1
|
Alanazi AZ, Alqinyah M, Alhamed AS, Mohammed H, Raish M, Aljerian K, Alsabhan JF, Alhazzani K. Cardioprotective effects of liposomal resveratrol in diabetic rats: unveiling antioxidant and anti-inflammatory benefits. Redox Rep 2024; 29:2416835. [PMID: 39496097 PMCID: PMC11536670 DOI: 10.1080/13510002.2024.2416835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024] Open
Abstract
As a consequence of chronic hyperglycemia, diabetes complications and tissue damage are exacerbated. There is evidence that natural phytochemicals, including resveratrol, a bioactive polyphenol, may be able to reduce oxidative stress and improve insulin sensitivity. However, resveratrol's limited bioavailability hampers its therapeutic effectiveness. By using liposomes, resveratrol may be better delivered into the body and be more bioavailable. The objective of this study was to assess the cardioprotective potential of liposome-encapsulated resveratrol (LR) in a streptozotocin-induced (STZ) diabetic rat model. Adult male Wistar rats were categorized into five groups: control, diabetic, resveratrol-treated (40 mg/kg), liposomal resveratrol (LR)-treated (20 mg/kg) and liposomal resveratrol (LR)-treated (40 mg/kg) for a five-week study period. We compared the effects of LR to those of resveratrol (40 mg/kg) on various parameters, including serum levels of cardiac markers, tissue levels of pro-inflammatory cytokines, nuclear transcription factor, oxidative stress markers, and apoptotic markers. LR treatment in STZ-diabetic rats resulted in notable physiological improvements, including blood glucose regulation, inflammation reduction, oxidative stress mitigation, and apoptosis inhibition. LR effectively lowered oxidative stress and enhanced cardiovascular function. It also demonstrated a remarkable ability to suppress NF-kB-mediated inflammation by inhibiting the pro-inflammatory cytokines TNF-α and IL-6. Additionally, LR restored the antioxidant enzymes, catalase and glutathione peroxidase, thereby effectively counteracting oxidative stress. Notably, LR modulated apoptotic regulators, including caspase, Bcl2, and Bax, suggesting a role in regulating programmed cell death. These biochemical alterations were consistent with improved structural integrity of cardiac tissue as revealed by histological examination. In comparison, resveratrol exhibited lower efficacy at an equivalent dosage. Liposomal resveratrol shows promise in alleviating hyperglycemia-induced cardiac damage in diabetes. Further research is warranted to explore its potential as a therapeutic agent for diabetic cardiovascular complications and possible cardioprotective effects.
Collapse
Affiliation(s)
- Ahmed Z. Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Alqinyah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah S. Alhamed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hanan Mohammed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khaldoon Aljerian
- Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Jawza F. Alsabhan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Biran V, Saba E, Lapointe A, Macias CM, Mawad W, Martinez DV, Cavallé-Garrido T, Wintermark P, Altit G. Cardiac function at follow-up in infants treated with therapeutic hypothermia for neonatal hypoxic-ischemic encephalopathy. Pediatr Res 2024:10.1038/s41390-024-03694-3. [PMID: 39482497 DOI: 10.1038/s41390-024-03694-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/26/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Compromised myocardial function and persistent elevated pulmonary vascular resistance are common among neonates treated with therapeutic hypothermia (TH) for hypoxic-ischemic encephalopathy (HIE). There is a lack of data regarding persistence of cardiac alterations after discharge from the neonatal intensive care unit (NICU). METHODS We assessed cardiovascular profiles after NICU discharge. Echocardiogram data, including speckle-tracking echocardiography (STE), were extracted from the latest outpatient scan. Data were compared by initial amplitude-integrated encephalography (aEEG) profiles on admission [normal vs. abnormal]. RESULTS In total, 70 (19%) neonates had a follow-up echocardiogram (22 with initial normal aEEG, 48 with abnormal aEEG). Age at follow-up was similar between the two groups (6.2 vs. 7.7 months, [p = 0.08]). Neonates with an initially abnormal aEEG showed more negative Right Ventricle (RV)-peak global longitudinal strain (-28.2 vs. -26.0%, [p = 0.02]), RV-peak free wall longitudinal strain rate (-1.24 vs. -1.10 [1/second], [p = 0.01]), and RV-peak free wall longitudinal strain rate (-1.50 vs. -1.27 [1/second], [p = 0.001]). These associations remained after multilinear regression analysis, indicating persistent enhanced RV contraction in the abnormal aEEG group. CONCLUSION Neonates with initial abnormal aEEG profiles exhibited increased RV contraction after NICU discharge. Future studies should explore long-term cardiovascular follow-up of neonates with HIE, beyond the perinatal period. IMPACT What is the key message of your article? Cardiac performance in hypoxic ischemic encephalopathy is linked to adverse outcomes. Survivors with an abnormal aEEG at admission showed increased right ventricular contractility at follow-up, possibly related to an adverse adaptation to the initial insult. What does it add to the existing literature? This study offers insights into long-term cardiovascular outcomes in neonates with HIE, focusing on the link between initial aEEG abnormalities and later RV function. What is the impact? The findings underscore the importance of early cardiovascular assessments and monitoring in neonates undergoing TH for HIE, potentially guiding future follow-up protocols.
Collapse
Affiliation(s)
- Valérie Biran
- Neonatology-McGill University Health Centre-Montreal Children's Hospital; Department of Pediatrics-McGill University, Montreal, QC, Canada
- Neonatal Intensive Care Unit, Assistance Publique-Hôpitaux de Paris, Robert Debré's Children Hospital, University Paris Cité, 75019, Paris, France
- I2D2, Inserm 1141, University Paris Cité, 75019, Paris, France
| | - Eliana Saba
- Neonatology-McGill University Health Centre-Montreal Children's Hospital; Department of Pediatrics-McGill University, Montreal, QC, Canada
| | - Anie Lapointe
- Neonatology- CHU Ste-Justine- Université de Montréal, Montreal, QC, Canada
| | - Carolina Michele Macias
- Neonatology-McGill University Health Centre-Montreal Children's Hospital; Department of Pediatrics-McGill University, Montreal, QC, Canada
| | - Wadi Mawad
- Pediatric Cardiology-McGill University Health Centre-Montreal Children's Hospital; Department of Pediatrics-McGill University, Montreal, QC, Canada
| | - Daniela Villegas Martinez
- Neonatology-McGill University Health Centre-Montreal Children's Hospital; Department of Pediatrics-McGill University, Montreal, QC, Canada
| | | | - Pia Wintermark
- Neonatology-McGill University Health Centre-Montreal Children's Hospital; Department of Pediatrics-McGill University, Montreal, QC, Canada
| | - Gabriel Altit
- Neonatology-McGill University Health Centre-Montreal Children's Hospital; Department of Pediatrics-McGill University, Montreal, QC, Canada.
| |
Collapse
|
3
|
Piamsiri C, Fefelova N, Pamarthi SH, Gwathmey JK, Chattipakorn SC, Chattipakorn N, Xie LH. Potential Roles of IP 3 Receptors and Calcium in Programmed Cell Death and Implications in Cardiovascular Diseases. Biomolecules 2024; 14:1334. [PMID: 39456267 PMCID: PMC11506173 DOI: 10.3390/biom14101334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) play a crucial role in maintaining intracellular/cytosolic calcium ion (Ca2+i) homeostasis. The release of Ca2+ from IP3Rs serves as a second messenger and a modulatory factor influencing various intracellular and interorganelle communications during both physiological and pathological processes. Accumulating evidence from in vitro, in vivo, and clinical studies supports the notion that the overactivation of IP3Rs is linked to the pathogenesis of various cardiac conditions. The overactivation of IP3Rs results in the dysregulation of Ca2+ concentration ([Ca2+]) within cytosolic, mitochondrial, and nucleoplasmic cellular compartments. In cardiovascular pathologies, two isoforms of IP3Rs, i.e., IP3R1 and IP3R2, have been identified. Notably, IP3R1 plays a pivotal role in cardiac ischemia and diabetes-induced arrhythmias, while IP3R2 is implicated in sepsis-induced cardiomyopathy and cardiac hypertrophy. Furthermore, IP3Rs have been reported to be involved in various programmed cell death (PCD) pathways, such as apoptosis, pyroptosis, and ferroptosis underscoring their multifaceted roles in cardiac pathophysiology. Based on these findings, it is evident that exploring potential therapeutic avenues becomes crucial. Both genetic ablation and pharmacological intervention using IP3R antagonists have emerged as promising strategies against IP3R-related pathologies suggesting their potential therapeutic potency. This review summarizes the roles of IP3Rs in cardiac physiology and pathology and establishes a foundational understanding with a particular focus on their involvement in the various PCD pathways within the context of cardiovascular diseases.
Collapse
Affiliation(s)
- Chanon Piamsiri
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA; (C.P.); (N.F.)
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nadezhda Fefelova
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA; (C.P.); (N.F.)
| | - Sri Harika Pamarthi
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA; (C.P.); (N.F.)
| | - Judith K. Gwathmey
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA; (C.P.); (N.F.)
| | - Siriporn C. Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA; (C.P.); (N.F.)
| |
Collapse
|
4
|
Chen A, Mesfin JM, Gianneschi NC, Christman KL. Intravascularly Deliverable Biomaterial Platforms for Tissue Repair and Regeneration Post-Myocardial Infarction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300603. [PMID: 36989469 PMCID: PMC10539487 DOI: 10.1002/adma.202300603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/11/2023] [Indexed: 06/19/2023]
Abstract
Each year, nearly 19 million people die of cardiovascular disease with coronary heart disease and myocardial infarction (MI) as the leading cause of the progression of heart failure. Due to the high risk associated with surgical procedures, a variety of minimally invasive therapeutics aimed at tissue repair and regeneration are being developed. While biomaterials delivered via intramyocardial injection have shown promise, there are challenges associated with delivery in acute MI. In contrast, intravascularly injectable biomaterials are a desirable category of therapeutics due to their ability to be delivered immediately post-MI via less invasive methods. In addition to passive diffusion into the infarct, these biomaterials can be designed to target the molecular and cellular characteristics seen in MI pathophysiology, such as cells and proteins present in the ischemic myocardium, to reduce off-target localization. These injectable materials can also be stimuli-responsive through enzymes or chemical imbalances. This review outlines the natural and synthetic biomaterial designs that allow for retention and accumulation within the infarct via intravascular delivery, including intracoronary infusion and intravenous injection.
Collapse
Affiliation(s)
- Alexander Chen
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Joshua M. Mesfin
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Nathan C. Gianneschi
- Department of Chemistry and Biomedical Engineering, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| | - Karen L. Christman
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
5
|
Mentkowski KI, Tarvirdizadeh T, Manzanero CA, Eagler LA, Lang JK. Surface engineering enhances the therapeutic potential of systemically delivered extracellular vesicles following acute myocardial infarction. FASEB J 2024; 38:e70070. [PMID: 39301939 PMCID: PMC11424026 DOI: 10.1096/fj.202400828r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
The objective of the study was to assess the therapeutic efficacy of targeting remote zone cardiomyocytes with cardiosphere-derived cell (CDC) extracellular vesicles (EVs) delivered via intramyocardial and intravenous routes following acute myocardial infarction (MI). Cardiomyocyte (CM) cell death plays a significant role in left ventricular (LV) remodeling and cardiac dysfunction following MI. While EVs secreted by CDCs have shown efficacy in promoting cardiac repair in preclinical models of MI, their translational potential is limited by their biodistribution and requirement for intramyocardial delivery. We hypothesized that engineering the surface of EVs to target cardiomyocytes would enhance their therapeutic efficacy following systemic delivery in a model of acute MI. CDC-derived EVs were engineered to express a CM-specific binding peptide (CMP) on their surface and characterized for size, morphology, and protein expression. Mice with acute MI underwent both intramyocardial and intravenous delivery of EVs, CMP-EVs and placebo in a double-blind study. LVEF was assessed by echo at 2- and 28-days post-MI and tissue samples processed for assessment of EV biodistribution and histological endpoints. CMP-EVs demonstrated superior cardiac targeting and retention when compared with unmodified EVs 24 h post-MI. Mice treated with IV delivered CMP-EVs demonstrated a significant improvement in LVEF and a significant reduction in remote zone cardiomyocyte apoptosis when compared with IV delivered non-targeted EVs at 28-day post-MI. Systemic administration of CMP-EVs improved cardiac function and reduced remote zone cardiomyocyte apoptosis compared with IV-administered unmodified EVs, demonstrating a strategy to optimize therapeutic EV delivery post-MI.
