1
|
Thakur S, Paliwal P, Farmania R, Khandelwal V, Garg V. Phosphofurin Acidic Cluster Sorting Protein 1 Syndrome: Insights Gained on the Multisystem Involvement Reviewing Encoded Protein Interactions? J Pediatr Genet 2024; 13:245-249. [PMID: 39086439 PMCID: PMC11288717 DOI: 10.1055/s-0042-1756310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/01/2022] [Indexed: 10/14/2022]
Abstract
Mutations in PACS1 cause moderate-to-severe intellectual disability. Very few cases of PACS1 neurodevelopment disorder have been described in the literature that were identified using whole exome sequencing (WES). We report a case of de novo PACS1 mutation identified through WES after an initial workup for mucopolysaccharidosis. Through this case, we wish to emphasize that most important clinical clue in the facial gestalt is a downturned angle of mouth, thin lips, and wide mouth, giving characteristic wavy appearance of face that can distinguish these cases and can prevent unnecessary workup for the patients.
Collapse
Affiliation(s)
- Seema Thakur
- Department of Genetics and Fetal Diagnosis, Fortis Hospital, New Delhi, India
| | - Preeti Paliwal
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Rajni Farmania
- Department of Pediatric Neurology, BLK-MAX Super Speciality Hospital, New Delhi, India
| | - Vipin Khandelwal
- Department of Hemato-oncology, BLK Max Super Specialty Hospital, New Delhi, India
| | - Vivek Garg
- Department of Ophthalmology, BLK Max Super Specialty Hospital, New Delhi, India
| |
Collapse
|
2
|
Trothen S, Teplitsky JE, Armstong RE, Zang RX, Lurie A, Mumby MJ, Edgar CR, Grol MW, Dikeakos JD. PACS-1 Interacts with TRPC3 and ESyt1 to Mediate Protein Trafficking while Promoting SOCE and Cooperatively Regulating Hormone Secretion. ACS OMEGA 2024; 9:35014-35027. [PMID: 39157130 PMCID: PMC11325417 DOI: 10.1021/acsomega.4c04998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/20/2024]
Abstract
Corticotropic cells of the anterior pituitary gland release adrenocorticotropic hormone (ACTH) in a regulated manner to promote the production of cortisol and androgens. The process of ACTH secretion is partly mediated by the phosphofurin acidic cluster sorting protein 1 (PACS-1); however, the underlying mechanisms behind this regulation remain unclear. Herein, we demonstrated PACS-1 interactions with the short transient receptor potential channel 3 (TRPC3) calcium transporter and the extended synaptotagmin-1 (ESyt1) endoplasmic reticulum-plasma membrane tethering protein. Importantly, PACS-1 promoted interactions between TRPC3 and ESyt1 and regulated their plasma membrane localization. Lastly, we demonstrated that PACS-1 is required for a proper store-operated calcium entry (SOCE) response and that ESyt1 regulates ACTH secretion through an unknown mechanism regulated by PACS-1. Overall, our study provides new insights into the physiological role PACS-1 plays in modulating intracellular calcium levels and regulating ACTH secretion in corticotropic cells.
Collapse
Affiliation(s)
- Steven
M. Trothen
- Department
of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Jack E. Teplitsky
- Department
of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Ryan E. Armstong
- Department
of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Rong Xuan Zang
- Department
of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Antony Lurie
- Department
of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Mitchell J. Mumby
- Department
of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Cassandra R. Edgar
- Department
of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Matthew W. Grol
- Department
of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Jimmy D. Dikeakos
- Department
of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
3
|
Chen J, Wang Y, Meng W, Zhao R, Lin W, Xiao H, Liao Y. Stearoyl-CoA Desaturases1 Accelerates Non-Small Cell Lung Cancer Metastasis by Promoting Aromatase Expression to Improve Estrogen Synthesis. Int J Mol Sci 2023; 24:ijms24076826. [PMID: 37047797 PMCID: PMC10095487 DOI: 10.3390/ijms24076826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 04/14/2023] Open
Abstract
Metastases contribute to the low survival rate of non-small cell lung cancer (NSCLC) patients. Targeting lipid metabolism for anticancer therapies is attractive. Accumulative evidence shows that stearoyl-CoA desaturases1 (SCD1), a key enzyme in lipid metabolism, enables tumor metastasis and the underlying mechanism remains unknown. In this study, immunohistochemical staining of 96 clinical specimens showed that the expression of SCD1 was increased in tumor tissues (p < 0.001). SCD1 knockdown reduced the migration and invasion of HCC827 and PC9 cells in transwell and wound healing assays. Aromatase (CYP19A1) knockdown eliminated cell migration and invasion caused by SCD1 overexpression. Western blotting assays demonstrated that CYP19A1, along with β-catenin protein levels, was reduced in SCD1 knocked-down cells, and estrogen concentration was reduced (p < 0.05) in cell culture medium measured by enzyme-linked immunosorbent assay. SCD1 overexpression preserving β-catenin protein stability was evaluated by coimmunoprecipitation and Western blotting. The SCD1 inhibitor A939572, and a potential SCD1 inhibitor, grape seed extract (GSE), significantly inhibited cell migration and invasion by blocking SCD1 and its downstream β-catenin, CYP19A1 expression, and estrogen concentration. In vivo tumor formation assay and a tail vein metastasis model indicated that knockdown of SCD1 blocked tumor growth and metastasis. In conclusion, SCD1 could accelerate metastasis by maintaining the protein stability of β-catenin and then promoting CYP19A1 transcription to improve estrogen synthesis. SCD1 is expected to be a promised therapeutic target, and its novel inhibitor, GSE, has great therapeutic potential in NSCLC.
Collapse
Affiliation(s)
- Jiaping Chen
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yangwei Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wangyang Meng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rong Zhao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Lin
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Han Xiao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yongde Liao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
4
|
Molecular Basis of the Schuurs-Hoeijmakers Syndrome: What We Know about the Gene and the PACS-1 Protein and Novel Therapeutic Approaches. Int J Mol Sci 2022; 23:ijms23179649. [PMID: 36077045 PMCID: PMC9456036 DOI: 10.3390/ijms23179649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The Schuurs−Hoeijmakers syndrome (SHMS) or PACS1 Neurodevelopment Disorder (PACS1-NDD) is a rare autosomal dominant disease caused by mutations in the PACS1 gene. To date, only 87 patients have been reported and, surprisingly, most of them carry the same variant (c.607C>T; p.R203W). The most relevant clinical features of the syndrome include neurodevelopment delay, seizures or a recognizable facial phenotype. Moreover, some of these characteristics overlap with other syndromes, such as the PACS2 or Wdr37 syndromes. The encoded protein phosphofurin acid cluster sorting 1 (PACS-1) is able to bind to different client proteins and direct them to their subcellular final locations. Therefore, although its main function is protein trafficking, it could perform other roles related to its client proteins. In patients with PACS1-NDD, a gain-of-function or a dominant negative mechanism for the mutated protein has been suggested. This, together with the fact that most of the patients carry the same genetic variant, makes it a good candidate for novel therapeutic approaches directed to decreasing the toxic effect of the mutated protein. Some of these strategies include the use of antisense oligonucleotides (ASOs) or targeting of its client proteins.
Collapse
|
5
|
Tobeiha M, Jafari A, Fadaei S, Mirazimi SMA, Dashti F, Amiri A, Khan H, Asemi Z, Reiter RJ, Hamblin MR, Mirzaei H. Evidence for the Benefits of Melatonin in Cardiovascular Disease. Front Cardiovasc Med 2022; 9:888319. [PMID: 35795371 PMCID: PMC9251346 DOI: 10.3389/fcvm.2022.888319] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022] Open
Abstract
The pineal gland is a neuroendocrine gland which produces melatonin, a neuroendocrine hormone with critical physiological roles in the circadian rhythm and sleep-wake cycle. Melatonin has been shown to possess anti-oxidant activity and neuroprotective properties. Numerous studies have shown that melatonin has significant functions in cardiovascular disease, and may have anti-aging properties. The ability of melatonin to decrease primary hypertension needs to be more extensively evaluated. Melatonin has shown significant benefits in reducing cardiac pathology, and preventing the death of cardiac muscle in response to ischemia-reperfusion in rodent species. Moreover, melatonin may also prevent the hypertrophy of the heart muscle under some circumstances, which in turn would lessen the development of heart failure. Several currently used conventional drugs show cardiotoxicity as an adverse effect. Recent rodent studies have shown that melatonin acts as an anti-oxidant and is effective in suppressing heart damage mediated by pharmacologic drugs. Therefore, melatonin has been shown to have cardioprotective activity in multiple animal and human studies. Herein, we summarize the most established benefits of melatonin in the cardiovascular system with a focus on the molecular mechanisms of action.
Collapse
Affiliation(s)
- Mohammad Tobeiha
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Fadaei
- Department of Internal Medicine and Endocrinology, Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Atefeh Amiri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, United States
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Johannesburg, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
6
|
Pandini C, Garofalo M, Rey F, Garau J, Zucca S, Sproviero D, Bordoni M, Berzero G, Davin A, Poloni TE, Pansarasa O, Carelli S, Gagliardi S, Cereda C. MINCR: A long non-coding RNA shared between cancer and neurodegeneration. Genomics 2021; 113:4039-4051. [PMID: 34662711 DOI: 10.1016/j.ygeno.2021.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/20/2021] [Accepted: 10/12/2021] [Indexed: 01/21/2023]
Abstract
The multitasking nature of lncRNAs allows them to play a central role in both physiological and pathological conditions. Often the same lncRNA can participate in different diseases. Specifically, the MYC-induced Long non-Coding RNA MINCR is upregulated in various cancer types, while downregulated in Amyotrophic Lateral Sclerosis patients. Therefore, this work aims to investigate MINCR potential mechanisms of action and its implications in cancer and neurodegeneration in relation to its expression levels in SH-SY5Y cells through RNA-sequencing approach. Our results show that MINCR overexpression causes massive alterations in cancer-related genes, leading to disruption in many fundamental processes, such as cell cycle and growth factor signaling. On the contrary, MINCR downregulation influences a small number of genes involved in different neurodegenerative disorders, mostly concerning RNA metabolism and inflammation. Thus, understanding the cause and functional consequences of MINCR deregulation gives important insights on potential pathogenetic mechanisms both in cancer and in neurodegeneration.
Collapse
Affiliation(s)
- Cecilia Pandini
- Genomic and post-Genomic Unit, IRCCS Mondino Foundation, Pavia 27100, Italy
| | - Maria Garofalo
- Genomic and post-Genomic Unit, IRCCS Mondino Foundation, Pavia 27100, Italy; Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Federica Rey
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan 20157, Italy; Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milano, Milano 20157, Italy
| | - Jessica Garau
- Genomic and post-Genomic Unit, IRCCS Mondino Foundation, Pavia 27100, Italy
| | | | - Daisy Sproviero
- Genomic and post-Genomic Unit, IRCCS Mondino Foundation, Pavia 27100, Italy
| | - Matteo Bordoni
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milano 20157, Italy
| | - Giulia Berzero
- Neuroncology Unit, IRCCS Mondino Foundation, Pavia 27100, Italy
| | - Annalisa Davin
- Laboratory of Neurobiology and Neurogenetic, Golgi Cenci Foundation, Abbiategrasso, Milan 20081, Italy
| | - Tino Emanuele Poloni
- Neurology and Neuropathololgy Department Golgi-Cenci Foundation & ASP Golgi-Redaelli, Abbiategrasso, Milan 20081, Italy
| | - Orietta Pansarasa
- Genomic and post-Genomic Unit, IRCCS Mondino Foundation, Pavia 27100, Italy
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan 20157, Italy; Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milano, Milano 20157, Italy
| | - Stella Gagliardi
- Genomic and post-Genomic Unit, IRCCS Mondino Foundation, Pavia 27100, Italy.
| | - Cristina Cereda
- Genomic and post-Genomic Unit, IRCCS Mondino Foundation, Pavia 27100, Italy.
| |
Collapse
|
7
|
Ohkawa T, Nishimura A, Kosaki K, Aoki-Nogami Y, Tomizawa D, Kashimada K, Morio T, Kato M, Mizutani S, Takagi M. PAX3/7-FOXO1 fusion-negative alveolar rhabdomyosarcoma in Schuurs-Hoeijmakers syndrome. J Hum Genet 2021; 67:51-54. [PMID: 34341476 DOI: 10.1038/s10038-021-00965-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/11/2021] [Accepted: 07/15/2021] [Indexed: 12/26/2022]
Abstract
PAX3/7-FOXO1 fusion-negative alveolar rhabdomyosarcoma (ARMS) developed in a patient presenting with intellectual disability and dysmorphic facial features. Whole exome sequencing analysis of a germline sample identified a PACS1 c.607 C>T de novo variant and the patient was diagnosed with Schuurs-Hoeijmakers syndrome (SHS). SHS is a rare disease characterized by intellectual disability and dysmorphic facial features, among various physical abnormalities, due to PACS1 c.607 C>T de novo variant. Due to the rarity of the SHS, diagnosis based on phenotypic information is difficult. To date, there have been no previous reports describing malignancy associated with SHS. Comprehensive somatic mutation analysis revealed a unique pattern of genetic alterations in the PAX3/7-FOXO1 fusion-negative ARMS tumor, including mutations in the oncogene, HRAS; MYOD1, a molecule essential for muscle differentiation; and KMT2C and TET1, genes encoding factors involved in epigenetic regulation. Although the role of PACS1 in tumorigenesis is unclear, it is reported to function in apoptosis regulation. Our case suggests that PACS1 could have a novel role in oncogenesis.
