1
|
Niebora J, Woźniak S, Domagała D, Data K, Farzaneh M, Zehtabi M, Dari MAG, Pour FK, Bryja A, Kulus M, Mozdziak P, Dzięgiel P, Kempisty B. The role of ncRNAs and exosomes in the development and progression of endometrial cancer. Front Oncol 2024; 14:1418005. [PMID: 39188680 PMCID: PMC11345653 DOI: 10.3389/fonc.2024.1418005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/26/2024] [Indexed: 08/28/2024] Open
Abstract
Endometrial cancer (EC) is one of the most common gynecologic cancers. In recent years, research has focused on the genetic characteristics of the tumors to detail their prognosis and tailor therapy. In the case of EC, genetic mutations have been shown to underlie their formation. It is very important to know the mechanisms of EC formation related to mutations induced by estrogen, among other things. Noncoding RNAs (ncRNAs), composed of nucleotide transcripts with very low protein-coding capacity, are proving to be important. Their expression patterns in many malignancies can inhibit tumor formation and progression. They also regulate protein coding at the epigenetic, transcriptional, and posttranscriptional levels. MicroRNAs (miRNAs), several varieties of which are associated with normal endometrium as well as its tumor, also play a particularly important role in gene expression. MiRNAs and long noncoding RNAs (lncRNAs) affect many pathways in EC tissues and play important roles in cancer development, invasion, and metastasis, as well as resistance to anticancer drugs through mechanisms such as suppression of apoptosis and progression of cancer stem cells. It is also worth noting that miRNAs are highly precise, sensitive, and robust, making them potential markers for diagnosing gynecologic cancers and their progression. Unfortunately, as the incidence of EC increases, treatment becomes challenging and is limited to invasive tools. The prospect of using microRNAs as potential candidates for diagnostic and therapeutic use in EC seems promising. Exosomes are extracellular vesicles that are released from many types of cells, including cancer cells. They contain proteins, DNA, and various types of RNA, such as miRNAs. The noncoding RNA components of exosomes vary widely, depending on the physiology of the tumor tissue and the cells from which they originate. Exosomes contain both DNA and RNA and have communication functions between cells. Exosomal miRNAs mediate communication between EC cells, tumor-associated fibroblasts (CAFs), and tumor-associated macrophages (TAMs) and play a key role in tumor cell proliferation and tumor microenvironment formation. Oncogenes carried by tumor exosomes induce malignant transformation of target cells. During the synthesis of exosomes, various factors, such as genetic and proteomic data are upregulated. Thus, they are considered an interesting therapeutic target for the diagnosis and prognosis of endometrial cancer by analyzing biomarkers contained in exosomes. Expression of miRNAs, particularly miR-15a-5p, was elevated in exosomes derived from the plasma of EC patients. This may suggest the important utility of this biomarker in the diagnosis of EC. In recent years, researchers have become interested in the topic of prognostic markers for EC, as there are still too few identified markers to support the limited treatment of endometrial cancer. Further research into the effects of ncRNAs and exosomes on EC may allow for cancer treatment breakthroughs.
Collapse
Affiliation(s)
- Julia Niebora
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Sławomir Woźniak
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Dominika Domagała
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Krzysztof Data
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Clinical Research Development Unit, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Zehtabi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahrokh Abouali Gale Dari
- Department of Obstetrics and Gynecology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Khojasteh Pour
- Department of Obstetrics and Gynecology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Artur Bryja
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC, United States
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
- Physiology Graduate Program, North Carolina State University, Raleigh, NC, United States
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czechia
| |
Collapse
|
2
|
Farazi MM, Jafarinejad-Farsangi S, Miri Karam Z, Gholizadeh M, Hadadi M, Yari A. Circular RNAs: Epigenetic regulators of PTEN expression and function in cancer. Gene 2024; 916:148442. [PMID: 38582262 DOI: 10.1016/j.gene.2024.148442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/04/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Epigenetic regulation of gene expression, without altering the DNA sequence, is involved in many normal cellular growth and division events, as well as diseases such as cancer. Epigenetics is no longer limited to DNA methylation, and histone modification, but regulatory non-coding RNAs (ncRNAs) also play an important role in epigenetics. Circular RNAs (circRNAs), single-stranded RNAs without 3' and 5' ends, have recently emerged as a class of ncRNAs that regulate gene expression. CircRNAs regulate phosphatase and tensin homolog (PTEN) expression at various levels of transcription, post-transcription, translation, and post-translation under their own regulation. Given the importance of PTEN as a tumor suppressor in cancer that inhibits one of the most important cancer pathways PI3K/AKT involved in tumor cell proliferation and survival, significant studies have been conducted on the regulatory role of circRNAs in relation to PTEN. These studies will be reviewed in this paper to better understand the function of this protein in cancer and explore new therapeutic approaches.
Collapse
Affiliation(s)
| | - Saeideh Jafarinejad-Farsangi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Zahra Miri Karam
- Department of Medical Genetics, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Endocrinology & Metabolism Research Center, Institute of Basic & Clinical Physiology Sciences, Kerman University of Medical Sciences Kerman, Iran
| | - Maryam Gholizadeh
- Institute of Bioinformatics, University of Medicine Greifswald, Greifwald, Germany
| | - Maryam Hadadi
- Cardiovascular Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Abolfazl Yari
- Endocrinology & Metabolism Research Center, Institute of Basic & Clinical Physiology Sciences, Kerman University of Medical Sciences Kerman, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
3
|
Chacón C, Mounieres C, Ampuero S, Urzúa U. Transcriptomic Analysis of the Aged Nulliparous Mouse Ovary Suggests a Stress State That Promotes Pro-Inflammatory Lipid Signaling and Epithelial Cell Enrichment. Int J Mol Sci 2023; 25:513. [PMID: 38203684 PMCID: PMC10779227 DOI: 10.3390/ijms25010513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Ovarian cancer (OC) incidence and mortality peaks at post-menopause while OC risk is either reduced by parity or increased by nulliparity during fertile life. The long-term effect of nulliparity on ovarian gene expression is largely unknown. In this study, we describe a bioinformatic/data-mining analysis of 112 coding genes upregulated in the aged nulliparous (NP) mouse ovary compared to the aged multiparous one as reference. Canonical gene ontology and pathway analyses indicated a pro-oxidant, xenobiotic-like state accompanied by increased metabolism of inflammatory lipid mediators. Up-regulation of typical epithelial cell markers in the aged NP ovary was consistent with synchronized overexpression of Cldn3, Ezr, Krt7, Krt8 and Krt18 during the pre-neoplastic phase of mOSE cell cultures in a former transcriptome study. In addition, 61/112 genes were upregulated in knockout mice for Fshr and for three other tumor suppressor genes (Pten, Cdh1 and Smad3) known to regulate follicular homeostasis in the mammalian ovary. We conclude that the aged NP ovary displays a multifaceted stress state resulting from oxidative imbalance and pro-inflammatory lipid signaling. The enriched epithelial cell content might be linked to follicle depletion and is consistent with abundant clefts and cysts observed in aged human and mouse ovaries. It also suggests a mesenchymal-to-epithelial transition in the mOSE of the aged NP ovary. Our analysis suggests that in the long term, nulliparity worsens a variety of deleterious effects of aging and senescence thereby increasing susceptibility to cancer initiation in the ovary.
