1
|
Zhang H, Zhang G, Xiao M, Cui S, Jin C, Yang J, Wu S, Lu X. Two-polarized roles of transcription factor FOSB in lung cancer progression and prognosis: dependent on p53 status. J Exp Clin Cancer Res 2024; 43:237. [PMID: 39164746 PMCID: PMC11337850 DOI: 10.1186/s13046-024-03161-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Activator protein-1 (AP-1) represents a transcription factor family that has garnered growing attention for its extensive involvement in tumor biology. However, the roles of the AP-1 family in the evolution of lung cancer remain poorly characterized. FBJ Murine Osteosarcoma Viral Oncogene Homolog B (FOSB), a classic AP-1 family member, was previously reported to play bewilderingly two-polarized roles in non-small cell lung cancer (NSCLC) as an enigmatic double-edged sword, for which the reasons and significance warrant further elucidation. METHODS AND RESULTS Based on the bioinformatics analysis of a large NSCLC cohort from the TCGA database, our current work found the well-known tumor suppressor gene TP53 served as a key code to decipher the two sides of FOSB - its expression indicated a positive prognosis in NSCLC patients harboring wild-type TP53 while a negative one in those harboring mutant TP53. By constructing a panel of syngeneically derived NSCLC cells expressing p53 in different statuses, the radically opposite prognostic effects of FOSB expression in NSCLC population were validated, with the TP53-R248Q mutation site emerging as particularly meaningful. Transcriptome sequencing showed that FOSB overexpression elicited diversifying transcriptomic landscapes across NSCLC cells with varying genetic backgrounds of TP53 and, combined with the validation by RT-qPCR, PREX1 (TP53-Null), IGFBP5 (TP53-WT), AKR1C3, and ALDH3A1 (TP53-R248Q) were respectively identified as p53-dependent transcriptional targets of FOSB. Subsequently, the heterogenous impacts of FOSB on the tumor biology in NSCLC cells via the above selective transcriptional targets were confirmed in vitro and in vivo. Mechanistic investigations revealed that wild-type or mutant p53 might guide FOSB to recognize and bind to distinct promoter sequences via protein-protein interactions to transcriptionally activate specific target genes, thereby creating disparate influences on the progression and prognosis in NSCLC. CONCLUSIONS FOSB expression holds promise as a novel prognostic biomarker for NSCLC in combination with a given genetic background of TP53, and the unique interactions between FOSB and p53 may serve as underlying intervention targets for NSCLC.
Collapse
Affiliation(s)
- Hongchao Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, 110122, People's Republic of China
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New District, Shenyang, 110122, People's Republic of China
- Center of Gallstone Disease, Shanghai East Hospital & Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai, 200120, People's Republic of China
| | - Guopei Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, 110122, People's Republic of China
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New District, Shenyang, 110122, People's Republic of China
| | - Mingyang Xiao
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, 110122, People's Republic of China
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New District, Shenyang, 110122, People's Republic of China
| | - Su Cui
- Department of Thoracic Surgery, Ward 2, The First Hospital of China Medical University, No.155 North Nanjing Street, Heping District, Shenyang, 110001, People's Republic of China
| | - Cuihong Jin
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, 110122, People's Republic of China
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New District, Shenyang, 110122, People's Republic of China
| | - Jinghua Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, 110122, People's Republic of China
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New District, Shenyang, 110122, People's Republic of China
| | - Shengwen Wu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, 110122, People's Republic of China
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New District, Shenyang, 110122, People's Republic of China
| | - Xiaobo Lu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, 110122, People's Republic of China.
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New District, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
2
|
Ivanova ON, Gavlina AV, Karpenko IL, Zenov MA, Antseva SS, Zakirova NF, Valuev-Elliston VT, Krasnov GS, Fedyakina IT, Vorobyev PO, Bartosch B, Kochetkov SN, Lipatova AV, Yanvarev DV, Ivanov AV. Polyamine Catabolism Revisited: Acetylpolyamine Oxidase Plays a Minor Role due to Low Expression. Cells 2024; 13:1134. [PMID: 38994986 PMCID: PMC11240330 DOI: 10.3390/cells13131134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024] Open
Abstract
Biogenic polyamines are ubiquitous compounds. Dysregulation of their metabolism is associated with the development of various pathologies, including cancer, hyperproliferative diseases, and infections. The canonical pathway of polyamine catabolism includes acetylation of spermine and spermidine and subsequent acetylpolyamine oxidase (PAOX)-mediated oxidation of acetylpolyamines (back-conversion) or their direct efflux from the cell. PAOX is considered to catalyze a non-rate-limiting catabolic step. Here, we show that PAOX transcription levels are extremely low in various tumor- and non-tumor cell lines and, in most cases, do not change in response to altered polyamine metabolism. Its enzymatic activity is undetectable in the majority of cell lines except for neuroblastoma and low passage glioblastoma cell lines. Treatment of A549 cells with N1,N11-diethylnorspermine leads to PAOX induction, but its contribution to polyamine catabolism remains moderate. We also describe two alternative enzyme isoforms and show that isoform 4 has diminished oxidase activity and isoform 2 is inactive. PAOX overexpression correlates with the resistance of cancer cells to genotoxic antitumor drugs, indicating that PAOX may be a useful therapeutic target. Finally, PAOX is dispensable for the replication of various viruses. These data suggest that a decrease in polyamine levels is achieved predominantly by the secretion of acetylated spermine and spermidine rather than by back-conversion.
Collapse
Affiliation(s)
- Olga N. Ivanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia (M.A.Z.); (N.F.Z.); (P.O.V.)
| | - Anna V. Gavlina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia (M.A.Z.); (N.F.Z.); (P.O.V.)
| | - Inna L. Karpenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia (M.A.Z.); (N.F.Z.); (P.O.V.)
| | - Martin A. Zenov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia (M.A.Z.); (N.F.Z.); (P.O.V.)
| | - Svetlana S. Antseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia (M.A.Z.); (N.F.Z.); (P.O.V.)
| | - Natalia F. Zakirova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia (M.A.Z.); (N.F.Z.); (P.O.V.)
| | - Vladimir T. Valuev-Elliston
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia (M.A.Z.); (N.F.Z.); (P.O.V.)
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia (M.A.Z.); (N.F.Z.); (P.O.V.)
| | - Irina T. Fedyakina
- Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Russia, 132098 Moscow, Russia
| | - Pavel O. Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia (M.A.Z.); (N.F.Z.); (P.O.V.)
| | - Birke Bartosch
- INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
| | - Sergey N. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia (M.A.Z.); (N.F.Z.); (P.O.V.)
| | - Anastasiya V. Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia (M.A.Z.); (N.F.Z.); (P.O.V.)
| | - Dmitry V. Yanvarev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia (M.A.Z.); (N.F.Z.); (P.O.V.)
| | - Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia (M.A.Z.); (N.F.Z.); (P.O.V.)
| |
Collapse
|
3
|
Fang D, Zhang Z, Zhai J, Guo B, Li P, Liu X, Song J, Xie S, Wu R, Zhao Y, Wang C. Enzymatic-related network of catalysis, polyamine, and tumors for acetylpolyamine oxidase: from calculation to experiment. Chem Sci 2024; 15:2867-2882. [PMID: 38404376 PMCID: PMC10882482 DOI: 10.1039/d3sc06037c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/22/2023] [Indexed: 02/27/2024] Open
Abstract
The regulation of enzymes and development of polyamine analogs capable of controlling the dynamics of endogenous polyamines to achieve anti-tumor effects is one of the biggest challenges in polyamine research. However, the root of the problem remains unsolved. This study represents a significant milestone as it unveils, for the first time, the comprehensive catalytic map of acetylpolyamine oxidase that includes chemical transformation and product release kinetics, by utilizing multiscale simulations with over six million dynamical snapshots. The transportation of acetylspermine is strongly exothermic, and high binding affinity of enzyme and reactant is observed. The transfer of hydride from polyamine to FAD is the rate-limiting step, via an H-shift coupled electron transfer mechanism. The two products are released in a detour stepwise mechanism, which also impacts the enzymatic efficiency. Inspired by these mechanistic insights into enzymatic catalysis, we propose a novel strategy that regulates the polyamine level and catalytic progress through the action of His64. Directly suppressing APAO by mutating His64 further inhibited growth and migration of tumor cells and tumor tissue in vitro and in vivo. Therefore, the network connecting microcosmic and macroscopic scales opens up new avenues for designing polyamine compounds and conducting anti-tumor research in the future.