Collapse
Affiliation(s)
- Kyle I. Mentkowski
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, 14203, USA
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, 14260, USA
| | - Touba Tarvirdizadeh
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, 14203, USA
| | - Cody A. Manzanero
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, 14203, USA
| | - Lisa A. Eagler
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, 14203, USA
- VA WNY Healthcare System, Buffalo, NY, 14215, USA
| | - Jennifer K. Lang
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, 14203, USA
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, 14260, USA
- VA WNY Healthcare System, Buffalo, NY, 14215, USA
| |
Collapse
|
6
|
Gellani I, Qian C, Ma S. Unveiling the role of TRPA1 in cardiovascular health and disease: a mini review. Front Cardiovasc Med 2024; 11:1416698. [PMID: 39323758 PMCID: PMC11422066 DOI: 10.3389/fcvm.2024.1416698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024] Open
Abstract
The transient receptor potential ankyrin 1 (TRPA1) ion channel has emerged as significant regulators of cardiovascular physiology and pathology. TRPA1 is a non-selective cation channel permeable to calcium ions. A unique feature of the channel is its function as a sensor of various temperature, chemical and mechanical stimuli, while it can also be activated by endogenous inflammatory mediators and reactive oxygen species. Over the last two decades, much progress has been made in illuminating the role of TRPA1 in the regulation of cardiovascular physiology and pathophysiology in addition to its important function in pain sensation. This review provides a comprehensive analysis of recent studies investigating the involvement of TRPA1 channels in various cardiovascular diseases, including myocardial infarction, ischemia-reperfusion injury, myocardial fibrosis, and response to environmental toxins. We discuss the diverse roles of TRPA1 channels in cardiac pathology and highlight their potential as therapeutic targets for cardiovascular disorders. Moreover, we explore the challenges and opportunities linked with targeting TRPA1 channels for treating cardiovascular diseases, alongside future research directions.
Collapse
Affiliation(s)
- Islam Gellani
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Chunqi Qian
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Shuangtao Ma
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
7
|
Zhi F, Pu X, Wei W, Liu L, Liu C, Chen Y, Chang X, Xu H. Modulating mitochondrial dynamics ameliorates left ventricular dysfunction by suppressing diverse cell death pathways after diabetic cardiomyopathy. Int J Med Sci 2024; 21:2324-2333. [PMID: 39310254 PMCID: PMC11413890 DOI: 10.7150/ijms.98065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/18/2024] [Indexed: 09/25/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) triggers a detrimental shift in mitochondrial dynamics, characterized by increased fission and decreased fusion, contributing to cardiomyocyte apoptosis and cardiac dysfunction. This study investigated the impact of modulating mitochondrial dynamics on DCM outcomes and underlying mechanisms in a mouse model. DCM induction led to upregulation of fission genes (Drp1, Mff, Fis1) and downregulation of fusion genes (Mfn1, Mfn2, Opa1). Inhibiting fission with Mdivi-1 or promoting fusion with Ginsenoside Rg1 preserved cardiac function, as evidenced by improved left ventricular ejection fraction (LVEF), fractional shortening (FS), and E/A ratio. Both treatments also reduced infarct size and attenuated cardiomyocyte apoptosis, indicated by decreased caspase-3 activity. Mechanistically, Mdivi-1 enhanced mitochondrial function by improving mitochondrial membrane potential, reducing reactive oxygen species (ROS) production, and increasing ATP generation. Ginsenoside Rg1 also preserved mitochondrial integrity and function under hypoxic conditions in HL-1 cardiomyocytes. These findings suggest that restoring the balance of mitochondrial dynamics through pharmacological interventions targeting either fission or fusion may offer a promising therapeutic strategy for mitigating MI-induced cardiac injury and improving patient outcomes.
Collapse
Affiliation(s)
- Fumin Zhi
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xiangyi Pu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Wei Wei
- Heilongjiang Forest Industry General Hospital, Beijing, 100053, Harbin 150000, China
| | - Li Liu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Chunyan Liu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Ye Chen
- Heilongjiang Forest Industry General Hospital, Beijing, 100053, Harbin 150000, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Hongtao Xu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
8
|
Reed SD. Histologic characterization of spontaneous catecholamine-induced cardiomyopathy in laboratory New Zealand White rabbits. J Vet Diagn Invest 2024; 36:759-764. [PMID: 38566347 PMCID: PMC11529095 DOI: 10.1177/10406387241244742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Catecholamine-induced cardiomyopathy (CCM) is an entity associated with increased levels of catecholamines causing subendocardial and papillary muscle cardiomyocyte degeneration and necrosis. In 2020, 49 autopsies from early rabbit deaths in a colony used for medical device biocompatibility studies were submitted for microscopic examination. Of the 49 rabbits, 26 had histologic changes consistent with CCM. No common stressor for CCM was determined in affected rabbits. Animals were generally male, were 12-16-wk-old, and were found dead or had bloating, lethargy, and/or diarrhea. Those observed with clinical signs were euthanized and autopsied per the organization's standard operating procedures. Heart lesions consisted of various degrees of apical subendocardial myocardial degeneration and necrosis. Common non-cardiac lesions included pulmonary congestion and edema, hepatic congestion and centrilobular hepatocellular degeneration, and/or variable intestinal submucosal edema.
Collapse
Affiliation(s)
- Scott D. Reed
- North American Science Associates (NAMSA), Northwood, OH, USA
| |
Collapse
|
9
|
Liu D, Li Y, Bao Z, He J, Lan Y, Xu Z, Chen G. Pericardial Delivery of Sodium Alginate-Infusible Extracellular Matrix Composite Hydrogel Promotes Angiogenesis and Intercellular Electrical Conduction after Myocardial Infarction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44623-44635. [PMID: 39145889 DOI: 10.1021/acsami.4c12593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Injectable extracellular matrix (iECM) is a versatile biological material with beneficial properties such as good degradability, promotion of cell survival, immunomodulation, and facilitation of vascular formation. However, intravenous injection of iECM faces challenges like a short retention time in vivo and low concentration at the lesion site. To address these issues, we prepared a composite hydrogel composed of sodium alginate and iECM and administered it via intrapericardial injection, forming a structure akin to cardiac patches within the pericardium. Compared with intramyocardial injection, intrapericardial injection avoids direct myocardial injury and ectopic tumor formation, offering less invasiveness and better biocompatibility. This study demonstrates that the sodium alginate/infusible extracellular matrix (SA/iECM) composite hydrogel can effectively prolong the local retention time of iECM in the heart, enhance electrical conduction between cardiomyocytes, promote angiogenesis at ischemic myocardial sites, inhibit apoptosis in the infarcted region, mitigate left ventricular remodeling postmyocardial infarction (MI), and improve cardiac function after infarction. Precise coordination of cardiomyocyte contraction and relaxation depends on the rhythmic occurrence of calcium-dependent action potentials. Cardiac dysfunction is partially attributed to the disruption of the excitation-contraction coupling (ECC) mechanism, which is associated with prolonged intracellular Ca2+ transients and alterations in contraction and relaxation Ca2+ levels. Our results show that the SA/iECM composite hydrogel improves electrical conduction, as evidenced by increased Cx43 expression and enhanced intercellular electrical connectivity. This research establishes that intrapericardial injection of a SA/iECM composite hydrogel is a safe and effective treatment modality, providing a theoretical basis for the use of biomaterials in MI therapy.
Collapse
Affiliation(s)
- Dahe Liu
- Postgraduate Cultivation Base of Guangzhou University of Chinese Medicine, Panyu Central Hospital, Guangzhou 511400, People's Republic of China
| | - Yajing Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, People's Republic of China
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, People's Republic of China
| | - Ziwei Bao
- Postgraduate Cultivation Base of Guangzhou University of Chinese Medicine, Panyu Central Hospital, Guangzhou 511400, People's Republic of China
| | - Jiaqi He
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, People's Republic of China
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, People's Republic of China
| | - Yanxing Lan
- Postgraduate Cultivation Base of Guangzhou University of Chinese Medicine, Panyu Central Hospital, Guangzhou 511400, People's Republic of China
| | - Zijun Xu
- Postgraduate Cultivation Base of Guangzhou University of Chinese Medicine, Panyu Central Hospital, Guangzhou 511400, People's Republic of China
| | - Guoqin Chen
- Department of Cardiology of The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 511400, People's Republic of China
- Cardiovascular Diseases Research Institute of Panyu District, Guangzhou 511400, People's Republic of China
| |
Collapse
|
10
|
Piamsiri C, Maneechote C, Jinawong K, Arunsak B, Chunchai T, Nawara W, Kerdphoo S, Chattipakorn SC, Chattipakorn N. Chronic mitochondrial dynamic-targeted therapy alleviates left ventricular dysfunction by reducing multiple programmed cell death in post-myocardial infarction rats. Eur J Pharmacol 2024; 977:176736. [PMID: 38878877 DOI: 10.1016/j.ejphar.2024.176736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/02/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024]
Abstract
Mitochondrial dysfunction and the activation of multiple programmed cell death (PCD) have been shown to aggravate the severity and mortality associated with the progression of myocardial infarction (MI). Although pharmacological modulation of mitochondrial dynamics, including treatment with the fusion promoter (M1) and the fission inhibitor (Mdivi-1), exerted cardioprotection against several cardiac complications, their roles in the post-MI model have never been investigated. Using a MI rat model instigated by permanent left-anterior descending (LAD) coronary artery occlusion, post-MI rats were randomly assigned to receive one of 4 treatments (n = 10/group): vehicle (DMSO 3%V/V), enalapril (10 mg/kg), Mdivi-1 (1.2 mg/kg) and M1 (2 mg/kg), while a control group of sham operated rats underwent surgery without LAD occlusion (n = 10). After 32-day treatment, cardiac and mitochondrial function, and histopathological morphology were investigated and molecular analysis was performed. Treatment with enalapril, Mdivi-1, and M1 significantly mitigated cardiac pathological remodeling, reduced myocardial injury, and improved left ventricular (LV) function in post-MI rats. Importantly, all interventions also attenuated mitochondrial dynamic imbalance and mitigated activation of apoptosis, necroptosis, and pyroptosis after MI. This investigation demonstrated for the first time that chronic mitochondrial dynamic-targeted therapy mitigated mitochondrial dysfunction and activation of PCD, leading to improved LV function in post-MI rats.