Collapse
Affiliation(s)
- Carlos Chacón
- Laboratorio de Genómica Aplicada, Departamento de Oncología Básico Clínica, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (C.C.); (C.M.)
| | - Constanza Mounieres
- Laboratorio de Genómica Aplicada, Departamento de Oncología Básico Clínica, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (C.C.); (C.M.)
| | - Sandra Ampuero
- Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
| | - Ulises Urzúa
- Laboratorio de Genómica Aplicada, Departamento de Oncología Básico Clínica, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (C.C.); (C.M.)
| |
Collapse
|
4
|
Ruiz-Mitjana A, Vidal-Sabanés M, Navaridas R, Perramon-Güell A, Yeramian A, Nicholson-Sabaté N, Egea J, Encinas M, Matias-Guiu X, Dolcet X. Metformin exhibits antineoplastic effects on Pten-deficient endometrial cancer by interfering with TGF-β and p38/ERK MAPK signalling. Biomed Pharmacother 2023; 168:115817. [PMID: 37925934 DOI: 10.1016/j.biopha.2023.115817] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023] Open
Abstract
Metformin is a widespread antidiabetic agent that is commonly used as a treatment against type 2 diabetes mellitus patients. Regarding its therapeutic potential, multiple studies have concluded that Metformin exhibits antineoplastic activity on several types of cancer, including endometrial carcinoma. Although Metformin's antineoplastic activity is well documented, its cellular and molecular anticancer mechanisms are still a matter of controversy because a plethora of anticancer mechanisms have been proposed for different cancer cell types. In this study, we addressed the cellular and molecular mechanisms of Metformin's antineoplastic activity by using both in vitro and in vivo studies of Pten-loss driven carcinoma mouse models. In vivo, Metformin reduced endometrial neoplasia initiated by Pten-deficiency. Our in vitro studies using Pten-deficient endometrial organoids focused on both cellular and molecular levels in Metformin's tumor suppressive action. At cellular level, we showed that Metformin is involved in not only the proliferation of endometrial epithelial cells but also their regulation via a variety of mechanisms of epithelial-to-mesenchymal transition (EMT) as well as TGF-β-induced apoptosis. At the molecular level, Metformin was shown to affect the TGF-β signalling., a widely known signal that plays a pivotal role in endometrial carcinogenesis. In this respect, Metformin restored TGF-β-induced apoptosis of Pten-deficient endometrial organoids through a p38-dependent mechanism and inhibited TGF-β-induced EMT on no-polarized endometrial epithelial cells by inhibiting ERK/MAPK signalling. These results provide new insights into the link between the cellular and molecular mechanism for Metformin's antineoplastic activity in Pten-deficient endometrial cancers.
Collapse
Affiliation(s)
- Anna Ruiz-Mitjana
- Developmental and Oncogenic Signalling Group, Departament de Ciències Mèdiques Bàsiques and Departament de Medicina Experimental, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
| | - Maria Vidal-Sabanés
- Developmental and Oncogenic Signalling Group, Departament de Ciències Mèdiques Bàsiques and Departament de Medicina Experimental, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
| | - Raúl Navaridas
- Developmental and Oncogenic Signalling Group, Departament de Ciències Mèdiques Bàsiques and Departament de Medicina Experimental, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
| | - Aida Perramon-Güell
- Developmental and Oncogenic Signalling Group, Departament de Ciències Mèdiques Bàsiques and Departament de Medicina Experimental, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
| | - Andree Yeramian
- Developmental and Oncogenic Signalling Group, Departament de Ciències Mèdiques Bàsiques and Departament de Medicina Experimental, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
| | - Nathan Nicholson-Sabaté
- Developmental and Oncogenic Signalling Group, Departament de Ciències Mèdiques Bàsiques and Departament de Medicina Experimental, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
| | - Joaquim Egea
- Developmental and Oncogenic Signalling Group, Departament de Ciències Mèdiques Bàsiques and Departament de Medicina Experimental, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
| | - Mario Encinas
- Developmental and Oncogenic Signalling Group, Departament de Ciències Mèdiques Bàsiques and Departament de Medicina Experimental, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
| | - Xavier Matias-Guiu
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, CIBERONC, Spain
| | - Xavier Dolcet
- Developmental and Oncogenic Signalling Group, Departament de Ciències Mèdiques Bàsiques and Departament de Medicina Experimental, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain.
| |
Collapse
|
5
|
Navaridas R, Vidal‐Sabanés M, Ruiz‐Mitjana A, Altés G, Perramon‐Güell A, Yeramian A, Egea J, Encinas M, Gatius S, Matias‐Guiu X, Dolcet X. In Vivo Intra-Uterine Delivery of TAT-Fused Cre Recombinase and CRISPR/Cas9 Editing System in Mice Unveil Histopathology of Pten/p53-Deficient Endometrial Cancers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303134. [PMID: 37749866 PMCID: PMC10646277 DOI: 10.1002/advs.202303134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/25/2023] [Indexed: 09/27/2023]
Abstract
Phosphatase and TENsin homolog (Pten) and p53 are two of the most frequently mutated tumor suppressor genes in endometrial cancer. However, the functional consequences and histopathological manifestation of concomitant p53 and Pten loss of function alterations in the development of endometrial cancer is still controversial. Here, it is demonstrated that simultaneous Pten and p53 deletion is sufficient to cause epithelial to mesenchymal transition phenotype in endometrial organoids. By a novel intravaginal delivery method using HIV1 trans-activator of transcription cell penetrating peptide fused with a Cre recombinase protein (TAT-Cre), local ablation of both p53 and Pten is achieved specifically in the uterus. These mice developed high-grade endometrial carcinomas and a high percentage of uterine carcinosarcomas resembling those found in humans. To further demonstrate that carcinosarcomas arise from epithelium, double Pten/p53 deficient epithelial cells are mixed with wild type stromal and myometrial cells and subcutaneously transplanted to Scid mice. All xenotransplants resulted in the development of uterine carcinosarcomas displaying high nuclear pleomorphism and metastatic potential. Accordingly, in vivo CRISPR/Cas9 disruption of Pten and p53 also triggered the development of metastatic carcinosarcomas. The results unfadingly demonstrate that simultaneous deletion of p53 and Pten in endometrial epithelial cells is enough to trigger epithelial to mesenchymal transition that is consistently translated to the formation of uterine carcinosarcomas in vivo.