Collapse
Affiliation(s)
- Teppei Ohkawa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Department of Pediatrics, Chiba Kaihinn Municipal Hospital, Chiba, Japan
| | - Akira Nishimura
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Yuki Aoki-Nogami
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Department of Pediatric Oncology, National Cancer Center, Tokyo, Japan
| | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Kenichi Kashimada
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Motohiro Kato
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shuki Mizutani
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| |
Collapse
|
8
|
He C, Su C, Zhang W, Wan Q. miR-485-5p alleviates Alzheimer's disease progression by targeting PACS1. Transl Neurosci 2021; 12:335-345. [PMID: 34594577 PMCID: PMC8442568 DOI: 10.1515/tnsci-2020-0177] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a common dementia and a heterogeneous disease. Previous research has validated that microRNAs (miRNAs) are pivotal regulators in the initiation and development of tremendous diseases including AD. MicroRNA-485-5p (miR-485-5p) was reported to be an important participant implicated in several neurological diseases, but its role in AD still needs to be further investigated. In this research, we explored the biological function of miR-485-5p in AD. RT-qPCR revealed that miR-485-5p expression was downregulated in the hippocampus of APP/PS1 mice. Additionally, miR-485-5p overexpression facilitated the learning and memory capabilities of APP/PS1 mice according to Morris water maze test, fear conditioning test, and immunofluorescent staining. Moreover, CCK-8 assay, flow cytometric analysis, and western blot analysis suggested that miR-485-5p overexpression promoted pericyte viability and prohibited pericyte apoptosis in APP/PS1 mice. Mechanistically, miR-485-5p directly targeted PACS1 in pericytes, as shown in a luciferase reporter assay. In rescue assays, PACS1 overexpression countervailed the effect of miR-485-5p overexpression on pericyte viability and apoptosis. In conclusion, miR-485-5p ameliorates AD progression by targeting PACS1.
Collapse
Affiliation(s)
- Chuan He
- Department of Rehabilitation Medicine, Jiangsu-Shengze Hospital affiliated to Nanjing Medical University, Suzhou 215228, Jiangsu, China
| | - Caixia Su
- Department of Rehabilitation Medicine, Jiangsu-Shengze Hospital affiliated to Nanjing Medical University, Suzhou 215228, Jiangsu, China
| | - Wentong Zhang
- Department of Rehabilitation Medicine, Jiangsu-Shengze Hospital affiliated to Nanjing Medical University, Suzhou 215228, Jiangsu, China
| | - Qi Wan
- Department of Neurological Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 21000, Jiangsu, China
| |
Collapse
|
9
|
Yang S, Hu B, Wang Z, Zhang C, Jiao H, Mao Z, Wei L, Jia J, Zhao J. Cannabinoid CB1 receptor agonist ACEA alleviates brain ischemia/reperfusion injury via CB1-Drp1 pathway. Cell Death Discov 2020; 6:102. [PMID: 33083022 PMCID: PMC7548964 DOI: 10.1038/s41420-020-00338-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022] Open
Abstract
Activation of the cannabinoid CB1 receptor induces neuroprotection against brain ischemia/reperfusion injury (IRI); however, the mechanism is still unknown. In this study, we used oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury in neuronal cells and middle cerebral artery occlusion (MCAO)-induced brain IRI in rats to mimic ischemic brain injury, and hypothesized that the CB1 receptor agonist arachidonyl-2-chloroethylamide (ACEA) would protect ischemic neurons by inhibiting mitochondrial fission via dynamin-related protein 1 (Drp1). We found that OGD/R injury reduced cell viability and mitochondrial function, increased lactate dehydrogenase (LDH) release, and increased cell apoptosis, and mitochondrial fission. Notably, ACEA significantly abolished the OGD/R-induced neuronal injuries described above. Similarly, ACEA significantly reversed MCAO-induced increases in brain infarct volume, neuronal apoptosis and mitochondrial fission, leading to the recovery of neurological functions. The neuroprotective effects of ACEA were obviously blocked by coadministration of the CB1 receptor antagonist AM251 or by the upregulation of Drp1 expression, indicating that ACEA alleviates brain IRI via the CB1-Drp1 pathway. Our findings suggest that the CB1 receptor links aberrant mitochondrial fission to brain IRI, providing a new therapeutic target for brain IRI treatment.
Collapse
Affiliation(s)
- Shuai Yang
- Department of Neurosurgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bin Hu
- Department of Neurosurgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zongming Wang
- Department of Neurosurgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Changming Zhang
- Department of Neurosurgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haosen Jiao
- Department of Neurosurgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhigang Mao
- Department of Neurosurgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liguang Wei
- Department of Neurosurgery, The Second People’s Hospital of Qinzhou City, Qinzhou, China
| | - Ji Jia
- Department of Anesthesiology, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Jingling Zhao
- Department of Burns, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Cantoni C, Wurzer H, Thomas C, Vitale M. Escape of tumor cells from the NK cell cytotoxic activity. J Leukoc Biol 2020; 108:1339-1360. [PMID: 32930468 DOI: 10.1002/jlb.2mr0820-652r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
In recent years, NK cells, initially identified as potent cytotoxic effector cells, have revealed an unexpected complexity, both at phenotypic and functional levels. The discovery of different NK cell subsets, characterized by distinct gene expression and phenotypes, was combined with the characterization of the diverse functions NK cells can exert, not only as circulating cells, but also as cells localized or recruited in lymphoid organs and in multiple tissues. Besides the elimination of tumor and virus-infected cells, these functions include the production of cytokines and chemokines, the regulation of innate and adaptive immune cells, the influence on tissue homeostasis. In addition, NK cells display a remarkable functional plasticity, being able to adapt to the environment and to develop a kind of memory. Nevertheless, the powerful cytotoxic activity of NK cells remains one of their most relevant properties, particularly in the antitumor response. In this review, the process of tumor cell recognition and killing mediated by NK cells, starting from the generation of cytolytic granules and recognition of target cell, to the establishment of the NK cell immunological synapse, the release of cytotoxic molecules, and consequent tumor cell death is described. Next, the review focuses on the heterogeneous mechanisms, either intrinsic to tumors or induced by the tumor microenvironment, by which cancer cells can escape the NK cell-mediated attack.
Collapse
Affiliation(s)
- Claudia Cantoni
- Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy.,Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Hannah Wurzer
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Clément Thomas
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Massimo Vitale
- UO Immunologia, IRCCS Ospedale Policlinico San Martino Genova, Genoa, Italy
| |
Collapse
|
11
|
Geng C, Wei J, Wu C. Yap-Hippo pathway regulates cerebral hypoxia-reoxygenation injury in neuroblastoma N2a cells via inhibiting ROCK1/F-actin/mitochondrial fission pathways. Acta Neurol Belg 2020; 120:879-892. [PMID: 29796942 DOI: 10.1007/s13760-018-0944-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/15/2018] [Indexed: 01/03/2023]
Abstract
Yes-associated protein (Yap), a regulator of cellular apoptosis, has been demonstrated to be involved in cerebral ischemia-reperfusion (IR) injury through poorly defined mechanisms. The present study aimed to explore the role of Yap in regulating cerebral IR injury in vitro, with a focus on mitochondrial fission and ROCK1/F-actin pathways. Our data demonstrated that Yap was actually downregulated in N2a cells after cerebral hypoxia-reoxygenation (HR) injury, and that lower expression of Yap was closely associated with increased cell death. However, the reintroduction of Yap was able to suppress the HR-mediated N2a cells death via blocking the mitochondria-related apoptotic signal. At the molecular levels, Yap overexpression sustained mitochondrial potential, normalized the mitochondrial respiratory function, reduced ROS overproduction, limited HtrA2/Omi release from mitochondria into the nucleus, and suppressed pro-apoptotic proteins activation. Subsequently, functional studies have further illustrated that HR-mediated mitochondrial apoptosis was highly regulated by mitochondrial fission, whereas Yap overexpression was able to attenuate HR-mediated mitochondrial fission and, thus, promote N2a cell survival in the context of HR injury. At last, we demonstrated that Yap handled mitochondrial fission via closing ROCK1/F-actin signaling pathways. Activation of ROCK1/F-actin pathways abrogated the protective role of Yap overexpression on mitochondrial homeostasis and N2a cell survival in the setting of HR injury. Altogether, our data identified Yap as the endogenous defender to relieve HR-mediated nerve damage via antagonizing ROCK1/F-actin/mitochondrial fission pathways.
Collapse
Affiliation(s)
- Chizi Geng
- Physician of Neurology Department, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
| | - Jianchao Wei
- Director of Neurology Department, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Chengsi Wu
- Deputy Director of Eurology Department, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Melatonin Attenuates Cardiac Reperfusion Stress by Improving OPA1-Related Mitochondrial Fusion in a Yap-Hippo Pathway-Dependent Manner. J Cardiovasc Pharmacol 2020; 73:27-39. [PMID: 30418242 PMCID: PMC6319588 DOI: 10.1097/fjc.0000000000000626] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The role of OPA1-related mitochondrial fusion in cardiac reperfusion stress has remained elusive. The aim of our study is to explore whether melatonin alleviates cardiac ischemia-reperfusion (IR) injury by modulating OPA1-related mitochondrial fusion. We found that melatonin reduced infarct area, sustained myocardial function, and suppressed cardiomyocyte death during cardiac reperfusion stress. Biological studies have revealed that IR-inhibited mitochondrial fusion was largely reversed by melatonin through upregulated OPA1 expression. Knocking down OPA1 abrogated the protective effects of melatonin on mitochondrial energy metabolism and mitochondrial apoptosis. In addition, we also found that melatonin modified OPA1 expression through the Yap–Hippo pathway; blockade of the Yap–Hippo pathway induced cardiomyocyte death and mitochondrial damage despite treatment with melatonin. Altogether, our data demonstrated that cardiac IR injury is closely associated with defective OPA1-related mitochondrial fusion. Melatonin supplementation enhances OPA1-related mitochondrial fusion by activating the Yap–Hippo pathway, ultimately reducing cardiac reperfusion stress.
Collapse
|
13
|
Wang JN, Fan YP, Chen J, Feng Y, Cui BM, Li XY, Wang LW, Chen HL, Zhang P, Wu HK. [Role of protein kinase D1 in regulating the growth, apoptosis and drug sensitivity of oral squamous carcinoma cells]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 37:583-588. [PMID: 31875434 DOI: 10.7518/hxkq.2019.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE This study aimed to investigate the role of protein kinase D (PKD)1 in regulating the growth, apop-tosis, and drug sensitivity of the squamous carcinoma cell line SCC-25. METHODS The SCC-25 cell line was transfected with either the control-shRNA or PKD1-shRNA plasmids. The stable transfected cells were selected, and the efficiency of PKD1 knockdown was detected by Western blot. The growth and apoptosis of SCC-25 were analyzed with a cell counting kit-8 (CCK8) and flow cytometry. The 50% inhibitory concentrations (IC50) of paclitaxel in the control and PKD1 knockdown cell lines were detected by CCK-8. The expression levels of Bax, Bcl-2, and P-gp were detected by Western blot. RESULTS PKD1 was constitutively expressed and phosphorylated in various cancer cell lines. Inhibiting the expression of PKD1 in SCC-25 cells by RNA interference could inhibit the growth and promote the apoptosis of SCC-25 cells via downregulating Bcl-2 expression. Additionally, inhibiting PKD1 expression could downregulate the expression of P-gp, thereby decreasing both the IC50 and resistance index of paclitaxel. CONCLUSIONS PKD1 plays an important role in regulating the biobehavior of SCC-25. It is a potential therapeutic target for oral squamous carcinoma.
Collapse
Affiliation(s)
- Jing-Nan Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ya-Ping Fan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiao Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yun Feng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Bo-Miao Cui
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiao-Ying Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li-Wei Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hong-Li Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ping Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hong-Kun Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
14
|
Li J, Li N, Yan S, Lu Y, Miao X, Gu Z, Shao Y. Liraglutide protects renal mesangial cells against hyperglycemia‑mediated mitochondrial apoptosis by activating the ERK‑Yap signaling pathway and upregulating Sirt3 expression. Mol Med Rep 2019; 19:2849-2860. [PMID: 30816450 DOI: 10.3892/mmr.2019.9946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 01/11/2019] [Indexed: 11/05/2022] Open
Abstract
Diabetic nephropathy results from hyperglycemia‑mediated renal glomerular cell death via mitochondrial apoptosis. There is an emerging requirement for novel approaches with mitochondrial protective effects that alleviate the hyperglycemia‑induced loss of functional cells during diabetic renal damage. Liraglutide, a type of glucagon‑like peptide‑1 agonist, has been suggested to inhibit the progression of obesity and hyperglycemia. However, the contributions and mechanism of action of liraglutide on hyperglycemia‑mediated cell mitochondrial apoptosis in diabetic kidneys have not been illustrated. The present study demonstrated that liraglutide may protect human renal mesangial cells (HRMCs) against hyperglycemia‑induced cell death by inhibiting mitochondrial apoptosis. Liraglutide administration also maintained HRMC viability and promoted HRMC proliferation within a high glucose stress environment. Functional studies demonstrated that hyperglycemia triggered mitochondrial dysfunction, including mitochondrial potential reduction, mitochondrial permeability transition pore opening, reactive oxygen species overproduction and the activation of the mitochondrial apoptotic pathway. However, liraglutide treatment preserved mitochondrial function and prevented activation of mitochondrial apoptosis by upregulating sirtuin 3 (Sirt3) expression. Deletion of Sirt3 abrogated the protective effects of liraglutide on mitochondrial homeostasis following high glucose challenge. In addition, molecular analysis confirmed that liraglutide upregulated Sirt3 via activating the extracellular signal‑regulated kinase‑Yes‑associated protein (ERK‑Yap) signaling pathway. Inhibition of the ERK‑Yap axis negated the action of liraglutide on Sirt3 activation, leading to mitochondrial injury and HRMC apoptosis. Taken together, the present study illustrated that liraglutide protected renal mesangial cells from hyperglycemia‑mediated mitochondrial apoptosis by upregulating Sirt3 expression and activation of the ERK‑Yap signaling pathway.