Collapse
Affiliation(s)
- Dong Fang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University Kaifeng 475000 P. R. China
- School of Pharmacy, Henan University Kaifeng 475000 P. R. China
| | - Zhiyang Zhang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University Kaifeng 475000 P. R. China
| | - Jihang Zhai
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University Kaifeng 475000 P. R. China
| | - Baolin Guo
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University Kaifeng 475000 P. R. China
| | - Pengfei Li
- Department of Chemistry and Biochemistry, Loyola University Chicago Chicago Illinois 60660 USA
| | - Xiaoyuan Liu
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University Kaifeng 475000 P. R. China
| | - Jinshuai Song
- Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Songqiang Xie
- School of Pharmacy, Henan University Kaifeng 475000 P. R. China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Yuan Zhao
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University Kaifeng 475000 P. R. China
| | - Chaojie Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University Kaifeng 475000 P. R. China
| |
Collapse
|
4
|
Zhang Z, Chen P, Yun J. Comprehensive analysis of a novel RNA modifications-related model in the prognostic characterization, immune landscape and drug therapy of bladder cancer. Front Genet 2023; 14:1156095. [PMID: 37124622 PMCID: PMC10131083 DOI: 10.3389/fgene.2023.1156095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Background: Bladder cancer (BCa) is the leading reason for death among genitourinary malignancies. RNA modifications in tumors closely link to the immune microenvironment. Our study aimed to propose a promising model associated with the "writer" enzymes of five primary RNA adenosine modifications (including m6A, m6Am, m1A, APA, and A-to-I editing), thus characterizing the clinical outcome, immune landscape and therapeutic efficacy of BCa. Methods: Unsupervised clustering was employed to categorize BCa into different RNA modification patterns based on gene expression profiles of 34 RNA modification "writers". The RNA modification "writers" score (RMS) signature composed of RNA phenotype-associated differentially expressed genes (DEGs) was established using the least absolute shrinkage and selection operator (LASSO), which was evaluated in meta-GEO (including eight independent GEO datasets) training cohort and the TCGA-BLCA validation cohort. The hub genes in the RMS model were determined via weighted gene co-expression network analysis (WGCNA) and were further validated using human specimen. The potential applicability of the RMS model in predicting the therapeutic responsiveness was assessed through the Genomics of Drug Sensitivity in Cancer database and multiple immunotherapy datasets. Results: Two distinct RNA modification patterns were determined among 1,410 BCa samples from a meta-GEO cohort, showing radically varying clinical outcomes and biological characteristics. The RMS model comprising 14 RNA modification phenotype-associated prognostic DEGs positively correlated with the unsatisfactory outcome of BCa patients in meta-GEO training cohort (HR = 3.00, 95% CI = 2.19-4.12) and TCGA-BLCA validation cohort (HR = 1.53, 95% CI = 1.13-2.09). The infiltration of immunosuppressive cells and the activation of EMT, angiogenesis, IL-6/JAK/STAT3 signaling were markedly enriched in RMS-high group. A nomogram exhibited high prognostic prediction accuracy, with a concordance index of 0.785. The therapeutic effect of chemotherapeutic agents and antibody-drug conjugates was significantly different between RMS-low and -high groups. The combination of the RMS model and conventional characteristics (TMB, TNB and PD-L1) achieved an optimal AUC value of 0.828 in differentiating responders from non-responders to immunotherapy. Conclusion: We conferred the first landscape of five forms of RNA modifications in BCa and emphasized the excellent power of an RNA modifications-related model in evaluating BCa prognosis and immune landscape.
Collapse
Affiliation(s)
- Ziying Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Peng Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jingping Yun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- *Correspondence: Jingping Yun,
| |
Collapse
|
5
|
Kim JH, Lee ST. Polyamine Oxidase Expression Is Downregulated by 17β-Estradiol via Estrogen Receptor 2 in Human MCF-7 Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms23147521. [PMID: 35886868 PMCID: PMC9317983 DOI: 10.3390/ijms23147521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 02/05/2023] Open
Abstract
Polyamine levels decrease with menopause; however, little is known about the mechanisms regulated by menopause. In this study, we found that among the genes involved in the polyamine pathway, polyamine oxidase (PAOX) mRNA levels were the most significantly reduced by treatment with 17β-estradiol in estrogen receptor (ESR)-positive MCF-7 breast cancer cells. Treatment with 17β-estradiol also reduced the PAOX protein levels. Treatment with selective ESR antagonists and knockdown of ESR members revealed that estrogen receptor 2 (ESR2; also known as ERβ) was responsible for the repression of PAOX by 17β-estradiol. A luciferase reporter assay showed that 17β-estradiol downregulates PAOX promoter activity and that 17β-estradiol-dependent PAOX repression disappeared after deletions (−3126/−2730 and −1271/−1099 regions) or mutations of activator protein 1 (AP-1) binding sites in the PAOX promoter. Chromatin immunoprecipitation analysis showed that ESR2 interacts with AP-1 bound to each of the two AP-1 binding sites. These results demonstrate that 17β-estradiol represses PAOX transcription by the interaction of ESR2 with AP-1 bound to the PAOX promoter. This suggests that estrogen deficiency may upregulate PAOX expression and decrease polyamine levels.
Collapse
|
6
|
Niklander SE. Inflammatory Mediators in Oral Cancer: Pathogenic Mechanisms and Diagnostic Potential. FRONTIERS IN ORAL HEALTH 2022; 2:642238. [PMID: 35047997 PMCID: PMC8757707 DOI: 10.3389/froh.2021.642238] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Approximately 15% of cancers are attributable to the inflammatory process, and growing evidence supports an association between oral squamous cell carcinoma (OSCC) and chronic inflammation. Different oral inflammatory conditions, such as oral lichen planus (OLP), submucous fibrosis, and oral discoid lupus, are all predisposing for the development of OSCC. The microenvironment of these conditions contains various transcription factors and inflammatory mediators with the ability to induce proliferation, epithelial-to-mesenchymal transition (EMT), and invasion of genetically predisposed lesions, thereby promoting tumor development. In this review, we will focus on the main inflammatory molecules and transcription factors activated in OSCC, with emphasis on their translational potential.
Collapse
Affiliation(s)
- Sven E Niklander
- Unidad de Patologia y Medicina Oral, Facultad de Odontologia, Universidad Andres Bello, Viña del Mar, Chile
| |
Collapse
|
7
|
Vinogradskaya GR, Ivanov AV, Kushch AA. Mechanisms of Survival of Cytomegalovirus-Infected Tumor Cells. Mol Biol 2022; 56:668-683. [PMID: 36217337 PMCID: PMC9534468 DOI: 10.1134/s0026893322050132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 11/04/2022]
Abstract
Human cytomegalovirus (HCMV) DNA and proteins are often detected in malignant tumors, warranting studies of the role that HCMV plays in carcinogenesis and tumor progression. HCMV proteins were shown to regulate the key processes involved in tumorigenesis. While HCMV as an oncogenic factor just came into focus, its ability to promote tumor progression is generally recognized. The review discusses the viral factors and cell molecular pathways that affect the resistance of cancer cells to therapy. CMV inhibits apoptosis of tumor cells, that not only promotes tumor progression, but also reduces the sensitivity of cells to antitumor therapy. Autophagy was found to facilitate either cell survival or cell death in different tumor cells. In leukemia cells, HCMV induces a "protective" autophagy that suppresses apoptosis. Viral factors that mediate drug resistance and their interactions with key cell death pathways are necessary to further investigate in order to develop agents that can restore the tumor sensitivity to anticancer drugs.