Collapse
Affiliation(s)
- Chanon Piamsiri
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chayodom Maneechote
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kewarin Jinawong
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Busarin Arunsak
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Titikorn Chunchai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wichwara Nawara
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sasiwan Kerdphoo
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
11
|
Gural B, Kirkland L, Hockett A, Sandroni P, Zhang J, Rosa-Garrido M, Swift SK, Chapski D, Flinn MA, O'Meara CC, Vondriska TM, Patterson M, Jensen BC, Rau CD. Novel Insights into Post-Myocardial Infarction Cardiac Remodeling through Algorithmic Detection of Cell-Type Composition Shifts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607400. [PMID: 39149394 PMCID: PMC11326268 DOI: 10.1101/2024.08.09.607400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Background Recent advances in single cell sequencing have led to an increased focus on the role of cell-type composition in phenotypic presentation and disease progression. Cell-type composition research in the heart is challenging due to large, frequently multinucleated cardiomyocytes that preclude most single cell approaches from obtaining accurate measurements of cell composition. Our in silico studies reveal that ignoring cell type composition when calculating differentially expressed genes (DEGs) can have significant consequences. For example, a relatively small change in cell abundance of only 10% can result in over 25% of DEGs being false positives. Methods We have implemented an algorithmic approach that uses snRNAseq datasets as a reference to accurately calculate cell type compositions from bulk RNAseq datasets through robust data cleaning, gene selection, and multi-sample cross-subject and cross-cell-type deconvolution. We applied our approach to cardiomyocyte-specific α1A adrenergic receptor (CM-α1A-AR) knockout mice. 8-12 week-old mice (either WT or CM-α1A-KO) were subjected to permanent left coronary artery (LCA) ligation or sham surgery (n=4 per group). Transcriptomes from the infarct border zones were collected 3 days later and analyzed using our algorithm to determine cell-type abundances, corrected differential expression calculations using DESeq2, and validated these findings using RNAscope. Results Uncorrected DEGs for the CM-α1A-KO X LCA interaction term featured many cell-type specific genes such as Timp4 (fibroblasts) and Aplnr (cardiomyocytes) and overall GO enrichment for terms pertaining to cardiomyocyte differentiation (P=3.1E-4). Using our algorithm, we observe a striking loss of cardiomyocytes and gain in fibroblasts in the α1A-KO + LCA mice that was not recapitulated in WT + LCA animals, although we did observe a similar increase in macrophage abundance in both conditions. This recapitulates prior results that showed a much more severe heart failure phenotype in CM-α1A-KO + LCA mice. Following correction for cell-type, our DEGs now highlight a novel set of genes enriched for GO terms such as cardiac contraction (P=3.7E-5) and actin filament organization (P=6.3E-5). Conclusions Our algorithm identifies and corrects for cell-type abundance in bulk RNAseq datasets opening new avenues for research on novel genes and pathways as well as an improved understanding of the role of cardiac cell types in cardiovascular disease.
Collapse
Affiliation(s)
- Brian Gural
- Department of Genetics and Computational Medicine Program, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Logan Kirkland
- McAllister Heart Institute, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Medicine, Division of Cardiology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Abbey Hockett
- Department of Genetics and Computational Medicine Program, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Peyton Sandroni
- Department of Pharmacology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jiandong Zhang
- McAllister Heart Institute, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Medicine, Division of Cardiology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Manuel Rosa-Garrido
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Samantha K Swift
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Douglas Chapski
- Departments of Anesthesiology & Perioperative Medicine, Medicine/Cardiology, and Physiology, David Geffen School of Medicine; Molecular Biology Institute; University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael A Flinn
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Caitlin C O'Meara
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Thomas M Vondriska
- Departments of Anesthesiology & Perioperative Medicine, Medicine/Cardiology, and Physiology, David Geffen School of Medicine; Molecular Biology Institute; University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michaela Patterson
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Brian C Jensen
- McAllister Heart Institute, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Medicine, Division of Cardiology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christoph D Rau
- Department of Genetics and Computational Medicine Program, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
12
|
Bobis-Wozowicz S, Paw M, Sarna M, Kędracka-Krok S, Nit K, Błażowska N, Dobosz A, Hammad R, Cathomen T, Zuba-Surma E, Tyszka-Czochara M, Madeja Z. Hypoxic extracellular vesicles from hiPSCs protect cardiomyocytes from oxidative damage by transferring antioxidant proteins and enhancing Akt/Erk/NRF2 signaling. Cell Commun Signal 2024; 22:356. [PMID: 38982464 PMCID: PMC11232324 DOI: 10.1186/s12964-024-01722-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/21/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Stem cell-derived extracellular vesicles (EVs) are an emerging class of therapeutics with excellent biocompatibility, bioactivity and pro-regenerative capacity. One of the potential targets for EV-based medicines are cardiovascular diseases (CVD). In this work we used EVs derived from human induced pluripotent stem cells (hiPSCs; hiPS-EVs) cultured under different oxygen concentrations (21, 5 and 3% O2) to dissect the molecular mechanisms responsible for cardioprotection. METHODS EVs were isolated by ultrafiltration combined with size exclusion chromatography (UF + SEC), followed by characterization by nanoparticle tracking analysis, atomic force microscopy (AFM) and Western blot methods. Liquid chromatography and tandem mass spectrometry coupled with bioinformatic analyses were used to identify differentially enriched proteins in various oxygen conditions. We directly compared the cardioprotective effects of these EVs in an oxygen-glucose deprivation/reoxygenation (OGD/R) model of cardiomyocyte (CM) injury. Using advanced molecular biology, fluorescence microscopy, atomic force spectroscopy and bioinformatics techniques, we investigated intracellular signaling pathways involved in the regulation of cell survival, apoptosis and antioxidant response. The direct effect of EVs on NRF2-regulated signaling was evaluated in CMs following NRF2 inhibition with ML385. RESULTS We demonstrate that hiPS-EVs derived from physiological hypoxia at 5% O2 (EV-H5) exert enhanced cytoprotective function towards damaged CMs compared to EVs derived from other tested oxygen conditions (normoxia; EV-N and hypoxia 3% O2; EV-H3). This resulted from higher phosphorylation rates of Akt kinase in the recipient cells after transfer, modulation of AMPK activity and reduced apoptosis. Furthermore, we provide direct evidence for improved calcium signaling and sustained contractility in CMs treated with EV-H5 using AFM measurements. Mechanistically, our mass spectrometry and bioinformatics analyses revealed differentially enriched proteins in EV-H5 associated with the antioxidant pathway regulated by NRF2. In this regard, EV-H5 increased the nuclear translocation of NRF2 protein and enhanced its transcription in CMs upon OGD/R. In contrast, inhibition of NRF2 with ML385 abolished the protective effect of EVs on CMs. CONCLUSIONS In this work, we demonstrate a superior cardioprotective function of EV-H5 compared to EV-N and EV-H3. Such EVs were most effective in restoring redox balance in stressed CMs, preserving their contractile function and preventing cell death. Our data support the potential use of hiPS-EVs derived from physiological hypoxia, as cell-free therapeutics with regenerative properties for the treatment of cardiac diseases.
Collapse
Affiliation(s)
- Sylwia Bobis-Wozowicz
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland.
| | - Milena Paw
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland
| | - Michał Sarna
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Krakow, Poland
| | - Sylwia Kędracka-Krok
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Physical Biochemistry, Jagiellonian University, Krakow, Poland
| | - Kinga Nit
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland
| | - Natalia Błażowska
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland
| | - Anna Dobosz
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland
| | - Ruba Hammad
- Freiburg iPS Core Facility, Institute for Transfusion Medicine and Gene Therapy, Medical Center- University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), University of Freiburg, Freiburg, Germany
| | - Toni Cathomen
- Freiburg iPS Core Facility, Institute for Transfusion Medicine and Gene Therapy, Medical Center- University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), University of Freiburg, Freiburg, Germany
| | - Ewa Zuba-Surma
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland
| | - Małgorzata Tyszka-Czochara
- Faculty of Pharmacy, Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Kraków, Poland
| | - Zbigniew Madeja
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
13
|
Wen Y, Yang H, Hong Y. Transcriptomic Approaches to Cardiomyocyte-Biomaterial Interactions: A Review. ACS Biomater Sci Eng 2024; 10:4175-4194. [PMID: 38934720 DOI: 10.1021/acsbiomaterials.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Biomaterials, essential for supporting, enhancing, and repairing damaged tissues, play a critical role in various medical applications. This Review focuses on the interaction of biomaterials and cardiomyocytes, emphasizing the unique significance of transcriptomic approaches in understanding their interactions, which are pivotal in cardiac bioengineering and regenerative medicine. Transcriptomic approaches serve as powerful tools to investigate how cardiomyocytes respond to biomaterials, shedding light on the gene expression patterns, regulatory pathways, and cellular processes involved in these interactions. Emerging technologies such as bulk RNA-seq, single-cell RNA-seq, single-nucleus RNA-seq, and spatial transcriptomics offer promising avenues for more precise and in-depth investigations. Longitudinal studies, pathway analyses, and machine learning techniques further improve the ability to explore the complex regulatory mechanisms involved. This review also discusses the challenges and opportunities of utilizing transcriptomic techniques in cardiomyocyte-biomaterial research. Although there are ongoing challenges such as costs, cell size limitation, sample differences, and complex analytical process, there exist exciting prospects in comprehensive gene expression analyses, biomaterial design, cardiac disease treatment, and drug testing. These multimodal methodologies have the capacity to deepen our understanding of the intricate interaction network between cardiomyocytes and biomaterials, potentially revolutionizing cardiac research with the aim of promoting heart health, and they are also promising for studying interactions between biomaterials and other cell types.
Collapse
Affiliation(s)
- Yufeng Wen
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Huaxiao Yang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
14
|
Wu C, Zhang XC, Chen LR, Huang HZ, Wu WY, Wang Y, Li G. Pyroptosis and mitochondrial function participated in miR-654-3p-protected against myocardial infarction. Cell Death Dis 2024; 15:393. [PMID: 38834627 PMCID: PMC11150501 DOI: 10.1038/s41419-024-06786-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Myocardial infarction (MI) is one of the leading causes of heart failure with highly complicated pathogeneses. miR-654-3p has been recognized as a pivotal regulator of controlling cell survival. However, the function of miR-654-3p in cardiomyocytes and MI has yet to be reported. This study aimed to identify the role of miR-654-3p in the regulation of myocardial infarction. To understand the contribution of miR-654-3p on heart function, we generated cardiac-specific knockdown and overexpression mice using AAV9 technology in MI injury. Mechanically, we combined cellular and molecular techniques, pharmaceutical treatment, RNA sequencing, and functional testing to elucidate the potential pathological mechanisms. We identified that mice subjected to MI decreased the expression of miR-654-3p in the border and infarcted area. Mice lacking miR-654-3p in the heart showed some inflammation infiltration and myocardial fibrosis, resulting in a mild cardiac injury. Furthermore, we found a deficiency of miR-654-3p in cardiomyocytes resulted in pyroptotic cell death but not other programmed cell death. Intriguingly, miR-654-3p deficiency aggravated MI-induced cardiac dysfunction, accompanied by higher myocardial fibrosis and cardiac enzymes and augmented pyroptosis activation. Cardiac elevating miR-654-3p prevented myocardial fibrosis and inflammation infiltration and decreased pyroptosis profile, thereby attenuating MI-induced cardiac damage. Using RNA sequence and molecular biological approaches, we found overexpression of miR-654-3p in the heart promoted the metabolic ability of the cardiomyocytes by promoting mitochondrial metabolism and mitochondrial respiration function. Our finding identified the character of miR-654-3p in protecting against MI damage by mediating pyroptosis and mitochondrial metabolism. These findings provide a new mechanism for miR-654-3p involvement in the pathogenesis of MI and reveal novel therapeutic targets. miR-654-3p expression was decreased after MI. Mice lacking miR-654-3p in the heart showed some inflammation infiltration and myocardial fibrosis, resulting in a mild cardiac injury. The deficiency of miR-654-3p in cardiomyocytes resulted in pyroptotic cell death. miR-654-3p deficiency aggravated MI-induced cardiac dysfunction, accompanied by higher myocardial fibrosis and cardiac enzymes and augmented pyroptosis activation. Overexpression of miR-654-3p prevented myocardial fibrosis and inflammation infiltration and decreased pyroptosis profile, thereby attenuating MI-induced cardiac damage. Overexpression of miR-654-3p in the heart promoted the metabolic ability of the cardiomyocytes by promoting mitochondrial metabolism and mitochondrial respiration function.
Collapse
Affiliation(s)
- Chan Wu
- Xiamen Key Laboratory of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
| | - Xiao-Cheng Zhang
- Xiamen Key Laboratory of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
| | - Lan-Ruo Chen
- Xiamen Key Laboratory of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
| | - Hui-Zhu Huang
- Xiamen Key Laboratory of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
| | - Wei-Yin Wu
- Xiamen Key Laboratory of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
| | - Yan Wang
- Xiamen Key Laboratory of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China.
| | - Gang Li
- Xiamen Key Laboratory of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China.
| |
Collapse
|
15
|
Matta A, Ohlmann P, Nader V, Moussallem N, Carrié D, Roncalli J. A review of therapeutic approaches for post-infarction left ventricular remodeling. Curr Probl Cardiol 2024; 49:102562. [PMID: 38599556 DOI: 10.1016/j.cpcardiol.2024.102562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Left ventricular remodeling is an adaptive process initially developed in response to acute myocardial infarction (AMI), but it ends up with negative adverse outcomes such as infarcted wall thinning, ventricular dilation, and cardiac dysfunction. A prolonged excessive inflammatory reaction to cardiomyocytes death and necrosis plays the crucial role in the pathophysiological mechanisms. The pharmacological treatment includes nitroglycerine, β-blockers, ACEi/ARBs, SGLT2i, mineralocorticoid receptor antagonists, and some miscellaneous aspects. Stem cells therapy, CD34+ cells transplantation and gene therapy constitute the promissing therapeutic approaches for post AMI cardiac remodeling, thereby enhancing angiogenesis, cardiomyocytes differenciation and left ventricular function on top of inhibiting apoptosis, inflammation, and collagen deposition. All these lead to reduce infarct size, scar formation and myocardial fibrosis.