Collapse
Affiliation(s)
- Jian Li
- Department of Geriatric Endocrinology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Nan Li
- Department of Geriatric Endocrinology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Shuangtong Yan
- Department of Geriatric Endocrinology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Yanhui Lu
- Department of Geriatric Endocrinology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Xinyu Miao
- Department of Geriatric Endocrinology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Zhaoyan Gu
- Department of Geriatric Endocrinology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Yinghong Shao
- Department of Outpatients, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
15
|
Yap-Hippo promotes A549 lung cancer cell death via modulating MIEF1-related mitochondrial stress and activating JNK pathway. Biomed Pharmacother 2019; 113:108754. [PMID: 30875659 DOI: 10.1016/j.biopha.2019.108754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/26/2019] [Accepted: 03/02/2019] [Indexed: 12/31/2022] Open
Abstract
Although the role of Yes-associated protein (Yap) has been described in the progression of lung cancer, the downstream effector of the Yap-Hippo pathway has not been identified. Accordingly, the aim of our study is to explore whether Yap modulates the activity of lung cancer by controlling mitochondrial elongation factor 1 (MIEF1)-related mitochondrial stress in a manner dependent on the JNK pathway. Cell viability was determined via MTT, LDH release and immunofluorescence assays. ATP production, the mitochondrial membrane potential, and caspase-9 activity were investigated to assess mitochondrial function. siRNA transfection and pathway blockers were used to observe the roles of MIEF1 and JNK in Yap-modulated cell viability in lung cancer cells in vitro. Yap deletion reduced cell viability in A549 and H358 lung cancer cells. At the molecular level, Yap deletion promoted mitochondrial dysfunction, as evidenced by the decreased mitochondrial potential, increased mitochondrial oxidative stress, augmented mitochondrial pro-apoptotic factor leakage and elevated caspase-9 activity. In addition, we found that Yap modulated mitochondrial stress via MIEF1 and that loss of MIEF1 abolished the regulatory actions of Yap on mitochondrial stress and cell viability. Besides, we provided evidence to support the necessary role of JNK in Yap-mediated MIEF1 upregulation. Inhibition of JNK abolished the promotive effect of Yap deletion on MIEF1 activation. Taken together, our results identified the JNK-MIEF1 pathway and mitochondrial stress as downstream effectors of Yap in lung cancer. This finding suggests a novel approach for the treatment of lung cancer in clinical practice.
Collapse
|
16
|
Wei N, Pu Y, Yang Z, Pan Y, Liu L. Therapeutic effects of melatonin on cerebral ischemia reperfusion injury: Role of Yap-OPA1 signaling pathway and mitochondrial fusion. Biomed Pharmacother 2019; 110:203-212. [PMID: 30476721 DOI: 10.1016/j.biopha.2018.11.060] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 01/07/2023] Open
Abstract
The role of OPA1-related mitochondrial fusion in brain reperfusion stress has remained elusive. The aim of our study is to explore whether melatonin alleviates cerebral IR injury by modulating OPA1-related mitochondrial fusion. We found that melatonin reduced infarct area and suppressed neuron death during reperfusion stress. Biological studies have revealed that IR-inhibited mitochondrial fusion was largely reversed by melatonin via upregulated OPA1 expression. Knocking down OPA1 abrogated the protective effects of melatonin on mitochondrial energy metabolism and mitochondrial apoptosis. In addition, we also found that melatonin modified OPA1 expression via the Yap-Hippo pathway; blockade of the Yap-Hippo pathway induced neuron death and mitochondrial damage despite treatment with melatonin. Altogether, our data demonstrated that cerebral IR injury is closely associated with defective OPA1-related mitochondrial fusion. Melatonin supplementation enhances OPA1-related mitochondrial fusion by activating the Yap-Hippo pathway, ultimately reducing brain reperfusion stress.
Collapse
Affiliation(s)
- Na Wei
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119, Nansihuan West Road, Fengtai District, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, No. 119, Nansihuan West Road, Fengtai District, Beijing, 100070, China; Center of Stroke, Beijing Institute for Brain Disorders, No. 119, Nansihuan West Road, Fengtai District, Beijing, 100070, China; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, No. 119, Nansihuan West Road, Fengtai District, Beijing, 100070, China
| | - Yuehua Pu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119, Nansihuan West Road, Fengtai District, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, No. 119, Nansihuan West Road, Fengtai District, Beijing, 100070, China; Center of Stroke, Beijing Institute for Brain Disorders, No. 119, Nansihuan West Road, Fengtai District, Beijing, 100070, China; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, No. 119, Nansihuan West Road, Fengtai District, Beijing, 100070, China
| | - Zhonghua Yang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119, Nansihuan West Road, Fengtai District, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, No. 119, Nansihuan West Road, Fengtai District, Beijing, 100070, China; Center of Stroke, Beijing Institute for Brain Disorders, No. 119, Nansihuan West Road, Fengtai District, Beijing, 100070, China; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, No. 119, Nansihuan West Road, Fengtai District, Beijing, 100070, China
| | - Yuesong Pan
- China National Clinical Research Center for Neurological Diseases, No. 119, Nansihuan West Road, Fengtai District, Beijing, 100070, China
| | - Liping Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119, Nansihuan West Road, Fengtai District, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, No. 119, Nansihuan West Road, Fengtai District, Beijing, 100070, China; Center of Stroke, Beijing Institute for Brain Disorders, No. 119, Nansihuan West Road, Fengtai District, Beijing, 100070, China; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, No. 119, Nansihuan West Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
17
|
Zhang L, Li S, Wang R, Chen C, Ma W, Cai H. RETRACTED: Cytokine augments the sorafenib-induced apoptosis in Huh7 liver cancer cellby inducing mitochondrial fragmentation and activating MAPK-JNKsignalling pathway. Biomed Pharmacother 2019; 110:213-223. [DOI: 10.1016/j.biopha.2018.11.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/31/2018] [Accepted: 11/10/2018] [Indexed: 12/11/2022] Open
|
18
|
Zhou T, Chang L, Luo Y, Zhou Y, Zhang J. Mst1 inhibition attenuates non-alcoholic fatty liver disease via reversing Parkin-related mitophagy. Redox Biol 2019; 21:101120. [PMID: 30708325 PMCID: PMC6357900 DOI: 10.1016/j.redox.2019.101120] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/16/2019] [Accepted: 01/22/2019] [Indexed: 12/29/2022] Open
Abstract
Obesity-related non-alcoholic fatty liver disease (NAFLD) is connected with mitochondrial stress and hepatocyte apoptosis. Parkin-related mitophagy sustains mitochondrial homeostasis and hepatocyte viability. However, the contribution and regulatory mechanisms of Parkin-related mitophagy in NAFLD are incompletely understood. Macrophage stimulating 1 (Mst1) is a novel mitophagy upstream regulator which excerbates heart and cancer apoptosisn via repressing mitophagy activity. The aim of our study is to explore whether Mst1 contributes to NAFLD via disrupting Parkin-related mitophagy. A NAFLD model was generated in wild-type (WT) mice and Mst1 knockout (Mst1-KO) mice using high-fat diet (HFD). Cell experiments were conducted via palmitic acid (PA) treatment in the primary hepatocytes. The results in our study demonstrated that Mst1 was significantly upregulated in HFD-treated livers. Genetic ablation of Mst1 attenuated HFD-mediated hepatic injury and sustained hepatocyte viability. Functional studies illustrated that Mst1 knockdown reversed Parkin-related mitophagy and the latter protected mitochondria and hepatocytes against HFD challenge. Besides, we further figured out that Mst1 modulated Parkin expression via the AMPK pathway; blockade of AMPK repressed Parkin-related mitophagy and recalled hepatocytes mitochondrial apoptosis. Altogether, our data identified that NAFLD was closely associated with the defective Parkin-related mitophagy due to Mst1 upregulation. This finding may pave the road to new therapeutic modalities for the treatment of fatty liver disease. Mst1 deletion prevents diet-induced NAFLD. Mst1 deficiency increases Parkin expression and thus reverses mitophagy activity. Loss of Parkin-related mitophagy abrogates the protective effect of Mst1 deletion on hepatocyte mitochondrial stress. Mst1 modulates Parkin via activating AMPK pathway.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Chang
- Department of Gastroenterology, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Luo
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Zhou
- Department of Gastroenterology, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jianjun Zhang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
19
|
Yu W, Xu M, Zhang T, Zhang Q, Zou C. Mst1 promotes cardiac ischemia-reperfusion injury by inhibiting the ERK-CREB pathway and repressing FUNDC1-mediated mitophagy. J Physiol Sci 2019; 69:113-127. [PMID: 29961191 PMCID: PMC10717665 DOI: 10.1007/s12576-018-0627-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022]
Abstract
Cardiac ischemia-reperfusion (I/R) injury results mainly from mitochondrial dysfunction and cardiomyocyte death. Mitophagy sustains mitochondrial function and exerts a pro-survival effect on the reperfused heart tissue. Mammalian STE20-like kinase 1 (Mst1) regulates chronic cardiac metabolic damage and autophagic activity, but its role in acute cardiac I/R injury, especially its effect on mitophagy, is unknown. The aim of this study is to explore whether Mst1 is involved in reperfusion-mediated cardiomyocyte death via modulation of FUN14 domain containing 1 (FUNDC1)-related mitophagy. Our data indicated that Mst1 was markedly increased in reperfused hearts. However, genetic ablation of Mst1 in Mst1-knockout (Mst1-KO) mice significantly reduced the expansion of the cardiac infarction area, maintained myocardial function and abolished I/R-mediated cardiomyocyte death. At the molecular level, upregulation of Mst1 promoted ROS production, reduced mitochondrial membrane potential, facilitated the leakage of mitochondrial pro-apoptotic factors into the nucleus, and activated the caspase-9-related apoptotic pathway in reperfused cardiomyocytes. Mechanistically, Mst1 activation repressed FUNDC1 expression and consequently inhibited mitophagy. However, deletion of Mst1 was able to reverse FUNDC1 expression and thus re-activate protective mitophagy, effectively sustaining mitochondrial homeostasis and blocking mitochondrial apoptosis in reperfused cardiomyocytes. Finally, we demonstrated that Mst1 regulated FUNDC1 expression via the MAPK/ERK-CREB pathway. Inhibition of the MAPK/ERK-CREB pathway prevented FUNDC1 activation caused by Mst1 deletion. Altogether, our data confirm that Mst1 deficiency sends a pro-survival signal for the reperfused heart by reversing FUNDC1-related mitophagy and thus reducing cardiomyocyte mitochondrial apoptosis, which identifies Mst1 as a novel regulator for cardiac reperfusion injury via modulation of mitochondrial homeostasis.
Collapse
Affiliation(s)
- Wancheng Yu
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, NO. 324 Jingwu Road, Jinan, 250021, Shandong, China
| | - Mei Xu
- Department of Geriatrics, Shandong University Qilu Hospital, 107 Wenhua Xi Road, Jinan, 250021, Shandong, China
| | - Tao Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, NO. 324 Jingwu Road, Jinan, 250021, Shandong, China
| | - Qian Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, NO. 324 Jingwu Road, Jinan, 250021, Shandong, China
| | - Chengwei Zou
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, NO. 324 Jingwu Road, Jinan, 250021, Shandong, China.
| |
Collapse
|
20
|
Lan S, Liu J, Luo X, Bi C. Effects of melatonin on acute brain reperfusion stress: role of Hippo signaling pathway and MFN2-related mitochondrial protection. Cell Stress Chaperones 2019; 24:235-245. [PMID: 30632064 PMCID: PMC6363627 DOI: 10.1007/s12192-018-00960-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 11/28/2018] [Accepted: 12/03/2018] [Indexed: 12/11/2022] Open
Abstract
Acute brain reperfusion stress is associated with mitochondrial dysfunction through unknown mechanisms. Accordingly, there is no effective drug to control the development and progression of brain reperfusion stress currently. The aim of our investigation is to verify whether melatonin attenuates acute brain reperfusion stress via affecting mitochondrial function. Our studies demonstrated that melatonin treatment suppressed reperfusion-induced neuron death. At the molecular levels, melatonin treatment modulated mitochondrial homeostasis via activating mitochondrial fusion. At the stage of reperfusion, MFN2 expression was downregulated, contributing to mitochondrial fusion inhibition. Interestingly, MFN2-related mitochondrial fusion was reversed by melatonin. Loss of MFN2-related mitochondrial fusion abrogated the protective actions of melatonin on mitochondrial function. Mechanistically, melatonin sustained MFN2-related mitochondrial fusion via suppressing Mst1-Hippo pathway. Overexpression of Mst1 attenuated the beneficial effects of melatonin on mitochondrial fusion, evoking mitochondrial damage and neuron death in the setting of brain reperfusion stress. Taken together, our results confirmed the protective effects of melatonin on acute brain reperfusion stress. Melatonin treatment activated MFN2-related mitochondrial fusion via suppressing Mst1-Hippo pathway, finally sustaining mitochondrial function and reducing reperfusion-mediated cerebral injury.