Collapse
Affiliation(s)
- G. R. Vinogradskaya
- Konstantinov St. Petersburg Institute of Nuclear Physics, National Research Center “Kurchatov Institute”, 188300 Gatchina, Leningrad oblast Russia
| | - A. V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - A. A Kushch
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| |
Collapse
|
8
|
Iscan E, Ekin U, Yildiz G, Oz O, Keles U, Suner A, Cakan-Akdogan G, Ozhan G, Nekulova M, Vojtesek B, Uzuner H, Karakülah G, Alotaibi H, Ozturk M. TAp73β Can Promote Hepatocellular Carcinoma Dedifferentiation. Cancers (Basel) 2021; 13:cancers13040783. [PMID: 33668566 PMCID: PMC7918882 DOI: 10.3390/cancers13040783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is a highly complex and heterogeneous type of cancer. Hepatocyte dedifferentiation is one of the important steps in the development of HCC. However, its molecular mechanisms are not well known. In this study, we report that transcriptionally active TAp73 isoforms are overexpressed in HCC. We also show that TAp73β suppresses the expression of the hepatocyte markers including CYP3A4, AFP, ALB, HNF4α, while increasing the expression of several cholangiocyte markers in HCC cell lines. In conclusion, this report reveals a pro-oncogenic role for TAp73β in liver cancer. Abstract Hepatocyte dedifferentiation is a major source of hepatocellular carcinoma (HCC), but its mechanisms are unknown. We explored the p73 expression in HCC tumors and studied the effects of transcriptionally active p73β (TAp73β) in HCC cells. Expression profiles of p73 and patient clinical data were collected from the Genomic Data Commons (GDC) data portal and the TSVdb database, respectively. Global gene expression profiles were determined by pan-genomic 54K microarrays. The Gene Set Enrichment Analysis method was used to identify TAp73β-regulated gene sets. The effects of TAp73 isoforms were analyzed in monolayer cell culture, 3D-cell culture and xenograft models in zebrafish using western blot, flow cytometry, fluorescence imaging, real-time polymerase chain reaction (RT-PCR), immunohistochemistry and morphological examination. TAp73 isoforms were significantly upregulated in HCC, and high p73 expression correlated with poor patient survival. The induced expression of TAp73β caused landscape expression changes in genes involved in growth signaling, cell cycle, stress response, immunity, metabolism and development. Hep3B cells overexpressing TAp73β had lost hepatocyte lineage biomarkers including ALB, CYP3A4, AFP, HNF4α. In contrast, TAp73β upregulated genes promoting cholangiocyte lineage such as YAP, JAG1 and ZO-1, accompanied with an increase in metastatic ability. Our findings suggest that TAp73β may promote malignant dedifferentiation of HCC cells.
Collapse
Affiliation(s)
- Evin Iscan
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35000, Turkey
| | - Umut Ekin
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35000, Turkey
| | - Gokhan Yildiz
- Department of Medical Biology, Faculty of Medicine, Karadeniz Technical University, Trabzon 61000, Turkey;
| | - Ozden Oz
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35000, Turkey
- Izmir Bozyaka Education and Research Hospital, University of Health Sciences, Izmir 35000, Turkey
| | - Umur Keles
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35000, Turkey
| | - Aslı Suner
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Ege University, Izmir 35000, Turkey;
| | - Gulcin Cakan-Akdogan
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, Izmir 35000, Turkey
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35000, Turkey
| | - Marta Nekulova
- RECAMO, Masaryk Memorial Cancer Institute, 60200 Brno, Czech Republic; (M.N.); (B.V.)
| | - Borivoj Vojtesek
- RECAMO, Masaryk Memorial Cancer Institute, 60200 Brno, Czech Republic; (M.N.); (B.V.)
| | - Hamdiye Uzuner
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35000, Turkey
| | - Gökhan Karakülah
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35000, Turkey
| | - Hani Alotaibi
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35000, Turkey
| | - Mehmet Ozturk
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Correspondence:
| |
Collapse
|
9
|
Fedorova NE, Chernoryzh YY, Vinogradskaya GR, Emelianova SS, Zavalyshina LE, Yurlov KI, Zakirova NF, Verbenko VN, Kochetkov SN, Kushch AA, Ivanov AV. Inhibitor of polyamine catabolism MDL72.527 restores the sensitivity to doxorubicin of monocytic leukemia Thp-1 cells infected with human cytomegalovirus. Biochimie 2018; 158:82-89. [PMID: 30578923 DOI: 10.1016/j.biochi.2018.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/17/2018] [Indexed: 12/17/2022]
Abstract
Leukemic cells from different patients exhibit different sensitivity to anticancer drugs including doxorubicin (DOX). Resistance to chemotherapy decreases efficacy of the treatment and promotes cancer recurrence and metastases. One of the approaches to overcome drug resistance includes E2F1-mediated regulation of the р73 protein that belongs to the р53 family. Its ΔNp73 isoform exhibits pro-oncogenic effects, and TAp73 - anti-oncogenic effects. Human cytomegalovirus (HCMV), often found in tumors, suppresses pro-apoptotic pathways and E2F1/p73 in particular. The activity of E2F1 and p73 transcription factors is linked to metabolism of biogenic polyamines. Therefore, it could be suggested that compounds that target polyamine-metabolizing enzymes can sensitize HCMV-infected hematological malignancies to doxorubicin. Here we report that HCMV infection of ТНР-1 monocytic leukemic cells considerably elevates E2F1 levels and shifts the balance between the р73 isoforms towards ΔNp73 leading to survival of DOX-treated leukemic cells. In contrast, MDL72.527, an inhibitor of polyamine catabolism, decreases ΔNp73/ТАр73 ratio and thus restores sensitivity of the cells to DOX. Our findings indicate the combination of doxorubicin and MDL72.527 may present a novel strategy for therapy of leukemia in patients with and without HCMV infection.
Collapse
Affiliation(s)
- Natalia E Fedorova
- Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Yana Yu Chernoryzh
- Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Galina R Vinogradskaya
- Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Gatchina, Leningrad Region, Russia
| | - Svetlana S Emelianova
- Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Gatchina, Leningrad Region, Russia
| | - Larisa E Zavalyshina
- Educational Institution of Further Professional Education «Russian Medical Academy of Continuous Professional Education» of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Kirill I Yurlov
- Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Natalia F Zakirova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Valery N Verbenko
- Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Gatchina, Leningrad Region, Russia
| | - Sergey N Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alla A Kushch
- Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
10
|
Cellular and Animal Model Studies on the Growth Inhibitory Effects of Polyamine Analogues on Breast Cancer. Med Sci (Basel) 2018. [PMID: 29533973 PMCID: PMC5872181 DOI: 10.3390/medsci6010024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Polyamine levels are elevated in breast tumors compared to those of adjacent normal tissues. The female sex hormone, estrogen is implicated in the origin and progression of breast cancer. Estrogens stimulate and antiestrogens suppress the expression of polyamine biosynthetic enzyme, ornithine decarboxylate (ODC). Using several bis(ethyl)spermine analogues, we found that these analogues inhibited the proliferation of estrogen receptor-positive and estrogen receptor negative breast cancer cells in culture. There was structure-activity relationship in the efficacy of these compounds in suppressing cell growth. The activity of ODC was inhibited by these compounds, whereas the activity of the catabolizing enzyme, spermidine/spermine N¹-acetyl transferase (SSAT) was increased by 6-fold by bis(ethyl)norspermine in MCF-7 cells. In a transgenic mouse model of breast cancer, bis(ethyl)norspermine reduced the formation and growth of spontaneous mammary tumor. Recent studies indicate that induction of polyamine catabolic enzymes SSAT and spermine oxidase (SMO) play key roles in the anti-proliferative and apoptotic effects of polyamine analogues and their combinations with chemotherapeutic agents such as 5-fluorouracil (5-FU) and paclitaxel. Thus, polyamine catabolic enzymes might be important therapeutic targets and markers of sensitivity in utilizing polyamine analogues in combination with other therapeutic agents.
Collapse
|
11
|
Regina C, Compagnone M, Peschiaroli A, Lena A, Annicchiarico-Petruzzelli M, Piro MC, Melino G, Candi E. Setdb1, a novel interactor of ΔNp63, is involved in breast tumorigenesis. Oncotarget 2018; 7:28836-48. [PMID: 26840455 PMCID: PMC5045360 DOI: 10.18632/oncotarget.7089] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/13/2016] [Indexed: 01/05/2023] Open
Abstract
ΔNp63 has been recently involved in self-renewal potential of breast cancer stem cells. Although the p63 transcriptional profile has been extensively characterized, our knowledge of the p63-binding partners potentially involved in the regulation of breast tumour progression is limited. Here, we performed the yeast two hybrid approach to identify p63α interactors involved in breast tumorigenesis and we found that SETDB1, a histone lysine methyl transferases, interacts with ΔNp63α and that this interaction contributes to p63 protein stability. SETDB1 is often amplified in primary breast tumours, and its depletion confers to breast cancer cells growth disadvantage. We identified a list of thirty genes repressed by ΔNp63 in a SETDB1-dependent manner, whose expression is positively correlated to survival of breast cancer patients. These results suggest that p63 and SETDB1 expression, together with the repressed genes, may have diagnostic and prognostic potential.