Collapse
Affiliation(s)
- Raúl Navaridas
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Maria Vidal‐Sabanés
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Anna Ruiz‐Mitjana
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Gisela Altés
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Aida Perramon‐Güell
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Andree Yeramian
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Joaquim Egea
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Mario Encinas
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Sonia Gatius
- Oncologic Pathology Group, Department of Basic Medical SciencesBiomedical Research Institute of Lleida (IRBLleida), CIBERONC.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Xavier Matias‐Guiu
- Oncologic Pathology Group, Department of Basic Medical SciencesBiomedical Research Institute of Lleida (IRBLleida), CIBERONC.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Xavier Dolcet
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| |
Collapse
|
6
|
Zhang Z, Wu W, Jiao H, Chen Y, Ji X, Cao J, Yin F, Yin W. Squalene epoxidase promotes hepatocellular carcinoma development by activating STRAP transcription and TGF-β/SMAD signalling. Br J Pharmacol 2022; 180:1562-1581. [PMID: 36581319 DOI: 10.1111/bph.16024] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 08/20/2022] [Accepted: 09/11/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Squalene epoxidase (SQLE) is a key enzyme involved in cholesterol biosynthesis, but growing evidence also reveals that SQLE is abnormally expressed in some types of malignant tumours, even though the underlying mechanism remains poorly understood. EXPERIMENTAL APPROACH Bioinformatics analysis and RNA sequencing were applied to detect differentially expressed genes in clinical hepatocellular carcinoma (HCC). MTT, colony formation, AnnexinV-FITC/PI, EdU, wound healing, transwell, western blot, qRT-PCR, IHC, F-actin, RNA-sequencing, dual-luciferase reporters, and H&E staining were used to investigate the pharmacological effects and possible mechanisms of SQLE. KEY RESULTS SQLE expression was specifically elevated in HCC, correlating with poor clinical outcomes. SQLE significantly promoted HCC growth, epithelial-mesenchymal transition, and metastasis both in vitro and in vivo. RNA sequencing and functional experiments revealed that the protumourigenic effect of SQLE on HCC was closely related to the activation of TGF-β/SMAD signalling, but the stimulatory effect of SQLE on TGF-β/SMAD signalling and HCC development is critically dependent on STRAP. SQLE expression is well correlated with STRAP in HCC, and further, to amplify TGF-β/SMAD signalling, SQLE even transcriptionally increased STRAP gene expression mediated by AP-2α. Finally, as a chemical inhibitor of SQLE, NB-598 markedly inhibited HCC cell growth and tumour development. CONCLUSIONS AND IMPLICATIONS Taken together, SQLE serves as a novel oncogene in HCC development by activating TGF-β/SMAD signalling. Targeting SQLE could be useful in drug development and therapy for HCC.
Collapse
Affiliation(s)
- Zhirui Zhang
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Wei Wu
- Organ Transplantation Center, Southern District, the First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, China
| | - Hao Jiao
- Department of Pharmacy, Fuyang People's Hospital, Fuyang, China
| | - Yuzhong Chen
- Department of Surgical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiaojun Ji
- Department of Innovation, Nanjing Chia Tai Tianqing Pharmaceutical Co., Ltd, Nanjing, China
| | - Jing Cao
- Department of Pharmacy, Women's Hospital of Nanjing Medical University/Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Fangzhou Yin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wu Yin
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
7
|
Hewitt SC, Wu SP, Wang T, Ray M, Brolinson M, Young SL, Spencer TE, DeCherney A, DeMayo FJ. The Estrogen Receptor α Cistrome in Human Endometrium and Epithelial Organoids. Endocrinology 2022; 163:bqac116. [PMID: 35895287 PMCID: PMC9368022 DOI: 10.1210/endocr/bqac116] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/19/2022]
Abstract
Endometrial health is affected by molecular processes that underlie estrogen responses. We assessed estrogen regulation of endometrial function by integrating the estrogen receptor α (ESR1) cistromes and transcriptomes of endometrial biopsies taken from the proliferative and mid-secretory phases of the menstrual cycle together with hormonally stimulated endometrial epithelial organoids. The cycle stage-specific ESR1 binding sites were determined by chromatin immunoprecipitation and next-generation sequencing and then integrated with changes in gene expression from RNA sequencing data to infer candidate ESR1 targets in normal endometrium. Genes with ESR1 binding in whole endometrium were enriched for chromatin modification and regulation of cell proliferation. The distribution of ESR1 binding sites in organoids was more distal from gene promoters when compared to primary endometrium and was more similar to the proliferative than the mid-secretory phase ESR1 cistrome. Inferred organoid estrogen/ESR1 candidate target genes affected formation of cellular protrusions and chromatin modification. Comparison of signaling effected by candidate ESR1 target genes in endometrium vs organoids reveals enrichment of both overlapping and distinct responses. Our analysis of the ESR1 cistromes and transcriptomes from endometrium and organoids provides important resources for understanding how estrogen affects endometrial health and function.
Collapse
Affiliation(s)
- Sylvia C Hewitt
- Pregnancy & Female Reproduction, RDBL, NIEHS, Research Triangle Park, North Carolina 27709, USA
| | - San-pin Wu
- Pregnancy & Female Reproduction, RDBL, NIEHS, Research Triangle Park, North Carolina 27709, USA
| | - Tianyuan Wang
- Integrative Bioinformatics Support Group, NIEHS, Research Triangle Park, North Carolina 27709, USA
| | - Madhumita Ray
- Pregnancy & Female Reproduction, RDBL, NIEHS, Research Triangle Park, North Carolina 27709, USA
| | - Marja Brolinson
- Program in Reproductive and Adult Endocrinology, NICHD, Bethesda, Maryland 20847, USA
| | - Steven L Young
- Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Thomas E Spencer
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, Missouri 65211, USA
| | - Alan DeCherney
- Program in Reproductive and Adult Endocrinology, NICHD, Bethesda, Maryland 20847, USA
| | - Francesco J DeMayo
- Pregnancy & Female Reproduction, RDBL, NIEHS, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
8
|
Lack of extracellular matrix switches TGF-β induced apoptosis of endometrial cells to epithelial to mesenchymal transition. Sci Rep 2022; 12:14821. [PMID: 36050359 PMCID: PMC9437059 DOI: 10.1038/s41598-022-18976-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/23/2022] [Indexed: 11/12/2022] Open
Abstract
The extracellular matrix and the correct establishment of epithelial cell polarity plays a critical role in epithelial cell homeostasis and cell polarity. In addition, loss of tissue structure is a hallmark of carcinogenesis. In this study, we have addressed the role of extracellular matrix in the cellular responses to TGF-β. It is well known that TGF-β is a double-edged sword: it acts as a tumor suppressor in normal epithelial cells, but conversely has tumor-promoting effects in tumoral cells. However, the factors that determine cellular outcome in response to TGF-β remain controversial. Here, we have demonstrated that the lack of extracellular matrix and consequent loss of cell polarity inhibits TGF-β-induced apoptosis, observed when endometrial epithelial cells are polarized in presence of extracellular matrix. Rather, in absence of extracellular matrix, TGF-β-treated endometrial epithelial cells display features of epithelial-to-mesenchymal transition. We have also investigated the molecular mechanism of such a switch in cellular response. On the one hand, we found that the lack of Matrigel results in increased AKT signaling which is sufficient to inhibit TGF-β-induced apoptosis. On the other hand, we demonstrate that TGF-β-induced epithelial-to-mesenchymal transition requires ERK and SMAD2/3 activation. In summary, we demonstrate that loss of cell polarity changes the pro-apoptotic function of TGF-β to tumor-associated phenotype such as epithelial-to-mesenchymal transition. These results may be important for understanding the dual role of TGF-β in normal versus tumoral cells.
Collapse
|
9
|
Fedorova O, Parfenyev S, Daks A, Shuvalov O, Barlev NA. The Role of PTEN in Epithelial–Mesenchymal Transition. Cancers (Basel) 2022; 14:cancers14153786. [PMID: 35954450 PMCID: PMC9367281 DOI: 10.3390/cancers14153786] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The PTEN phosphatase is a ubiquitously expressed tumor suppressor, which inhibits the PI3K/AKT pathway in the cell. The PI3K/AKT pathway is considered to be one of the main signaling pathways that drives the proliferation of cancer cells. Furthermore, the same pathway controls the epithelial–mesenchymal transition (EMT). EMT is an evolutionarily conserved developmental program, which, upon aberrant reactivation, is also involved in the formation of cancer metastases. Importantly, metastasis is the leading cause of cancer-associated deaths. In this review, we discuss the literature data that highlight the role of PTEN in EMT. Based on this knowledge, we speculate about new possible strategies for cancer treatment. Abstract Phosphatase and Tensin Homolog deleted on Chromosome 10 (PTEN) is one of the critical tumor suppressor genes and the main negative regulator of the PI3K pathway. PTEN is frequently found to be inactivated, either partially or fully, in various malignancies. The PI3K/AKT pathway is considered to be one of the main signaling cues that drives the proliferation of cells. Perhaps it is not surprising, then, that this pathway is hyperactivated in highly proliferative tumors. Importantly, the PI3K/AKT pathway also coordinates the epithelial–mesenchymal transition (EMT), which is pivotal for the initiation of metastases and hence is regarded as an attractive target for the treatment of metastatic cancer. It was shown that PTEN suppresses EMT, although the exact mechanism of this effect is still not fully understood. This review is an attempt to systematize the published information on the role of PTEN in the development of malignant tumors, with a main focus on the regulation of the PI3K/AKT pathway in EMT.