Collapse
Affiliation(s)
- Anthony Matta
- Department of Cardiology, Civilian Hospitals of Colmar, Colmar, France; School of Medicine and Medical Sciences, Holy Spirit University of Kaslik, P.O.Box 446, Jounieh, Lebanon.
| | - Patrick Ohlmann
- Department of Cardiology, Strasbourg University Hospital, Strasbourg, France
| | - Vanessa Nader
- Department of Cardiology, Civilian Hospitals of Colmar, Colmar, France
| | - Nicolas Moussallem
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik, P.O.Box 446, Jounieh, Lebanon
| | - Didier Carrié
- Department of Cardiology, Toulouse University Hospital, Toulouse, France
| | - Jerome Roncalli
- Department of Cardiology, Toulouse University Hospital, Toulouse, France
| |
Collapse
|
16
|
Guan H, Chen Y, Liu X, Huang L. Research and application of hydrogel-encapsulated mesenchymal stem cells in the treatment of myocardial infarction. Colloids Surf B Biointerfaces 2024; 239:113942. [PMID: 38729022 DOI: 10.1016/j.colsurfb.2024.113942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/19/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Myocardial infarction (MI) stands out as a highly lethal disease that poses a significant threat to global health. Worldwide, heart failure resulting from MI remains a leading cause of human mortality. Mesenchymal stem cell (MSC) therapy has emerged as a promising therapeutic approach, leveraging its intrinsic healing properties. Nevertheless, pervasive issues, including a low cell retention rate, suboptimal survival rate, and incomplete differentiation of MSCs, present formidable challenges for further research. The introduction and advancement of biomaterials have offered a novel avenue for the exploration of MSC therapy in MI, marking considerable progress thus far. Notably, hydrogels, among the representative biomaterials, have garnered extensive attention within the biomedical field. This review delves into recent advancements, specifically focusing on the application of hydrogels to augment MSC therapy for cardiac tissue regeneration in MI.
Collapse
Affiliation(s)
- Haien Guan
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou 525200, China
| | - Yuehua Chen
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou 525200, China
| | - Xuanyu Liu
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou 525200, China
| | - Li Huang
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou 525200, China.
| |
Collapse
|
17
|
Seong SM, Go RE, Lee HK, Choi KC. Fludioxonil induces cardiotoxicity via mitochondrial dysfunction and oxidative stress in two cardiomyocyte models. ENVIRONMENTAL TOXICOLOGY 2024; 39:2993-3002. [PMID: 38314641 DOI: 10.1002/tox.24176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/04/2024] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
Fludioxonil (Flu) is a phenylpyrrole fungicide and is currently used in over 900 agricultural products globally. Flu possesses endocrine-disrupting chemical-like properties and has been shown to mediate various physiological and pathological changes, such as apoptosis and differentiation, in diverse cell lines. However, the effects of Flu on cardiomyocytes have not been studied so far. The present study investigated the effects of Flu on mitochondria in AC16 human cardiomyocytes and H9c2 rat cardiomyoblasts. Flu decreased cell viability in a water-soluble tetrazolium assay and mediated morphological changes suggestive of apoptosis in AC16 and H9c2 cells. We confirmed that annexin V positive cells were increased by Flu through annexin V/propidium iodide staining. This suggests that the decrease in cell viability due to Flu may be associated with increased apoptotic changes. Flu consistently increased the expression of pro-apoptotic markers such as Bcl-2-associated X protein (Bax) and cleaved-caspase 3. Further, Flu reduced the oxygen consumption rate (OCR) in AC16 and H9c2 cells, which is associated with decreased mitochondrial membrane potential (MMP) as observed through JC-1 staining. In addition, Flu augmented the production of mitochondrial reactive oxygen species, which can trigger oxidative stress in cardiomyocytes. Taken together, these results indicate that Flu induces mitochondrial dysregulation in cardiomyocytes via the downregulation of the OCR and MMP and upregulation of the oxidative stress, consequently resulting in the apoptosis of cardiomyocytes. This study provides evidence of the risk of Flu toxicity on cardiomyocytes leading to the development of cardiovascular diseases and suggests that the use of Flu in agriculture should be done with caution and awareness of the probable health consequences of exposure to Flu.
Collapse
Affiliation(s)
- Su-Min Seong
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ryeo-Eun Go
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Hong Kyu Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
18
|
Xing Y, Chen L, Hu B, Li Y, Mai H, Li G, Han S, Wang Y, Huang Y, Tian Y, Zhang W, Gao Y, He H. Therapeutic role of miR-19a/b protection from influenza virus infection in patients with coronary heart disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102149. [PMID: 38435118 PMCID: PMC10907223 DOI: 10.1016/j.omtn.2024.102149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
Patients with pre-existing medical conditions are at a heightened risk of contracting severe acute respiratory syndrome (SARS), SARS-CoV-2, and influenza viruses, which can result in more severe disease progression and increased mortality rates. Nevertheless, the molecular mechanism behind this phenomenon remained largely unidentified. Here, we found that microRNA-19a/b (miR-19a/b), which is a constituent of the miR-17-92 cluster, exhibits reduced expression levels in patients with coronary heart disease in comparison to healthy individuals. The downregulation of miR-19a/b has been observed to facilitate the replication of influenza A virus (IAV). miR-19a/b can effectively inhibit IAV replication by targeting and reducing the expression of SOCS1, as observed in cell-based and coronary heart disease mouse models. This mechanism leads to the alleviation of the inhibitory effect of SOCS1 on the interferon (IFN)/JAK/STAT signaling pathway. The results indicate that the IAV employs a unique approach to inhibit the host's type I IFN-mediated antiviral immune responses by decreasing miR-19a/b. These findings provide additional insights into the underlying mechanisms of susceptibility to flu in patients with coronary heart disease. miR-19a/b can be considered as a preventative/therapy strategy for patients with coronary heart disease against influenza virus infection.
Collapse
Affiliation(s)
- Yanan Xing
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lin Chen
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Bin Hu
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Li
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huan Mai
- Department of Infectious Diseases, Peking University People’s Hospital, Beijing, China
| | - Gaojian Li
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuyi Han
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ye Wang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanyi Huang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Tian
- Beijing Wildlife Rescue and Rehabilitation Center, Beijing, China
| | - Wei Zhang
- Beijing Wildlife Rescue and Rehabilitation Center, Beijing, China
| | - Yan Gao
- Department of Infectious Diseases, Peking University People’s Hospital, Beijing, China
| | - Hongxuan He
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Yan Z, Xing Z, Xue T, Zhao J, Li G, Xu L, Sun Q. Insulin-like growth factor-1 in myocardial ischemia-reperfusion injury: A review. Medicine (Baltimore) 2024; 103:e37279. [PMID: 38428899 PMCID: PMC10906579 DOI: 10.1097/md.0000000000037279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/25/2024] [Indexed: 03/03/2024] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a severe damage inflicted on the ischemic myocardium when blood flow is restored, and it commonly occurs in a wide range of cardiovascular diseases. Presently, no effective clinical treatment exists for MIRI. Accumulating evidence indicates that insulin-like growth factor-1 (IGF-1) plays a role in the intricate chain of cardiovascular events, in addition to its well-recognized growth-promoting and metabolic effects. IGF-1, a member of the insulin family, exhibits a broad spectrum of protective effects against ischemia/reperfusion injury in various tissues, especially the myocardium. In particular, earlier research has demonstrated that IGF-1 reduces cellular oxidative stress, improves mitochondrial function, interacts with noncoding RNAs, and activates cardiac downstream protective genes and protective signaling channels. This review aimed to summarize the role of IGF-1 in MIRI and elucidate its related mechanisms of action. In addition, IGF-1-related interventions for MIRI, such as ischemic preconditioning and post-conditioning, were discussed. The purpose of this review was to provide evidence supporting the activation of IGF-1 in MIRI and advocate its use as a therapeutic target.
Collapse
Affiliation(s)
- Zhenrong Yan
- Department of Clinical Laboratory, Affiliated Hospital of Chengde Medical University, Hebei, China
| | - Ziyang Xing
- Department of Clinical Laboratory, Affiliated Hospital of Chengde Medical University, Hebei, China
| | - Tingyun Xue
- Department of Clinical Laboratory, Affiliated Hospital of Chengde Medical University, Hebei, China
| | - Jiaye Zhao
- Department of Clinical Laboratory, Affiliated Hospital of Chengde Medical University, Hebei, China
| | - Guangmei Li
- Department of Clinical Laboratory, Affiliated Hospital of Chengde Medical University, Hebei, China
| | - Liwenjing Xu
- Department of Clinical Laboratory, Affiliated Hospital of Chengde Medical University, Hebei, China
| | - Qiyu Sun
- Department of Clinical Laboratory, Affiliated Hospital of Chengde Medical University, Hebei, China
| |
Collapse
|
20
|
Schraps N, Tirre M, Pyschny S, Reis A, Schlierbach H, Seidl M, Kehl HG, Schänzer A, Heger J, Jux C, Drenckhahn JD. Cardiomyocyte maturation alters molecular stress response capacities and determines cell survival upon mitochondrial dysfunction. Free Radic Biol Med 2024; 213:248-265. [PMID: 38266827 DOI: 10.1016/j.freeradbiomed.2024.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 01/21/2024] [Indexed: 01/26/2024]
Abstract
Cardiomyocyte maturation during pre- and postnatal development requires multiple intertwined processes, including a switch in energy generation from glucose utilization in the embryonic heart towards fatty acid oxidation after birth. This is accompanied by a boost in mitochondrial mass to increase capacities for oxidative phosphorylation and ATP generation required for efficient contraction. Whether cardiomyocyte differentiation is paralleled by augmented capacities to deal with reactive oxygen species (ROS), physiological byproducts of the mitochondrial electron transport chain (ETC), is less clear. Here we show that expression of genes and proteins involved in redox homeostasis and protein quality control within mitochondria increases after birth in the mouse and human heart. Using primary embryonic, neonatal and adult mouse cardiomyocytes in vitro we investigated how excessive ROS production induced by mitochondrial dysfunction affects cell survival and stress response at different stages of maturation. Embryonic and neonatal cardiomyocytes largely tolerate inhibition of ETC complex III by antimycin A (AMA) as well as ATP synthase (complex V) by oligomycin but are susceptible to complex I inhibition by rotenone. All three inhibitors alter the intracellular distribution and ultrastructure of mitochondria in neonatal cardiomyocytes. In contrast, adult cardiomyocytes treated with AMA undergo rapid morphological changes and cellular disintegration. At the molecular level embryonic cardiomyocytes activate antioxidative defense mechanisms, the integrated stress response (ISR) and ER stress but not the mitochondrial unfolded protein response upon complex III inhibition. In contrast, adult cardiomyocytes fail to activate the ISR and antioxidative proteins following AMA treatment. In conclusion, our results identified fundamental differences in cell survival and stress response in differentiated compared to immature cardiomyocytes subjected to mitochondrial dysfunction. The high stress tolerance of immature cardiomyocytes might allow outlasting unfavorable intrauterine conditions thereby preventing fetal or perinatal heart disease and may contribute to the regenerative capacity of the embryonic and neonatal mammalian heart.