Collapse
Affiliation(s)
- Carla Regina
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Mirco Compagnone
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | | | - AnnaMaria Lena
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | | | - Maria Cristina Piro
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy.,IDI-IRCCS, Rome, Italy
| |
Collapse
|
12
|
Agostini M, Annicchiarico-Petruzzelli M, Melino G, Rufini A. Metabolic pathways regulated by TAp73 in response to oxidative stress. Oncotarget 2017; 7:29881-900. [PMID: 27119504 PMCID: PMC5058650 DOI: 10.18632/oncotarget.8935] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/16/2016] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species are involved in both physiological and pathological processes including neurodegeneration and cancer. Therefore, cells have developed scavenging mechanisms to maintain redox homeostasis under control. Tumor suppressor genes play a critical role in the regulation of antioxidant genes. Here, we investigated whether the tumor suppressor gene TAp73 is involved in the regulation of metabolic adaptations triggered in response to oxidative stress. H2O2 treatment resulted in numerous biochemical changes in both control and TAp73 knockout (TAp73−/−) mouse embryonic fibroblasts, however the extent of these changes was more pronounced in TAp73−/− cells when compared to control cells. In particular, loss of TAp73 led to alterations in glucose, nucleotide and amino acid metabolism. In addition, H2O2 treatment resulted in increased pentose phosphate pathway (PPP) activity in null mouse embryonic fibroblasts. Overall, our results suggest that in the absence of TAp73, H2O2 treatment results in an enhanced oxidative environment, and at the same time in an increased pro-anabolic phenotype. In conclusion, the metabolic profile observed reinforces the role of TAp73 as tumor suppressor and indicates that TAp73 exerts this function, at least partially, by regulation of cellular metabolism.
Collapse
Affiliation(s)
- Massimiliano Agostini
- Medical Research Council, Toxicology Unit, Leicester University, Leicester, UK.,Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | | | - Gerry Melino
- Medical Research Council, Toxicology Unit, Leicester University, Leicester, UK.,Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Alessandro Rufini
- Department of Cancer Studies, CRUK Leicester Cancer Centre, University of Leicester, Leicester, UK
| |
Collapse
|
13
|
p73 promotes glioblastoma cell invasion by directly activating POSTN (periostin) expression. Oncotarget 2017; 7:11785-802. [PMID: 26930720 PMCID: PMC4914248 DOI: 10.18632/oncotarget.7600] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/18/2016] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma Multiforme is one of the most highly metastatic cancers and constitutes 70% of all gliomas. Despite aggressive treatments these tumours have an exceptionally bad prognosis, mainly due to therapy resistance and tumour recurrence. Here we show that the transcription factor p73 confers an invasive phenotype by directly activating expression of POSTN (periostin, HGNC:16953) in glioblastoma cells. Knock down of endogenous p73 reduces invasiveness and chemo-resistance, and promotes differentiation in vitro. Using chromatin immunoprecipitation and reporter assays we demonstrate that POSTN, an integrin binding protein that has recently been shown to play a major role in metastasis, is a transcriptional target of TAp73. We further show that POSTN overexpression is sufficient to rescue the invasive phenotype of glioblastoma cells after p73 knock down. Additionally, bioinformatics analysis revealed that an intact p73/POSTN axis, where POSTN and p73 expression is correlated, predicts bad prognosis in several cancer types. Taken together, our results support a novel role of TAp73 in controlling glioblastoma cell invasion by regulating the expression of the matricellular protein POSTN.
Collapse
|
14
|
Zipin-Roitman A, Aqaqe N, Yassin M, Biechonski S, Amar M, van Delft MF, Gan OI, McDermott SP, Buzina A, Ketela T, Shlush L, Xie S, Voisin V, Moffat J, Minden MD, Dick JE, Milyavsky M. SMYD2 lysine methyltransferase regulates leukemia cell growth and regeneration after genotoxic stress. Oncotarget 2017; 8:16712-16727. [PMID: 28187429 PMCID: PMC5369996 DOI: 10.18632/oncotarget.15147] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/24/2017] [Indexed: 12/12/2022] Open
Abstract
The molecular determinants governing escape of Acute Myeloid Leukemia (AML) cells from DNA damaging therapy remain poorly defined and account for therapy failures. To isolate genes responsible for leukemia cells regeneration following multiple challenges with irradiation we performed a genome-wide shRNA screen. Some of the isolated hits are known players in the DNA damage response (e.g. p53, CHK2), whereas other, e.g. SMYD2 lysine methyltransferase (KMT), remains uncharacterized in the AML context. Here we report that SMYD2 knockdown confers relative resistance to human AML cells against multiple classes of DNA damaging agents. Induction of the transient quiescence state upon SMYD2 downregulation correlated with the resistance. We revealed that diminished SMYD2 expression resulted in the upregulation of the related methyltransferase SET7/9, suggesting compensatory relationships. Indeed, pharmacological targeting of SET7/9 with (R)-PFI2 inhibitor preferentially inhibited the growth of cells expressing low levels of SMYD2. Finally, decreased expression of SMYD2 in AML patients correlated with the reduced sensitivity to therapy and lower probability to achieve complete remission. We propose that the interplay between SMYD2 and SET7/9 levels shifts leukemia cells from growth to quiescence state that is associated with the higher resistance to DNA damaging agents and rationalize SET7/9 pharmacological targeting in AML.
Collapse
Affiliation(s)
- Adi Zipin-Roitman
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nasma Aqaqe
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Muhammad Yassin
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shahar Biechonski
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mariam Amar
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mark F van Delft
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada.,Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Olga I Gan
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Sean P McDermott
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada.,Leidos Biomedical Research, Washington D.C., USA
| | - Alla Buzina
- Donnelly Centre for Cellular and Biomedical Research, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Troy Ketela
- Donnelly Centre for Cellular and Biomedical Research, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Liran Shlush
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada.,Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Stephanie Xie
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Veronique Voisin
- Donnelly Centre for Cellular and Biomedical Research, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jason Moffat
- Donnelly Centre for Cellular and Biomedical Research, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Michael Milyavsky
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
15
|
Gomez LC, Sottile ML, Guerrero-Gimenez ME, Zoppino FCM, Redondo AL, Gago FE, Orozco JI, Tello OM, Roqué M, Nadin SB, Marzese DM, Vargas-Roig LM. TP73 DNA methylation and upregulation of ΔNp73 are associated with an adverse prognosis in breast cancer. J Clin Pathol 2017; 71:52-58. [PMID: 28743687 DOI: 10.1136/jclinpath-2017-204499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/12/2017] [Accepted: 05/12/2017] [Indexed: 12/14/2022]
Abstract
AIM Accumulated evidence suggests that aberrant methylation of the TP73 gene and increased levels of ΔNp73 in primary tumours correlate with poor prognosis. However, little is known regarding the transcriptional and functional regulation of the TP73 gene in breast cancer. The aim of the present study was to determine the expression of the ΔNp73 isoform, its relationship with DNA methylation of TP73 and their clinical prognostic significance in breast cancer patients. METHODS TP73 gene methylation was studied in TCGA datasets and in 70 invasive ductal breast carcinomas (IDCs). The expression of p73 isoforms was evaluated by immunohistochemistry (IHC) and Western blot and correlated with clinicopathological variables and clinical outcome. RESULTS We observed that the methylation of diverse CpG islands of TP73 differed significantly between molecular subtypes. An inverse correlation was found between p73 protein expression and the methylation status of the TP73 gene. The expression of exon 3' of p73 (only expressed in ΔNp73) was significantly higher in patients with wild-type p53. Immunohistochemical analysis revealed that all p73 isoforms were localised in both the nuclear and cytoplasmic compartments. We confirmed a positive association between the expression of ∆Np73 and high histological grade. CONCLUSIONS Our findings suggest that high expression of ΔNp73 could be used to determine the aggressiveness of IDCs and could be incorporated in the pathologist's report.