Collapse
|
10
|
BCHE as a Prognostic Biomarker in Endometrial Cancer and Its Correlation with Immunity. J Immunol Res 2022; 2022:6051092. [PMID: 35915658 PMCID: PMC9338740 DOI: 10.1155/2022/6051092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/14/2022] [Accepted: 06/06/2022] [Indexed: 12/02/2022] Open
Abstract
Background In developed countries, the most common gynecologic malignancy is endometrial carcinoma (EC), making the identification of EC biomarkers extremely essential. As a natural enzyme, butyrylcholinesterase (BCHE) is found in hepatocytes and plasma. There is a strong correlation between BCHE gene mutations and cancers and other diseases. The aim of this study was to analyze the role of BCHE in patients with EC. Methods A variety of analyses were conducted on The Cancer Genome Atlas (TCGA) data, including differential expression analysis, enrichment analysis, immunity, clinicopathology, and survival analysis. The Gene Expression Omnibus (GEO) database was used to validate outcomes. Using R tools, Gene Set Enrichment Analysis (GSEA) and Gene Ontology (GO) analyses revealed the potential mechanisms of BCHE in EC. Sangerbox tools were used to delve into the relations between BCHE expression and tumor microenvironment, including microsatellite instability (MSI), tumor neoantigen count (TNC), and tumor mutation burden (TMB). BCHE's genetic alteration analysis was conducted by cBioPortal. In addition, the Human Protein Atlas (HPA) was used to validate the outcomes by immunohistochemistry, and an analysis of the protein-protein interaction network (PPI) was performed with the help of the STRING database. Results Based on our results, BCHE was a significant independent prognostic factor for patients with EC. The prognosis with EC was affected by age, stage, grade, histological type, and BCHE. GSEA showed that BCHE was closely related to pathways regulating immune response, including transforming growth factor-β (TGF-β) signaling pathways and cancer immunotherapy through PD1 blockade pathways. The immune analysis revealed that CD4+ regulatory T cells (Tregs) were negatively correlated with BCHE expression and the immune checkpoint molecules CD28, ADORA2A, BTNL2, and TNFRSF18 were all significantly related to BCHE. BCHE expression was also associated with TMB by genetic alteration analysis. Conclusions Identifying BCHE as a biomarker for EC might help predict its prognosis and could have important implications for immunotherapy.
Collapse
|
11
|
Megino-Luque C, Sisó P, Mota-Martorell N, Navaridas R, de la Rosa I, Urdanibia I, Albertí-Valls M, Santacana M, Pinyol M, Bonifaci N, Macià A, Llobet-Navas D, Gatius S, Matias-Guiu X, Eritja N. ARID1A-deficient cells require HDAC6 for progression of endometrial carcinoma. Mol Oncol 2022; 16:2235-2259. [PMID: 35167193 PMCID: PMC9168762 DOI: 10.1002/1878-0261.13193] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/22/2021] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
AT‐rich interactive domain‐containing protein 1A (ARID1A) loss‐of‐function mutation accompanied by a loss of ARID1A protein expression is frequently observed in endometrial carcinomas. However, the molecular mechanisms linking these genetic changes to the altered pathways regulating tumour initiation, maintenance and/or progression remain poorly understood. Thus, the main aim of this study was to analyse the role of ARID1A loss of function in endometrial tumorigenesis. Here, using different endometrial in vitro and in vivo models, such as tumoral cell lines, 3D primary cultures and metastatic or genetically modified mouse models, we show that altered expression of ARID1A is not enough to initiate endometrial tumorigenesis. However, in an established endometrial cancer context, ARID1A loss of function accelerates tumoral progression and metastasis through the disruption of the G2/M cell cycle checkpoint and ATM/ATR‐mediated DNA damage checkpoints, increases epithelial cell proliferation rates and induces epithelial mesenchymal transition through the activation of histone deacetylase 6 (HDAC6). Next, we demonstrated that the inhibition of HDAC6 function, using the HDAC6‐specific inhibitor ACY1215 or by transfection with HDAC6 short hairpin RNA (shRNA), can reverse the migratory and invasive phenotype of ARID1A‐knockdown cells. Further, we also show that inhibition of HDAC6 activity causes an apoptotic vulnerability to etoposide treatments in ARID1A‐deficient cells. In summary, the findings exposed in this work indicate that the inhibition of HDAC6 activity is a potential therapeutic strategy for patients suffering from ARID1A‐mutant endometrial cancer diagnosed in advanced stages.
Collapse
Affiliation(s)
- Cristina Megino-Luque
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Pol Sisó
- Oncologic Pathology Group, Department of Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Natalia Mota-Martorell
- Metabolic Physiopathology Group, Department of Experimental Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Raúl Navaridas
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Inés de la Rosa
- Oncologic Pathology Group, Department of Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Izaskun Urdanibia
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Manel Albertí-Valls
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Maria Santacana
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029, Madrid, Spain.,Scientific and Technical Service of Immunohistochemistry, Biomedical Research Institute of Lleida (IRBLleida), Hospital Universitari Arnau de Vilanova, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Miquel Pinyol
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain.,Department of Pathology, Hospital Universitari Arnau de Vilanova, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Núria Bonifaci
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Anna Macià
- Oncologic Pathology Group, Department of Experimental Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - David Llobet-Navas
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029, Madrid, Spain.,Molecular Mechanisms and Experimental Therapy in Oncology-Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran via De l'Hospitalet 199, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sònia Gatius
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029, Madrid, Spain.,Oncologic Pathology Group, Department of Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Xavier Matias-Guiu
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029, Madrid, Spain.,Oncologic Pathology Group, Department of Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain.,Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL, University of Barcelona, Av. Gran via de l'Hospitalet 199, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Núria Eritja
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029, Madrid, Spain.,Oncologic Pathology Group, Department of Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| |
Collapse
|
12
|
Eritja N, Navaridas R, Ruiz-Mitjana A, Vidal-Sabanés M, Egea J, Encinas M, Matias-Guiu X, Dolcet X. Endometrial PTEN Deficiency Leads to SMAD2/3 Nuclear Translocation. Cancers (Basel) 2021; 13:cancers13194990. [PMID: 34638474 PMCID: PMC8507901 DOI: 10.3390/cancers13194990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary PTEN is a protein highly altered in endometrial cancer. PTEN mutation or deficiency leads to the activation of other downstream proteins that are important to the development of cancers. In this study, we have identified the SMAD2/3 proteins as targets of PTEN deficiency. We have found that loss of PTEN in endometrial cells leads to SMAD2/3 activation. To investigate the role of SMAD2/3 activation downstream of PTEN deficiency, we have used endometrial cells lacking both PTEN and SMAD2/3 proteins. These cells display even more tumorigenic potential than cells lacking only PTEN. These results suggest that SMAD2/3 acts as an obstacle for cancer development triggered by PTEN loss. Abstract TGF-β has a dichotomous function, acting as tumor suppressor in premalignant cells but as a tumor promoter for cancerous cells. These contradictory functions of TGF-β are caused by different cellular contexts, including both intracellular and environmental determinants. The TGF-β/SMAD and the PI3K/PTEN/AKT signal transduction pathways have an important role in the regulation of epithelial cell homeostasis and perturbations in either of these two pathways’ contributions to endometrial carcinogenesis. We have previously demonstrated that both PTEN and SMAD2/3 display tumor-suppressive functions in the endometrium, and genetic ablation of either gene results in sustained activation of PI3K/AKT signaling that suppresses TGF-β-induced apoptosis and enhances cell proliferation of mouse endometrial cells. However, the molecular and cellular effects of PTEN deficiency on TGF-β/SMAD2/3 signaling remain controversial. Here, using an in vitro and in vivo model of endometrial carcinogenesis, we have demonstrated that loss of PTEN leads to a constitutive SMAD2/3 nuclear translocation. To ascertain the function of nuclear SMAD2/3 downstream of PTEN deficiency, we analyzed the effects of double deletion PTEN and SMAD2/3 in mouse endometrial organoids. Double PTEN/SMAD2/3 ablation results in a further increase of cell proliferation and enlarged endometrial organoids compared to those harboring single PTEN, suggesting that nuclear translocation of SMAD2/3 constrains tumorigenesis induced by PTEN deficiency.