Collapse
Affiliation(s)
- Nina Schraps
- Department of Pediatric Cardiology, Justus Liebig University, Gießen, Germany
| | - Michaela Tirre
- Department of Pediatric Cardiology, University Hospital Münster, Münster, Germany
| | - Simon Pyschny
- Department of Pediatric Cardiology, University Hospital Münster, Münster, Germany
| | - Anna Reis
- Institute of Physiology, Justus Liebig University, Gießen, Germany
| | | | - Matthias Seidl
- Institute of Pharmacology and Toxicology, Westfälische Wilhelms University, Münster, Germany
| | - Hans-Gerd Kehl
- Department of Pediatric Cardiology, University Hospital Münster, Münster, Germany
| | - Anne Schänzer
- Institute of Neuropathology, Justus Liebig University, Gießen, Germany
| | - Jacqueline Heger
- Institute of Physiology, Justus Liebig University, Gießen, Germany
| | - Christian Jux
- Department of Pediatric Cardiology, Justus Liebig University, Gießen, Germany; Department of Pediatric Cardiology, University Hospital Münster, Münster, Germany
| | - Jörg-Detlef Drenckhahn
- Department of Pediatric Cardiology, Justus Liebig University, Gießen, Germany; Department of Pediatric Cardiology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
21
|
Nguyen TM, Geng X, Wei Y, Ye L, Garry DJ, Zhang J. Single-cell RNA sequencing analysis identifies one subpopulation of endothelial cells that proliferates and another that undergoes the endothelial-mesenchymal transition in regenerating pig hearts. Front Bioeng Biotechnol 2024; 11:1257669. [PMID: 38288246 PMCID: PMC10823534 DOI: 10.3389/fbioe.2023.1257669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/04/2023] [Indexed: 01/31/2024] Open
Abstract
Background: In our previous work, we demonstrated that when newborn pigs undergo apical resection (AR) on postnatal day 1 (P1), the animals' hearts were completely recover from a myocardial infarction (MI) that occurs on postnatal day 28 (P28); single-nucleus RNA sequencing (snRNAseq) data suggested that this recovery was achieved by regeneration of pig cardiomyocyte subpopulations in response to MI. However, coronary vasculature also has a key role in promoting cardiac repair. Method: Thus, in this report, we used autoencoder algorithms to analyze snRNAseq data from endothelial cells (ECs) in the hearts of the same animals. Main results: Our results identified five EC clusters, three composed of vascular ECs (VEC1-3) and two containing lymphatic ECs (LEC1-2). Cells from VEC1 expressed elevated levels of each of five cell-cyclespecific markers (Aurora Kinase B [AURKB], Marker of Proliferation Ki-67 [MKI67], Inner Centromere Protein [INCENP], Survivin [BIRC5], and Borealin [CDCA8]), as well as a number of transcription factors that promote EC proliferation, while (VEC3 was enriched for genes that regulate intercellular junctions, participate in transforming growth factor β (TGFβ), bone morphogenic protein (BMP) signaling, and promote the endothelial mesenchymal transition (EndMT). The remaining VEC2 did not appear to participate directly in the angiogenic response to MI, but trajectory analyses indicated that it may serve as a reservoir for the generation of VEC1 and VEC3 ECs in response to MI. Notably, only the VEC3 cluster was more populous in regenerating (i.e., ARP1MIP28) than non-regenerating (i.e., MIP28) hearts during the 1-week period after MI induction, which suggests that further investigation of the VEC3 cluster could identify new targets for improving myocardial recovery after MI. Histological analysis of KI67 and EndMT marker PDGFRA demonstrated that while the expression of proliferation of endothelial cells was not significantly different, expression of EndMT markers was significantly higher among endothelial cells of ARP1MIP28 hearts compared to MIP28 hearts, which were consistent with snRNAseq analysis of clusters VEC1 and VEC3. Furthermore, upregulated secrete genes by VEC3 may promote cardiomyocyte proliferation via the Pi3k-Akt and ERBB signaling pathways, which directly contribute to cardiac muscle regeneration. Conclusion: In regenerative heart, endothelial cells may express EndMT markers, and this process could contribute to regeneration via a endothelial-cardiomyocyte crosstalk that supports cardiomyocyte proliferation.
Collapse
Affiliation(s)
- Thanh Minh Nguyen
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Xiaoxiao Geng
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yuhua Wei
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Lei Ye
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Daniel J. Garry
- Department of Medicine, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Jianyi Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Medicine, Cardiovascular Diseases, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
22
|
Zhang J, Li J, Qu X, Liu Y, Harada A, Hua Y, Yoshida N, Ishida M, Tabata A, Sun L, Liu L, Miyagawa S. Development of a thick and functional human adipose-derived stem cell tissue sheet for myocardial infarction repair in rat hearts. Stem Cell Res Ther 2023; 14:380. [PMID: 38124195 PMCID: PMC10734106 DOI: 10.1186/s13287-023-03560-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Heart failure (HF) is a major cause of death worldwide. The most effective treatment for HF is heart transplantation, but its use is limited by the scarcity of donor hearts. Recently, stem cell-based therapy has emerged as a promising approach for treating myocardial infarction. Our research group has been investigating the use of human induced pluripotent stem cell-derived cardiomyocyte patches as a potential therapeutic candidate. We have successfully conducted eight cases of clinical trials and demonstrated the safety and effectiveness of this approach. However, further advancements are necessary to overcome immune rejection and enhance therapeutic efficacy. In this study, we propose a novel and efficient technique for constructing mesenchymal stem cell (MSC) tissue sheets, which can be transplanted effectively for treating myocardial infarction repair. METHODS We applied a one-step method to construct the human adipose-derived mesenchymal stem cell (hADSC) tissue sheet on a poly(lactic-co-glycolic acid) fiber scaffold. Histology, immunofluorescence, and paracrine profile assessment were used to determine the organization and function of the hADSC tissue sheet. Echocardiography and pathological analyses of heart sections were performed to evaluate cardiac function, fibrosis area, angiogenesis, and left ventricular remodeling. RESULTS In vitro, the hADSC tissue sheet showed great organization, abundant ECM expression, and increased paracrine secretion than single cells. In vivo, the hADSC tissue sheet group demonstrated improved cardiac functional recovery, less ventricular remodeling, decreased fibrosis, and enhanced angiogenesis than the MI group. CONCLUSIONS We developed thick and functional hADSC tissue sheets via the one-step strategy. The hADSC tissue sheet showed excellent performance in treating myocardial infarction in the rat model.
Collapse
Affiliation(s)
- Jingbo Zhang
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Junjun Li
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
- Frontier of Regenerative Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Xiang Qu
- Frontier of Regenerative Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Yuting Liu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Akima Harada
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Ying Hua
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Noriko Yoshida
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Masako Ishida
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Akiko Tabata
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Lifu Sun
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Li Liu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
- Frontier of Regenerative Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
23
|
Yu Y, Chang L, Hu Q, Zhu J, Zhang J, Xia Q, Zhao J. P2rx1 deficiency alleviates acetaminophen-induced acute liver failure by regulating the STING signaling pathway. Cell Biol Toxicol 2023; 39:2761-2774. [PMID: 37046119 PMCID: PMC10693536 DOI: 10.1007/s10565-023-09800-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/06/2023] [Indexed: 04/14/2023]
Abstract
AIMS Purinergic signaling-mediated mitochondria dysfunction and innate immune-mediated inflammation act as triggers during acetaminophen (APAP)-induced liver injury (AILI). However, the underlying mechanisms by which purinoceptor regulates mitochondria function and inflammation response in the progression of AILI remains unclear. METHODS First, the hepatic level of purinergic receptor P2X 1 (P2RX1) was identified in the DILI patients and APAP-induced WT mice. P2rx1 knockout (KO) mice (P2rx1-/-) with 300 mg/kg APAP challenge were used for the analysis of the potential role of P2RX1 in the progression of AILI. Administration of DMX, the activator of stimulator of interferon genes (STING), was performed to investigate the effects of the STING-related pathway on APAP-treated P2rx1-/- mice. RESULTS The elevated hepatic P2RX1 levels were found in DILI patients and the AILI mice. P2rx1 depletion offered protection against the initial stages of AILI, mainly by inhibiting cell death and promoting inflammation resolution, which was associated with alleviating mitochondria dysfunction. Mechanistically, P2rx1 depletion could inhibit STING-TANK-binding kinase 1 (TBK1)-P65 signaling pathways in vivo. We then showed that DMX-mediated STING activation could greatly aggravate the liver injury of P2rx1-/- mice treated with APAP. CONCLUSION Our data confirmed that P2RX1 was inducted during AILI, identified P2RX1 as a novel regulator in mitochondria dysfunction and STING pathways, and suggested a promising therapeutic approach for AILI involving the blockade of P2RX1. 1. It first demonstrated the protective effects of P2rx1 deficiency on acetaminophen-induced liver injury (AILI). 2. P2rx1 knockout alleviates mitochondria function and promotes inflammation resolution after APAP treatment. 3. It first reported the regulation of P2RX1 on the STING signaling pathway in the progress of AILI. 4. P2RX1 blockade is a promising therapeutic strategy for AILI.
Collapse
Affiliation(s)
- Yeping Yu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ling Chang
- Department of Gastroenterology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingluan Hu
- Department of Gastroenterology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianjun Zhu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jianjun Zhang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jie Zhao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
24
|
Zhang G, Sun X, Zhang D, Zhang X, Yu K. SerpinA3 Promotes Myocardial Infarction in Rat and Cell-based Models. Mol Biotechnol 2023:10.1007/s12033-023-00982-x. [PMID: 38006519 DOI: 10.1007/s12033-023-00982-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 11/06/2023] [Indexed: 11/27/2023]
Abstract
This study aimed to examine the role and molecular mechanism of the nuclear factor κB (NFκB)/serine protease inhibitor A3 (SerpinA3) interaction in myocardial ischemia-reperfusion (IR) injury. First, a rat model for myocardial ischemia-reperfusion injury was established, using 2,3,5-triphenyltetrazolium chloride to measure the size of the myocardial infarction. Pathological variations in myocardial tissue were detected using hematoxylin-eosin staining. Flow cytometry and terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) staining were used to measure cell death in the rat model. The SerpinA3 mRNA and protein expressions in the myocardium of IR-model rats were remarkably higher than those in the control group. Furthermore, the oxidative, inflammatory, and apoptotic activities of the myocardial tissue of SerpinA3-knockdown (KD) rats were significantly improved compared to those in the WT group. SerpinA3-KD also contributed to the recovery of cardiac function in IR-model rats. Additionally, silencing of SerpinA3 inhibited p65 phosphorylation in myocardial tissues and reduced H2O2-induced inflammation, oxidative stress, and apoptosis in myocardial cells. The expression of SerpinA3 increased in myocardial tissue after IR stimulation. Knockdown of SerpinA3 can deactivate NF-κB and reduce inflammation, oxidative stress, and apoptosis in vivo and in vitro, thereby lessening myocardial injury caused by IR. In conclusion, SerpinA3 promotes myocardial infarction in rat and cell-based models by activating NF-κB. However, the mechanism by which increased Serpina3 expression causes downstream NF-κB activation to mediate the proposed, pathological effects in myocardial IR injury remain untested and worthy of future investigations.
