 13:cancers13061327. [PMID: 33809510 PMCID: PMC8001840 DOI: 10.3390/cancers13061327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Glioblastomas are very aggressive tumours without efficient treatment, where cancer stem-like cells are thought to be responsible for relapse. This pilot study investigated the metabolic discrepancies between monolayer and neurosphere cultures of two glioblastoma cell lines using transcriptomics and metabolomics. We show that the two culture systems display substantial differences regarding their metabolome and transcriptome. Specifically, we found that metabolic reactions connected to arginine biosynthesis are crucial to support the different metabolic needs of neurospheres from the two cell lines. By identifying metabolic vulnerabilities in different glioblastoma subpopulations, new therapeutic strategies may be emerging that can be explored to treat this disease. Moreover, this data set may be of great value as a resource for the scientific community. Abstract Altered metabolic processes contribute to carcinogenesis by modulating proliferation, survival and differentiation. Tumours are composed of different cell populations, with cancer stem-like cells being one of the most prominent examples. This specific pool of cells is thought to be responsible for cancer growth and recurrence and plays a particularly relevant role in glioblastoma (GBM), the most lethal form of primary brain tumours. Here, we have analysed the transcriptome and metabolome of an established GBM cell line (U87) and a patient-derived GBM stem-like cell line (NCH644) exposed to neurosphere or monolayer culture conditions. By integrating transcriptome and metabolome data, we identified key metabolic pathways and gene signatures that are associated with stem-like and differentiated states in GBM cells, and demonstrated that neurospheres and monolayer cells differ substantially in their metabolism and gene regulation. Furthermore, arginine biosynthesis was identified as the most significantly regulated pathway in neurospheres, although individual nodes of this pathway were distinctly regulated in the two cellular systems. Neurosphere conditions, as opposed to monolayer conditions, cause a transcriptomic and metabolic rewiring that may be crucial for the regulation of stem-like features, where arginine biosynthesis may be a key metabolic pathway. Additionally, TCGA data from GBM patients showed significant regulation of specific components of the arginine biosynthesis pathway, providing further evidence for the importance of this metabolic pathway in GBM.
Collapse
|
26
|
Ullah S, El-Gamal MI, El-Gamal R, Pelletier J, Sévigny J, Shehata MK, Anbar HS, Iqbal J. Synthesis, biological evaluation, and docking studies of novel pyrrolo[2,3-b]pyridine derivatives as both ectonucleotide pyrophosphatase/phosphodiesterase inhibitors and antiproliferative agents. Eur J Med Chem 2021; 217:113339. [PMID: 33744686 DOI: 10.1016/j.ejmech.2021.113339] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 11/17/2022]
Abstract
Ecto-nucleotide pyrophosphatases/phosphodiesterases (NPPs) together with nucleoside triphosphate diphosphohydrolases (NTPDases) and alkaline phosphatases (APs) are nucleotidases located at the surface of the cells. NPP1 and NPP3 are important members of NPP family that are known as druggable targets for a number of disorders such as impaired calcification, type 2 diabetes, and cancer. Sulfonylurea derivatives have been reported as antidiabetic and anticancer agents, therefore, we synthesized and investigated series of sulfonylurea derivatives 1a-m possessing pyrrolo[2,3-b]pyridine core as inhibitors of NPP1 and NPP3 isozymes that are over-expressed in cancer and diabetes. The enzymatic evaluation highlighted compound 1a as selective NPP1 inhibitor, however, 1c was observed as the most potent inhibitor of NPP1 with an IC50 value of 0.80 ± 0.04 μM. Compound 1l was found to be the most potent and moderately selective inhibitor of NPP3 (IC50 = 0.55 ± 0.01 μM). Furthermore, in vitro cytotoxicity assays of compounds 1a-m against MCF-7 and HT-29 cancer cell lines exhibited compound 1c (IC50 = 4.70 ± 0.67 μM), and 1h (IC50 = 1.58 ± 0.20 μM) as the most cytotoxic compounds against MCF-7 and HT-29 cancer cell lines, respectively. Both of the investigated compounds showed high degree of selectivity towards cancer cells than normal cells (WI-38). Molecular docking studies of selective and potent enzyme inhibitors revealed promising mode of interactions with important binding sites residues of both isozymes i.e., Thr256, His380, Lys255, Asn277 residues of NPP1 and His329, Thr205, and Leu239 residues of NPP3. In addition, the most potent antiproliferative agent, compound 1h, doesn't produce hypoglycemia as a side effect when injected to mice. This is an additional merit of the promising compound 1h.
Collapse
Affiliation(s)
- Saif Ullah
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Mohammed I El-Gamal
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura, 35516, Egypt
| | - Randa El-Gamal
- Department of Medical Biochemistry, Faculty of Medicine, University of Mansoura, Mansoura, 35516, Egypt
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, G1V 4G2, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, G1V 4G2, Canada; Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Mahmoud K Shehata
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hanan S Anbar
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, 19099, United Arab Emirates.
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan.
| |
Collapse
|
27
|
Wang H, Ye F, Zhou C, Cheng Q, Chen H. High expression of ENPP1 in high-grade serous ovarian carcinoma predicts poor prognosis and as a molecular therapy target. PLoS One 2021; 16:e0245733. [PMID: 33635867 PMCID: PMC7909685 DOI: 10.1371/journal.pone.0245733] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 01/06/2021] [Indexed: 01/06/2023] Open
Abstract
Recent studies have shown that the expression of ENPP1 is related to differentiation, death, dissemination and chemosensitivity of tumor cells. So far, there is no research in ovarian carcinoma. This study aimed at exploring the role of ENPP1 gene in ovarian carcinoma, the relationship with prognostic indicators and chemotherapy resistance, and investigates the possibility of molecular targeted therapy. The expression of ENPP1 in 41 normal ovarian epithelial tissues, 97 ovarian serous cystadenoma and 103 HGSOC tissues was detected by IHC. In ovarian cancer tissues and ovarian cancer cell lines, mRNA and protein expression of ENPP1 was determined by qRT-PCR and Western blot. The ENPP1 expression was knockdowned by siRNA. Cell proliferation was measured with the BrdU Cell Proliferation ELISA. Cell migration and invasion were detected by Wound-Healing, Transwell migration and Matrigel invasion assay. Caspase 3 activity was determined by the CaspACE. The expression of EMT markers such as E-cadherin, N-cadherin, and Vimentin was measured, and the expression of PCNA and MMP9 was also be detected. The results showed that the expression of ENPP1 was significantly increased in high-grade ovarian serous carcinoma, the number of strong expression was 85.4% (22.3%+63.1%) and only 1.03% (1.03%+0.0%) in serous cystadenoma, but no in normal ovarian epithelium (P< 0.05). And the stronger the expression of ENPP1, the later the FIGO stage and the poorer differentiation of cells (P = 0.001 or <0.001, respectively). However, no correlation was found between the expression of ENPP1 and chemosensitivity. ENPP1 was also highly expressed in ovarian cancer tissues and in epithelial ovarian cancer cell lines (A2780, CaoV3, OVCAR3, SKOV3 and 3ao). After down-regulation of ENPP1 expression by RNA interference, the cell proliferation, migration and invasion of ovarian cancer cell decreased significantly, the expression of apoptosis related gene caspase 3 increased significantly, while the expression of PCNA and MMP9 was significantly down regulated. In addition, EMT biological characteristics of A2780 and SKOV3 cells were also inhibited. In summary, the increased expression of ENPP1 may be related to the occurrence of HGSOC, and indicate that the disease progresses rapidly and the prognosis is poor. ENPP1 may be considered as a potential molecular therapeutic target.