Collapse
Affiliation(s)
- Núria Eritja
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, IRBLleida, Universitat de Lleida, Centro de Investigación Biomédica en Red Cáncer CIBERONC, 25198 Lleida, Spain; (N.E.); (R.N.); (A.R.-M.); (M.V.-S.); (X.M.-G.)
| | - Raúl Navaridas
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, IRBLleida, Universitat de Lleida, Centro de Investigación Biomédica en Red Cáncer CIBERONC, 25198 Lleida, Spain; (N.E.); (R.N.); (A.R.-M.); (M.V.-S.); (X.M.-G.)
| | - Anna Ruiz-Mitjana
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, IRBLleida, Universitat de Lleida, Centro de Investigación Biomédica en Red Cáncer CIBERONC, 25198 Lleida, Spain; (N.E.); (R.N.); (A.R.-M.); (M.V.-S.); (X.M.-G.)
| | - Maria Vidal-Sabanés
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, IRBLleida, Universitat de Lleida, Centro de Investigación Biomédica en Red Cáncer CIBERONC, 25198 Lleida, Spain; (N.E.); (R.N.); (A.R.-M.); (M.V.-S.); (X.M.-G.)
| | - Joaquim Egea
- Molecular Developmental Neurobiology Group, Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, IRBLleida, Universitat de Lleida, 25198 Lleida, Spain;
| | - Mario Encinas
- Developmental and Oncogenic Signalling Group, Departament de Medicina Experimental, Institut de Recerca Biomèdica de Lleida, IRBLleida, Universitat de Lleida, 25198 Lleida, Spain;
| | - Xavier Matias-Guiu
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, IRBLleida, Universitat de Lleida, Centro de Investigación Biomédica en Red Cáncer CIBERONC, 25198 Lleida, Spain; (N.E.); (R.N.); (A.R.-M.); (M.V.-S.); (X.M.-G.)
- Department of Pathology, Hospital Universitari de Bellvitge, 08908 Barcelona, Spain
| | - Xavier Dolcet
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, IRBLleida, Universitat de Lleida, Centro de Investigación Biomédica en Red Cáncer CIBERONC, 25198 Lleida, Spain; (N.E.); (R.N.); (A.R.-M.); (M.V.-S.); (X.M.-G.)
- Correspondence:
| |
Collapse
|
13
|
Expression of Transforming Growth Factor Beta Isoforms in Canine Endometrium with Cystic Endometrial Hyperplasia-Pyometra Complex. Animals (Basel) 2021; 11:ani11061844. [PMID: 34205820 PMCID: PMC8234116 DOI: 10.3390/ani11061844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Pathomorphological changes and functional disorders of the uterus have long been a significant problem in the reproduction of dogs. The most commonly identified uterine disorders leading to permanent loss of fertility in dogs include cystic endometrial hyperplasia (CEH) and pyometra. These diseases may occur jointly as a CEH–pyometra complex. Despite numerous studies, the etiology of this disease remains unclear. TGF-β is considered to be one of the key factors in pathophysiological uterine disorders. The results indicate the significant expression of TGF-β1 in endometrial tissues in bitches affected by CEH–pyometra complex. Consequently, among all TGF-β isoforms, TGF-β1 is a potential biomarker involved in the regulation of a dog’s endometrium with proliferative and degenerative changes. Abstract Cystic endometrial hyperplasia (CEH) and pyometra are the most frequently diagnosed uterine diseases affecting bitches of different ages. Transforming growth factor beta (TGF-β) has been classified in females as a potential regulator of many endometrial changes during the estrous cycle or may be involved in pathological disorders. The aim of this study was to determine the expression of TGF-β1, -β2 and -β3 in the endometrium of bitches suffering from CEH or a CEH–pyometra complex compared to clinically healthy females (control group; CG). A significantly increased level of TGF-β1 mRNA expression was observed in the endometrium with CEH–pyometra compared to CEH and CG. Protein production of TGF-β1 was identified only in the endometrium of bitches with CEH–pyometra. An increase in TGF-β3 mRNA expression was observed in all the studied groups compared to CG. The expression of TGF-β2 mRNA was significantly higher in CEH and lower in CEH–pyometra uteri. The results indicate the presence of TGF-β cytokines in canine endometrial tissues affected by proliferative and degenerative changes. However, among all TGF-β isoforms, TGF-β1 could potentially be a key factor involved in the regulation of the endometrium in bitches with CEH–pyometra complex.
Collapse
|
14
|
Inactivation of Arid1a in the endometrium is associated with endometrioid tumorigenesis through transcriptional reprogramming. Nat Commun 2020; 11:2717. [PMID: 32483112 PMCID: PMC7264300 DOI: 10.1038/s41467-020-16416-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 05/04/2020] [Indexed: 01/01/2023] Open
Abstract
Somatic inactivating mutations of ARID1A, a SWI/SNF chromatin remodeling gene, are prevalent in human endometrium-related malignancies. To elucidate the mechanisms underlying how ARID1A deleterious mutation contributes to tumorigenesis, we establish genetically engineered murine models with Arid1a and/or Pten conditional deletion in the endometrium. Transcriptomic analyses on endometrial cancers and precursors derived from these mouse models show a close resemblance to human uterine endometrioid carcinomas. We identify transcriptional networks that are controlled by Arid1a and have an impact on endometrial tumor development. To verify findings from the murine models, we analyze ARID1AWT and ARID1AKO human endometrial epithelial cells. Using a system biology approach and functional studies, we demonstrate that ARID1A-deficiency lead to loss of TGF-β tumor suppressive function and that inactivation of ARID1A/TGF-β axis promotes migration and invasion of PTEN-deleted endometrial tumor cells. These findings provide molecular insights into how ARID1A inactivation accelerates endometrial tumor progression and dissemination, the major causes of cancer mortality. ARID1A, which is often mutated in human endometrial cancer, is a component of the SWI/SNF chromatin remodelling complex. Here, the authors show that Arid1a mutations in the mouse endometrium and primary human endometrial epithelial cells cause widespread reprogramming of gene transcription and result in a loss of response to TGFβ.