Collapse
Affiliation(s)
- Laura C Gomez
- Tumor Biology Laboratory, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Mendoza, Argentina.,Faculty of Exact Sciences, National University of Cuyo, Mendoza, Argentina
| | - Mayra L Sottile
- Tumor Biology Laboratory, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Mendoza, Argentina
| | - Martin E Guerrero-Gimenez
- Oncology Laboratory, IMBECU-CONICET, Mendoza, Argentina.,Medical School, National University of Cuyo, Mendoza, Argentina
| | - Felipe C M Zoppino
- Oncology Laboratory, IMBECU-CONICET, Mendoza, Argentina.,Medical School, National University of Cuyo, Mendoza, Argentina
| | - Analia L Redondo
- Tumor Biology Laboratory, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Mendoza, Argentina.,Medical School, National University of Cuyo, Mendoza, Argentina
| | | | - Javier I Orozco
- Medical School, National University of Cuyo, Mendoza, Argentina.,Gineco-Mamario Institute, San Lorenzo, Mendoza, Argentina.,Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, USA
| | - Olga M Tello
- Gineco-Mamario Institute, San Lorenzo, Mendoza, Argentina
| | - Maria Roqué
- Faculty of Exact Sciences, National University of Cuyo, Mendoza, Argentina.,IHEM-CONICET, Mendoza, Argentina
| | - Silvina B Nadin
- Tumor Biology Laboratory, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Mendoza, Argentina
| | - Diego M Marzese
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, USA
| | - Laura M Vargas-Roig
- Tumor Biology Laboratory, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Mendoza, Argentina.,Medical School, National University of Cuyo, Mendoza, Argentina
| |
Collapse
|
16
|
Marini A, Lena AM, Panatta E, Ivan C, Han L, Liang H, Annicchiarico-Petruzzelli M, Di Daniele N, Calin GA, Candi E, Melino G. Ultraconserved long non-coding RNA uc.63 in breast cancer. Oncotarget 2017; 8:35669-35680. [PMID: 27447964 PMCID: PMC5482607 DOI: 10.18632/oncotarget.10572] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/13/2016] [Indexed: 12/13/2022] Open
Abstract
Transcribed-ultraconserved regions (T-UCRs) are long non-coding RNAs (lncRNA) encoded by a subset of long ultraconserved stretches in the human genome. Recent studies revealed that the expression of several T-UCRs is altered in cancer and growing evidences underline the importance of T-UCRs in oncogenesis, offering also potential new strategies for diagnosis and prognosis. We found that overexpression of one specific T-UCRs named uc.63 is associated with bad outcome in luminal A subtype of breast cancer patients. uc.63 is localized in the third intron of exportin-1 gene (XPO1) and is transcribed in the same orientation of its host gene. Interestingly, silencing of uc.63 induces apoptosis in vitro. However, silencing of host gene XPO1 does not cause the same effect suggesting that the transcription of uc.63 is independent of XPO1. Our results reveal an important role of uc.63 in promoting breast cancer cells survival and offer the prospect to identify a signature associated with poor prognosis.
Collapse
Affiliation(s)
- Alberto Marini
- Medical Research Council, Toxicology Unit, Hodgkin Building, University of Leicester, Leicester, UK
| | - Anna Maria Lena
- Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
| | - Emanuele Panatta
- Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
| | - Cristina Ivan
- Department of Experimental Therapeutics and The Center for RNA interference and non-coding RNA, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | | | - Nicola Di Daniele
- Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
| | - George A. Calin
- Department of Experimental Therapeutics and The Center for RNA interference and non-coding RNA, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Eleonora Candi
- Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
- IDI-IRCCS, Biochemistry Laboratory, Rome, Italy
| | - Gerry Melino
- Medical Research Council, Toxicology Unit, Hodgkin Building, University of Leicester, Leicester, UK
- Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
17
|
Characterization of OAZ1 and its potential functions in goose follicular development. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2016.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
18
|
Alam M, Kashyap T, Pramanik KK, Singh AK, Nagini S, Mishra R. The elevated activation of NFκB and AP-1 is correlated with differential regulation of Bcl-2 and associated with oral squamous cell carcinoma progression and resistance. Clin Oral Investig 2017; 21:2721-2731. [PMID: 28233171 DOI: 10.1007/s00784-017-2074-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/07/2017] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Oral cancer is the sixth most common cancer in the world. Failure of chemoradiation therapy is a major concern for treating oral cancer patients. The objective of this study is to determine the B cell lymphoma-2 (bcl-2) expression and its regulation by nuclear factor κB (NFκB) and activator protein 1 (AP-1) in oral cancer progression and chemoradiation resistance. MATERIALS AND METHODS In the present study, a total of 123 (n = 123) human samples were included. Briefly, 64 fresh samples were from adjacent normal (AN), primary oral tumors without treatment (PT), and tumors with resistance to chemoradiation therapy with local recurrence (RCRT). Fifty-nine samples were human tongue cancers and normal samples (TMA). Messenger RNA (mRNA) expression levels of bcl-2 and protein levels of bcl-2, NFκB, AP-1, and inactive GSK3α/β were measured by semiquantitative RT-PCR, immunohistochemistry, Western blot, and ChIP analysis. RESULTS Increased bcl-2 expression was observed in PT compared to AN. The RCRT tumors showed maximum expression of bcl-2 mRNA and protein over the PT and AN groups. Bcl-2 protein and mRNA expression were positively correlated with NFκB and AP-1 expression. AP-1 expression was strongly correlated with bcl-2 in the RCRT group of tumors. Further, inactive GSK3α/β showed a positive trend with bcl-2 expression in oral tongue cancer specimens. CONCLUSION Collectively, our results demonstrated cumulative effect of AP-1 and NFĸB for bcl-2 gene regulation in overall PT progression and chemoradiation resistance. The study provides evidence of increased bcl-2 mRNA/protein fueled by NFĸB in PT and AP-1 in RCRT. These regulations of bcl-2 by NFκB and AP-1 are important in OSCC progression and chemoradiation resistance.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe Ranchi, Jharkhand, 835205, India
| | - Tanushree Kashyap
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe Ranchi, Jharkhand, 835205, India
| | - Kamdeo K Pramanik
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe Ranchi, Jharkhand, 835205, India
| | - Abhay K Singh
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe Ranchi, Jharkhand, 835205, India
| | - Siddavaram Nagini
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, 608 002, India
| | - Rajakishore Mishra
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe Ranchi, Jharkhand, 835205, India.
| |
Collapse
|
19
|
Na HH, Noh HJ, Cheong HM, Kang Y, Kim KC. SETDB1 mediated FosB expression increases the cell proliferation rate during anticancer drug therapy. BMB Rep 2017; 49:238-43. [PMID: 26949019 PMCID: PMC4915244 DOI: 10.5483/bmbrep.2016.49.4.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Indexed: 11/29/2022] Open
Abstract
The efficacy of anticancer drugs depends on a variety of signaling pathways, which can be positively or negatively regulated. In this study, we show that SETDB1 HMTase is down-regulated at the transcriptional level by several anticancer drugs, due to its inherent instability. Using RNA sequence analysis, we identified FosB as being regulated by SETDB1 during anticancer drug therapy. FosB expression was increased by treatment with doxorubicin, taxol and siSETDB1. Moreover, FosB was associated with an increased rate of proliferation. Combinatory transfection of siFosB and siSETDB1 was slightly increased compared to transfection of siFosB. Furthermore, FosB was regulated by multiple kinase pathways. ChIP analysis showed that SETDB1 and H3K9me3 interact with a specific region of the FosB promoter. These results suggest that SETDB1-mediated FosB expression is a common molecular phenomenon, and might be a novel pathway responsible for the increase in cell proliferation that frequently occurs during anticancer drug therapy. [BMB Reports 2016; 49(4): 238-243]
Collapse
Affiliation(s)
- Han-Heom Na
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Hee-Jung Noh
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Hyang-Min Cheong
- Division of Respiratory Viruses, Center for Disease Control and Prevention, Korea National Institute of Health, Osong 28160, Korea
| | - Yoonsung Kang
- Institute for Diagnostic Markers, Eudipia Inc, Osong 28160, Korea
| | - Keun-Cheol Kim
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
20
|
Nicolai S, Rossi A, Di Daniele N, Melino G, Annicchiarico-Petruzzelli M, Raschellà G. DNA repair and aging: the impact of the p53 family. Aging (Albany NY) 2016; 7:1050-65. [PMID: 26668111 PMCID: PMC4712331 DOI: 10.18632/aging.100858] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cells are constantly exposed to endogenous and exogenous factors that threaten the integrity of their DNA. The maintenance of genome stability is of paramount importance in the prevention of both cancer and aging processes. To deal with DNA damage, cells put into operation a sophisticated and coordinated mechanism, collectively known as DNA damage response (DDR). The DDR orchestrates different cellular processes, such as DNA repair, senescence and apoptosis. Among the key factors of the DDR, the related proteins p53, p63 and p73, all belonging to the same family of transcription factors, play multiple relevant roles. Indeed, the members of this family are directly involved in the induction of cell cycle arrest that is necessary to allow the cells to repair. Alternatively, they can promote cell death in case of prolonged or irreparable DNA damage. They also take part in a more direct task by modulating the expression of core factors involved in the process of DNA repair or by directly interacting with them. In this review we will analyze the fundamental roles of the p53 family in the aging process through their multifaceted function in DDR.