Collapse
Affiliation(s)
- Song Lan
- Department of Neurosurgery, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan, China.
| | - Jingfang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan, China
| | - Xiangying Luo
- Department of Neurosurgery, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan, China
| | - Changlong Bi
- Department of Neurosurgery, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan, China
| |
Collapse
|
21
|
Yue ZW, Wang SB, Liu JZ. [Effects of large tumor suppressor homolog 2 gene overexpression on the proliferation and apoptosis of oral squamous cell carcinoma]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2018; 36:609-612. [PMID: 30593104 DOI: 10.7518/hxkq.2018.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To investigate the effect of large tumor suppressor homolog 2 (LATS2) gene overexpression on the proliferation and apoptosis of oral squamous cell carcinoma (OSCC). METHODS Lentivirous particles were transferred into SCC-25 cell to upregulate LATS2 gene expression. Cell proliferation was detected by CCK-8 assay. Apoptosis was detected through flow cytometry. The expression changes of Bax, Bcl-2, and LATS2 were analyzed by Western blot. RESULTS Gene transfection increased LATS2 expression. Compared with the control group and pEGFP-control group, SCC-25 cell proliferation in the pGFP-LATS2 group was inhibited, whereas the apoptosis ratio increased (P<0.05). Bcl-2 expression decreased, and Bax expression increased. CONCLUSIONS Overexpression of LATS2 could inhibit SCC-25 cell proliferation and induce apoptosis.
Collapse
Affiliation(s)
- Zeng-Wen Yue
- Dept. of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shu-Bin Wang
- Dept. of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jin-Zhong Liu
- Dept. of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
22
|
Li J, Li N, Yan S, Lu Y, Miao X, Gu Z, Shao Y. Melatonin attenuates renal fibrosis in diabetic mice by activating the AMPK/PGC1α signaling pathway and rescuing mitochondrial function. Mol Med Rep 2018; 19:1318-1330. [PMID: 30535482 DOI: 10.3892/mmr.2018.9708] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 08/30/2018] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial homeostasis is a highly regulated process that serves a critical role in the maintenance of renal structure and function. The growing interest in the field of mitochondrial homeostasis promises to provide more information regarding the mechanisms involved in diabetic renal fibrosis, and aid in the development of novel strategies to combat the disease. In the present study, the effects of melatonin on renal damage in mice with diabetes were evaluated and the underlying mechanisms were investigated. Cellular apoptosis was determined using TUNEL assay and western blotting. Mitochondrial function was measured using fluorescence assay and western blotting. The results indicated that diabetic renal fibrosis was associated with 5'adenosine monophosphate‑activated protein kinase (AMPK) downregulation. However, melatonin administration rescued AMPK activity, reduced diabetic renal fibrosis, alleviated glomerular apoptosis and preserved kidney function. The functional experiments demonstrated that melatonin‑induced AMPK activation enhanced peroxisome proliferator‑activated receptor γ coactivator 1‑α (PGC1α) expression, sustained mitochondrial function and blocked mitochondrial apoptosis, leading to protection of the glomerulus against glucotoxicity. However, loss of AMPK and PGC1α negated the protective effects of melatonin on mitochondrial homeostasis, glomerular survival and diabetic renal fibrosis. In summary, the present study revealed that melatonin rescued impaired mitochondrial function and reduced glomerular apoptosis in the context of diabetic renal fibrosis by activating the AMPK/PGC1α pathway.
Collapse
Affiliation(s)
- Jian Li
- Department of Geriatric Endocrinology, Chinese PLA General Hospital, National Clinical Center of Geriatric Medicine, Beijing 100853, P.R. China
| | - Nan Li
- Department of Geriatric Endocrinology, Chinese PLA General Hospital, National Clinical Center of Geriatric Medicine, Beijing 100853, P.R. China
| | - Shuangtong Yan
- Department of Geriatric Endocrinology, Chinese PLA General Hospital, National Clinical Center of Geriatric Medicine, Beijing 100853, P.R. China
| | - Yanhui Lu
- Department of Geriatric Endocrinology, Chinese PLA General Hospital, National Clinical Center of Geriatric Medicine, Beijing 100853, P.R. China
| | - Xinyu Miao
- Department of Geriatric Endocrinology, Chinese PLA General Hospital, National Clinical Center of Geriatric Medicine, Beijing 100853, P.R. China
| | - Zhaoyan Gu
- Department of Geriatric Endocrinology, Chinese PLA General Hospital, National Clinical Center of Geriatric Medicine, Beijing 100853, P.R. China
| | - Yinghong Shao
- Outpatient Department, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
23
|
Ding X, Sun W, Chen J. IL-2 augments the sorafenib-induced apoptosis in liver cancer by promoting mitochondrial fission and activating the JNK/TAZ pathway. Cancer Cell Int 2018; 18:176. [PMID: 30459526 PMCID: PMC6234789 DOI: 10.1186/s12935-018-0671-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/31/2018] [Indexed: 12/18/2022] Open
Abstract
Background Sorafenib is the standard targeted drug used to treat hepatocellular carcinoma (HCC), but the therapeutic response between individuals varies markedly. Recently, cytokine-based immunotherapy has been a topic of intense discussion in the fight against cancer. The aim of this study was to explore whether cytokine IL-2 could augment the anti-tumour effects of sorafenib on HCC. Methods HepG2 and Huh7 cells were co-treated with sorafenib and IL-2 in vitro, and cellular viability and death were analysed through the MTT assay, TUNEL staining, LDH release assay, and western blotting. Mitochondrial function was measured via ELISA, immunofluorescence, and western blotting. Pathway blockers were used to establish the role of the JNK-TAZ pathways in regulating cancer cell phenotypes. Results Our data demonstrated that sorafenib treatment increased the HCC apoptotic rate, repressed cell proliferation, and inhibited migratory responses, and these effects were enhanced by IL-2 supplementation. Mechanistically, the combination of IL-2 and sorafenib interrupted mitochondrial energy metabolism by downregulating mitochondrial respiratory proteins. In addition, IL-2 and sorafenib co-treatment promoted mitochondrial dysfunction, as evidenced by the decreased mitochondrial potential, elevated mitochondrial ROS production, increased leakage of mitochondrial pro-apoptotic factors, and activation of the mitochondrial death pathway. A molecular investigation revealed that mitochondrial fission was required for the IL-2/sorafenib-mediated mitochondrial dysfunction. Mitochondrial fission was triggered by sorafenib and was largely amplified by IL-2 supplementation. Finally, we found that IL-2/sorafenib regulated mitochondrial fission via the JNK-TAZ pathways; blockade of the JNK-TAZ pathways abrogated the inhibitory effects of L-2/sorafenib on cancer survival, growth and mobility. Conclusions Altogether, these data strongly suggest that additional supplementation with IL-2 enhances the anti-tumour activity of sorafenib by promoting the JNK-TAZ-mitochondrial fission axis. This finding will pave the way for new treatment modalities to control HCC progression by optimizing sorafenib-based therapy.
Collapse
Affiliation(s)
- Xiaoyan Ding
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, No 8, Jingshundong Street Chaoyang District, Beijing, 100015 China
| | - Wei Sun
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, No 8, Jingshundong Street Chaoyang District, Beijing, 100015 China
| | - Jinglong Chen
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, No 8, Jingshundong Street Chaoyang District, Beijing, 100015 China
| |
Collapse
|
24
|
Xie Y, Lv Y, Zhang Y, Liang Z, Han L, Xie Y. LATS2 promotes apoptosis in non-small cell lung cancer A549 cells via triggering Mff-dependent mitochondrial fission and activating the JNK signaling pathway. Biomed Pharmacother 2018; 109:679-689. [PMID: 30551520 DOI: 10.1016/j.biopha.2018.10.097] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022] Open
Abstract
LATS2 is a classical tumor suppressor that affects non-small cell lung cancer proliferation and mobilization. However, its role in lung cancer cell apoptosis is unknown. The aim of our study is to explore whether LATS2 activates mitochondria-related apoptosis in lung cancer cells. In the present study, A549 non-small cell lung cancer cells were transfected with a LATS2 adenovirus to induce LATS2 overexpression. Cell apoptosis was evaluated via the MTT assay, TUNEL staining, western blotting, trypan blue staining and ELISA. Mitochondrial function was measured using an immunofluorescence assay, western blotting and ELISA. The results demonstrated that LATS2 was downregulated in A549 lung cancer cells. Overexpression of LATS2 induced A549 cell apoptosis via activating mitochondrial fission. Subsequently, we confirmed that LATS2 modulated mitochondrial fission via the JNK-Mff signaling pathway. Inhibition of the JNK pathway and/or knockdown of Mff abolished the pro-apoptotic effect of LATS2 on A549 cells. Taken together, our results identified LATS2 as a classical tumor suppressor of lung cancer via triggering mitochondrial fission and activating the JNK-Mff signaling pathway. Our results lay the foundation for detailed study of the molecular mechanisms of LATS2 overexpression and regulation of mitochondrial fission for lung cancer treatment.
Collapse
Affiliation(s)
- Yudong Xie
- Respiratory Medicine Department of Zhou Kou's Center Hospital, Henan Province of China, China.
| | - Yanping Lv
- Respiratory Medicine Department of Zhou Kou's Center Hospital, Henan Province of China, China
| | - Yanli Zhang
- Respiratory Medicine Department of Zhou Kou's Center Hospital, Henan Province of China, China
| | - Zhenzhen Liang
- Respiratory Medicine Department of Zhou Kou's Center Hospital, Henan Province of China, China
| | - Lili Han
- Respiratory Medicine Department of Zhou Kou's Center Hospital, Henan Province of China, China
| | - Yiyang Xie
- Sanquan College, Xinxiang Medicine University, China
| |
Collapse
|
25
|
Wei R, Cao J, Yao S. Matrine promotes liver cancer cell apoptosis by inhibiting mitophagy and PINK1/Parkin pathways. Cell Stress Chaperones 2018; 23:1295-1309. [PMID: 30209783 PMCID: PMC6237690 DOI: 10.1007/s12192-018-0937-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/23/2018] [Accepted: 09/02/2018] [Indexed: 02/05/2023] Open
Abstract
Matrine is a natural alkaloid isolated from the root and stem of the legume plant Sophora. Its anti-proliferative and pro-apoptotic effects on several types of cancer have been well-documented. However, the role of matrine in regulating mitochondrial homeostasis, particularly mitophagy in liver cancer apoptosis, remains uncertain. The aim of our study was to explore whether matrine promotes liver cancer cell apoptosis by modifying mitophagy. HepG2 cells were used in the study and treated with different doses of matrine. Cell viability and apoptosis were determined by MTT assay, TUNEL staining, western blotting, and LDH release assay. Mitophagy was monitored by immunofluorescence assay and western blotting. Mitochondrial function was assessed by immunofluorescence assay, ELISA, and western blotting. The results of our study indicated that matrine treatment dose-dependently reduced cell viability and increased the apoptotic rate of HepG2 cells. Functional studies demonstrated that matrine treatment induced mitochondrial dysfunction and activated mitochondrial apoptosis by inhibiting protective mitophagy. Re-activation of mitophagy abolished the pro-apoptotic effects of matrine on HepG2 cells. Molecular investigations further confirmed that matrine regulated mitophagy via the PINK1/Parkin pathways. Matrine blocked the PINK1/Parkin pathways and repressed mitophagy, whereas activation of the PINK1/Parkin pathways increased mitophagy activity and promoted HepG2 cell survival in the presence of matrine. Together, our data indicated that matrine promoted HepG2 cell apoptosis through a novel mechanism that acted via inhibiting mitophagy and the PINK1/Parkin pathways. This finding provides new insight into the molecular mechanism of matrine for treating liver cancer and offers a potential target to repress liver cancer progression by modulating mitophagy and the PINK1/Parkin pathways.
Collapse
Affiliation(s)
- Runjie Wei
- Peking University China-Japan Friendship School of Clinical Medicine, No. 2 Yinghua East Road, Chaoyang District, 100029, Beijing, China
| | - Jian Cao
- School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, 100191, Beijing, China
| | - Shukun Yao
- Peking University China-Japan Friendship School of Clinical Medicine, No. 2 Yinghua East Road, Chaoyang District, 100029, Beijing, China.