Collapse
|
15
|
Qi L, Zhang T, Yao Y, Zhuang J, Liu C, Liu R, Sun C. Identification of lncRNAs associated with lung squamous cell carcinoma prognosis in the competitive endogenous RNA network. PeerJ 2019; 7:e7727. [PMID: 31576252 PMCID: PMC6753923 DOI: 10.7717/peerj.7727] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/22/2019] [Indexed: 12/24/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) play a role in the formation, development, and prognosis of various cancers. Our study aimed to identify prognostic-related lncRNAs in lung squamous cell carcinoma (LUSC), which may provide new perspectives for individualized treatment of patients. Materials and Methods The RNA sequencing (lncRNA, microRNA (miRNA), mRNA) data and clinical information related to LUSC were obtained from The Cancer Genome Atlas (TCGA) database. Differentially expressed RNA sequences were used to construct the competitive endogenous RNA (ceRNA) network. In present study, we mainly used two prognostic verification methods, Cox analysis and survival analysis, to identify the prognostic relevance of specific lncRNAs and construct prognostic model of lncRNA. Results Datasets on 551 samples of lncRNA and mRNA and 523 miRNA samples were retrieved from the TCGA database. Analysis of the normal and LUSC samples identified 170 DElncRNAs, 331 DEmiRNAs, and 417 DEmRNAs differentially expressed RNAs. The ceRNA network contained 27 lncRNAs, 43 miRNAs, and 11 mRNAs. Furthermore, we identified seven specific lncRNAs (ERVH48-1, HCG9, SEC62-AS1, AC022148.1, LINC00460, C5orf17, LINC00261) as potential prognostic factors after correlation analysis, and five of the seven lncRNAs (AC022148.1, HCG9, LINC00460, C5orf17, LINC00261) constructed a prognostic model of LUSC. Conclusion In present study, we identified seven lncRNAs in the ceRNA network that are associated with potential prognosis in LUSC patients, and constructed a prognostic model of LUSC which can be used to assess the prognosis risk of clinical patients. Further biological experiments are needed to elucidate the specific molecular mechanisms underlying them.
Collapse
Affiliation(s)
- Lingyu Qi
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Yao
- Clinical Medical Colleges, Weifang Medical University, Weifang, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Changgang Sun
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
16
|
Felip I, Moiola CP, Megino-Luque C, Lopez-Gil C, Cabrera S, Solé-Sánchez S, Muñoz-Guardiola P, Megias-Roda E, Pérez-Montoyo H, Alfon J, Yeste-Velasco M, Santacana M, Dolcet X, Reques A, Oaknin A, Rodríguez-Freixinos V, Lizcano JM, Domènech C, Gil-Moreno A, Matias-Guiu X, Colas E, Eritja N. Therapeutic potential of the new TRIB3-mediated cell autophagy anticancer drug ABTL0812 in endometrial cancer. Gynecol Oncol 2019; 153:425-435. [PMID: 30853360 DOI: 10.1016/j.ygyno.2019.03.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The PI3K/AKT/mTOR pathway is frequently overactivated in endometrial cancer (EC). We assessed the efficacy of ABTL0812, a novel first-in-class molecule presenting a unique mechanism of action inhibiting this pathway. METHODS We investigated the effects of ABTL0812 on proliferation, cell death and modulation of intracellular signaling pathways in a wide panel of endometrioid and non-endometrioid cell lines, an inducible PTEN knock-out murine model, and two patient-derived xenograft murine models of EC. Then, TRIB3 expression was evaluated as potential ABTL0812 pharmacodynamic biomarker in a Phase 1b/2a clinical trial. RESULTS ABTL0812 induced an upregulation of TRIB3 expression, resulting in the PI3K/AKT/mTOR axis inhibition and autophagy cell death induction on EC cells but not in healthy endometrial cells. ABTL0812 treatment also impaired PTEN knock-out cells to progress from hyperplasia to cancer. The therapeutic effects of ABTL0812 were demonstrated in vivo. ABTL0812 increased TRIB3 mRNA levels in whole blood samples of eight EC patients, demonstrating that TRIB3 mRNA could be used as a pharmacodynamic biomarker to monitor the ABTL0812 treatment. CONCLUSIONS ABTL0812 may represent a novel and highly effective therapeutic agent by inducing TRIB3 expression and autophagy in EC patients, including those with poorer prognosis.
Collapse
Affiliation(s)
- Isidre Felip
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, CIBERONC, Lleida, Spain
| | - Cristian Pablo Moiola
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, CIBERONC, Lleida, Spain; Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, CIBERONC, Barcelona, Spain
| | - Cristina Megino-Luque
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, CIBERONC, Lleida, Spain
| | - Carlos Lopez-Gil
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, CIBERONC, Barcelona, Spain
| | - Silvia Cabrera
- Gynecological Oncology Department, Vall Hebron University Hospital, CIBERONC, Barcelona, Spain
| | | | - Pau Muñoz-Guardiola
- Ability Pharmaceuticals, SL, Cerdanyola Del Vallès, Barcelona, Spain; Protein Kinases and Signal Transduction Laboratory, Institut de Neurociències and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Elisabet Megias-Roda
- Ability Pharmaceuticals, SL, Cerdanyola Del Vallès, Barcelona, Spain; Protein Kinases and Signal Transduction Laboratory, Institut de Neurociències and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | - José Alfon
- Ability Pharmaceuticals, SL, Cerdanyola Del Vallès, Barcelona, Spain
| | | | - María Santacana
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, CIBERONC, Lleida, Spain
| | - Xavier Dolcet
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, CIBERONC, Lleida, Spain
| | - Armando Reques
- Pathology Department, Vall Hebron University Hospital, Barcelona, Spain
| | - Ana Oaknin
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Victor Rodríguez-Freixinos
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - José Miguel Lizcano
- Protein Kinases and Signal Transduction Laboratory, Institut de Neurociències and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Carles Domènech
- Ability Pharmaceuticals, SL, Cerdanyola Del Vallès, Barcelona, Spain
| | - Antonio Gil-Moreno
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, CIBERONC, Barcelona, Spain; Gynecological Oncology Department, Vall Hebron University Hospital, CIBERONC, Barcelona, Spain.