Collapse
Affiliation(s)
- Sara Nicolai
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Antonello Rossi
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Nicola Di Daniele
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133 Rome, Italy.,Medical Research Council, Toxicology Unit, Hodgkin Building, Leicester University, Leicester LE1 9HN, UK
| | | | - Giuseppe Raschellà
- ENEA Research Center Casaccia, Laboratory of Biosafety and Risk Assessment, 00123 Rome, Italy
| |
Collapse
|
21
|
He Z, Agostini M, Liu H, Melino G, Simon HU. p73 regulates basal and starvation-induced liver metabolism in vivo. Oncotarget 2016; 6:33178-90. [PMID: 26375672 PMCID: PMC4741757 DOI: 10.18632/oncotarget.5090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/26/2015] [Indexed: 12/30/2022] Open
Abstract
As a member of the p53 gene family, p73 regulates cell cycle arrest, apoptosis, neurogenesis, immunity and inflammation. Recently, p73 has been shown to transcriptionally regulate selective metabolic enzymes, such as cytochrome c oxidase subunit IV isoform 1, glucose 6-phosphate dehydrogenase and glutaminase-2, resulting in significant effects on metabolism, including hepatocellular lipid metabolism, glutathione homeostasis and the pentose phosphate pathway. In order to further investigate the metabolic effect of p73, here, we compared the global metabolic profile of livers from p73 knockout and wild-type mice under both control and starvation conditions. Our results show that the depletion of all p73 isoforms cause altered lysine metabolism and glycolysis, distinct patterns for glutathione synthesis and Krebs cycle, as well as an elevated pentose phosphate pathway and abnormal lipid accumulation. These results indicate that p73 regulates basal and starvation-induced fuel metabolism in the liver, a finding that is likely to be highly relevant for metabolism-associated disorders, such as diabetes and cancer.
Collapse
Affiliation(s)
- Zhaoyue He
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Massimiliano Agostini
- Medical Research Council, Toxicology Unit, Leicester, United Kingdom.,Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - He Liu
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Gerry Melino
- Medical Research Council, Toxicology Unit, Leicester, United Kingdom.,Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| |
Collapse
|
22
|
Velletri T, Xie N, Wang Y, Huang Y, Yang Q, Chen X, Chen Q, Shou P, Gan Y, Cao G, Melino G, Shi Y. P53 functional abnormality in mesenchymal stem cells promotes osteosarcoma development. Cell Death Dis 2016; 7:e2015. [PMID: 26775693 PMCID: PMC4816167 DOI: 10.1038/cddis.2015.367] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 11/13/2015] [Accepted: 11/13/2015] [Indexed: 02/07/2023]
Abstract
It has been shown that p53 has a critical role in the differentiation and functionality of various multipotent progenitor cells. P53 mutations can lead to genome instability and subsequent functional alterations and aberrant transformation of mesenchymal stem cells (MSCs). The significance of p53 in safeguarding our body from developing osteosarcoma (OS) is well recognized. During bone remodeling, p53 has a key role in negatively regulating key factors orchestrating the early stages of osteogenic differentiation of MSCs. Interestingly, changes in the p53 status can compromise bone homeostasis and affect the tumor microenvironment. This review aims to provide a unique opportunity to study the p53 function in MSCs and OS. In the context of loss of function of p53, we provide a model for two sources of OS: MSCs as progenitor cells of osteoblasts and bone tumor microenvironment components. Standing at the bone remodeling point of view, in this review we will first explain the determinant function of p53 in OS development. We will then summarize the role of p53 in monitoring MSC fidelity and in regulating MSC differentiation programs during osteogenesis. Finally, we will discuss the importance of loss of p53 function in tissue microenvironment. We expect that the information provided herein could lead to better understanding and treatment of OS.
Collapse
Affiliation(s)
- T Velletri
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - N Xie
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China.,Biochemistry Laboratory IDI-IRCC, Department of Experimental Medicine and Surgery, University of Rome Torvergata, Rome 00133, Italy
| | - Y Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Y Huang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Q Yang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - X Chen
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Q Chen
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - P Shou
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Y Gan
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - G Cao
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - G Melino
- Biochemistry Laboratory IDI-IRCC, Department of Experimental Medicine and Surgery, University of Rome Torvergata, Rome 00133, Italy.,Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK
| | - Y Shi
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China.,Soochow Institutes for Translational Medicine, Soochow University, Suzhou, China
| |
Collapse
|
23
|
Nicolai S, Pieraccioli M, Peschiaroli A, Melino G, Raschellà G. Neuroblastoma: oncogenic mechanisms and therapeutic exploitation of necroptosis. Cell Death Dis 2015; 6:e2010. [PMID: 26633716 PMCID: PMC4720889 DOI: 10.1038/cddis.2015.354] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/17/2015] [Accepted: 10/19/2015] [Indexed: 12/20/2022]
Abstract
Neuroblastoma (NB) is the most common extracranial childhood tumor classified in five stages (1, 2, 3, 4 and 4S), two of which (3 and 4) identify chemotherapy-resistant, highly aggressive disease. High-risk NB frequently displays MYCN amplification, mutations in ALK and ATRX, and genomic rearrangements in TERT genes. These NB subtypes are also characterized by reduced susceptibility to programmed cell death induced by chemotherapeutic drugs. The latter feature is a major cause of failure in the treatment of advanced NB patients. Thus, proper reactivation of apoptosis or of other types of programmed cell death pathways in response to treatment is relevant for the clinical management of aggressive forms of NB. In this short review, we will discuss the most relevant genomic rearrangements that define high-risk NB and the role that destabilization of p53 and p73 can have in NB aggressiveness. In addition, we will propose a strategy to stabilize p53 and p73 by using specific inhibitors of their ubiquitin-dependent degradation. Finally, we will introduce necroptosis as an alternative strategy to kill NB cells and increase tumor immunogenicity.