Collapse
Affiliation(s)
- Gang Zhang
- Department of Cardiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1, Huanghe Xi Lu, Huaiyin District, Huaian City, 223300, Jiangsu Province, China
| | - Xiaofeng Sun
- Department of Pediatric, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, China
| | - Dongying Zhang
- Department of Cardiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1, Huanghe Xi Lu, Huaiyin District, Huaian City, 223300, Jiangsu Province, China
| | - Xiwen Zhang
- Department of Cardiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1, Huanghe Xi Lu, Huaiyin District, Huaian City, 223300, Jiangsu Province, China
| | - Kun Yu
- Department of Cardiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1, Huanghe Xi Lu, Huaiyin District, Huaian City, 223300, Jiangsu Province, China.
| |
Collapse
|
25
|
Sahadevan R, Binoy A, Shajan I, Sadhukhan S. Mitochondria-targeting EGCG derivatives protect H9c2 cardiomyocytes from H 2O 2-induced apoptosis: design, synthesis and biological evaluation. RSC Adv 2023; 13:29477-29488. [PMID: 37818277 PMCID: PMC10561634 DOI: 10.1039/d3ra04527g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023] Open
Abstract
Pathologies related to cardiovascular diseases mostly emerge as a result of oxidative stress buildup in cardiomyocytes. The heavy load of mitochondrial oxidative phosphorylation in cardiac tissues corresponds to a surge in oxidative stress leading to mitochondrial dysfunction and cellular apoptosis. Thus, scavenging the reactive oxygen species (ROS) linked to mitochondria can significantly improve cardio-protection. Epigallocatechin-3-gallate (EGCG), the major polyphenol found in green tea has been extensively studied for its profound health-beneficial activities. Herein, we designed and synthesized a series of mitochondrial-targeting EGCG derivatives, namely MitoEGCGn (n = 4, 6, 8) by incorporating triphenylphosphonium ion onto it using different linkers. MitoEGCGn were found to be non-toxic to H9c2 rat cardiomyocyte cells even at higher doses in comparison to its parent molecule EGCG. Interestingly, MitoEGCG4 and MitoEGCG6 protected the H9c2 cardiomyocyte cells from the oxidative damage induced by H2O2 whereas EGCG was found to be toxic and ineffective in protecting the cells from H2O2 damage. MitoEGCG4 and MitoEGCG6 also protected the cells from the H2O2-induced disruption of mitochondrial membrane potential as well as activation of apoptosis as revealed by pro-caspase 3 expression profile, DNA fragmentation assay, and AO/EtBr staining. Taken together, our study shows that the mitochondria targeting EGCG derivatives were able to effectively combat the H2O2-induced oxidative stress in H9c2 cardiomyocytes. They eventually augmented the mitochondrial health of cardiomyocytes by maintaining the mitochondrial function and attenuating apoptosis. Overall, MitoEGCG4 and MitoEGCG6 could provision a cardioprotective role to H9c2 cardiomyocytes at the time of oxidative insults related to mitochondrial dysfunction-associated injuries.
Collapse
Affiliation(s)
- Revathy Sahadevan
- Department of Chemistry, Indian Institute of Technology Palakkad Kerala 678 623 India
| | - Anupama Binoy
- Department of Chemistry, Indian Institute of Technology Palakkad Kerala 678 623 India
| | - Irene Shajan
- Department of Chemistry, Indian Institute of Technology Palakkad Kerala 678 623 India
| | - Sushabhan Sadhukhan
- Department of Chemistry, Indian Institute of Technology Palakkad Kerala 678 623 India
- Physical & Chemical Biology Laboratory, Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad Kerala 678 623 India
| |
Collapse
|
26
|
Li H, Ye W, Yu B, Yan X, Lin Y, Zhan J, Chen P, Song X, Yang P, Cai Y. Supramolecular Assemblies of Glycopeptides Enhance Gap Junction Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes via Inducing Spheroids Formation to Optimize Cardiac Repair. Adv Healthc Mater 2023; 12:e2300696. [PMID: 37338936 DOI: 10.1002/adhm.202300696] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Stem cell-based therapies have demonstrated significant potential for use in heart regeneration. An effective paradigm for heart repair in rodent and large animal models is the transplantation of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Despite this, the functional and phenotypical immaturity of 2D-cultured hiPSC-CMs, particularly their low electrical integration, poses a caveat for clinical translation. In this study, a supramolecular assembly of a glycopeptide containing a cell adhesion motif-RGD, and saccharide-glucose (Bio-Gluc-RGD) is designed to enable the 3D spheroid formation of hiPSC-CMs, promoting cell-cell and cell-matrix interactions that occur during spontaneous morphogenesis. HiPSC-CMs in spheroids are prone to be phenotypically mature and developed robust gap junctions via activation of the integrin/ILK/p-AKT/Gata4 pathway. Monodispersed hiPSC-CMs encapsulated in the Bio-Gluc-RGD hydrogel are more likely to form aggregates and, therefore, survive in the infarcted myocardium of mice, accompanied by more robust gap junction formation in the transplanted cells, and hiPSC-CMs delivered with the hydrogels also displayed angiogenic effect and anti-apoptosis capacity in the peri-infarct area, enhancing their overall therapeutic efficacy in myocardial infarction. Collectively, the findings illustrate a novel concept for modulating hiPSC-CM maturation by spheroid induction, which has the potential for post-MI heart regeneration.
Collapse
Affiliation(s)
- Hekai Li
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Wenyu Ye
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Bin Yu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xin Yan
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yuhui Lin
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Jie Zhan
- Department of Laboratory Medicine, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Peier Chen
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xudong Song
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Pingzhen Yang
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yanbin Cai
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
27
|
Lai J, Li A, Yue L, Zhong H, Xu S, Liu X. Participation of ASK-1 in the cardiomyocyte-protective role of mechanical ventilation in a rat model of myocardial infarction. Exp Biol Med (Maywood) 2023; 248:1579-1587. [PMID: 37786374 PMCID: PMC10676125 DOI: 10.1177/15353702231191205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/24/2023] [Indexed: 10/04/2023] Open
Abstract
Non-invasive positive-pressure ventilation (NIPPV) has been demonstrated to exhibit a cardioprotective function in a rat model of myocardial infarction (MI). However, the mechanism underlying NIPPV-mediated MI progression requires further investigation. We aimed to investigate the effectiveness and corresponding mechanism of NIPPV in an acute MI-induced heart failure (HF) rat model. Thirty each of healthy wild type (WT) and apoptosis signal-regulating kinase 1 (ASK-1)-deficient rats were enrolled in this study. MI models were established via anterior descending branch ligation of the left coronary artery. The corresponding data indicated that NIPPV treatment reduced the heart infarct area, myocardial fibrosis degree, and cardiac function loss in MI rats, and ameliorated apoptosis and reactive oxygen species (ROS) levels in the heart tissue. Furthermore, the expression level of ASK-1 level, a key modulator of the ROS-induced extrinsic apoptosis pathway, was upregulated in the heart tissues of MI rats, but decreased after NIPPV treatment. Meanwhile, the downstream cleavage of caspase-3, caspase-9, and PARP, alongside p38 phosphorylation and FasL expression, exhibited a similar trend to that of ASK-1 expression. The involvement of ASK-1 in NIPPV-treated MI in ASK-1-deficient rats was examined. Although MI modeling indicated that cardiac function loss was alleviated in ASK-1-deficient rats, NIPPV treatment did not confer any clear efficiency in cardiac improvement in ASK-1-knockdown rats with MI modeling. Nonetheless, NIPPV inhibited ROS-induced extrinsic apoptosis in the heart tissues of rats with MI by regulating ASK-1 expression, and subsequently ameliorated cardiac function loss and MI-dependent pathogenic changes in the heart tissue.
Collapse
Affiliation(s)
- Jiying Lai
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Ailin Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Linlin Yue
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Huifeng Zhong
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Shuo Xu
- Department of Respiratory and Critical Care Medicine, Ganzhou People’s Hospital, Ganzhou 341000, China
| | - Xin Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
28
|
Yu F, Cong S, Yap EP, Hausenloy DJ, Ramachandra CJ. Unravelling the Interplay between Cardiac Metabolism and Heart Regeneration. Int J Mol Sci 2023; 24:10300. [PMID: 37373444 PMCID: PMC10299184 DOI: 10.3390/ijms241210300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Ischemic heart disease (IHD) is the leading cause of heart failure (HF) and is a significant cause of morbidity and mortality globally. An ischemic event induces cardiomyocyte death, and the ability for the adult heart to repair itself is challenged by the limited proliferative capacity of resident cardiomyocytes. Intriguingly, changes in metabolic substrate utilisation at birth coincide with the terminal differentiation and reduced proliferation of cardiomyocytes, which argues for a role of cardiac metabolism in heart regeneration. As such, strategies aimed at modulating this metabolism-proliferation axis could, in theory, promote heart regeneration in the setting of IHD. However, the lack of mechanistic understanding of these cellular processes has made it challenging to develop therapeutic modalities that can effectively promote regeneration. Here, we review the role of metabolic substrates and mitochondria in heart regeneration, and discuss potential targets aimed at promoting cardiomyocyte cell cycle re-entry. While advances in cardiovascular therapies have reduced IHD-related deaths, this has resulted in a substantial increase in HF cases. A comprehensive understanding of the interplay between cardiac metabolism and heart regeneration could facilitate the discovery of novel therapeutic targets to repair the damaged heart and reduce risk of HF in patients with IHD.
Collapse
Affiliation(s)
- Fan Yu
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Shuo Cong
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - En Ping Yap
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Derek J. Hausenloy
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- The Hatter Cardiovascular Institute, University College London, London WC1E 6HX, UK
| | - Chrishan J. Ramachandra
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| |
Collapse
|
29
|
Liu Y, Ji X, Zhou Z, Zhang J, Zhang J. Myocardial ischemia-reperfusion injury; Molecular mechanisms and prevention. Microvasc Res 2023:104565. [PMID: 37307911 DOI: 10.1016/j.mvr.2023.104565] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Cardiovascular diseases are one of the leading causes of mortality in developed countries. Among cardiovascular disorders, myocardial infarction remains a life-threatening problem predisposing to the development and progression of ischemic heart failure. Ischemia/reperfusion (I/R) injury is a critical cause of myocardial injury. In recent decades, many efforts have been made to find the molecular and cellular mechanisms underlying the development of myocardial I/R injury and post-ischemic remodeling. Some of these mechanisms are mitochondrial dysfunction, metabolic alterations, inflammation, high production of ROS, and autophagy deregulation. Despite continuous efforts, myocardial I/R injury remains a major challenge in medical treatments of thrombolytic therapy, heart disease, primary percutaneous coronary intervention, and coronary arterial bypass grafting. The development of effective therapeutic strategies to reduce or prevent myocardial I/R injury is of great clinical significance.
Collapse
Affiliation(s)
- Yang Liu
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Xiang Ji
- Department of Integrative, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Zhou Zhou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Jingwen Zhang
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Juan Zhang
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China; First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250011, China.
| |
Collapse
|
30
|
Jin X, Ma Y, Liu D, Huang Y. Role of pyroptosis in the pathogenesis and treatment of diseases. MedComm (Beijing) 2023; 4:e249. [PMID: 37125240 PMCID: PMC10130418 DOI: 10.1002/mco2.249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/16/2023] [Accepted: 03/07/2023] [Indexed: 05/02/2023] Open
Abstract
Programmed cell death (PCD) is regarded as a pathological form of cell death with an intracellular program mediated, which plays a pivotal role in maintaining homeostasis and embryonic development. Pyroptosis is a new paradigm of PCD, which has received increasing attention due to its close association with immunity and disease. Pyroptosis is a form of inflammatory cell death mediated by gasdermin that promotes the release of proinflammatory cytokines and contents induced by inflammasome activation. Recently, increasing evidence in studies shows that pyroptosis has a crucial role in inflammatory conditions like cardiovascular diseases (CVDs), cancer, neurological diseases (NDs), and metabolic diseases (MDs), suggesting that targeting cell death is a potential intervention for the treatment of these inflammatory diseases. Based on this, the review aims to identify the molecular mechanisms and signaling pathways related to pyroptosis activation and summarizes the current insights into the complicated relationship between pyroptosis and multiple human inflammatory diseases (CVDs, cancer, NDs, and MDs). We also discuss a promising novel strategy and method for treating these inflammatory diseases by targeting pyroptosis and focus on the pyroptosis pathway application in clinics.