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, CIBERONC, Lleida, Spain; Department of Pathology, University Hospital of Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Eva Colas
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, CIBERONC, Barcelona, Spain.
| | - Nuria Eritja
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, CIBERONC, Lleida, Spain.
| |
Collapse
|
17
|
Rossato VV, Silveira DA, Gupta S, Mombach JCM. Towards the contribution of the p38MAPK pathway to the dual role of TGFβ in cancer: A boolean model approach. Comput Biol Med 2018; 104:235-240. [PMID: 30530226 DOI: 10.1016/j.compbiomed.2018.11.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 12/19/2022]
Abstract
The transforming growth factor-beta (TGF-β) pathway is involved in the regulation of cell growth and differentiation. In normal cells or in the early stages of cancer, this pathway can control proliferation stimuli by inducing cell cycle arrest or apoptosis (through the MAP-kinase protein p38MAPK), while in late stages it seems to act as a tumor promoter. This feature is known as the TGF-β dual role in cancer and it is not completely explained. This seems to arise through the accumulation of mutations in cancer development that affect the normal function of these pathways. In this work we propose a Boolean model of the crosstalk between the TGF-β, p38 MAPK and cell cycle checkpoint pathways which qualitatively describes this dual behavior. The model shows that for the wild type case, TGF-β acts as tumor supressor by inducing cell cycle arrest or apoptosis, as expected. However, the loss of function (LoF) of its two signaling proteins: SMAD2 and SMAD3 has immortalization effects due to the activation of the PI3K/AKT pathway that contributes to inhibit apoptosis. In silico mutations of the model elements were compared with cell phenotypes in experiments presenting agreement. In addition, we performed a series of double gene perturbations (that simulate random deleterious mutations) to determine the main regulators of the network. The results suggest that SMAD2/3 and p38MAPK are key players in processing the network input. In addition, when the LoF of SMAD2/3 is combined with the LoF of p38MAPK and p53, cell cycle arrest is completely abrogated. In conclusion, the model allows to visualize, through in silico mutations, the dual role of TGF-β: for the wild-type case TGF-β is able to block proliferation, however deleterious mutations can impair cell cycle arrest promoting cellular proliferation.
Collapse
Affiliation(s)
| | - Daner A Silveira
- Departamento de Física, Universidade Federal de Santa Maria, Brazil
| | - Shantanu Gupta
- Departamento de Física, Universidade Federal de Santa Maria, Brazil
| | | |
Collapse
|
18
|
Dosil MA, Navaridas R, Mirantes C, Tarragona J, Eritja N, Felip I, Urdanibia I, Megino C, Domingo M, Santacana M, Gatius S, Piñol C, Barceló C, Maiques O, Macià A, Velasco A, Vaquero M, Matias-Guiu X, Dolcet X. Tumor suppressive function of E2F-1 on PTEN-induced serrated colorectal carcinogenesis. J Pathol 2018; 247:72-85. [DOI: 10.1002/path.5168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/22/2018] [Accepted: 09/04/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Maria A Dosil
- Oncologic Pathology Group, Department de Ciències Mèdiques Bàsiques, Universitat de Lleida, Hospital Universitari Arnau de Vilanova; Institut de Recerca Biomèdica de Lleida, IRBLleida; Lleida Spain
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC); Madrid Spain
| | - Raúl Navaridas
- Oncologic Pathology Group, Department de Ciències Mèdiques Bàsiques, Universitat de Lleida, Hospital Universitari Arnau de Vilanova; Institut de Recerca Biomèdica de Lleida, IRBLleida; Lleida Spain
| | - Cristina Mirantes
- Oncologic Pathology Group, Department de Ciències Mèdiques Bàsiques, Universitat de Lleida, Hospital Universitari Arnau de Vilanova; Institut de Recerca Biomèdica de Lleida, IRBLleida; Lleida Spain
| | - Jordi Tarragona
- Oncologic Pathology Group, Department de Ciències Mèdiques Bàsiques, Universitat de Lleida, Hospital Universitari Arnau de Vilanova; Institut de Recerca Biomèdica de Lleida, IRBLleida; Lleida Spain
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC); Madrid Spain
| | - Núria Eritja
- Oncologic Pathology Group, Department de Ciències Mèdiques Bàsiques, Universitat de Lleida, Hospital Universitari Arnau de Vilanova; Institut de Recerca Biomèdica de Lleida, IRBLleida; Lleida Spain
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC); Madrid Spain
| | - Isidre Felip
- Oncologic Pathology Group, Department de Ciències Mèdiques Bàsiques, Universitat de Lleida, Hospital Universitari Arnau de Vilanova; Institut de Recerca Biomèdica de Lleida, IRBLleida; Lleida Spain
| | - Izaskun Urdanibia
- Oncologic Pathology Group, Department de Ciències Mèdiques Bàsiques, Universitat de Lleida, Hospital Universitari Arnau de Vilanova; Institut de Recerca Biomèdica de Lleida, IRBLleida; Lleida Spain
| | - Cristina Megino
- Oncologic Pathology Group, Department de Ciències Mèdiques Bàsiques, Universitat de Lleida, Hospital Universitari Arnau de Vilanova; Institut de Recerca Biomèdica de Lleida, IRBLleida; Lleida Spain
| | - Mónica Domingo
- Oncologic Pathology Group, Department de Ciències Mèdiques Bàsiques, Universitat de Lleida, Hospital Universitari Arnau de Vilanova; Institut de Recerca Biomèdica de Lleida, IRBLleida; Lleida Spain
| | - Maria Santacana
- Oncologic Pathology Group, Department de Ciències Mèdiques Bàsiques, Universitat de Lleida, Hospital Universitari Arnau de Vilanova; Institut de Recerca Biomèdica de Lleida, IRBLleida; Lleida Spain
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC); Madrid Spain
| | - Sònia Gatius
- Oncologic Pathology Group, Department de Ciències Mèdiques Bàsiques, Universitat de Lleida, Hospital Universitari Arnau de Vilanova; Institut de Recerca Biomèdica de Lleida, IRBLleida; Lleida Spain
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC); Madrid Spain
| | - Carme Piñol
- Department de Medicina; Universitat de Lleida-Institut de Recerca Biomèdica de Lleida (IRBLleida); Lleida Spain
| | - Carla Barceló
- Oncologic Pathology Group, Department de Ciències Mèdiques Bàsiques, Universitat de Lleida, Hospital Universitari Arnau de Vilanova; Institut de Recerca Biomèdica de Lleida, IRBLleida; Lleida Spain
| | - Oscar Maiques
- Oncologic Pathology Group, Department de Ciències Mèdiques Bàsiques, Universitat de Lleida, Hospital Universitari Arnau de Vilanova; Institut de Recerca Biomèdica de Lleida, IRBLleida; Lleida Spain
| | - Anna Macià
- Oncologic Pathology Group, Department de Ciències Mèdiques Bàsiques, Universitat de Lleida, Hospital Universitari Arnau de Vilanova; Institut de Recerca Biomèdica de Lleida, IRBLleida; Lleida Spain
| | - Ana Velasco
- Department of Pathology and Molecular Genetics; Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLleida; Lleida Spain
| | - Marta Vaquero
- Department of Pathology and Molecular Genetics; Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLleida; Lleida Spain
| | - Xavier Matias-Guiu
- Oncologic Pathology Group, Department de Ciències Mèdiques Bàsiques, Universitat de Lleida, Hospital Universitari Arnau de Vilanova; Institut de Recerca Biomèdica de Lleida, IRBLleida; Lleida Spain
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC); Madrid Spain
| | - Xavier Dolcet
- Oncologic Pathology Group, Department de Ciències Mèdiques Bàsiques, Universitat de Lleida, Hospital Universitari Arnau de Vilanova; Institut de Recerca Biomèdica de Lleida, IRBLleida; Lleida Spain
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC); Madrid Spain
| |
Collapse
|
19
|
Raschellà G, Melino G, Gambacurta A. Cell death in cancer in the era of precision medicine. Genes Immun 2018; 20:529-538. [PMID: 30341419 DOI: 10.1038/s41435-018-0048-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 12/11/2022]
Abstract
Tumors constitute a large class of diseases that affect different organs and cell lineages. The molecular characterization of cancers of a given type has revealed an extraordinary heterogeneity in terms of genetic alterations and DNA mutations; heterogeneity that is further highlighted by single-cell DNA sequencing of individual patients. To address these issues, drugs that specifically target genes or altered pathways in cancer cells are continuously developed. Indeed, the genetic fingerprint of individual tumors can direct the modern therapeutic approaches to selectively hit the tumor cells while sparing the healthy ones. In this context, the concept of precision medicine finds a vast field of application. In this review, we will briefly list some classes of target drugs (Bcl-2 family modulators, Tyrosine Kinase modulators, PARP inhibitors, and growth factors inhibitors) and discuss the application of immunotherapy in tumors (T cell-mediated immunotherapy and CAR-T cells) that in recent years has drastically changed the prognostic outlook of aggressive cancers. We will also consider how apoptosis could represent a primary end point in modern cancer therapy and how "classic" chemotherapeutic drugs that induce apoptosis are still utilized in therapeutic schedules that involve the use of target drugs or immunotherapy to optimize the antitumor response.