Collapse
Affiliation(s)
- S Nicolai
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - M Pieraccioli
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - A Peschiaroli
- Institute of Cell Biology and Neurobiology (IBCN), CNR, Via E. Ramarini 32, Rome 00015, Italy
| | - G Melino
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy.,Medical Research Council, Toxicology Unit, Hodgkin Building, Leicester University, Lancaster Road, PO Box 138, Leicester LE1 9HN, UK
| | - G Raschellà
- ENEA Research Center Casaccia, Laboratory of Biosafety and Risk Assessment, Via Anguillarese, 301, Rome 00123, Italy
| |
Collapse
|
24
|
Hu ZB, Liao XH, Xu ZY, Yang X, Dong C, Jin AM, Lu H. PLK2 phosphorylates and inhibits enriched TAp73 in human osteosarcoma cells. Cancer Med 2015; 5:74-87. [PMID: 26625870 PMCID: PMC4708894 DOI: 10.1002/cam4.558] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/12/2015] [Accepted: 09/14/2015] [Indexed: 01/01/2023] Open
Abstract
TAp73, a member of the p53 tumor suppressor family, can substitute for p53 function, especially in p53‐null and p53‐mutant cells. However, TAp73 enrichment and phosphorylation change its transcriptional activity. Previously, we found that the antitumor function of TAp73 was reactivated by dephosphorylation. Polo‐like kinase 2 (PLK2) plays an important role in bone development. Using a biological information database and phosphorylation prediction software, we hypothesized that PLK2 phosphorylates TAp73 and inhibits TAp73 function in osteosarcomas. Actually,we determined that PLK2 physically binds to and phosphorylates TAp73 when TAp73 protein abundance is up‐regulated by cisplatin. PLK2‐phosphorylated TAp73 at residue Ser48 within the TA domain; phosphorylation of TAp73 was abolished by mutating this residue. Moreover, PLK2 inhibition combined with cisplatin treatment in osteosarcoma Saos2 cells up‐regulated p21 and puma mRNA expression to a greater extent than cisplatin treatment alone. Inhibiting PLK2 in TAp73‐enriched Saos2 cells resulted in inhibited cell proliferation, increased apoptosis, G1 phase arrest, and decreased cell invasion. However, these changes did not occur in TAp73 knockdown Saos2 cells. In conclusion, these findings reveal a novel PLK2 function in the phosphorylation of TAp73, which prevents TAp73 activity in osteosarcoma cells. Thereby, this research provides an insight into the clinical treatment of malignant tumors overexpressing TAp73.
Collapse
Affiliation(s)
- Zheng Bo Hu
- Department of Orthopedics, Zhu Jiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Xiao Hong Liao
- The State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510280, China
| | - Zun Ying Xu
- Department of Orthopedics, Zhu Jiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Xiao Yang
- Department of Orthopedics, Zhu Jiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Chao Dong
- Department of Orthopedics, Zhu Jiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - An Min Jin
- Department of Orthopedics, Zhu Jiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Hai Lu
- Department of Orthopaedics, The Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics, Guangzhou, Guangdong, 510665, China
| |
Collapse
|
25
|
Hu Z, Xu Z, Liao X, Yang X, Dong C, Luk K, Jin A, Lu H. Polo-like kinase 2 acting as a promoter in human tumor cells with an abundance of TAp73. Onco Targets Ther 2015; 8:3475-88. [PMID: 26640387 PMCID: PMC4662374 DOI: 10.2147/ott.s90302] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background TAp73, a member of the p53 tumor suppressor family, is frequently overexpressed in malignant tumors in humans. TAp73 abundance and phosphorylation modification result in variations in transcriptional activity. In a previous study, we found that the antitumor function of TAp73 was reactivated by dephosphorylation in head and neck squamous cell carcinomas. Polo-like kinase 2 (PLK2) displayed a close relationship with the p53 family in affecting the fate of cells. Herein, we investigate the hypothesis that PLK2 phosphorylates TAp73 and inhibits TAp73 function. Materials and methods Head and neck squamous cell carcinoma cell lines and osteosarcoma cell lines were used as natural models of the different expression levels of TAp73. Phosphorylation predictor software Scansite 3.0 and the predictor GPS-polo 1.0 were used to analyze the phosphorylation sites. Coimmunoprecipitation, phosphor-tag Western blot, metabolic labeling, and indirect immunofluorescence assays were used to determine the interactions between PLK2 and TAp73. TAp73 activity was assessed by Western blot and reverse transcription polymerase chain reaction, which we used to detect P21 and PUMA, both downstream genes of TAp73. The physiological effects of PLK2 cross talk with TAp73 on cell cycle progress and apoptosis were observed by flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling assays. Results PLK2 binds to and phosphorylates TAp73. PLK2 phosphorylates TAp73 at residue Ser48 and prohibits TAp73 translocation to the nucleus. Additionally, PLK2 inhibition combined with a DNA-damaging drug upregulated p21 and PUMA mRNA expression to a greater extent than DNA-damaging drug treatment alone. Inhibiting PLK2 in TAp73-enriched cells strengthened the effects of the DNA-damaging drug on both G1 phase arrest and apoptosis. Pretreatment with TAp73-siRNA weakened these effects. Conclusion These findings reveal a novel PLK2 function (catalyzed phosphorylation of TAp73) which suppresses TAp73 functions. PLK2 promotes the survival of human tumor cells, a novel insight into the workings of malignant tumors characterized by TAp73 overexpression, and one that could speed the development of therapies.
Collapse
Affiliation(s)
- ZhengBo Hu
- Department of Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - ZunYing Xu
- Department of Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - XiaoHong Liao
- The State Key Laboratory of Respiratory Diseases, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiao Yang
- Department of Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Cao Dong
- Department of Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - KuaDi Luk
- Department of Orthopedics and Traumatology, The University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - AnMin Jin
- Department of Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Hai Lu
- Department of Orthopedics, the Third Affiliated Hospital of the Southern Medical University, Guangzhou, Guangdong, People's Republic of China ; Academy of Orthopedics, Guangdong Province, People's Republic of China
| |
Collapse
|
26
|
Amino-terminal p53 mutations lead to expression of apoptosis proficient p47 and prognosticate better survival, but predispose to tumorigenesis. Proc Natl Acad Sci U S A 2015; 112:E6349-58. [PMID: 26578795 DOI: 10.1073/pnas.1510043112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Whereas most mutations in p53 occur in the DNA-binding domain and lead to its functional inactivation, their relevance in the amino-terminal transactivation domain is unclear. We show here that amino-terminal p53 (ATp53) mutations often result in the abrogation of full-length p53 expression, but concomitantly lead to the expression of the amino-terminally truncated p47 isoform. Using genetically modified cancer cells that only express p47, we demonstrate it to be up-regulated in response to various stimuli, and to contribute to cell death, through its ability to selectively activate a group of apoptotic target genes. Target gene selectivity is influenced by K382 acetylation, which depends on the amino terminus, and is required for recruitment of selective cofactors. Consistently, cancers capable of expressing p47 had a better overall survival. Nonetheless, retention of the apoptotic function appears insufficient for tumor suppression, because these mutations are also found in the germ line and lead to Li-Fraumeni syndrome. These data from ATp53 mutations collectively demonstrate that p53's apoptosis proficiency is dispensable for tumor suppression, but could prognosticate better survival.
Collapse
|
27
|
Subramanian D, Bunjobpol W, Sabapathy K. Interplay between TAp73 Protein and Selected Activator Protein-1 (AP-1) Family Members Promotes AP-1 Target Gene Activation and Cellular Growth. J Biol Chem 2015; 290:18636-49. [PMID: 26018080 PMCID: PMC4513121 DOI: 10.1074/jbc.m115.636548] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Indexed: 12/22/2022] Open
Abstract
Unlike p53, which is mutated at a high rate in human cancers, its homologue p73 is not mutated but is often overexpressed, suggesting a possible context-dependent role in growth promotion. Previously, we have shown that co-expression of TAp73 with the proto-oncogene c-Jun can augment cellular growth and potentiate transactivation of activator protein (AP)-1 target genes such as cyclin D1. Here, we provide further mechanistic insights into the cooperative activity between these two transcription factors. Our data show that TAp73-mediated AP-1 target gene transactivation relies on c-Jun dimerization and requires the canonical AP-1 sites on target gene promoters. Interestingly, only selected members of the Fos family of proteins such as c-Fos and Fra1 were found to cooperate with TAp73 in a c-Jun-dependent manner to transactivate AP-1 target promoters. Inducible expression of TAp73 led to the recruitment of these Fos family members to the AP-1 target promoters on which TAp73 was found to be bound near the AP-1 site. Consistent with the binding of TAp73 and AP-1 members on the target promoters in a c-Jun-dependent manner, TAp73 was observed to physically interact with c-Jun specifically at the chromatin via its carboxyl-terminal region. Furthermore, co-expression of c-Fos or Fra1 was able to cooperate with TAp73 in potentiating cellular growth, similarly to c-Jun. These data together suggest that TAp73 plays a vital role in activation of AP-1 target genes via direct binding to c-Jun at the target promoters, leading to enhanced loading of other AP-1 family members, thereby leading to cellular growth.