Collapse
Affiliation(s)
- Xiangyu Jin
- Wuxi School of MedicineJiangnan UniversityJiangsuChina
| | - Yinchu Ma
- Wuxi School of MedicineJiangnan UniversityJiangsuChina
| | - Didi Liu
- Wuxi School of MedicineJiangnan UniversityJiangsuChina
| | - Yi Huang
- Wuxi School of MedicineJiangnan UniversityJiangsuChina
| |
Collapse
|
31
|
Xu X, Zhang B, Wang Y, Shi S, Lv J, Fu Z, Gao X, Li Y, Wu H, Song Q. Renal fibrosis in type 2 cardiorenal syndrome: An update on mechanisms and therapeutic opportunities. Biomed Pharmacother 2023; 164:114901. [PMID: 37224755 DOI: 10.1016/j.biopha.2023.114901] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023] Open
Abstract
Cardiorenal syndrome (CRS) is a state of coexisting heart failure and renal insufficiency in which acute or chronic dysfunction of the heart or kidney lead to acute or chronic dysfunction of the other organ.It was found that renal fibrosis is an important pathological process in the progression of type 2 CRS to end-stage renal disease, and progressive renal impairment accelerates the deterioration of cardiac function and significantly increases the hospitalization and mortality rates of patients. Previous studies have found that Hemodynamic Aiteration, RAAS Overactivation, SNS Dysfunction, Endothelial Dysfunction and Imbalance of natriuretic peptide system contribute to the development of renal disease in the decompensated phase of heart failure, but the exact mechanisms is not clear. Therefore, in this review, we focus on the molecular pathways involved in the development of renal fibrosis due to heart failure and identify the canonical and non-canonical TGF-β signaling pathways and hypoxia-sensing pathways, oxidative stress, endoplasmic reticulum stress, pro-inflammatory cytokines and chemokines as important triggers and regulators of fibrosis development, and summarize the therapeutic approaches for the above signaling pathways, including SB-525334 Sfrp1, DKK1, IMC, rosarostat, 4-PBA, etc. In addition, some potential natural drugs for this disease are also summarized, including SQD4S2, Wogonin, Astragaloside, etc.
Collapse
Affiliation(s)
- Xia Xu
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bingxuan Zhang
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yajiao Wang
- College of Traditional Chinese Medicine, China Academy of Chinese Medical Science, Beijing, China
| | - Shuqing Shi
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiayu Lv
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenyue Fu
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xiya Gao
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Yumeng Li
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Huaqin Wu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Qingqiao Song
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
32
|
Aodah AH, Devi S, Alkholifi FK, Yusufoglu HS, Foudah AI, Alam A. Effects of Taraxerol on Oxidative and Inflammatory Mediators in Isoproterenol-Induced Cardiotoxicity in an Animal Model. Molecules 2023; 28:molecules28104089. [PMID: 37241830 DOI: 10.3390/molecules28104089] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Myocardial infarction (MI) continues to be an important issue in healthcare systems worldwide, leading to high rates of morbidity and mortality. Despite ongoing efforts towards the development of preventive measures and treatments, addressing the challenges posed by MI remains difficult both in developed and developing countries. However, researchers recently investigated the potential cardioprotective effects of taraxerol utilizing an isoproterenol (ISO)-induced cardiotoxicity model among Sprague Dawley rats. Specifically, subcutaneous tissue injections consisting of 5.25 mg/kg or 8.5 mg/kg ISO were administered over two consecutive days as stimuli to induce cardiac injury. To investigate the possibility of preventing damage caused by ISO-induced cardiotoxicity by taraxerol treatment, five groups were formed: a normal control group (1% Tween 80), an ISO control group, an amlodipine group administered 5 mg/kg/day, and various doses of taraxerol. The study results showed that treatment significantly reduced cardiac marker enzymes. Additionally, pretreatment with taraxerol increased myocardial activity in SOD and GPx, leading to significant reductions in serum CK-MB levels along with MDA, TNF-α, and IL-6. Further histopathological analysis supported these observations, as treated animals had less cellular infiltration compared to untreated ones. These multifaceted findings suggest that oral administration of taraxerol could potentially protect hearts from ISO-caused damage by increasing endogenous antioxidant concentrations while decreasing pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Alhussain H Aodah
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Sushma Devi
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Faisal K Alkholifi
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Hasan S Yusufoglu
- Department of Pharmacognosy & Pharmaceutical Chemistry, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Ahmed I Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| |
Collapse
|
33
|
Yin Y, Tan M, Han L, Zhang L, Zhang Y, Zhang J, Pan W, Bai J, Jiang T, Li H. The hippo kinases MST1/2 in cardiovascular and metabolic diseases: A promising therapeutic target option for pharmacotherapy. Acta Pharm Sin B 2023; 13:1956-1975. [PMID: 37250161 PMCID: PMC10213817 DOI: 10.1016/j.apsb.2023.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/09/2022] [Accepted: 11/18/2022] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular diseases (CVDs) and metabolic disorders are major components of noncommunicable diseases, causing an enormous health and economic burden worldwide. There are common risk factors and developmental mechanisms among them, indicating the far-reaching significance in exploring the corresponding therapeutic targets. MST1/2 kinases are well-established proapoptotic effectors that also bidirectionally regulate autophagic activity. Recent studies have demonstrated that MST1/2 influence the outcome of cardiovascular and metabolic diseases by regulating immune inflammation. In addition, drug development against them is in full swing. In this review, we mainly describe the roles and mechanisms of MST1/2 in apoptosis and autophagy in cardiovascular and metabolic events as well as emphasis on the existing evidence for their involvement in immune inflammation. Moreover, we summarize the latest progress of pharmacotherapy targeting MST1/2 and propose a new mode of drug combination therapy, which may be beneficial to seek more effective strategies to prevent and treat CVDs and metabolic disorders.
Collapse
Affiliation(s)
- Yunfei Yin
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Mingyue Tan
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Lianhua Han
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Lei Zhang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yue Zhang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jun Zhang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Wanqian Pan
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jiaxiang Bai
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Department of Orthopedics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Tingbo Jiang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Hongxia Li
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
34
|
Moustafa A, Hashemi S, Brar G, Grigull J, Ng SHS, Williams D, Schmitt-Ulms G, McDermott JC. The MEF2A transcription factor interactome in cardiomyocytes. Cell Death Dis 2023; 14:240. [PMID: 37019881 PMCID: PMC10076289 DOI: 10.1038/s41419-023-05665-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/02/2022] [Accepted: 02/08/2023] [Indexed: 04/07/2023]
Abstract
Transcriptional regulators encoded by the Myocyte Enhancer Factor 2 (MEF2) gene family play a fundamental role in cardiac development, homeostasis and pathology. Previous studies indicate that MEF2A protein-protein interactions serve as a network hub in several cardiomyocyte cellular processes. Based on the idea that interactions with regulatory protein partners underly the diverse roles of MEF2A in cardiomyocyte gene expression, we undertook a systematic unbiased screen of the MEF2A protein interactome in primary cardiomyocytes using an affinity purification-based quantitative mass spectrometry approach. Bioinformatic processing of the MEF2A interactome revealed protein networks involved in the regulation of programmed cell death, inflammatory responses, actin dynamics and stress signaling in primary cardiomyocytes. Further biochemical and functional confirmation of specific protein-protein interactions documented a dynamic interaction between MEF2A and STAT3 proteins. Integration of transcriptome level data from MEF2A and STAT3-depleted cardiomyocytes reveals that the balance between MEF2A and STAT3 activity exerts a level of executive control over the inflammatory response and cardiomyocyte cell survival and experimentally ameliorates Phenylephrine induced cardiomyocyte hypertrophy. Lastly, we identified several MEF2A/STAT3 co-regulated genes, including the MMP9 gene. Herein, we document the cardiomyocyte MEF2A interactome, which furthers our understanding of protein networks involved in the hierarchical control of normal and pathophysiological cardiomyocyte gene expression in the mammalian heart.
Collapse
Affiliation(s)
- Amira Moustafa
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
- Muscle Health Research Centre (MHRC), York University, Toronto, ON, M3J 1P3, Canada
- Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, M3J 1P3, Canada
| | - Sara Hashemi
- Analytical Sciences, Sanofi, Toronto, ON, M2R 3T4, Canada
- Seneca College, School of Health Sciences, King City, ON, L7B 1B3, Canada
| | - Gurnoor Brar
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
- Muscle Health Research Centre (MHRC), York University, Toronto, ON, M3J 1P3, Canada
- Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, M3J 1P3, Canada
| | - Jörg Grigull
- Department of Mathematics and Statistics, York University, Toronto, ON, M3J1P3, Canada
| | - Siemon H S Ng
- Analytical Sciences, Sanofi, Toronto, ON, M2R 3T4, Canada
- Analytical Development, Notch Therapeutics, Toronto, ON, M5G 1M1, Canada
| | - Declan Williams
- Tanz Centre for Research in Neurodegenerative Diseases, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 0S8, Canada
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 0S8, Canada
| | - John C McDermott
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada.
- Muscle Health Research Centre (MHRC), York University, Toronto, ON, M3J 1P3, Canada.
- Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
35
|
Iurova E, Beloborodov E, Rastorgueva E, Fomin A, Saenko Y. Peptide Sodium Channels Modulator Mu-Agatoxin-Aa1a Prevents Ischemia-Reperfusion Injury of Cells. Molecules 2023; 28:molecules28073174. [PMID: 37049936 PMCID: PMC10095657 DOI: 10.3390/molecules28073174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023] Open
Abstract
Ischemia-reperfusion injury (IRI) is an irreversible functional and structural injury. Restoration of normal oxygen concentration exacerbates the emergence and development of deadly cells. One of the possible moments of reperfusion damage to cells is an increase in the intracellular concentration of sodium ions. In this article, we study the mu-agatoxin-Aa1a, a modulator of sodium channels, on the processes of IRI cells damage. The toxin was synthesized using an automatic peptide synthesizer. Hypoxia was induced by reducing the content of serum and oxygen in the CHO-K1 culture. The influence of the toxin on the level of apoptosis; intracellular concentration of sodium, calcium, and potassium ions; intracellular pH; totality of reactive oxygen species (ROS), nitric oxide (NO), and ATP; and changes in the mitochondrial potential were studied. The experiments performed show that mu-agatoxin-Aa1a effectively prevents IRI of cells. Toxin reduces the level of apoptosis and prevents a decrease in the intracellular concentration of sodium and calcium ions during IRI. Mu-agatoxin-Aa1a contributes to the maintenance of elevated intracellular pH, reduces the intracellular concentration of ROS, and prevents the decrease in intracellular NO concentration and mitochondrial potential under conditions of reoxygenation/reperfusion. An analysis of experimental data shows that the mu-agatoxin-Aa1a peptide has adaptogenic properties. In the future, this peptide can be used to prevent ischemia/reperfusion tissue damage different genesis.
Collapse
Affiliation(s)
- Elena Iurova
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S. P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk 432017, Russia
| | - Evgenii Beloborodov
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S. P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk 432017, Russia
| | - Eugenia Rastorgueva
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S. P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk 432017, Russia
- Department of General and Clinical Pharmacology and Microbiology, Faculty of Medicine, Ulyanovsk State University, Ulyanovsk 432017, Russia
| | - Aleksandr Fomin
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S. P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk 432017, Russia
| | - Yury Saenko
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S. P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk 432017, Russia
| |
Collapse
|
36
|
Thai MT, Phan PT, Tran HA, Nguyen CC, Hoang TT, Davies J, Rnjak‐Kovacina J, Phan H, Lovell NH, Do TN. Advanced Soft Robotic System for In Situ 3D Bioprinting and Endoscopic Surgery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205656. [PMID: 36808494 PMCID: PMC10131836 DOI: 10.1002/advs.202205656] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/26/2022] [Indexed: 06/18/2023]
Abstract
Three-dimensional (3D) bioprinting technology offers great potential in the treatment of tissue and organ damage. Conventional approaches generally rely on a large form factor desktop bioprinter to create in vitro 3D living constructs before introducing them into the patient's body, which poses several drawbacks such as surface mismatches, structure damage, and high contamination along with tissue injury due to transport and large open-field surgery. In situ bioprinting inside a living body is a potentially transformational solution as the body serves as an excellent bioreactor. This work introduces a multifunctional and flexible in situ 3D bioprinter (F3DB), which features a high degree of freedom soft printing head integrated into a flexible robotic arm to deliver multilayered biomaterials to internal organs/tissues. The device has a master-slave architecture and is operated by a kinematic inversion model and learning-based controllers. The 3D printing capabilities with different patterns, surfaces, and on a colon phantom are also tested with different composite hydrogels and biomaterials. The F3DB capability to perform endoscopic surgery is further demonstrated with fresh porcine tissue. The new system is expected to bridge a gap in the field of in situ bioprinting and support the future development of advanced endoscopic surgical robots.