- Department of Gastroenterology, China-Japan Friendship Hospital, No. 2 Yinghua East Road, Chaoyang District, 100029, Beijing, China.
| |
Collapse
|
26
|
Wan J, Cui J, Wang L, Wu K, Hong X, Zou Y, Zhao S, Ke H. Excessive mitochondrial fragmentation triggered by erlotinib promotes pancreatic cancer PANC-1 cell apoptosis via activating the mROS-HtrA2/Omi pathways. Cancer Cell Int 2018; 18:165. [PMID: 30377412 PMCID: PMC6196464 DOI: 10.1186/s12935-018-0665-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/16/2018] [Indexed: 12/19/2022] Open
Abstract
Background Mitochondrial fragmentation drastically regulates the viability of pancreatic cancer through a poorly understood mechanism. The present study used erlotinib to activate mitochondrial fragmentation and then investigated the downstream events that occurred in response to mitochondrial fragmentation. Methods Cell viability and apoptosis were determined via MTT assay, TUNEL staining and ELISA. Mitochondrial fragmentation was measured via an immunofluorescence assay and qPCR. siRNA transfection and pathway blockers were used to perform the loss-of-function assays. Results The results of our study demonstrated that erlotinib treatment mediated cell apoptosis in the PANC-1 pancreatic cancer cell line via evoking mitochondrial fragmentation. Mechanistically, erlotinib application increased mitochondrial fission and reduced mitochondrial fusion, triggering mitochondrial fragmentation. Subsequently, mitochondrial fragmentation caused the overproduction of mitochondrial ROS (mROS). Interestingly, excessive mROS induced cardiolipin oxidation and mPTP opening, finally facilitating HtrA2/Omi liberation from the mitochondria into the cytoplasm, where HtrA2/Omi activated caspase-9-dependent cell apoptosis. Notably, neutralization of mROS or knockdown of HtrA2/Omi attenuated erlotinib-mediated mitochondrial fragmentation and favored cancer cell survival. Conclusions Together, our results identified the mROS-HtrA2/Omi axis as a novel signaling pathway that is activated by mitochondrial fragmentation and that promotes PANC-1 pancreatic cancer cell mitochondrial apoptosis in the presence of erlotinib. Electronic supplementary material The online version of this article (10.1186/s12935-018-0665-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Wan
- 1Department of Pharmacy, Third Clinical Medical College, Three Gorges University, Gezhouba Group Central Hospital, Yichang, 443002 Hubei China
| | - Jie Cui
- 1Department of Pharmacy, Third Clinical Medical College, Three Gorges University, Gezhouba Group Central Hospital, Yichang, 443002 Hubei China
| | - Lei Wang
- 2Department of Pathogenic Biology, School of Medicine, China Three Gorges University, Yichang, 443002 Hubei China
| | - Kunpeng Wu
- 1Department of Pharmacy, Third Clinical Medical College, Three Gorges University, Gezhouba Group Central Hospital, Yichang, 443002 Hubei China
| | - Xiaoping Hong
- 1Department of Pharmacy, Third Clinical Medical College, Three Gorges University, Gezhouba Group Central Hospital, Yichang, 443002 Hubei China
| | - Yulin Zou
- 1Department of Pharmacy, Third Clinical Medical College, Three Gorges University, Gezhouba Group Central Hospital, Yichang, 443002 Hubei China
| | - Shuang Zhao
- 1Department of Pharmacy, Third Clinical Medical College, Three Gorges University, Gezhouba Group Central Hospital, Yichang, 443002 Hubei China
| | - Hong Ke
- 3Department of Oncology, Third Clinical Medical College, Three Gorges University, Gezhouba Group Central Hospital, No. 60 Qiaohu Lake Road, Xiling District, Yichang, 443002 Hubei China
| |
Collapse
|
27
|
Raschellà G, Melino G, Gambacurta A. Cell death in cancer in the era of precision medicine. Genes Immun 2018; 20:529-538. [PMID: 30341419 DOI: 10.1038/s41435-018-0048-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 12/11/2022]
Abstract
Tumors constitute a large class of diseases that affect different organs and cell lineages. The molecular characterization of cancers of a given type has revealed an extraordinary heterogeneity in terms of genetic alterations and DNA mutations; heterogeneity that is further highlighted by single-cell DNA sequencing of individual patients. To address these issues, drugs that specifically target genes or altered pathways in cancer cells are continuously developed. Indeed, the genetic fingerprint of individual tumors can direct the modern therapeutic approaches to selectively hit the tumor cells while sparing the healthy ones. In this context, the concept of precision medicine finds a vast field of application. In this review, we will briefly list some classes of target drugs (Bcl-2 family modulators, Tyrosine Kinase modulators, PARP inhibitors, and growth factors inhibitors) and discuss the application of immunotherapy in tumors (T cell-mediated immunotherapy and CAR-T cells) that in recent years has drastically changed the prognostic outlook of aggressive cancers. We will also consider how apoptosis could represent a primary end point in modern cancer therapy and how "classic" chemotherapeutic drugs that induce apoptosis are still utilized in therapeutic schedules that involve the use of target drugs or immunotherapy to optimize the antitumor response.
Collapse
Affiliation(s)
- Giuseppe Raschellà
- ENEA Research Center Casaccia, Laboratory of Biosafety and Risk Assessment, Via Anguillarese, 301, 00123, Rome, Italy.
| | - Gerry Melino
- Department of Experimental Medicine TOR, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.,Medical Research Council, Toxicology Unit, Hodgkin Building, University of Cambridge, Leicester, LE1 9HN, UK
| | - Alessandra Gambacurta
- Department of Experimental Medicine TOR, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| |
Collapse
|
28
|
Tang X, Chen L, Li A, Cai S, Zhang Y, Liu X, Jiang Z, Liu X, Liang Y, Ma D. Anti-GPC3 antibody-modified sorafenib-loaded nanoparticles significantly inhibited HepG2 hepatocellular carcinoma. Drug Deliv 2018; 25:1484-1494. [PMID: 29916268 PMCID: PMC6058710 DOI: 10.1080/10717544.2018.1477859] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sorafenib (SFB) has improved the treatment of hepatocellular carcinoma (HCC) and has fewer severe side effects than other agents used for that purpose. However, due to a lack of tumor-specific targeting, the concentration of the drug in tumor tissue cannot be permanently maintained at a level that inhibits tumor growth. To overcome this problem, we developed a novel SFB-loaded polymer nanoparticle (NP). The NP (a TPGS-b-PCL copolymer that was synthesized from ε-caprolactone and d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) via ring-opening polymerization) contains Pluronic P123 and SFB, and its surface is modified with anti-GPC3 antibody to produce the polymer nanoparticle (NP-SFB-Ab). The Ab-conjugated NPs had higher cellular uptake by HepG2 cells than did non-antibody-conjugated SPD-containing nanoparticles (NP-SFB). The NP-SFB-Ab also displayed better stability characteristics, released higher levels of SFB into cell culture medium, and was more cytotoxic to tumor cells than was non-targeted NP-SFB and free SFB. The NP-SFB-Ab downregulated expression of the anti-apoptosis molecule MCL-1, which led to polymerization of Bax and Bak in mitochondrial cytosol. The NP-SFB-AB also promoted the mitochondrial release of cytochrome C, resulting in cellular apoptosis. Moreover, the NP-SFB-Ab significantly inhibited the growth of HepG2 xenograft tumors in nude mice without producing obvious side effects. These findings suggest that NP-SFB-Ab is a promising new method for achieving targeted therapy of HCC.
Collapse
Affiliation(s)
- Xiaolong Tang
- a Medical College , Anhui University of Science and Technology , Huainan , China
| | - Longzhou Chen
- b Department of Galactophore , Huai'an Maternity and Child Healthcare Hospital Affiliated to Yangzhou University Medical Academy , Huaian , China
| | - Amin Li
- a Medical College , Anhui University of Science and Technology , Huainan , China
| | - Shiyu Cai
- a Medical College , Anhui University of Science and Technology , Huainan , China
| | - Yinci Zhang
- a Medical College , Anhui University of Science and Technology , Huainan , China
| | - Xueke Liu
- a Medical College , Anhui University of Science and Technology , Huainan , China
| | - Zhenyou Jiang
- c Department of Microbiology and Immunology , Jinan University , Guangzhou , China
| | - Xinkuang Liu
- a Medical College , Anhui University of Science and Technology , Huainan , China
| | - Yong Liang
- d Huai'an Hospital Affiliated of Xuzhou Medical College and Huai'an Second Hospital , Huai'an , China
| | - Dong Ma
- e Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes , Jinan University , Guangzhou , China
| |
Collapse
|
29
|
Tanshinone IIA promotes IL2-mediated SW480 colorectal cancer cell apoptosis by triggering INF2-related mitochondrial fission and activating the Mst1-Hippo pathway. Biomed Pharmacother 2018; 108:1658-1669. [PMID: 30372868 DOI: 10.1016/j.biopha.2018.09.170] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 01/02/2023] Open
Abstract
IL-2-based therapy is a promising tool to treat colorectal cancer, but drug resistance always occurs in clinical practice. Mitochondrial fission is a novel target to modulate cancer development and progression. The aim of our study is to explore the effect of IL-2 combined with Tan IIA on SW480 colorectal cancer cell apoptosis in vitro and to determine whether IL-2/Tan IIA cotreatment could reduce SW480 cell viability via activating mitochondrial fission. The results indicated that Tan IIA increased IL-2-mediated cell death in SW480 colorectal cancer cells, and this effect was also accompanied with a reduction in cell proliferation. Functional investigations demonstrated that Tan IIA/IL-2 cotreatment enhanced INF2-related mitochondrial fission. Excessive mitochondrial division induced mitochondrial oxidative stress, mitochondrial energy metabolism disorder and mitochondrial apoptosis in SW480 cells. Inhibition of mitochondrial fission attenuated the antitumor effect of Tan IIA/IL-2 cotreatment on SW480 cell apoptosis. Further, we demonstrated that Tan IIA/IL-2 combination therapy controlled INF2-related mitochondrial fission via the Mst1-Hippo pathway. Moreover, Mst1 knockdown abrogated Tan IIA/IL-2-activated mitochondrial fission. Altogether, our results demonstrated that Tan IIA enhances the therapeutic efficiency of IL-2-mediated SW480 colorectal cancer cell apoptosis via promoting INF2-related mitochondrial fission and activating the Mst1-Hippo pathway.
Collapse
|
30
|
Liu J, Xu Y, Wu Q, Ding Q, Fan W. Sirtuin‑1 protects hair follicle stem cells from TNFα-mediated inflammatory stress via activating the MAPK-ERK-Mfn2 pathway. Life Sci 2018; 212:213-224. [PMID: 30292830 DOI: 10.1016/j.lfs.2018.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Stem cell transplantation is a promising tool to treat burn injuries. However, the inflammatory microenvironment in damaged skin limits the efficiency of stem cell-based therapy via poorly understood mechanisms. The aim of our study is to explore the contribution and mechanism of Sirtuin-1 (Sirt1) in TNFα-mediated inflammatory stress in hair follicle stem cells (HFSCs). METHODS Cellular viability was determined using the MTT assay, TUNEL staining, western blot analysis and LDH release assay. Adenovirus-loaded Sirt1 was transduced into HFSCs to overexpress Sirt1 in the presence of TNFα. Mitochondrial function was determined using JC-1 staining, mitochondrial ROS staining, immunofluorescence staining and western blotting. RESULTS Sirt1 was downregulated in response to the TNFα treatment. Additionally, TNFα stress reduced the viability, mobility and proliferation of HFSCs, and these effects were reversed by the overexpression of Sirt1. At the molecular level, Sirt1 overexpression attenuated TNFα-mediated mitochondrial damage, as evidenced by increased mitochondrial energy metabolism, decreased mitochondrial ROS generation, stabilized mitochondrial potential and blockage of the mitochondrial apoptotic pathway. Furthermore, Sirt1 modulated mitochondrial homeostasis by activating the MAPK-ERK-Mfn2 axis; inhibition of this pathway abrogated the protective effects of Sirt1 on HFSC survival, migration and proliferation. SIGNIFICANCE Based on our results, the inflammatory stress-mediated HFSC injury may be associated with a decrease in Sirt1 expression and subsequent mitochondrial dysfunction. Accordingly, strategies designed to enhance Sirt1 expression would be an effective approach to enhance the survival of HFSCs in the inflammatory microenvironment.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Dermatology and Venereology, Jiangsu Provincial People's Hospital, First Affiliated Hospital of Nanjing Medical University, 210029, China
| | - Yuxuan Xu
- Department of Dermatology and Venereology, Jiangsu Provincial People's Hospital, First Affiliated Hospital of Nanjing Medical University, 210029, China
| | - Qiaofang Wu
- Department of Dermatology and Venereology, Jiangsu Provincial People's Hospital, First Affiliated Hospital of Nanjing Medical University, 210029, China
| | - Qi Ding
- Department of Dermatology and Venereology, Jiangsu Provincial People's Hospital, First Affiliated Hospital of Nanjing Medical University, 210029, China
| | - Weixin Fan
- Department of Dermatology and Venereology, Jiangsu Provincial People's Hospital, First Affiliated Hospital of Nanjing Medical University, 210029, China.
| |
Collapse
|
31
|
Xu P, Zhang G, Sha L, Hou S. RETRACTED: DUSP1 alleviates cerebral ischaemia reperfusion injury via inactivating JNK-Mff pathways and repressing mitochondrial fission. Life Sci 2018; 210:251-262. [PMID: 30138595 DOI: 10.1016/j.lfs.2018.08.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 01/17/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editor-in-Chief. The article titled “DUSP1 alleviates cerebral ischaemia reperfusion injury via inactivating JNK-Mff pathways and repressing mitochondrial fission” is a near duplicate of a previously published manuscript titled “DUSP1 alleviates cardiac ischemia/reperfusion injury by suppressing the Mff-required mitochondrial fission and Bnip3-related mitophagy via the JNK pathways. Redox Biology. 2018;14:576-587.”