Collapse
Affiliation(s)
- Hanzhi Wang
- Women’s Reproductive Health Key Laboratory of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Feng Ye
- Women’s Reproductive Health Key Laboratory of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Caiyun Zhou
- Department of Pathology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Qi Cheng
- Women’s Reproductive Health Key Laboratory of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Huaizeng Chen
- Women’s Reproductive Health Key Laboratory of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P. R. China
- * E-mail:
| |
Collapse
|
28
|
Iranmanesh Y, Jiang B, Favour OC, Dou Z, Wu J, Li J, Sun C. Mitochondria's Role in the Maintenance of Cancer Stem Cells in Glioblastoma. Front Oncol 2021; 11:582694. [PMID: 33692947 PMCID: PMC7937970 DOI: 10.3389/fonc.2021.582694] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM), one of the deadliest primary brain malignancies, is characterized by a high recurrence rate due to its limited response to existing therapeutic strategies such as chemotherapy, radiation therapy, and surgery. Several mechanisms and pathways have been identified to be responsible for GBM therapeutic resistance. Glioblastoma stem cells (GSCs) are known culprits of GBM resistance to therapy. GSCs are characterized by their unique self-renewal, differentiating capacity, and proliferative potential. They form a heterogeneous population of cancer stem cells within the tumor and are further divided into different subpopulations. Their distinct molecular, genetic, dynamic, and metabolic features distinguish them from neural stem cells (NSCs) and differentiated GBM cells. Novel therapeutic strategies targeting GSCs could effectively reduce the tumor-initiating potential, hence, a thorough understanding of mechanisms involved in maintaining GSCs' stemness cannot be overemphasized. The mitochondrion, a regulator of cellular physiological processes such as autophagy, cellular respiration, reactive oxygen species (ROS) generation, apoptosis, DNA repair, and cell cycle control, has been implicated in various malignancies (for instance, breast, lung, and prostate cancer). Besides, the role of mitochondria in GBM has been extensively studied. For example, when stressors, such as irradiation and hypoxia are present, GSCs utilize specific cytoprotective mechanisms like the activation of mitochondrial stress pathways to survive the harsh environment. Proliferating GBM cells exhibit increased cytoplasmic glycolysis in comparison to terminally differentiated GBM cells and quiescent GSCs that rely more on oxidative phosphorylation (OXPHOS). Furthermore, the Warburg effect, which is characterized by increased tumor cell glycolysis and decreased mitochondrial metabolism in the presence of oxygen, has been observed in GBM. Herein, we highlight the importance of mitochondria in the maintenance of GSCs.
Collapse
Affiliation(s)
| | - Biao Jiang
- Department of Radiology, The 2nd Affiliated Hospital of Zhejiang University Medical School, Hangzhou, China
| | - Okoye C Favour
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhangqi Dou
- Department of Neurosurgery, The 2nd Affiliated Hospital of Zhejiang University Medical School, Hangzhou, China
| | - Jiawei Wu
- Department of Neurosurgery, The 2nd Affiliated Hospital of Zhejiang University Medical School, Hangzhou, China
| | - Jinfan Li
- Department of Pathology, The 2nd Affiliated Hospital of Zhejiang University Medical School, Hangzhou, China
| | - Chongran Sun
- Department of Neurosurgery, The 2nd Affiliated Hospital of Zhejiang University Medical School, Hangzhou, China
| |
Collapse
|
29
|
Lopez V, Schäkel L, Schuh HJM, Schmidt MS, Mirza S, Renn C, Pelletier J, Lee SY, Sévigny J, Alban S, Bendas G, Müller CE. Sulfated Polysaccharides from Macroalgae Are Potent Dual Inhibitors of Human ATP-Hydrolyzing Ectonucleotidases NPP1 and CD39. Mar Drugs 2021; 19:md19020051. [PMID: 33499103 PMCID: PMC7911304 DOI: 10.3390/md19020051] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Extracellular ATP mediates proinflammatory and antiproliferative effects via activation of P2 nucleotide receptors. In contrast, its metabolite, the nucleoside adenosine, is strongly immunosuppressive and enhances tumor proliferation and metastasis. The conversion of ATP to adenosine is catalyzed by ectonucleotidases, which are expressed on immune cells and typically upregulated on tumor cells. In the present study, we identified sulfopolysaccharides from brown and red sea algae to act as potent dual inhibitors of the main ATP-hydrolyzing ectoenzymes, ectonucleotide pyrophosphatase/phosphodiesterase-1 (NPP1) and ecto-nucleoside triphosphate diphosphohydrolase-1 (NTPDase1, CD39), showing nano- to picomolar potency and displaying a non-competitive mechanism of inhibition. We showed that one of the sulfopolysaccharides tested as a representative example reduced adenosine formation at the surface of the human glioblastoma cell line U87 in a concentration-dependent manner. These natural products represent the most potent inhibitors of extracellular ATP hydrolysis known to date and have potential as novel therapeutics for the immunotherapy of cancer.
Collapse
Affiliation(s)
- Vittoria Lopez
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (V.L.); (L.S.); (S.M.); (C.R.); (S.-Y.L.)
- PharmaCenter Bonn, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Laura Schäkel
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (V.L.); (L.S.); (S.M.); (C.R.); (S.-Y.L.)
- PharmaCenter Bonn, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - H. J. Maximilian Schuh
- Pharmaceutical & Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (H.J.M.S.); (M.S.S.); (G.B.)
| | - Michael S. Schmidt
- Pharmaceutical & Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (H.J.M.S.); (M.S.S.); (G.B.)
| | - Salahuddin Mirza
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (V.L.); (L.S.); (S.M.); (C.R.); (S.-Y.L.)
- PharmaCenter Bonn, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Christian Renn
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (V.L.); (L.S.); (S.M.); (C.R.); (S.-Y.L.)
- PharmaCenter Bonn, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec—Université Laval, Québec City, QC G1V 4G2, Canada; (J.P.); (J.S.)
| | - Sang-Yong Lee
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (V.L.); (L.S.); (S.M.); (C.R.); (S.-Y.L.)