Collapse
Affiliation(s)
- Giuseppe Raschellà
- ENEA Research Center Casaccia, Laboratory of Biosafety and Risk Assessment, Via Anguillarese, 301, 00123, Rome, Italy.
| | - Gerry Melino
- Department of Experimental Medicine TOR, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.,Medical Research Council, Toxicology Unit, Hodgkin Building, University of Cambridge, Leicester, LE1 9HN, UK
| | - Alessandra Gambacurta
- Department of Experimental Medicine TOR, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| |
Collapse
|
20
|
Luo J, Liu H, Wang J, Li L, Han C, Gan X, Li Y, Bai L, Mustafa A. Transcriptome reveals B lymphocyte apoptosis in duck embryonic bursa of Fabricius mediated by mitochondrial and Fas signaling pathways. Mol Immunol 2018; 101:120-129. [DOI: 10.1016/j.molimm.2018.06.266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/09/2017] [Accepted: 06/12/2018] [Indexed: 12/15/2022]
|
21
|
Liang X, Daikoku T, Terakawa J, Ogawa Y, Joshi AR, Ellenson LH, Sun X, Dey SK. The uterine epithelial loss of Pten is inefficient to induce endometrial cancer with intact stromal Pten. PLoS Genet 2018; 14:e1007630. [PMID: 30142194 PMCID: PMC6126871 DOI: 10.1371/journal.pgen.1007630] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/06/2018] [Accepted: 08/14/2018] [Indexed: 11/19/2022] Open
Abstract
Mutation of the tumor suppressor Pten often leads to tumorigenesis in various organs including the uterus. We previously showed that Pten deletion in the mouse uterus using a Pgr-Cre driver (Ptenf/fPgrCre/+) results in rapid development of endometrial carcinoma (EMC) with full penetration. We also reported that Pten deletion in the stroma and myometrium using Amhr2-Cre failed to initiate EMC. Since the Ptenf/fPgrCre/+ uterine epithelium was primarily affected by tumorigenesis despite its loss in both the epithelium and stroma, we wanted to know if Pten deletion in epithelia alone will induce tumorigenesis. We found that mice with uterine epithelial loss of Pten under a Ltf-iCre driver (Ptenf/f/LtfCre/+) develop uterine complex atypical hyperplasia (CAH), but rarely EMC even at 6 months of age. We observed that Ptenf/fPgrCre/+ uteri exhibit a unique population of cytokeratin 5 (CK5) and transformation related protein 63 (p63)-positive epithelial cells; these cells mark stratified epithelia and squamous differentiation. In contrast, Ptenf/fLtfCre/+ hyperplastic epithelia do not undergo stratification, but extensive epithelial cell apoptosis. This increased apoptosis is associated with elevation of TGFβ levels and activation of downstream effectors, SMAD2/3 in the uterine stroma. Our results suggest that stromal PTEN via TGFβ signaling restrains epithelial cell transformation from hyperplasia to carcinoma. In conclusion, this study, using tissue-specific deletion of Pten, highlights the epithelial-mesenchymal cross-talk in the genesis of endometrial carcinoma.
Collapse
Affiliation(s)
- Xiaohuan Liang
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Takiko Daikoku
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Institute for Experimental Animals, Kanazawa University Advanced Science Research Center, Kanazawa, Ishikawa, Japan
| | - Jumpei Terakawa
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Institute for Experimental Animals, Kanazawa University Advanced Science Research Center, Kanazawa, Ishikawa, Japan
| | - Yuya Ogawa
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Ayesha R. Joshi
- Department of Pathology and Laboratory Medicine, New York Presbyterian Hospital-Weill Medical College of Cornell University, New York, New York, United States of America
| | - Lora H. Ellenson
- Department of Pathology and Laboratory Medicine, New York Presbyterian Hospital-Weill Medical College of Cornell University, New York, New York, United States of America
| | - Xiaofei Sun
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail: (XS); (SKD)
| | - Sudhansu K. Dey
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail: (XS); (SKD)
| |
Collapse
|
22
|
Yin XF, Zhang Q, Chen ZY, Wang HF, Li X, Wang HX, Li HX, Kang CM, Chu S, Li KF, Li Y, Qiu YR. NLRP3 in human glioma is correlated with increased WHO grade, and regulates cellular proliferation, apoptosis and metastasis via epithelial-mesenchymal transition and the PTEN/AKT signaling pathway. Int J Oncol 2018; 53:973-986. [PMID: 30015880 PMCID: PMC6065456 DOI: 10.3892/ijo.2018.4480] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/08/2018] [Indexed: 02/07/2023] Open
Abstract
Glioma is the most prevalent and fatal primary tumor of the central nervous system in adults, while the development of effective therapeutic strategies in clinical practice remain a challenge. Nucleotide-binding domain leucine-rich family pyrin-containing 3 (NLRP3) has been reported to be associated with tumorigenesis and progression; however, its expression and function in human glioma remain unclear. The present study was designed to explore the biological role and potential mechanism of NLRP3 in human glioma. The results demonstrated that overexpression of NLRP3, apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC), caspase-1 and interleukin (IL)-1β protein in human glioma tissues were significantly correlated with higher World Health Organization grades. The in vitro biological experiments demonstrated that NLRP3 downregulation significantly inhibited the proliferation, migration and invasion, and promoted the apoptosis of SHG44 and A172 glioma cell lines. Furthermore, western blot assays revealed that the downregulation of NLRP3 significantly reduced the expression of ASC, caspase-1 and IL-1β protein. Furthermore, NLRP3 knockdown caused the inhibition of epithelial-mesenchymal transition (EMT), and inhibited the phosphorylation of AKT serine/threonine kinase (AKT) and phosphorylation of phosphatase and tensin homolog (PTEN). Consistently, the upregulation of NLRP3 significantly increased the expression of ASC, caspase-1, IL-1β and phosphorylated-PTEN, promoted proliferation, migration, invasion and EMT, inhibited apoptosis, and activated the AKT signaling pathway. The data of the present study indicate that NLRP3 affects human glioma progression and metastasis through multiple pathways, including EMT and PTEN/AKT signaling pathway regulation, enhanced inflammasome activation, and undefined inflammasome-independent mechanisms. Understanding the biological effects of NLRP3 in human glioma and the underlying mechanisms may offer novel insights for the development of glioma clinical therapeutic strategies.
Collapse
Affiliation(s)
- Xiao-Feng Yin
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qiong Zhang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhuo-Yu Chen
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hai-Fang Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xin Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hong-Xia Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hai-Xia Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Chun-Min Kang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Shuai Chu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Kai-Fei Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yao Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yu-Rong Qiu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|