Collapse
Affiliation(s)
- Peng Xu
- The Fourth Department of Geronotology, Jinan Military General Hospital, 25 Shifan Road, Tianqiao District, Jinan City, Shandong Province 250031, China
| | - Guofeng Zhang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 West Chang Le Road, Xi'an 710032, China
| | - Longgui Sha
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China
| | - Shuangxing Hou
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China.
| |
Collapse
|
32
|
Zhou H, Li D, Zhu P, Ma Q, Toan S, Wang J, Hu S, Chen Y, Zhang Y. Inhibitory effect of melatonin on necroptosis via repressing the Ripk3-PGAM5-CypD-mPTP pathway attenuates cardiac microvascular ischemia-reperfusion injury. J Pineal Res 2018; 65:e12503. [PMID: 29770487 DOI: 10.1111/jpi.12503] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 04/24/2018] [Indexed: 12/14/2022]
Abstract
The molecular features of necroptosis in cardiac ischemia-reperfusion (IR) injury have been extensively explored. However, there have been no studies investigating the physiological regulatory mechanisms of melatonin acting on necroptosis in cardiac IR injury. This study was designed to determine the role of necroptosis in microvascular IR injury, and investigate the contribution of melatonin in repressing necroptosis and preventing IR-mediated endothelial system collapse. Our results demonstrated that Ripk3 was primarily activated by IR injury and consequently aggravated endothelial necroptosis, microvessel barrier dysfunction, capillary hyperpermeability, the inflammation response, microcirculatory vasospasms, and microvascular perfusion defects. However, administration of melatonin prevented Ripk3 activation and provided a pro-survival advantage for the endothelial system in the context of cardiac IR injury, similar to the results obtained via genetic ablation of Ripk3. Functional investigations clearly illustrated that activated Ripk3 upregulated PGAM5 expression, and the latter increased CypD phosphorylation, which obligated endothelial cells to undergo necroptosis via augmenting mPTP (mitochondrial permeability transition pore) opening. Interestingly, melatonin supplementation suppressed mPTP opening and interrupted endothelial necroptosis via blocking the Ripk3-PGAM5-CypD signal pathways. Taken together, our studies identified the Ripk3-PGAM5-CypD-mPTP axis as a new pathway responsible for reperfusion-mediated microvascular damage via initiating endothelial necroptosis. In contrast, melatonin treatment inhibited the Ripk3-PGAM5-CypD-mPTP cascade and thus reduced cellular necroptosis, conferring a protective advantage to the endothelial system in IR stress. These findings establish a new paradigm in microvascular IR injury and update the concept for cell death management handled by melatonin under the burden of reperfusion attack.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Dandan Li
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Pingjun Zhu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Qiang Ma
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Sam Toan
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, California
| | - Jin Wang
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Shunying Hu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Yundai Chen
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Yingmei Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
33
|
Liu J, Yan W, Zhao X, Jia Q, Wang J, Zhang H, Liu C, He K, Sun Z. Sirt3 attenuates post-infarction cardiac injury via inhibiting mitochondrial fission and normalization of AMPK-Drp1 pathways. Cell Signal 2018; 53:1-13. [PMID: 30219671 DOI: 10.1016/j.cellsig.2018.09.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 01/15/2023]
Abstract
Mitochondrial damage is involved in the pathogenesis of post-infarction cardiac injury. However, the upstream regulators of mitochondrial damage have not yet been identified. The aim of our study is to explore the role of Sirt3 in post-infarction cardiac injury with a particular focus on mitochondrial fission and AMPK-Drp1 pathways. Our results indicated that Sirt3 was downregulated in the progression of post-infarction cardiac injury. Overexpression of Sirt3 attenuated cardiac fibrosis, sustained myocardial function, inhibited the inflammatory response, and reduced cardiomyocyte death. Functional studies illustrated that chronic post-infarction cardiac injury was characterized by increased mitochondrial fission, which triggered mitochondrial oxidative stress, metabolic disorders, mitochondrial potential reduction and caspase-9 apoptosis in cardiomyocytes. However, Sirt3 overexpression attenuated mitochondrial fission and thus preserved mitochondrial homeostasis and cardiomyocyte viability. Furthermore, our results confirmed that Sirt3 repressed mitochondrial fission via normalizing AMPK-Drp1 pathways. Inhibition of AMPK activity re-activated Drp1 and thus abrogated the inhibitory effect of Sirt3 on mitochondrial fission. Altogether, our results indicate that Sirt3 enhancement could be an effective approach to retard the development of post-infarction cardiac injury via disrupting mitochondrial fission and normalizing the AMPK-Drp1 axis.
Collapse
Affiliation(s)
- Jixuan Liu
- Department of Cardiovascular, Chinese PLA General Hospital, Beijing 100853, China
| | - Wei Yan
- Department of Geriatric Medicine, The First Affiliated Hospital of Soochow University, Soochow 215000, China
| | - Xiaojing Zhao
- Transformation Medicine Centre, Chinese PLA General Hospital, Beijing 100853, China; Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, 100853, China
| | - Qian Jia
- Transformation Medicine Centre, Chinese PLA General Hospital, Beijing 100853, China; Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, 100853, China
| | - Jinda Wang
- Department of Cardiovascular, Chinese PLA General Hospital, Beijing 100853, China
| | - Huawei Zhang
- Department of Cardiovascular, Chinese PLA General Hospital, Beijing 100853, China
| | - Chunlei Liu
- Transformation Medicine Centre, Chinese PLA General Hospital, Beijing 100853, China; Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, 100853, China
| | - Kunlun He
- Transformation Medicine Centre, Chinese PLA General Hospital, Beijing 100853, China; Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, 100853, China.
| | - Zhijun Sun
- Department of Cardiovascular, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
34
|
Sheng J, Li H, Dai Q, Lu C, Xu M, Zhang J, Feng J. DUSP1 recuses diabetic nephropathy via repressing JNK‐Mff‐mitochondrial fission pathways. J Cell Physiol 2018; 234:3043-3057. [PMID: 30191967 DOI: 10.1002/jcp.27124] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/05/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Junqin Sheng
- Department of NephrologyXuhui District Central Hospital of ShanghaiShanghai China
| | - Hongyan Li
- Department of NephrologyHuadu District People’s Hospital, Southern Medical UniversityGuangzhou China
| | - Qin Dai
- Department of NephrologyXuhui District Central Hospital of ShanghaiShanghai China
| | - Chang Lu
- Department of NephrologyXuhui District Central Hospital of ShanghaiShanghai China
| | - Min Xu
- Department of NephrologyXuhui District Central Hospital of ShanghaiShanghai China
| | - Jisheng Zhang
- Department of NephrologyXuhui District Central Hospital of ShanghaiShanghai China
| | - Jianxun Feng
- Department of NephrologyXuhui District Central Hospital of ShanghaiShanghai China
| |
Collapse
|
35
|
Zhao H, Luo Y, Chen L, Zhang Z, Shen C, Li Y, Xu R. Sirt3 inhibits cerebral ischemia-reperfusion injury through normalizing Wnt/β-catenin pathway and blocking mitochondrial fission. Cell Stress Chaperones 2018; 23:1079-1092. [PMID: 29862442 PMCID: PMC6111081 DOI: 10.1007/s12192-018-0917-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/15/2018] [Accepted: 05/19/2018] [Indexed: 12/19/2022] Open
Abstract
Cerebral ischemia-reperfusion injury (IRI) potentiates existing brain damage and increases mortality and morbidity via poorly understood mechanisms. The aim of our study is to investigate the role of Sirtuin 3 (Sirt3) in the development and progression of cerebral ischemia-reperfusion injury with a focus on mitochondrial fission and the Wnt/β-catenin pathway. Our data indicated that Sirt3 was downregulated in response to cerebral IRI. However, the overexpression of Sirt3 reduced the brain infarction area and repressed IRI-mediated neuron apoptosis. Functional assays demonstrated that IRI augmented mitochondrial fission, which induced ROS overproduction, redox imbalance, mitochondrial pro-apoptotic protein leakage, and caspase-9-dependent cell death pathway activation. However, the overexpression of Sirt3 blocked mitochondrial fission and induced pro-survival signals in neurons subjected to IRI. At the molecular level, our data further illustrated that the Wnt/β-catenin pathway is required for the neuroprotection exerted by Sirt3 overexpression. Wnt/β-catenin pathway activation via inhibiting β-catenin phosphorylation attenuates mitochondrial fission and mitochondrial apoptosis. Collectively, our data show that cerebral IRI is associated with Sirt3 downregulation, Wnt/β-catenin pathway phosphorylated inactivation, and mitochondrial fission initiation, causing neurons to undergo caspase-9-dependent cell death. Based on this, strategies for enhancing Sirt3 activity and activating the Wnt/β-catenin pathway could be therapeutic targets for treating cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Hao Zhao
- Department of Neurosurgery, PLA Army General Hospital, No.5 Nanmencang Hutong, Dongcheng District, Beijing, 100730, China
| | - Yongchun Luo
- Department of Neurosurgery, PLA Army General Hospital, No.5 Nanmencang Hutong, Dongcheng District, Beijing, 100730, China
| | - Lihua Chen
- Department of Neurosurgery, PLA Army General Hospital, No.5 Nanmencang Hutong, Dongcheng District, Beijing, 100730, China
| | - Zhenhai Zhang
- Department of Neurosurgery, PLA Army General Hospital, No.5 Nanmencang Hutong, Dongcheng District, Beijing, 100730, China
| | - Chunsen Shen
- Department of Neurosurgery, PLA Army General Hospital, No.5 Nanmencang Hutong, Dongcheng District, Beijing, 100730, China
| | - Yunjun Li
- Department of Neurosurgery, PLA Army General Hospital, No.5 Nanmencang Hutong, Dongcheng District, Beijing, 100730, China
| | - Ruxiang Xu
- Department of Neurosurgery, PLA Army General Hospital, No.5 Nanmencang Hutong, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
36
|
Wang Y, Sun X, Ji K, Du L, Xu C, He N, Wang J, Liu Y, Liu Q. Sirt3-mediated mitochondrial fission regulates the colorectal cancer stress response by modulating the Akt/PTEN signalling pathway. Biomed Pharmacother 2018; 105:1172-1182. [PMID: 30021354 DOI: 10.1016/j.biopha.2018.06.071] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 02/07/2023] Open
Abstract
Sirtuin-3 (Sirt3), a sub-family member of the nicotinamide adenine dinucleotide-dependent histone deacetylases, has been reported to be involved in mitochondrial oxidative stress regulation, mitochondrial calcium management, mitophagy activation, and mitochondrial energy metabolism. The aim of our study was to explore the functional role of Sirt3 in colorectal cancer stress, focusing particularly on its effects on mitochondrial fission. Our study demonstrated that Sirt3 was highly upregulated in colorectal cancer cells compared to normal rectal mucosa cells. However, the genetic ablation of Sirt3 reduced colorectal cancer cell viability, mobility and proliferation. At the molecular level, we found that Sirt3 knockdown suppressed the expression of adhesive factors and cyclins. Furthermore, Sirt3 deletion was also associated with mitochondrial membrane potential reduction, ROS overproduction, mPTP opening, mitochondrial pro-apoptotic upregulation, and caspase-9-related death programme activation. Furthermore, we determined that Sirt3 regulated the colorectal cancer stress response by modulating mitochondrial fission. The loss of Sirt3 triggered fatal mitochondrial fission by suppressing the Akt/PTEN pathway. Re-activation of the Akt/PTEN pathway combatted mitochondrial fission and promoted colorectal cancer mobility, survival, and growth. Altogether, these findings provide an additional rationale for the function of Sirt3 in supporting the growth and survival of colorectal cancer.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Radiation and Molecular Nuclear Medicine, Tianjin 300192, China
| | - Xiaohui Sun
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Radiation and Molecular Nuclear Medicine, Tianjin 300192, China
| | - Kaihua Ji
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Radiation and Molecular Nuclear Medicine, Tianjin 300192, China
| | - Liqing Du
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Radiation and Molecular Nuclear Medicine, Tianjin 300192, China.
| | - Chang Xu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Radiation and Molecular Nuclear Medicine, Tianjin 300192, China
| | - Ningning He
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Radiation and Molecular Nuclear Medicine, Tianjin 300192, China
| | - Jinhan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Radiation and Molecular Nuclear Medicine, Tianjin 300192, China
| | - Yang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Radiation and Molecular Nuclear Medicine, Tianjin 300192, China
| | - Qiang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Radiation and Molecular Nuclear Medicine, Tianjin 300192, China.
| |
Collapse
|
37
|
Zhang Z, Yu J. NR4A1 Promotes Cerebral Ischemia Reperfusion Injury by Repressing Mfn2-Mediated Mitophagy and Inactivating the MAPK-ERK-CREB Signaling Pathway. Neurochem Res 2018; 43:1963-1977. [PMID: 30136162 DOI: 10.1007/s11064-018-2618-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/09/2018] [Accepted: 08/17/2018] [Indexed: 12/31/2022]
Abstract
Mitochondrial dysfunction has been acknowledged as the key pathogenic mechanism in cerebral ischemia-reperfusion (IR) injury. Mitophagy is the protective system used to sustain mitochondrial homeostasis. However, the upstream regulator of mitophagy in response to brain IR injury is not completely understood. Nuclear receptor subfamily 4 group A member 1 (NR4A1) has been found to be associated with mitochondrial protection in a number of diseases. The aim of our study is to explore the functional role of NR4A1 in cerebral IR injury, with a particular focus on its influence on mitophagy. Wild-type mice and NR4A1-knockout mice were used to generate cerebral IR injury in vivo. Mitochondrial function and mitophagy were detected via immunofluorescence assays and western blotting. Cellular apoptosis was determined via MTT assays, caspase-3 activity and western blotting. Our data revealed that NR4A1 was significantly increased in the reperfused brain tissues. Genetic ablation of NR4A1 reduced the cerebral infarction area and repressed neuronal apoptosis. The functional study demonstrated that NR4A1 modulated cerebral IR injury by inducing mitochondrial damage. Higher NR4A1 promoted mitochondrial potential reduction, evoked cellular oxidative stress, interrupted ATP generation, and initiated caspase-9-dependent apoptosis. Mechanistically, NR4A1 induced mitochondrial damage by disrupting Mfn2-mediated mitophagy. Knockdown of NR4A1 elevated Mfn2 expression and therefore reversed mitophagic activity, sending a prosurvival signal for mitochondria in the setting of cerebral IR injury. Further, we demonstrated that NR4A1 modulated Mfn2 expression via the MAPK-ERK-CREB signaling pathway. Blockade of the ERK pathway could abrogate the permissive effect of NR4A1 deletion on mitophagic activation, contributing to neuronal mitochondrial apoptosis. Overall, our results demonstrate that the pathogenesis of cerebral IR injury is closely associated with a drop in protective mitophagy due to increased NR4A1 through the MAPK-ERK-CREB signaling pathway.