- PharmaCenter Bonn, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec—Université Laval, Québec City, QC G1V 4G2, Canada; (J.P.); (J.S.)
- Départment de Microbiologie-Infectiologie et d’Immunologie, Faculté de Médecine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Susanne Alban
- Pharmaceutical Institute, Christian-Albrechts-University of Kiel, Gutenbergstraße 76, 24118 Kiel, Germany;
| | - Gerd Bendas
- Pharmaceutical & Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (H.J.M.S.); (M.S.S.); (G.B.)
| | - Christa E. Müller
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (V.L.); (L.S.); (S.M.); (C.R.); (S.-Y.L.)
- PharmaCenter Bonn, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
- Correspondence: ; Tel.: +49-228-73-2301; Fax: +49-228-73-2567
| |
Collapse
|
30
|
Anbar HS, El-Gamal R, Ullah S, Zaraei SO, Al-Rashida M, Zaib S, Pelletier J, Sévigny J, Iqbal J, El-Gamal MI. Evaluation of sulfonate and sulfamate derivatives possessing benzofuran or benzothiophene nucleus as inhibitors of nucleotide pyrophosphatases/phosphodiesterases and anticancer agents. Bioorg Chem 2020; 104:104305. [PMID: 33017718 DOI: 10.1016/j.bioorg.2020.104305] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 02/04/2023]
Abstract
Ectonucleotidases are a broad family of ectoenzymes that play a crucial role in purinergic cell signaling. Ecto-nucleotide pyrophosphatases/phosphodiesterases (NPPs) belong to this group and are important drug targets. In particular, NPP1 and NPP3 are known to be druggable targets for treatment of impaired calcification disorders (including pathological aortic calcification) and cancer, respectively. In this study, we investigated a series of sulfonate and sulfamate derivatives of benzofuran and benzothiophene as potent and selective inhibitors of NPP1 and NPP3. Compounds 1c, 1g, 1n, and 1s are the most active NPP1 inhibitors (IC50 values in the range 0.12-0.95 µM). Moreover, compounds 1e, 1f, 1j, and 1l are the most potent inhibitors of NPP3 (IC50 ranges from 0.12 to 0.95 µM). Compound 1d, 1f and 1t are highly selective inhibitors of NPP1 over NPP3, whereas compounds 1m and 1s are found to be highly selective towards NPP3 over NPP1. Structure-activity relationship (SAR) study has been discussed in detailed. With the aid of molecular docking studies, a common binding mode of these compounds and suramin (the standard inhibitor) was revealed, where the sulfonate group acts as a cation-binding moiety that comes in close contact with the zinc ion of the active site. Moreover, cytotoxic evaluation against MCF-7 and HT-29 cancer cell lines revealed that compound 1r is the most cytotoxic towards MCF-7 cell line with IC50 value of 0.19 µM. Compound 1r is more potent and selective against cancer cells than normal cells (WI-38) as compared to doxorubicin.
Collapse
Affiliation(s)
- Hanan S Anbar
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai 19099, United Arab Emirates
| | - Randa El-Gamal
- Department of Medical Biochemistry, Faculty of Medicine, University of Mansoura, Mansoura 35516, Egypt
| | - Saif Ullah
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Seyed-Omar Zaraei
- Center for Biomaterials, Korea Institute of Science and Technology, PO Box 131, Cheongryang, Seoul 130-650, Republic of Korea; Department of Biomolecular Science, Korea University of Science and Technology, 113 Gwahangno, Yuseong-gu, Daejeon 305-333, Republic of Korea
| | - Mariya Al-Rashida
- Department of Chemistry, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, Pakistan
| | - Sumera Zaib
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec - Université Laval, Québec, QC G1V 4G2, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec - Université Laval, Québec, QC G1V 4G2, Canada; Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.
| | - Mohammed I El-Gamal
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt.
| |
Collapse
|
31
|
Ahmad H, Ullah S, Rahman F, Saeed A, Pelletier J, Sévigny J, Hassan A, Iqbal J. Synthesis of biphenyl oxazole derivatives via Suzuki coupling and biological evaluations as nucleotide pyrophosphatase/phosphodiesterase-1 and -3 inhibitors. Eur J Med Chem 2020; 208:112759. [PMID: 32883636 DOI: 10.1016/j.ejmech.2020.112759] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/09/2020] [Accepted: 08/14/2020] [Indexed: 01/09/2023]
Abstract
Oxazole derivatives are important medicinal compounds which are inhibitors of various enzymes such as NPP1, NPP2, NPP3, tyrosine kinase, dipeptidyl-peptidase IV, cyclooxygenase-2, and protein tyrosine phosphatase. In this study, an extensive range of new biologically active biphenyl oxazole derivatives was synthesized in high to excellent yields (57-93%) through Suzuki-Miyaura cross-coupling of bromophenyloxazole with different boronic acids. The reaction was carried out in wet toluene under mild conditions. Overexpression of nucleotide pyrophosphatase/phosphodiesterase-1 (NPP1) and NPP3 has been associated with various health disorders including chondrocalcinosis, cancer, osteoarthritis, and type 2 diabetes. We evaluated the inhibitory potential and selectivity of the synthesized compounds (3a-3q) towards NPP1 and NPP3 at 100 μM concentrations. We found two compounds that were selective and potent inhibitors of these two enzymes on the artificial substrate thymidine 5'-monophosphate para-nitrophenyl ester: compound 3n inhibited NPP1 with an IC50 of 0.15 μM, and compound 3f inhibited NPP3 with an IC50 value of 0.17 μM. The compounds with promising inhibitory potential were docked inside the proteins of NPP1 and NPP3 isozymes to get insight into the plausible binding interactions with active site residues.
Collapse
Affiliation(s)
- Haseen Ahmad
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Saif Ullah
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Fouzia Rahman
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Julie Pelletier
- Centre de Recherche Du CHU de Québec - Université Laval, Québec, QC, G1V 4G2, Canada
| | - Jean Sévigny
- Centre de Recherche Du CHU de Québec - Université Laval, Québec, QC, G1V 4G2, Canada; Département de Microbiologie-infectiologie et D'immunologie, Faculté de Médecine, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Abbas Hassan
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan.