Collapse
Affiliation(s)
- Deepa Subramanian
- From the Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11 Hospital Drive, Singapore 169610, Singapore
| | - Wilawan Bunjobpol
- From the Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11 Hospital Drive, Singapore 169610, Singapore
| | - Kanaga Sabapathy
- From the Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11 Hospital Drive, Singapore 169610, Singapore, Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore, and Department of Biochemistry, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| |
Collapse
|
28
|
Yordanova MM, Wu C, Andreev DE, Sachs MS, Atkins JF. A Nascent Peptide Signal Responsive to Endogenous Levels of Polyamines Acts to Stimulate Regulatory Frameshifting on Antizyme mRNA. J Biol Chem 2015; 290:17863-17878. [PMID: 25998126 PMCID: PMC4505036 DOI: 10.1074/jbc.m115.647065] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Indexed: 01/06/2023] Open
Abstract
The protein antizyme is a negative regulator of cellular polyamine concentrations from yeast to mammals. Synthesis of functional antizyme requires programmed +1 ribosomal frameshifting at the 3′ end of the first of two partially overlapping ORFs. The frameshift is the sensor and effector in an autoregulatory circuit. Except for Saccharomyces cerevisiae antizyme mRNA, the frameshift site alone only supports low levels of frameshifting. The high levels usually observed depend on the presence of cis-acting stimulatory elements located 5′ and 3′ of the frameshift site. Antizyme genes from different evolutionary branches have evolved different stimulatory elements. Prior and new multiple alignments of fungal antizyme mRNA sequences from the Agaricomycetes class of Basidiomycota show a distinct pattern of conservation 5′ of the frameshift site consistent with a function at the amino acid level. As shown here when tested in Schizosaccharomyces pombe and mammalian HEK293T cells, the 5′ part of this conserved sequence acts at the nascent peptide level to stimulate the frameshifting, without involving stalling detectable by toe-printing. However, the peptide is only part of the signal. The 3′ part of the stimulator functions largely independently and acts at least mostly at the nucleotide level. When polyamine levels were varied, the stimulatory effect was seen to be especially responsive in the endogenous polyamine concentration range, and this effect may be more general. A conserved RNA secondary structure 3′ of the frameshift site has weaker stimulatory and polyamine sensitizing effects on frameshifting.
Collapse
Affiliation(s)
- Martina M Yordanova
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Cheng Wu
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| | - Dmitry E Andreev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Matthew S Sachs
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| | - John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland; Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112-5330.
| |
Collapse
|
29
|
Mikulenkova E, Neradil J, Zitterbart K, Sterba J, Veselska R. Overexpression of the ∆Np73 isoform is associated with centrosome amplification in brain tumor cell lines. Tumour Biol 2015; 36:7483-91. [PMID: 25910708 DOI: 10.1007/s13277-015-3474-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 04/16/2015] [Indexed: 12/13/2022] Open
Abstract
The p73 protein is a member of the p53 family, and this protein is known to be essential for the maintenance of genomic stability, DNA repair, and apoptosis regulation. Transcription from two promoters leads to two main N-terminal isoforms: the TAp73 isoform is reported to have tumor suppressor function, whereas the ΔNp73 isoform likely has oncogenic potential. The present study is focused on the investigation of a possible role of both these p73 N-terminal isoforms in the process of centrosome amplification. HGG-02 and GM7 glioblastoma cell lines and the Daoy medulloblastoma cell line were used in this study. The cells were analyzed using indirect immunofluorescence to determine TAp73 and ΔNp73 expression patterns and possible co-localization with the BubR1 protein, as well as the number of centrosomes. A transiently transfected GM7 cell line was used to verify the results concerning the N-terminal isoforms in relation to centrosome amplification. We found that increased immunoreactivity for the ΔNp73 isoform is associated with the occurrence of an abnormal number of centrosomes in particular cells. Using the transiently transfected GM7 cell line, we confirmed that centrosome amplification is present in cells with overexpression of the ΔNp73 isoform. In contrast, the immunoreactivity for the TAp73 isoform was weak or medium in most of the cells with an aberrant number of centrosomes. To determine the putative counterpart of the p73 N-terminal isoforms among spindle assembly checkpoint (SAC) proteins, we also evaluated possible interactions between the N-terminal isoforms and BubR1 protein, but no co-localization of these proteins was observed.
Collapse
Affiliation(s)
- Erika Mikulenkova
- Laboratory of Tumor Biology, Department of Experimental Biology, School of Science, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic
| | - Jakub Neradil
- Laboratory of Tumor Biology, Department of Experimental Biology, School of Science, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Karel Zitterbart
- Laboratory of Tumor Biology, Department of Experimental Biology, School of Science, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic
- Department of Pediatric Oncology, University Hospital Brno and School of Medicine, Masaryk University, Cernopolni 9, 613 00, Brno, Czech Republic
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Jaroslav Sterba
- Department of Pediatric Oncology, University Hospital Brno and School of Medicine, Masaryk University, Cernopolni 9, 613 00, Brno, Czech Republic
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Renata Veselska
- Laboratory of Tumor Biology, Department of Experimental Biology, School of Science, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic.
- Department of Pediatric Oncology, University Hospital Brno and School of Medicine, Masaryk University, Cernopolni 9, 613 00, Brno, Czech Republic.
| |
Collapse
|
30
|
Engelmann D, Meier C, Alla V, Pützer BM. A balancing act: orchestrating amino-truncated and full-length p73 variants as decisive factors in cancer progression. Oncogene 2014; 34:4287-99. [PMID: 25381823 DOI: 10.1038/onc.2014.365] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/24/2014] [Accepted: 09/29/2014] [Indexed: 12/23/2022]
Abstract
p73 is the older sibling of p53 and mimics most of its tumor-suppressor functions. Through alternative promoter usage and splicing, the TP73 gene generates more than two dozen isoforms of which N-terminal truncated DNp73 variants have a decisive role in cancer pathogenesis as they outweigh the positive effects of full-length TAp73 and p53 in acting as a barrier to tumor development. Beyond the prevailing view that DNp73 predominantly counteract cell cycle arrest and apoptosis, latest progress indicates that these isoforms acquire novel functions in epithelial-to-mesenchymal transition, metastasis and therapy resistance. New insight into the mechanisms underlying this behavior reinforced the expectation that DNp73 variants contribute to aggressive cellular traits through both loss of wild-type tumor-suppressor activity and gain-of-function, suggesting an equally important role in cancer progression as mutant p53. In this review, we describe the novel properties of DNp73 in the invasion metastasis cascade and outline the comprehensive p73 regulatome with an emphasis on molecular processes putting TAp73 out of action in advanced tumors. These intriguing insights provoke a new understanding of the acquisition of aggressive traits by cancer cells and may help to set novel therapies for a broad range of metastatic tumors.
Collapse
Affiliation(s)
- D Engelmann
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - C Meier
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - V Alla
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - B M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
31
|
Engelmann D, Pützer BM. Emerging from the shade of p53 mutants: N-terminally truncated variants of the p53 family in EMT signaling and cancer progression. Sci Signal 2014; 7:re9. [PMID: 25270260 DOI: 10.1126/scisignal.2005699] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The prevailing view has been that N-terminally truncated p53 family isoforms (ΔNp53, ΔNp63, and DNp73) predominantly counteract cell cycle arrest and apoptosis. Recent progress in the field extend these well-known functions and place these isoforms in the center of a comprehensive regulatory network controlling major epithelial-to-mesenchymal transition (EMT)-relevant signaling pathways [such as transforming growth factor-β (TGF-β), wingless-int (WNT), insulin-like growth factor (IGF), and signal transducer and activator of transcription (STAT)], microRNAs, and EMT-associated transcription factors that promote invasion, loss of tumor cell polarity, and metastatic behavior in conjunction with a chemoresistant phenotype. These observations add new weight to the concept that currently underappreciated truncated forms of this tumor suppressor family play an equally important role in promoting cancer aggressiveness as do mutant p53 proteins, and illustrate how the consequences of ΔN/DN expression depend on cellular contexts. The tumor microenvironment contributes to the emergence of these variants, thereby linking inflammation to the activation of the mesenchymal program. In addition, molecular connections between ΔN/DN forms and self-renewal have arisen, suggesting their potential function in the generation of cancer stem cells (CSCs) from bulk tumor cells. These intriguing insights provoke a new understanding of the acquisition of aggressive traits by carcinoma cells in the absence of p53 mutations, and may help direct the development of new therapies for a broad range of cancers.
Collapse
Affiliation(s)
- David Engelmann
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany
| | - Brigitte M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany.
| |
Collapse
|