Collapse
Affiliation(s)
- Zhanwei Zhang
- Department of Neurosurgery, First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
| | - Jianbai Yu
- Department of Neurosurgery, First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China.
| |
Collapse
|
38
|
Ji K, Lin K, Wang Y, Du L, Xu C, He N, Wang J, Liu Y, Liu Q. TAZ inhibition promotes IL-2-induced apoptosis of hepatocellular carcinoma cells by activating the JNK/F-actin/mitochondrial fission pathway. Cancer Cell Int 2018; 18:117. [PMID: 30127666 PMCID: PMC6092825 DOI: 10.1186/s12935-018-0615-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/09/2018] [Indexed: 01/31/2023] Open
Abstract
Background Cytokine-based cancer therapies have attracted a great deal of attention in recent years. Unfortunately, resistance to treatment limits the efficacy of these therapeutics. Therefore, the aim of our study was to explore the mechanism of IL-2-based therapy for hepatocellular carcinoma in an attempt to increase the efficiency of this treatment option. Methods HepG2 cells were treated with IL-2. Then, siRNA against TZA was used to transfected into HepG2 cells. Cellular apoptosis was measured via MTT assay, TUNEL assay and caspase-3 activity. Cellular proliferation was evaluated via EdU assay and western blotting. Cellular migration was detected via Transwell assay. Mitochondrial function was monitored by mitochondrial potential analysis, ROS staining, immunofluorescence and western blotting. Pathway blocker and activator were used to establish the role of JNK/F-actin/mitochondrial fission signaling pathway in HepG2 cells stress response. Results Our study found that IL-2 treatment significantly reduced the viability, mobility and proliferation of HepG2 cells in vitro. We also demonstrated that IL-2 treatment was accompanied by an increase in the expression of transcriptional co-activator with PDZ-binding motif (TAZ). Interestingly, genetic ablation of TAZ in the presence of IL-2 further promoted apoptosis, inhibited mobility, and arrested proliferation in HepG2 cells. At the molecular level, IL-2 administration activated excessive mitochondrial fission via the JNK/F-actin pathway; these effects were further enhanced by TAZ deletion. Mechanistically, TAZ knockdown further increased the expression of mitochondrial fission-related proteins such as Drp1, Mff and Fis. The augmented mitochondrial fission stimulated ROS overproduction, mediated redox imbalance, interrupted mitochondrial energy generation, reduced mitochondrial membrane potential, promoted leakage of the pro-apoptotic molecule cyt-c into the nucleus, and initiated caspase-9-related mitochondrial death. Further, we demonstrated that the anti-proliferative and anti-metastatic effects of IL-2 in HepG2 cells were enhanced by TAZ deletion, suggesting that IL-2 sensitizes HepG2 cells to IL-2-based cytokine therapy. However, JNK/F-actin pathway blockade could abrogate the inhibitory effects of TAZ deletion on HepG2 migration, proliferation and survival. Conclusions Taken together, our data indicate that the anti-tumor effects of IL-2-based therapies may be enhanced by TAZ deletion in a JNK/F-actin pathway-dependent manner. This finding provides a novel combinatorial therapeutic approach for treating hepatocellular carcinoma that might significantly increase the efficacy of cytokine-based therapies in a clinical setting. Electronic supplementary material The online version of this article (10.1186/s12935-018-0615-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kaihua Ji
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Radiation and Molecular Nuclear Medicine, Tianjin, 300192 China
| | - Kaili Lin
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Radiation and Molecular Nuclear Medicine, Tianjin, 300192 China
| | - Yan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Radiation and Molecular Nuclear Medicine, Tianjin, 300192 China
| | - Liqing Du
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Radiation and Molecular Nuclear Medicine, Tianjin, 300192 China
| | - Chang Xu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Radiation and Molecular Nuclear Medicine, Tianjin, 300192 China
| | - Ningning He
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Radiation and Molecular Nuclear Medicine, Tianjin, 300192 China
| | - Jinhan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Radiation and Molecular Nuclear Medicine, Tianjin, 300192 China
| | - Yang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Radiation and Molecular Nuclear Medicine, Tianjin, 300192 China
| | - Qiang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Radiation and Molecular Nuclear Medicine, Tianjin, 300192 China
| |
Collapse
|
39
|
Wang S, Hu Y, Yan Y, Cheng Z, Liu T. Sotetsuflavone inhibits proliferation and induces apoptosis of A549 cells through ROS-mediated mitochondrial-dependent pathway. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:235. [PMID: 30092797 PMCID: PMC6085663 DOI: 10.1186/s12906-018-2300-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/31/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Sotetsuflavone is isolated from Cycas revoluta Thunb., which has biological activity against tumors. However, the anti-proliferative effects of sotetsuflavone on A549 cells and its mechanism are not fully elucidated. METHODS This study investigated the mechanisms of growth inhibition, cell cycle arrest and apoptosis in non-small cell lung cancer A549 cells induced by sotetsuflavone and evaluated whether sotetsuflavone can be safely utilized by humans as therapeutic agent. RESULTS We found that sotetsuflavone had significant antiproliferative activity against A549 cells. At the same time, the reactive oxygen species (ROS) content increased while the mitochondrial membrane potential and the ratio of Bcl-2/Bax decreased. Cleaved caspase-3, cleaved caspase-9, cytochrome C and Bax expression increased, and Cyclin D1, CDK4, cleaved caspase-8 and Bcl-2 expression decreased. Interestingly, we demonstrated that sotetsuflavone could effectively inhibit the G0/G1 cycle progression, and then induce the endogenous apoptosis pathway. Our results show that sotetsuflavone could inhibit the growth of A549 cells by up-regulating intracellular ROS levels and causing the mitochondrial membrane potential to collapse, inducing G0/G1 phase arrest and endogenous apoptosis. CONCLUSIONS In short, we confirm that sotetsuflavone had an inhibitory effect on A549 cells and discovered that it causes apoptosis of A549 lung cancer cells. Sotetsuflavone may be used as a novel candidate for anti-tumor therapy in patients with lung cancer.
Collapse
Affiliation(s)
- Shaohui Wang
- School of Pharmacy, Minzu University of China, No. 27 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Yanlan Hu
- School of Pharmacy, Minzu University of China, No. 27 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Yu Yan
- School of Pharmacy, Minzu University of China, No. 27 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Zhekang Cheng
- School of Pharmacy, Minzu University of China, No. 27 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Tongxiang Liu
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, No. 27 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| |
Collapse
|
40
|
He L, Gu K. Tanshinone IIA regulates colorectal cancer apoptosis via attenuation of Parkin‑mediated mitophagy by suppressing AMPK/Skp2 pathways. Mol Med Rep 2018; 18:1692-1703. [PMID: 29845197 DOI: 10.3892/mmr.2018.9087] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 04/04/2018] [Indexed: 11/05/2022] Open
Abstract
Mitophagy is important for cancer development. Notably, the role of Parkin‑mediated mitophagy in colorectal cancer (CRC) mortality has not been fully determined. Therefore, the present study aimed to investigate the effect of Parkin‑mediated mitophagy on CRC apoptosis. In addition, the present study investigated the therapeutic effects of Tanshinone IIA (Tan IIA) on the regulation of CRC cell death via mitophagy. Cellular apoptosis was measured following Tan IIA treatment. In addition, mitophagy activity was evaluated by immunofluorescence and western blotting. The results of the present study revealed that Tan IIA may enhance CRC cell death. In addition, the results demonstrated that Tan IIA enhanced mitochondrial apoptosis, as demonstrated by reduced mitochondrial membrane potential, elevated mitochondrial permeability transition pore opening, and increased oxidative stress, mitochondrial energy disorder and proapoptotic factor expression. Furthermore, the results of the present study demonstrated that Tan IIA induced mitochondrial apoptosis via inhibition of mitophagy. In addition, it was revealed that mitophagy could suppress mitochondrial apoptosis. Functional assays revealed that Tan IIA suppressed the adenosine monophosphate‑activated protein kinase (AMPK) pathway, resulting in the inactivation of S‑phase kinase associated protein 2 (Skp2). Furthermore, reduced levels of Skp2 failed to activate Parkin, thus resulting in inhibition of mitophagy. Conversely, reactivation of AMPK and overexpression of Skp2 rescued mitophagy activity and thus attenuated the Tan IIA‑induced apoptosis of CRC cells. In conclusion, the results of the present study demonstrated the beneficial role of mitophagy in CRC cell survival and suggested that Tan IIA may be an effective therapeutic agent, which suppresses mitophagy activity and enhances CRC apoptosis.
Collapse
Affiliation(s)
- Lili He
- Department of Infectious Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Kebo Gu
- Hematology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| |
Collapse
|
41
|
Li R, Xin T, Li D, Wang C, Zhu H, Zhou H. Therapeutic effect of Sirtuin 3 on ameliorating nonalcoholic fatty liver disease: The role of the ERK-CREB pathway and Bnip3-mediated mitophagy. Redox Biol 2018; 18:229-243. [PMID: 30056271 PMCID: PMC6079484 DOI: 10.1016/j.redox.2018.07.011] [Citation(s) in RCA: 257] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/11/2022] Open
Abstract
Increased mitochondrial damage is related to the progression of a diet-induced nonalcoholic fatty liver disease. The aim of our study is to investigate the role of Sirtuin 3 (Sirt3) in treating nonalcoholic fatty liver disease with a focus on mitophagy and the ERK-CREB pathway. Our data indicated that Sirt3 was downregulated in liver tissue in response to chronic HFD treatment. Interestingly, re-introduction of Sirt3 protected hepatic function, attenuated liver fibrosis, alleviated the inflammatory response, and prevented hepatocyte apoptosis. Molecular investigations demonstrated that lipotoxicity was associated with an increase in mitochondrial apoptosis as evidenced by reduced mitochondrial potential, augmented ROS production, increased cyt-c leakage into the nucleus, and activated caspase-9 apoptotic signalling. Additionally, Sirt3 overexpression protected hepatocytes against mitochondrial apoptosis via promoting Bnip3-required mitophagy. Functional studies showed that Sirt3 reversed Bnip3 expression and mitophagy activity via the ERK-CREB signalling pathway. Blockade of the ERK-CREB axis repressed the promotive effects of Sirt3 on Bnip3 activation and mitophagy augmentation, finally negating the anti-apoptotic influences of Sirt3 on hepatocytes in the setting of high-fat-stress. Collectively, our data show that high-fat-mediated liver damage is associated with Sirt3 downregulation, which is followed by ERK-CREB pathway inactivation and Bnip3-mediated inhibition of mitophagy, causing hepatocytes to undergo mitochondria-dependent cell death. Based on this, strategies for enhancing Sirt3 activity and activating the ERK-CREB-Bnip3-mitophagy pathways could be used to treat nonalcoholic fatty liver disease. Sirt3 overexpression prevents diet-mediated fatty liver disease. Sirt3 blocks hepatocyte mitochondrial apoptosis in the setting of high-fat injury. Bnip3-mediated mitophagy protects mitochondria against high-fat-mediated damage. Sirt3 controls Bnip3-mediated mitophagy via the ERK-CREB signalling pathway.
Collapse
Affiliation(s)
- Ruibing Li
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, PR China
| | - Ting Xin
- Department of Cardiology, Tianjin First Central Hospital, Tianjin 300192, PR China
| | - Dandan Li
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, PR China
| | - Chengbin Wang
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, PR China.
| | - Hang Zhu
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, PR China.
| | - Hao Zhou
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, PR China; Center for Cardiovascular Research and Alternative Medicine, Wyoming University, Laramie, WY 82071, USA.
| |
Collapse
|
42
|
Li M, Yang X, Wang S. PTEN enhances nasal epithelial cell resistance to TNFα‑induced inflammatory injury by limiting mitophagy via repression of the TLR4‑JNK‑Bnip3 pathway. Mol Med Rep 2018; 18:2973-2986. [PMID: 30015897 DOI: 10.3892/mmr.2018.9264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 05/23/2018] [Indexed: 11/05/2022] Open
Abstract
Nasal epithelial cell inflammatory injury is associated with chronic obstructive pulmonary disease development. However, the mechanism by which inflammation triggers nasal epithelial cell damage remains unclear. In the present study, tumor necrosis factor (TNF)α was used to induce an inflammatory injury and explore the underlying pathogenesis for nasal epithelial cell apoptosis in vitro, with a focus on mitochondrial homeostasis. Then, cellular apoptosis was detected via a terminal deoxynucleotidyl‑transferase‑mediated dUTP nick end labeling assay and western blotting. Mitochondrial function was evaluated via JC‑1 staining, mPTP opening measurement and western blotting. The results demonstrated that TNFα treatment induced nasal epithelial cell apoptosis, proliferation arrest and migration inhibition via downregulating phosphatase and tensin homolog (PTEN) levels. Increased PTEN expression was associated with reduce Toll‑like receptor (TLR)4‑c‑Jun kinase (JNK)‑Bcl2‑interacting protein 3 (Bnip3) pathway signaling, leading to reductions in mitophagy activity. Excessive mitophagy resulted in ATP deficiencies, mitochondrial dysfunction, caspase‑9 activation and cellular apoptosis. By contrast, PTEN overexpression in nasal epithelial cells alleviated the mitochondrial damage and cellular apoptosis via inhibiting the TLR4‑JNK‑Bnip3 pathway, favoring the survival of nasal epithelial cells under inflammatory injury. Therefore, this data uncovered a potential molecular basis for nasal epithelial cell apoptosis in response to inflammatory injury, and PTEN was identified as the endogenous defender of nasal epithelial cell survival via controlling lethal mitophagy by inhibiting the TLR4‑JNK‑Bnip3 pathway, suggesting that this pathway may be a potential target for clinically treating chronic nasal and sinus inflammatory injury.