| |
Collapse
|
32
|
Synthesis, biological evaluation, and docking studies of new pyrazole-based thiourea and sulfonamide derivatives as inhibitors of nucleotide pyrophosphatase/phosphodiesterase. Bioorg Chem 2020; 99:103783. [DOI: 10.1016/j.bioorg.2020.103783] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 11/22/2022]
|
33
|
A non-proliferative role of pyrimidine metabolism in cancer. Mol Metab 2020; 35:100962. [PMID: 32244187 PMCID: PMC7096759 DOI: 10.1016/j.molmet.2020.02.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/29/2022] Open
Abstract
Background Nucleotide metabolism is a critical pathway that generates purine and pyrimidine molecules for DNA replication, RNA synthesis, and cellular bioenergetics. Increased nucleotide metabolism supports uncontrolled growth of tumors and is a hallmark of cancer. Agents inhibiting synthesis and incorporation of nucleotides in DNA are widely used as chemotherapeutics to reduce tumor growth, cause DNA damage, and induce cell death. Thus, the research on nucleotide metabolism in cancer is primarily focused on its role in cell proliferation. However, in addition to proliferation, the role of purine molecules is established as ligands for purinergic signals. However, so far, the role of the pyrimidines has not been discussed beyond cell growth. Scope of the review In this review we present the key evidence from recent pivotal studies supporting the notion of a non-proliferative role for pyrimidine metabolism (PyM) in cancer, with a special focus on its effect on differentiation in cancers from different origins. Major conclusion In leukemic cells, the pyrimidine catabolism induces terminal differentiation toward monocytic lineage to check the aberrant cell proliferation, whereas in some solid tumors (e.g., triple negative breast cancer and hepatocellular carcinoma), catalytic degradation of pyrimidines maintains the mesenchymal-like state driven by epithelial-to-mesenchymal transition (EMT). This review further broadens this concept to understand the effect of PyM on metastasis and, ultimately, delivers a rationale to investigate the involvement of the pyrimidine molecules as oncometabolites. Overall, understanding the non-proliferative role of PyM in cancer will lead to improvement of the existing antimetabolites and to development of new therapeutic options.
Collapse
|
34
|
Kawaguchi M, Han X, Hisada T, Nishikawa S, Kano K, Ieda N, Aoki J, Toyama T, Nakagawa H. Development of an ENPP1 Fluorescence Probe for Inhibitor Screening, Cellular Imaging, and Prognostic Assessment of Malignant Breast Cancer. J Med Chem 2019; 62:9254-9269. [DOI: 10.1021/acs.jmedchem.9b01213] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mitsuyasu Kawaguchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Xiang Han
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Tomoka Hisada
- Graduate School of Medical Sciences, Department of Breast Surgery, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Sayaka Nishikawa
- Graduate School of Medical Sciences, Department of Breast Surgery, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Kuniyuki Kano
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Naoya Ieda
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Tatsuya Toyama
- Graduate School of Medical Sciences, Department of Breast Surgery, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Hidehiko Nakagawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| |
Collapse
|
35
|
El-Gamal MI, Ullah S, Zaraei SO, Jalil S, Zaib S, Zaher DM, Omar HA, Anbar HS, Pelletier J, Sévigny J, Iqbal J. Synthesis, biological evaluation, and docking studies of new raloxifene sulfonate or sulfamate derivatives as inhibitors of nucleotide pyrophosphatase/phosphodiesterase. Eur J Med Chem 2019; 181:111560. [PMID: 31382118 DOI: 10.1016/j.ejmech.2019.07.063] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/11/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022]
Abstract
A new series of raloxifene sulfonate/sulfamate derivatives were designed and synthesized. The target compounds were tested for inhibitory effect against nucleotide pyrophosphatase/phosphodiesterase-1 and -3 (NPP1 and NPP3) enzymes. Furthermore, all the ten target compounds were subjected to cytotoxic studies on various cancer cell lines, and the most potent derivatives were explored for their potency against these cancer cell lines as well as F180 fibroblasts to investigate the selectivity indexes. Compound 1f exerted the highest potency against HT-29 colon cancer cell line (IC50 = 1.4 μM) with 8.43-fold selectivity towards HT-29 than F180 fibroblasts. Compound 1f exerted sub-micromolar IC50 values against NPP1 and NPP3 (IC50 = 0.29 μM and 0.71 μM, respectively). The most potent inhibitors were docked in developed homology model of NPP1 and crystal structure of NPP3. All the docked analogues manifested remarkable interactions within the active pocket of NPP1 and NPP3.
Collapse
Affiliation(s)
- Mohammed I El-Gamal
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; Faculty of Pharmacy, University of Mansoura, Mansoura, 35516, Egypt.
| | - Saif Ullah
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Seyed-Omar Zaraei
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Saquib Jalil
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Sumera Zaib
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Dana M Zaher
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hany A Omar
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Hanan S Anbar
- Faculty of Pharmacy, University of Mansoura, Mansoura, 35516, Egypt
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, G1V 4G2, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, G1V 4G2, Canada; Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan.
| |
Collapse
|
36
|
Krichevsky AM, Uhlmann EJ. Oligonucleotide Therapeutics as a New Class of Drugs for Malignant Brain Tumors: Targeting mRNAs, Regulatory RNAs, Mutations, Combinations, and Beyond. Neurotherapeutics 2019; 16:319-347. [PMID: 30644073 PMCID: PMC6554258 DOI: 10.1007/s13311-018-00702-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Malignant brain tumors are rapidly progressive and often fatal owing to resistance to therapies and based on their complex biology, heterogeneity, and isolation from systemic circulation. Glioblastoma is the most common and most aggressive primary brain tumor, has high mortality, and affects both children and adults. Despite significant advances in understanding the pathology, multiple clinical trials employing various treatment strategies have failed. With much expanded knowledge of the GBM genome, epigenome, and transcriptome, the field of neuro-oncology is getting closer to achieve breakthrough-targeted molecular therapies. Current developments of oligonucleotide chemistries for CNS applications make this new class of drugs very attractive for targeting molecular pathways dysregulated in brain tumors and are anticipated to vastly expand the spectrum of currently targetable molecules. In this chapter, we will overview the molecular landscape of malignant gliomas and explore the most prominent molecular targets (mRNAs, miRNAs, lncRNAs, and genomic mutations) that provide opportunities for the development of oligonucleotide therapeutics for this class of neurologic diseases. Because malignant brain tumors focally disrupt the blood-brain barrier, this class of diseases might be also more susceptible to systemic treatments with oligonucleotides than other neurologic disorders and, thus, present an entry point for the oligonucleotide therapeutics to the CNS. Nevertheless, delivery of oligonucleotides remains a crucial part of the treatment strategy. Finally, synthetic gRNAs guiding CRISPR-Cas9 editing technologies have a tremendous potential to further expand the applications of oligonucleotide therapeutics and take them beyond RNA targeting.
Collapse
Affiliation(s)
- Anna M Krichevsky
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Initiative for RNA Medicine, Boston, Massachusetts, 02115, USA.
| | - Erik J Uhlmann
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Initiative for RNA Medicine, Boston, Massachusetts, 02115, USA
| |
Collapse
|
37
|
ENPP1 in the Regulation of Mineralization and Beyond. Trends Biochem Sci 2019; 44:616-628. [PMID: 30799235 DOI: 10.1016/j.tibs.2019.01.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/26/2019] [Accepted: 01/29/2019] [Indexed: 12/24/2022]
Abstract
ENPP1 is well known for its role in regulating skeletal and soft tissue mineralization. It primarily exerts its function through the generation of pyrophosphate, a key inhibitor of hydroxyapatite formation. Several previous studies have suggested that ENPP1 also contributes to a range of human diseases including diabetes, cancer, cardiovascular disease, and osteoarthritis. In this review, we summarize the pathological roles of ENPP1 in mineralization and these soft tissue disorders. We also discuss the underlying mechanisms through which ENPP1 exerts its pathological effects. A fuller understanding of the pathways through which ENPP1 acts may help to develop novel therapeutic strategies for these commonly diagnosed morbidities.
Collapse
|
38
|
Thymidylate synthase maintains the de-differentiated state of triple negative breast cancers. Cell Death Differ 2019; 26:2223-2236. [PMID: 30737477 PMCID: PMC6888897 DOI: 10.1038/s41418-019-0289-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/30/2018] [Accepted: 01/10/2019] [Indexed: 01/06/2023] Open
Abstract
Cancer cells frequently boost nucleotide metabolism (NM) to support their increased proliferation, but the consequences of elevated NM on tumor de-differentiation are mostly unexplored. Here, we identified a role for thymidylate synthase (TS), a NM enzyme and established drug target, in cancer cell de-differentiation and investigated its clinical significance in breast cancer (BC). In vitro, TS knockdown increased the population of CD24+ differentiated cells, and attenuated migration and sphere-formation. RNA-seq profiling indicated repression of epithelial-to-mesenchymal transition (EMT) signature genes upon TS knockdown, and TS-deficient cells showed an increased ability to invade and metastasize in vivo, consistent with the occurrence of a partial EMT phenotype. Mechanistically, TS enzymatic activity was found essential for maintenance of the EMT/stem-like state by fueling a dihydropyrimidine dehydrogenase-dependent pyrimidine catabolism. In patient tissues, TS levels were found significantly higher in poorly differentiated and in triple negative BC, and strongly correlated with worse prognosis. The present study provides the rationale to study in-depth the role of NM at the crossroads of proliferation and differentiation, and depicts new avenues for the design of novel drug combinations for the treatment of BC.
Collapse
|
39
|
Hu M, Guo W, Liao Y, Xu D, Sun B, Song H, Wang T, Kuang Y, Jing B, Li K, Ling J, Yao F, Deng J. Dysregulated ENPP1 increases the malignancy of human lung cancer by inducing epithelial-mesenchymal transition phenotypes and stem cell features. Am J Cancer Res 2019; 9:134-144. [PMID: 30755817 PMCID: PMC6356920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023] Open
Abstract
Induction of cancer stem cell (CSC) characters and epithelial mesenchymal transition (EMT) features are crucial in tumor initiation, progression and metastasis. However, underlying mechanisms remain incompletely understood. Here, we showed that ENPP1 plays an important role in inducing and maintaining EMT phenotypes and CSC features in lung cancer. ENPP1 is upregulated in lung cancer cells. ENPP1-knockdown in lung cancer HCC827 cells and A549 cells resulted in suppressed colonogenic formation, anchorage-independent growth in vitro, and tumorigenicity in vivo. ENPP1-knockdown also reduced expression of CSC makers, including ABCG2, SOX2, NANOG, and CD44. Moreover, ENPP1-knockdown reversed TGFβ-induced EMT phenotypes, including cell migration, E-cadherin repression and vimentin induction. Finally, upregulated ENPP1 was identified in majority of human lung tumor tissues compared to adjacent normal lung tissues. Taken together, our study demonstrates that dysregulated ENPP1 contributes to increased malignancy of human lung cancer by inducing CSC-features, and EMT-like phenotypes.
Collapse
Affiliation(s)
- Min Hu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Wenzheng Guo
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of MedicineShanghai, China
| | - Yueling Liao
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Dongliang Xu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Beibei Sun
- Translational Medical Research Center, Shanghai Jiao Tong UniversityShanghai, China
| | - Hongyong Song
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Tong Wang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Yanbin Kuang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Dalian Medical UniversityDalian, China
| | - Bo Jing
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Kaimi Li
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Jing Ling
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Feng Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong UniversityShanghai, China
| | - Jiong Deng
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
- Translational Medical Research Center, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
40
|
Erhart F, Blauensteiner B, Zirkovits G, Printz D, Soukup K, Klingenbrunner S, Fischhuber K, Reitermaier R, Halfmann A, Lötsch D, Spiegl-Kreinecker S, Berger W, Visus C, Dohnal A. Gliomasphere marker combinatorics: multidimensional flow cytometry detects CD44+/CD133+/ITGA6+/CD36+ signature. J Cell Mol Med 2018; 23:281-292. [PMID: 30467961 PMCID: PMC6307809 DOI: 10.1111/jcmm.13927] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 08/30/2018] [Indexed: 12/26/2022] Open
Abstract
Glioblastoma is the most dangerous brain cancer. One reason for glioblastoma's aggressiveness are glioblastoma stem‐like cells. To target them, a number of markers have been proposed (CD133, CD44, CD15, A2B5, CD36, CXCR4, IL6R, L1CAM, and ITGA6). A comprehensive study of co‐expression patterns of them has, however, not been performed so far. Here, we mapped the multidimensional co‐expression profile of these stemness‐associated molecules. Gliomaspheres – an established model of glioblastoma stem‐like cells – were used. Seven different gliomasphere systems were subjected to multicolor flow cytometry measuring the nine markers CD133, CD44, CD15, A2B5, CD36, CXCR4, IL6R, L1CAM, and ITGA6 all simultaneously based on a novel 9‐marker multicolor panel developed for this study. The viSNE dimensionality reduction algorithm was applied for analysis. All gliomaspheres were found to express at least five different glioblastoma stem‐like cell markers. Multi‐dimensional analysis showed that all studied gliomaspheres consistently harbored a cell population positive for the molecular signature CD44+/CD133+/ITGA6+/CD36+. Glioblastoma patients with an enrichment of this combination had a significantly worse survival outcome when analyzing the two largest available The Cancer Genome Atlas datasets (MIT/Harvard Affymetrix: P = 0.0015, University of North Carolina Agilent: P = 0.0322). In sum, we detected a previously unknown marker combination – demonstrating feasibility, usefulness, and importance of high‐dimensional gliomasphere marker combinatorics.