Collapse
Affiliation(s)
- Meng Li
- Department of Chinese Medicine, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing 100020, P.R. China
| | - Xiang Yang
- Department of Cardiac Surgery, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing 100020, P.R. China
| | - Shouchuan Wang
- Department of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
43
|
Melatonin therapy for diabetic cardiomyopathy: A mechanism involving Syk-mitochondrial complex I-SERCA pathway. Cell Signal 2018; 47:88-100. [DOI: 10.1016/j.cellsig.2018.03.012] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/18/2018] [Accepted: 03/23/2018] [Indexed: 12/22/2022]
|
44
|
Wang H, Zhao X, Ni C, Dai Y, Guo Y. Zearalenone regulates endometrial stromal cell apoptosis and migration via the promotion of mitochondrial fission by activation of the JNK/Drp1 pathway. Mol Med Rep 2018; 17:7797-7806. [PMID: 29620184 DOI: 10.3892/mmr.2018.8823] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 12/12/2017] [Indexed: 11/05/2022] Open
Abstract
Increased endometrial stromal cell (ESC) survival and migration is responsible for the development and progression of endometriosis. However, little is known about the mechanisms underlying ESC survival and migration, and limited therapeutic strategies that are able to reverse these abnormalities are available. The present study investigated the effects of zearalenone (ZEA) on ESC survival and migration, particularly focusing on mitochondrial fission and the c‑Jun N‑terminal kinase (JNK)/dynamin‑related protein 1 (Drp1) pathway. The results revealed that ZEA induced ESC apoptosis in a dose‑dependent manner. Furthermore, ZEA treatment triggered excessive mitochondrial fission resulting in structural and functional mitochondrial damage, leading to the collapse of the mitochondrial membrane potential and subsequent leakage of cytochrome c into the cytoplasm. This triggered the mitochondrial pathway of apoptosis. Additionally, ZEA‑induced mitochondrial fission decreased ESC migration through F‑actin/G‑actin homeostasis dysregulation. ZEA also increased JNK phosphorylation and subsequently Drp1 phosphorylation at the serine 616 position, resulting in Drp1 activation. JNK/Drp1 pathway inhibition abolished the inhibitory effects of ZEA on ESC survival and migration. In summary, the present study demonstrated that ZEA reduced ESC survival and migration through the stimulation of mitochondrial fission by activation of the JNK/Drp1 pathway.
Collapse
Affiliation(s)
- Huixiang Wang
- Department of Gynecology and Obstetrics, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Xiaoli Zhao
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Chengxiang Ni
- Department of Gynecology and Obstetrics, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Yuyang Dai
- Department of National Institute for Drug Clinical Trial, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Yan Guo
- Department of Gynecology and Obstetrics, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| |
Collapse
|
45
|
Zhou H, Wang J, Zhu P, Zhu H, Toan S, Hu S, Ren J, Chen Y. NR4A1 aggravates the cardiac microvascular ischemia reperfusion injury through suppressing FUNDC1-mediated mitophagy and promoting Mff-required mitochondrial fission by CK2α. Basic Res Cardiol 2018; 113:23. [DOI: 10.1007/s00395-018-0682-1] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/09/2018] [Accepted: 04/30/2018] [Indexed: 12/22/2022]
|
46
|
Wang X, Song Q. Mst1 regulates post-infarction cardiac injury through the JNK-Drp1-mitochondrial fission pathway. Cell Mol Biol Lett 2018; 23:21. [PMID: 29760744 PMCID: PMC5941482 DOI: 10.1186/s11658-018-0085-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/20/2018] [Indexed: 12/13/2022] Open
Abstract
Background Post-infarction cardiac injury is closely associated with cardiac remodeling and heart dysfunction. Mammalian STE20-like kinase 1 (Mst1), a regulator of cellular apoptosis, is involved in cardiac remodeling in post-infarction heart, but the mechanisms remain poorly defined. We aimed to explore the role of Mst1 in regulating chronic post-infarction cardiac injury, with a focus on mitochondrial homoeostasis. Methods Wild-type (WT) and Mst1-knockout mice were as the cardiac myocardial infarction model. Cardiac fibrosis, myocardial inflammation response, heart dysfunction and cardiomyocyte death were measured in vivo using immunohistochemistry, immunofluorescence, western blot, qPCR and TUNEL assays. Cardiomyocytes were isolated from WT and Mst1-knockout mice, and a chronic hypoxia model was used to induce damage. Mitochondrial function was determined via JC1 staining, ROS measurement, cyt-c leakage detection and mitochondrial apoptotic pathways analysis. Mitochondrial fission was observed using immunofluorescence. A pathway activator and inhibitor were applied to establish the signaling pathways involved in regulating mitochondrial homeostasis. Results Our study demonstrated that Mst1 expression was significantly upregulated in the heart post-infarction. Activated Mst1 induced cardiac fibrosis, an excessive inflammatory response, and cardiomyocyte death, whereas the genetic ablation of Mst1 protected the myocardium against chronic post-infarction injury. Function assays showed that upregulation of Mst1 activity contributed to JNK pathway activation, which led to Drp1 migration from the cytoplasm onto the surface of the mitochondria, indicative of mitochondrial fission activation. Excessive mitochondrial fission caused mitochondrial fragmentation, resulting in mitochondrial potential collapse, ROS overproduction, mitochondrial pro-apoptotic leakage into the cytoplasm, and the initiation of caspase-9-mediated mitochondrial apoptosis. By contrast, Mst1 deletion helped to maintain mitochondrial structure and function, sending pro-survival signals to the cardiomyocytes. Conclusions Our results identify Mst1 as a malefactor in the development of post-infarction cardiac injury and that it acts through the JNK-Drp1-mitochondrial fission pathway.
Collapse
Affiliation(s)
- Xisong Wang
- Department of Critical Care Medicine, the Chinese PLA General Hospital, Beijing, China
| | - Qing Song
- Department of Critical Care Medicine, the Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
47
|
Brasacchio D, Busuttil RA, Noori T, Johnstone RW, Boussioutas A, Trapani JA. Down-regulation of a pro-apoptotic pathway regulated by PCAF/ADA3 in early stage gastric cancer. Cell Death Dis 2018; 9:442. [PMID: 29670108 PMCID: PMC5906598 DOI: 10.1038/s41419-018-0470-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 01/10/2018] [Accepted: 03/06/2018] [Indexed: 12/28/2022]
Abstract
The loss of p300/CBP-associated protein (PCAF) expression is associated with poor clinical outcome in gastric cancer, and a potential bio-marker for invasive and aggressive tumors. However, the mechanism linking loss of PCAF to the onset of gastric cancer has not been identified. Given that PCAF and its binding partner transcriptional adaptor protein 3 (ADA3) were recently shown to regulate the intrinsic (mitochondrial) pathway to apoptosis via epigenetic regulation of phosphofurin acidic cluster sorting proteins 1 and 2 (PACS1, PACS2), we analyzed PCAF, ADA3, and PACS1/2 expression in 99 patient-matched surgical samples ranging from normal gastric mucosa, through pre-malignant chronic gastritis and intestinal metaplasia to stage I–III invasive cancers. PCAF mRNA levels were not reduced in either pre-malignant state but were significantly down-regulated in all stages of gastric cancer, commencing at AJCC stage I (p < 0.05), thus linking reduced PCAF expression with early malignant change. Furthermore, patients with combined reduction of PCAF and PACS1 had significantly poorer overall survival (p = 0.0257), confirmed in an independent dataset of 359 patients (p = 5.8 × 10e-6). At the protein level, PCAF, ADA3, and PACS1 expression were all significantly down-regulated in intestinal-type gastric cancer, and correlated with reduced progression free survival. We conclude that a pro-apoptotic mechanism centered on the intrinsic (mitochondrial) pathway and regulated by PCAF/ADA3 can influence the progression from premalignant to malignant change, and thus act as a tumor suppression mechanism in gastric cancer.
Collapse
Affiliation(s)
- Daniella Brasacchio
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Rita A Busuttil
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Upper Gastrointestinal Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Tahereh Noori
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Ricky W Johnstone
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Cancer Therapeutics Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Alex Boussioutas
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Upper Gastrointestinal Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Joseph A Trapani
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia. .,Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
| |
Collapse
|
48
|
Pan L, Zhou L, Yin W, Bai J, Liu R. miR-125a induces apoptosis, metabolism disorder and migrationimpairment in pancreatic cancer cells by targeting Mfn2-related mitochondrial fission. Int J Oncol 2018; 53:124-136. [PMID: 29749475 PMCID: PMC5958665 DOI: 10.3892/ijo.2018.4380] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/02/2018] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial fission is important for the development and progression of pancreatic cancer (PC). However, little is known regarding its role in pancreatic cancer apoptosis, metabolism and migration. In the current study, the mechanism by which mitochondrial fission modifies the biological characteristics of PC was explored. MicroRNA-125a (miR-125a) had the ability to inhibit mitochondrial fission and contributed to cellular survival. Suppressed mitochondrial fission led to a reduction in mitochondrial debris, preserved the mitochondrial membrane potential, inhibited mitochondrial permeability transition pore opening, ablated cytochrome c leakage into the cytoplasm and reduced the pro-apoptotic protein contents, finally blocking mitochondria related apoptosis pathways. Furthermore, defective mitochondrial fission induced by miR-125a enhanced mitochondria-dependent energy metabolism by promoting activity of electron transport chain complexes. Furthermore, suppressed mitochondrial fission also contributed to PANC-1 cell migration by preserving the F-actin balance. Furthermore, mitofusin 2 (Mfn2), the key defender of mitochondrial fission, is involved in inhibition of miR125a-mediated mitochondrial fission. Low contents of miR-125a upregulated Mfn2 transcription and expression, leading to inactivation of mitochondrial fission. Ultimately, the current study determined that miR-125a and Mfn2 are regulated by hypoxia-inducible factor 1 (HIF1). Knockdown of HIF1 reversed miR-125a expression, and therefore, inhibited Mfn2 expression, leading to activation of mitochondrial fission. Collectively, the present study demonstrated mitochondrial fission as a tumor suppression process that is regulated by the HIF/miR-125a/Mfn2 pathways, acting to restrict PANC-1 cell survival, energy metabolism and migration, with potential implications for novel approaches for PC therapy.
Collapse
Affiliation(s)
- Lichao Pan
- The Second Department of Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Lin Zhou
- Department of Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Weijia Yin
- Department of Biochemistry, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Jia Bai
- Department of Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Rong Liu
- The Second Department of Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
49
|
Zhao Y, Guo C, Wang L, Wang S, Li X, Jiang B, Wu N, Guo S, Zhang R, Liu K, Shi D. A novel fluorinated thiosemicarbazone derivative- 2-(3,4-difluorobenzylidene) hydrazinecarbothioamide induces apoptosis in human A549 lung cancer cells via ROS-mediated mitochondria-dependent pathway. Biochem Biophys Res Commun 2017; 491:65-71. [PMID: 28698138 DOI: 10.1016/j.bbrc.2017.07.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/08/2017] [Indexed: 12/16/2022]
Abstract
Thiosemicarbazone, a class of compounds with excellent biological activity, especially antitumor activity, have attracted wide attention. In this study, a novel fluorinated thiosemicarbazone derivative, 2-(3,4-difluorobenzylidene) hydrazinecarbothioamide (compound 1) was synthesized and its antitumor activities were further investigated on a non-small cell lung cancer cell line (A549) along with its underlying mechanisms. Compound 1 showed significant anti-proliferative activity on A549 cells, which was further proved by colony formation experiment. Compound 1 also inhibits the invasion of A549 cells in a trans-well culture system. Moreover, compound 1 markedly induced apoptosis on A549 cells, and the ratio of Bcl-2/Bax was decreased while the amount of p53, Cleaved-Caspase 3 and Cleaved-PARP expression were increased significantly. Compound 1 decreased the mitochondrial membrane potential, while the content of reactive oxygen was increased obviously. It is revealed that compound 1 mediated cell cycle arrest in G0/G1 phase by reducing G1 phase dependent proteins, CDK4 and Cyclin D1. As a result, it is indicated that compound 1 induced apoptosis on A549 cells was realized by regulating ROS-mediated mitochondria-dependent signaling pathway.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University, Qingdao 266021, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Chuanlong Guo
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lijun Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Shuaiyu Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xiangqian Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Bo Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Ning Wu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Shuju Guo
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Renshuai Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Kun Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Dayong Shi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
50
|
Common Chemical Inductors of Replication Stress: Focus on Cell-Based Studies. Biomolecules 2017; 7:biom7010019. [PMID: 28230817 PMCID: PMC5372731 DOI: 10.3390/biom7010019] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/10/2017] [Indexed: 01/01/2023] Open
Abstract
DNA replication is a highly demanding process regarding the energy and material supply and must be precisely regulated, involving multiple cellular feedbacks. The slowing down or stalling of DNA synthesis and/or replication forks is referred to as replication stress (RS). Owing to the complexity and requirements of replication, a plethora of factors may interfere and challenge the genome stability, cell survival or affect the whole organism. This review outlines chemical compounds that are known inducers of RS and commonly used in laboratory research. These compounds act on replication by direct interaction with DNA causing DNA crosslinks and bulky lesions (cisplatin), chemical interference with the metabolism of deoxyribonucleotide triphosphates (hydroxyurea), direct inhibition of the activity of replicative DNA polymerases (aphidicolin) and interference with enzymes dealing with topological DNA stress (camptothecin, etoposide). As a variety of mechanisms can induce RS, the responses of mammalian cells also vary. Here, we review the activity and mechanism of action of these compounds based on recent knowledge, accompanied by examples of induced phenotypes, cellular readouts and commonly used doses.
Collapse
|