Collapse
Affiliation(s)
- Friedrich Erhart
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria.,Institute of Neurology, Medical University of Vienna, Vienna, Austria.,Department of Tumor Immunology, St. Anna Kinderkrebsforschung Children's Cancer Research Institute, Vienna, Austria
| | - Bernadette Blauensteiner
- Department of Tumor Immunology, St. Anna Kinderkrebsforschung Children's Cancer Research Institute, Vienna, Austria
| | - Gabriel Zirkovits
- Department of Tumor Immunology, St. Anna Kinderkrebsforschung Children's Cancer Research Institute, Vienna, Austria
| | - Dieter Printz
- FACS Core Unit, St. Anna Kinderkrebsforschung Children's Cancer Research Institute, Vienna, Austria
| | - Klara Soukup
- Department of Tumor Immunology, St. Anna Kinderkrebsforschung Children's Cancer Research Institute, Vienna, Austria
| | | | | | | | - Angela Halfmann
- Department of Tumor Immunology, St. Anna Kinderkrebsforschung Children's Cancer Research Institute, Vienna, Austria
| | - Daniela Lötsch
- Institute for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Sabine Spiegl-Kreinecker
- University Clinic for Neurosurgery, Kepler University Hospital, Johannes Kepler University, Linz, Austria
| | - Walter Berger
- Institute for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | | | - Alexander Dohnal
- Department of Tumor Immunology, St. Anna Kinderkrebsforschung Children's Cancer Research Institute, Vienna, Austria
| |
Collapse
|
41
|
Zhang CG, Yang F, Li YH, Sun Y, Liu XJ, Wu X. miR‑501‑3p sensitizes glioma cells to cisplatin by targeting MYCN. Mol Med Rep 2018; 18:4747-4752. [PMID: 30221699 DOI: 10.3892/mmr.2018.9458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/28/2018] [Indexed: 11/06/2022] Open
Abstract
Cisplatin, a commonly used chemotherapeutic agent for glioma patients, treatment often leads to chemoresistance. Accumulating evidence has demosntrated that microRNA (miRNA/miR) is involved in drug resistance of glioma cells. Nevertheless, the role of miR‑501‑3p in glioma cell resistance to cisplatin is unclear. In the present study, it was revealed that miR‑501‑3p expression was decreased in glioma tissues and further underexpressed in cisplatin‑resistant glioma cells compared with wild‑type (WT) glioma cells. Furthermore, cisplatin treatment inhibited the level of miR‑501‑3p in a time‑dependent way. Ectopic expression of miR‑501‑3p suppressed glioma cell growth and invasion, but increased cisplatin‑resistant glioma cell apoptosis. Furthermore, miR‑501‑3p sensitized glioma cells to cisplatin‑induced proliferation arrest and death. Mechanistically, it was demonstrated that miR‑501‑3p targeted MYCN in glioma cells. In addition, it was revealed that miR‑501‑3p inhibited MYCN expression by a luciferase reporter assay and reverse transcription‑quantitative polymerase chain reaction. Notably, restoration of MYCN reversed the effects of miR‑501‑3p in cisplatin‑resistant glioma cells. In conclusion, these results suggested that miR‑501‑3p may serve a promising marker for cisplatin resistance.
Collapse
Affiliation(s)
- Chuan-Gang Zhang
- Department of Oncology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, P.R. China
| | - Fan Yang
- Department of Neurosurgery, The Third People's Hospital of Linyi, Linyi, Shandong 276023, P.R. China
| | - Yan-Hua Li
- Department of Teaching and Reach of Obstetrics and Gynecology, Shandong Medical College, Linyi, Shandong 276000, P.R. China
| | - Yan Sun
- Department of Oncology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, P.R. China
| | - Xue-Jian Liu
- Department of Oncology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, P.R. China
| | - Xia Wu
- Department of Oncology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, P.R. China
| |
Collapse
|
42
|
Sen K, Bhattacharyya D, Sarkar A, Das J, Maji N, Basu M, Ghosh Z, Ghosh TC. Exploring the major cross-talking edges of competitive endogenous RNA networks in human Chronic and Acute Myeloid Leukemia. Biochim Biophys Acta Gen Subj 2018; 1862:1883-1892. [DOI: 10.1016/j.bbagen.2018.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/14/2018] [Accepted: 06/04/2018] [Indexed: 12/31/2022]
|
43
|
Glowacka WK, Jain H, Okura M, Maimaitiming A, Mamatjan Y, Nejad R, Farooq H, Taylor MD, Aldape K, Kongkham P. 5-Hydroxymethylcytosine preferentially targets genes upregulated in isocitrate dehydrogenase 1 mutant high-grade glioma. Acta Neuropathol 2018; 135:617-634. [PMID: 29428975 PMCID: PMC5978937 DOI: 10.1007/s00401-018-1821-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/18/2018] [Accepted: 02/07/2018] [Indexed: 01/12/2023]
Abstract
Gliomas demonstrate epigenetic dysregulation exemplified by the Glioma CpG Island Methylator Phenotype (G-CIMP) seen in IDH1 mutant tumors. 5-Hydroxymethylcytosine (5hmC) is implicated in glioma pathogenesis; however, its role in IDH1 mutant gliomas is incompletely understood. To characterize 5hmC in IDH1 mutant gliomas further, we examine 5hmC in a cohort of IDH1 mutant and wild-type high-grade gliomas (HGG) using a quantitative locus-specific approach. Regions demonstrating high 5hmC abundance and differentially hydroxymethylated regions (DHMR) enrich for enhancers implicated in glioma pathogenesis. Among these regions, IDH1 mutant tumors possess greater 5hmC compared to wild type. 5hmC contributes to overall methylation status of G-CIMP genes. 5hmC targeting gene body regions correlates significantly with increased gene expression. In particular, a strong correlation between increased 5hmC and increased gene expression is identified for genes highly expressed in the IDH1 mutant cohort. Overall, locus-specific gain of 5hmC targeting regulatory regions and associated with overexpressed genes suggests a significant role for 5hmC in IDH1 mutant HGG.
Collapse
|
44
|
p73 promotes glioblastoma cell invasion by directly activating POSTN (periostin) expression. Oncotarget 2017; 7:11785-802. [PMID: 26930720 PMCID: PMC4914248 DOI: 10.18632/oncotarget.7600] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/18/2016] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma Multiforme is one of the most highly metastatic cancers and constitutes 70% of all gliomas. Despite aggressive treatments these tumours have an exceptionally bad prognosis, mainly due to therapy resistance and tumour recurrence. Here we show that the transcription factor p73 confers an invasive phenotype by directly activating expression of POSTN (periostin, HGNC:16953) in glioblastoma cells. Knock down of endogenous p73 reduces invasiveness and chemo-resistance, and promotes differentiation in vitro. Using chromatin immunoprecipitation and reporter assays we demonstrate that POSTN, an integrin binding protein that has recently been shown to play a major role in metastasis, is a transcriptional target of TAp73. We further show that POSTN overexpression is sufficient to rescue the invasive phenotype of glioblastoma cells after p73 knock down. Additionally, bioinformatics analysis revealed that an intact p73/POSTN axis, where POSTN and p73 expression is correlated, predicts bad prognosis in several cancer types. Taken together, our results support a novel role of TAp73 in controlling glioblastoma cell invasion by regulating the expression of the matricellular protein POSTN.
Collapse
|
45
|
Siddiqui A, Vazakidou ME, Schwab A, Napoli F, Fernandez-Molina C, Rapa I, Stemmler MP, Volante M, Brabletz T, Ceppi P. Thymidylate synthase is functionally associated with ZEB1 and contributes to the epithelial-to-mesenchymal transition of cancer cells. J Pathol 2017; 242:221-233. [PMID: 28337746 DOI: 10.1002/path.4897] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/28/2017] [Accepted: 03/09/2017] [Indexed: 01/26/2023]
Abstract
Thymidylate synthase (TS) is a fundamental enzyme of nucleotide metabolism and one of the oldest anti-cancer targets. Beginning from the analysis of gene array data from the NCI-60 panel of cancer cell lines, we identified a significant correlation at both gene and protein level between TS and the markers of epithelial-to-mesenchymal transition (EMT), a developmental process that allows cancer cells to acquire features of aggressiveness, like motility and chemoresistance. TS levels were found to be significantly augmented in mesenchymal-like compared to epithelial-like cancer cells, to be regulated by EMT induction, and to negatively correlate with micro-RNAs (miRNAs) usually expressed in epithelial-like cells and known to actively suppress EMT. Transfection of EMT-suppressing miRNAs reduced TS levels, and a specific role for miR-375 in targeting the TS 3'-untranslated region was identified. A particularly relevant association was found between TS and the powerful EMT driver ZEB1, the shRNA-mediated knockdown of which up-regulated miR-375 and reduced TS cellular levels. The TS-ZEB1 association was confirmed in clinical specimens from lung tumours and in a genetic mouse model of pancreatic cancer with ZEB1 deletion. Interestingly, TS itself appeared to have a regulatory role in EMT in cancer cells, as TS knockdown could directly reduce the EMT phenotype, the migratory ability of cells, the expression of stem-like markers, and chemoresistance. Taken together, these data indicate that the TS enzyme is functionally linked with EMT and cancer differentiation, with several potential translational implications. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Aarif Siddiqui
- Junior Research Group 1, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Maria Eleni Vazakidou
- Junior Research Group 1, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Annemarie Schwab
- Junior Research Group 1, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Francesca Napoli
- Junior Research Group 1, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Cristina Fernandez-Molina
- Junior Research Group 1, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ida Rapa
- Pathology Unit, San Luigi Hospital, University of Turin, Turin, Italy
| | - Marc P Stemmler
- Experimental Medicine I, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Marco Volante
- Pathology Unit, San Luigi Hospital, University of Turin, Turin, Italy
| | - Thomas Brabletz
- Experimental Medicine I, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Paolo Ceppi
- Junior Research Group 1, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
46
|
Gong J, Wang ZX, Liu ZY. miRNA‑1271 inhibits cell proliferation in neuroglioma by targeting fibronectin 1. Mol Med Rep 2017; 16:143-150. [PMID: 28535003 PMCID: PMC5482146 DOI: 10.3892/mmr.2017.6610] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/09/2017] [Indexed: 01/02/2023] Open
Abstract
miR-1271 is a multifunctional post-translational modulator, which is involved in several diseases. However, the association between microRNA (miR)-1271 and fibronectin 1 (FN1) remains to be fully elucidated in neuroglioma. In the present study, it was hypothesized that a post-translational mechanism of miR-1271 regulates the expression of FN1 in the progression of neuroglioma. The present study aimed to investigate the clinical significance and underlying molecular mechanisms of miRNA-1271 in the development of glioma. The miR-1271 levels in glioma tissues and cell lines were assessed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). miR-1271 mimics and inhibitors were transfected to gain or loss of miR-1271 function. Cell proliferation was analyzed by using an MTT assay. The targeted genes were predicted by a bioinformatics algorithm and confirmed by a dual luciferase reporter assay. The mRNA and protein levels were assessed by RT-qPCR and western blotting. The results showed that miR-1271 was downregulated in glioma tumor tissues and cell lines. In addition, it was demonstrated that low levels of miR-1271 in patients with glioma were correlated with low survival rate. In vitro, the cell viability was significantly suppressed following transfection with miRNA-1271 mimics and increased following transfection with the miRNA-1271 inhibitor. The miRNA-1271 mimics induced cell apoptosis and the miRNA-1271 inhibitor suppressed cell apoptosis in H4 and U251 cell lines. Furthermore, the 3′-untranslated region of FN1 was bound by miR-1271. Therefore, it was concluded that miR-1271 inhibited glioma cell growth by targeting FN1, and a low level of miR-1271 in glioma tumor tissues was associated with lower survival rates in patients with glioma.
Collapse
Affiliation(s)
- Jian Gong
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Zhao-Xia Wang
- Department of Gerontology, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Zhen-Ying Liu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| |
Collapse
|
47
|
Lee SY, Müller CE. Nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) and its inhibitors. MEDCHEMCOMM 2017; 8:823-840. [PMID: 30108800 PMCID: PMC6072468 DOI: 10.1039/c7md00015d] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 02/08/2017] [Indexed: 01/22/2023]
Abstract
Ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1, EC 3.1.4.1) is a metalloenzyme that belongs to the NPP family, which comprises seven subtypes (NPP1-7). NPP1 hydrolyzes a wide range of phosphodiester bonds, e.g. in nucleoside triphosphates, (cyclic) dinucleotides, and nucleotide sugars yielding nucleoside 5'-monophosphates as products. Its main substrate is ATP which is cleaved to AMP and diphosphate. The enzyme is involved in various biological processes including bone mineralization, soft-tissue calcification, insulin receptor signalling, cancer cell proliferation and immune modulation. Therefore, NPP1 inhibitors have potential as novel drugs, e.g. for (immuno)oncology. In the last two decades several inhibitors of NPP1 derived from nucleotide- or non-nucleotide scaffolds have been developed. The most potent and selective NPP1-inhibitory substrate analog is adenosine 5'-α,β-methylene-γ-thiotriphosphate (Ki = 20 nM vs. p-Nph-5'-TMP, human membrane-bound NPP1). Non-nucleotide-derived NPP1 inhibitors comprise polysulfonates, polysaccharides, polyoxometalates and small heterocyclic compounds. The polyoxometalate [TiW11CoO40]8- (PSB-POM141) is the most potent and selective NPP1 inhibitor described to date (Ki = 1.46 nM vs. ATP, human soluble NPP1); it displays an allosteric mechanism of inhibition and represents a useful pharmacological tool for evaluating the potential of NPP1 as a novel drug target.
Collapse
Affiliation(s)
- Sang-Yong Lee
- PharmaCenter Bonn , Pharmaceutical Institute , Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany . ; ; Tel: +49 228 73 2480
| | - Christa E Müller
- PharmaCenter Bonn , Pharmaceutical Institute , Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany . ; ; Tel: +49 228 73 2480
| |
Collapse
|
48
|
Lee SY, Sarkar S, Bhattarai S, Namasivayam V, De Jonghe S, Stephan H, Herdewijn P, El-Tayeb A, Müller CE. Substrate-Dependence of Competitive Nucleotide Pyrophosphatase/Phosphodiesterase1 (NPP1) Inhibitors. Front Pharmacol 2017; 8:54. [PMID: 28261095 PMCID: PMC5309242 DOI: 10.3389/fphar.2017.00054] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/25/2017] [Indexed: 01/10/2023] Open
Abstract
Nucleotide pyrophosphatase/phosphodiesterase type 1 (NPP1) is a membrane glycoprotein involved in the hydrolysis of extracellular nucleotides. Its major substrate is ATP which is converted to AMP and diphosphate. NPP1 was proposed as a new therapeutic target in brain cancer and immuno-oncology. Several NPP1 inhibitors have been reported to date, most of which were evaluated vs. the artificial substrate p-nitrophenyl 5′-thymidine monophosphate (p-Nph-5′-TMP). Recently, we observed large discrepancies in inhibitory potencies for a class of competitive NPP1 inhibitors when tested vs. the artificial substrate p-Nph-5′-TMP as compared to the natural substrate ATP. Therefore, the goal of the present study was to investigate whether inhibitors of human NPP1 generally display substrate-dependent inhibitory potency. Systematic evaluation of nucleotidic as well as non-nucleotidic NPP1 inhibitors revealed significant differences in determined Ki values for competitive, but not for non- and un-competitive inhibitors when tested vs. the frequently used artificial substrate p-Nph-5′-TMP as compared to ATP. Allosteric modulation of NPP1 by p-Nph-5′-TMP may explain these discrepancies. Results obtained using the AMP derivative p-nitrophenyl 5′-adenosine monophosphate (p-Nph-5′-AMP) as an alternative artificial substrate correlated much better with those employing the natural substrate ATP.
Collapse
Affiliation(s)
- Sang-Yong Lee
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn Bonn, Germany
| | - Soumya Sarkar
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn Bonn, Germany
| | - Sanjay Bhattarai
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn Bonn, Germany
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn Bonn, Germany
| | - Steven De Jonghe
- Laboratory of Medicinal Chemistry, KU Leuven, Rega Institute for Medical Research Leuven, Belgium
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research Dresden, Germany
| | - Piet Herdewijn
- Laboratory of Medicinal Chemistry, KU Leuven, Rega Institute for Medical Research Leuven, Belgium
| | - Ali El-Tayeb
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn Bonn, Germany
| |
Collapse
|
49
|
Way GP, Allaway RJ, Bouley SJ, Fadul CE, Sanchez Y, Greene CS. A machine learning classifier trained on cancer transcriptomes detects NF1 inactivation signal in glioblastoma. BMC Genomics 2017; 18:127. [PMID: 28166733 PMCID: PMC5292791 DOI: 10.1186/s12864-017-3519-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 01/26/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND We have identified molecules that exhibit synthetic lethality in cells with loss of the neurofibromin 1 (NF1) tumor suppressor gene. However, recognizing tumors that have inactivation of the NF1 tumor suppressor function is challenging because the loss may occur via mechanisms that do not involve mutation of the genomic locus. Degradation of the NF1 protein, independent of NF1 mutation status, phenocopies inactivating mutations to drive tumors in human glioma cell lines. NF1 inactivation may alter the transcriptional landscape of a tumor and allow a machine learning classifier to detect which tumors will benefit from synthetic lethal molecules. RESULTS We developed a strategy to predict tumors with low NF1 activity and hence tumors that may respond to treatments that target cells lacking NF1. Using RNAseq data from The Cancer Genome Atlas (TCGA), we trained an ensemble of 500 logistic regression classifiers that integrates mutation status with whole transcriptomes to predict NF1 inactivation in glioblastoma (GBM). On TCGA data, the classifier detected NF1 mutated tumors (test set area under the receiver operating characteristic curve (AUROC) mean = 0.77, 95% quantile = 0.53 - 0.95) over 50 random initializations. On RNA-Seq data transformed into the space of gene expression microarrays, this method produced a classifier with similar performance (test set AUROC mean = 0.77, 95% quantile = 0.53 - 0.96). We applied our ensemble classifier trained on the transformed TCGA data to a microarray validation set of 12 samples with matched RNA and NF1 protein-level measurements. The classifier's NF1 score was associated with NF1 protein concentration in these samples. CONCLUSIONS We demonstrate that TCGA can be used to train accurate predictors of NF1 inactivation in GBM. The ensemble classifier performed well for samples with very high or very low NF1 protein concentrations but had mixed performance in samples with intermediate NF1 concentrations. Nevertheless, high-performing and validated predictors have the potential to be paired with targeted therapies and personalized medicine.
Collapse
Affiliation(s)
- Gregory P. Way
- Genomics and Computational Biology Graduate Program, University of Pennsylvania, Philadelphia, PA USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, 10-131 SCTR 34th and Civic Center Blvd, Philadelphia, PA 19104 USA
| | - Robert J. Allaway
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth College, HB 7650, Hanover, NH 03755 USA
| | - Stephanie J. Bouley
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth College, HB 7650, Hanover, NH 03755 USA
| | - Camilo E. Fadul
- Department of Neurology, University of Virginia, Charlottesville, VA USA
| | - Yolanda Sanchez
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth College, HB 7650, Hanover, NH 03755 USA
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH USA
| | - Casey S. Greene
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, 10-131 SCTR 34th and Civic Center Blvd, Philadelphia, PA 19104 USA
| |
Collapse
|
50
|
Barbeau X, Mathieu P, Paquin JF, Lagüe P. Characterization of the structure, dynamics and allosteric pathways of human NPP1 in its free form and substrate-bound complex from molecular modeling. MOLECULAR BIOSYSTEMS 2017; 13:1058-1069. [DOI: 10.1039/c7mb00095b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we report 3D structure modeling and extensive molecular dynamics simulations of NPP1 complemented with a dynamical network analysis.
Collapse
Affiliation(s)
- Xavier Barbeau
- Department of Chemistry
- Faculty of Science and Engineering
- Université Laval
- Québec (Québec)
- Canada
| | | | - Jean-François Paquin
- Department of Chemistry
- Faculty of Science and Engineering
- Université Laval
- Québec (Québec)
- Canada
| | - Patrick Lagüe
- PROTEO
- The Quebec Network for Research on Protein Function
- Engineering
- and Applications
- Canada
| |
Collapse
|