Collapse
Affiliation(s)
- Mai Thanh Thai
- Graduate School of Biomedical EngineeringFaculty of EngineeringUNSW SydneyKensington CampusSydneyNSW2052Australia
- Tyree Institute of Health EngineeringUNSW SydneySydneyNSW2052Australia
| | - Phuoc Thien Phan
- Graduate School of Biomedical EngineeringFaculty of EngineeringUNSW SydneyKensington CampusSydneyNSW2052Australia
- Tyree Institute of Health EngineeringUNSW SydneySydneyNSW2052Australia
| | - Hien Anh Tran
- Graduate School of Biomedical EngineeringFaculty of EngineeringUNSW SydneyKensington CampusSydneyNSW2052Australia
- Tyree Institute of Health EngineeringUNSW SydneySydneyNSW2052Australia
| | - Chi Cong Nguyen
- Graduate School of Biomedical EngineeringFaculty of EngineeringUNSW SydneyKensington CampusSydneyNSW2052Australia
- Tyree Institute of Health EngineeringUNSW SydneySydneyNSW2052Australia
| | - Trung Thien Hoang
- Graduate School of Biomedical EngineeringFaculty of EngineeringUNSW SydneyKensington CampusSydneyNSW2052Australia
- Tyree Institute of Health EngineeringUNSW SydneySydneyNSW2052Australia
| | - James Davies
- Graduate School of Biomedical EngineeringFaculty of EngineeringUNSW SydneyKensington CampusSydneyNSW2052Australia
- Tyree Institute of Health EngineeringUNSW SydneySydneyNSW2052Australia
| | - Jelena Rnjak‐Kovacina
- Graduate School of Biomedical EngineeringFaculty of EngineeringUNSW SydneyKensington CampusSydneyNSW2052Australia
- Tyree Institute of Health EngineeringUNSW SydneySydneyNSW2052Australia
| | - Hoang‐Phuong Phan
- Tyree Institute of Health EngineeringUNSW SydneySydneyNSW2052Australia
- School of Mechanical and Manufacturing EngineeringFaculty of EngineeringUNSW SydneyKensington CampusSydneyNSW2052Australia
| | - Nigel Hamilton Lovell
- Graduate School of Biomedical EngineeringFaculty of EngineeringUNSW SydneyKensington CampusSydneyNSW2052Australia
- Tyree Institute of Health EngineeringUNSW SydneySydneyNSW2052Australia
| | - Thanh Nho Do
- Graduate School of Biomedical EngineeringFaculty of EngineeringUNSW SydneyKensington CampusSydneyNSW2052Australia
- Tyree Institute of Health EngineeringUNSW SydneySydneyNSW2052Australia
| |
Collapse
|
37
|
Li W, Li J, Wu Y, Zhou T. A Novel Method in Identifying Pyroptosis and Apoptosis Based on the Double Resonator Piezoelectric Cytometry Technology. BIOSENSORS 2023; 13:356. [PMID: 36979568 PMCID: PMC10046136 DOI: 10.3390/bios13030356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
In this study, a double resonator piezoelectric cytometry (DRPC) technology based on quartz crystal microbalance (QCM) was first employed to identify HeLa cell pyroptosis and apoptosis by monitoring cells' mechanical properties in a real-time and non-invasive manner. AT and BT cut quartz crystals with the same frequency and surface conditions were used concurrently to quantify the cells-exerted surface stress (ΔS). It is the first time that cells-exerted surface stress (ΔS) and cell viscoelasticity have been monitored simultaneously during pyroptosis and apoptosis. The results showed that HeLa pyroptotic cells exerted a tensile stress on quartz crystal along with an increase in the elastic modulus (G'), viscous modulus (G″), and a decrease of the loss tangent (G″/G'), whereas apoptotic cells exerted increasing compressive stress on quartz crystal along with a decrease in G', G″ and an increase in G″/G'. Furthermore, engineered GSDMD-/--DEVD- HeLa cells were used to investigate drug-induced disturbance and testify the mechanical responses during the processes of pyroptosis and non-pyroptosis. These findings demonstrated that the DRPC technology can serve as a precise cytomechanical sensor capable of identifying pyroptosis and apoptosis, providing a novel method in cell death detection and paving the road for pyroptosis and apoptosis related drug evaluation and screening.
Collapse
Affiliation(s)
- Wenwei Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Engineering Technology Research Center for Cell Mechanics and Function Analysis, Changsha 410128, China
| | - Jing Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yanyang Wu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Tiean Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Engineering Technology Research Center for Cell Mechanics and Function Analysis, Changsha 410128, China
| |
Collapse
|
38
|
The Involvement of Krüppel-like Factors in Cardiovascular Diseases. Life (Basel) 2023; 13:life13020420. [PMID: 36836777 PMCID: PMC9962890 DOI: 10.3390/life13020420] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/16/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Krüppel-like factors (KLFs) are a set of DNA-binding proteins belonging to a family of zinc-finger transcription factors, which have been associated with many biological processes related to the activation or repression of genes, inducing cell growth, differentiation, and death, and the development and maintenance of tissues. In response to metabolic alterations caused by disease and stress, the heart will undergo cardiac remodeling, leading to cardiovascular diseases (CVDs). KLFs are among the transcriptional factors that take control of many physiological and, in this case, pathophysiological processes of CVD. KLFs seem to be associated with congenital heart disease-linked syndromes, malformations because of autosomal diseases, mutations that relate to protein instability, and/or loss of functions such as atheroprotective activities. Ischemic damage also relates to KLF dysregulation because of the differentiation of cardiac myofibroblasts or a modified fatty acid oxidation related to the formation of a dilated cardiomyopathy, myocardial infarctions, left ventricular hypertrophy, and diabetic cardiomyopathies. In this review, we describe the importance of KLFs in cardiovascular diseases such as atherosclerosis, myocardial infarction, left ventricle hypertrophy, stroke, diabetic cardiomyopathy, and congenital heart diseases. We further discuss microRNAs that have been involved in certain regulatory loops of KLFs as they may act as critical in CVDs.
Collapse
|
39
|
Fang Z, Li X, Liu J, Lee H, Salciccioli L, Lazar J, Zhang M. The role of complement C3 in the outcome of regional myocardial infarction. Biochem Biophys Rep 2023; 33:101434. [PMID: 36748063 PMCID: PMC9898614 DOI: 10.1016/j.bbrep.2023.101434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
Coronary heart disease leading to myocardial ischemia is a major cause of heart failure. A hallmark of heart failure is myocardial fibrosis. Using a murine model of myocardial ischemia/reperfusion injury (IRI), we showed that, following IRI, in mice genetically deficient in the central factor of complement system, C3, myocardial necrosis was reduced compared with WT mice. Four weeks after the ischemic period, the C3-/- mice had significantly less cardiac fibrosis and better cardiac function than the WT controls. Overall, our results suggest that innate immune response through complement C3 plays an important role in necrotic cell death, which contributes to the cardiac fibrosis that underlies post-infarction heart failure.
Collapse
Affiliation(s)
| | - Xiang Li
- Department of Anesthesiology, USA
| | | | | | - Louis Salciccioli
- Department of Medicine, SUNY Downstate Health Science University, 450 Clarkson Avenue, Brooklyn, NY, 11203, USA
| | - Jason Lazar
- Department of Medicine, SUNY Downstate Health Science University, 450 Clarkson Avenue, Brooklyn, NY, 11203, USA
| | - Ming Zhang
- Department of Anesthesiology, USA,Department of Cell Biology, USA,Corresponding author. Department of Anesthesiology, MSC6 SUNY Downstate Health Science University, 450 Clarkson Avenue Brooklyn, NY, 11203, USA.
| |
Collapse
|
40
|
Piamsiri C, Maneechote C, Jinawong K, Arunsak B, Chunchai T, Nawara W, Chattipakorn SC, Chattipakorn N. GSDMD-mediated pyroptosis dominantly promotes left ventricular remodeling and dysfunction in post-myocardial infarction: a comparison across modes of programmed cell death and mitochondrial involvement. J Transl Med 2023; 21:16. [PMID: 36627703 PMCID: PMC9830763 DOI: 10.1186/s12967-023-03873-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Myocardial infarction (MI) has recently accounted for more than one-third of global mortality. Multiple molecular pathological pathways, such as oxidative stress, inflammation, and mitochondrial dysfunction, have been recognized as possible mechanisms in the development of MI. Furthermore, different phases of ischemic injury following the progression of MI were also associated with multiple types of programmed cell death (PCDs), including apoptosis, necroptosis, ferroptosis, and pyroptosis. However, it remains unknown whether which types of PCDs play the most dominant role in post-myocardial infarction (post-MI). METHOD In this study, we used a preclinical rat model of MI induced by permanent left anterior descending coronary artery (LAD) ligation (n = 6) or a sham operated rat model (n = 6). After a 5-week experiment, cardiac function and morphology, mitochondrial studies, and molecular signaling analysis of PCDs were determined. RESULTS Herein, we demonstrated that post-MI rats had considerably impaired cardiac geometry, increased oxidative stress, myocardial injuries, and subsequently contractile dysfunction. They also exhibited worsened cardiac mitochondrial function and dynamic imbalance. More importantly, we found that post-MI mediated abundant myocardial cell death through multiple PCDs, including apoptosis, necroptosis, and pyroptosis, but not ferroptosis. CONCLUSION In this study, we provide the first insights into the mechanism of PCDs by pyroptosis, which is leveraged as the most dominant mode of cell death after MI.
Collapse
Affiliation(s)
- Chanon Piamsiri
- grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Chayodom Maneechote
- grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Kewarin Jinawong
- grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Busarin Arunsak
- grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Titikorn Chunchai
- grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Wichwara Nawara
- grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Siriporn C Chattipakorn
- grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Nipon Chattipakorn
- grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand
| |
Collapse
|
41
|
Oyarzun A, Parsons S, Bassed R. Myocarditis in the forensic setting - a review of the literature. Cardiovasc Pathol 2023; 62:107475. [PMID: 36116635 DOI: 10.1016/j.carpath.2022.107475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/16/2022] [Accepted: 09/11/2022] [Indexed: 12/13/2022] Open
Abstract
Diagnosis of myocarditis as the cause of death at post-mortem is currently determined by a forensic pathologist. There is no systematic method for diagnosis and thus the determination is subject to inter-observer variability and is non-reproducible. Postmortem studies often rely on the clinical method of diagnosis, which is inaccurate. Furthermore, there is no current standardized method of distinguishing between myocarditis as cause of death, and myocardial inflammation as an incidental finding post-mortem. Only a few studies have investigated a method of quantifying this difference using variables such as number of inflammatory cells and presence of myocyte necrosis, however, there are several limitations hindering the reproducibility of this research. This review investigates the current practices and limitations associated with the diagnosis of myocarditis as cause of death in the autopsy setting.
Collapse
Affiliation(s)
- Adele Oyarzun
- Victorian Institute of Forensic Medicine, Department of Forensic Medicine, Monash University, Melbourne, Australia
| | - Sarah Parsons
- Victorian Institute of Forensic Medicine, Department of Forensic Medicine, Monash University, Melbourne, Australia.
| | - Richard Bassed
- Victorian Institute of Forensic Medicine, Department of Forensic Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
42
|
Ragusa R, Masotti S, Musetti V, Rocchiccioli S, Prontera C, Perrone M, Passino C, Clerico A, Caselli C. Cardiac troponins: Mechanisms of release and role in healthy and diseased subjects. Biofactors 2022; 49:351-364. [PMID: 36518005 DOI: 10.1002/biof.1925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
The cardiac troponins (cTns), cardiac troponin C (cTnC), cTnT, and cTnI are key elements of myocardial apparatus, fixed as protein complex on the thin filament of sarcomere and are involved in the regulation of excitation-contraction coupling of cardiomyocytes in the presence of Ca2+ . Circulating cTnT and cTnI (cTns) increase following cardiac tissue necrosis, and they are consolidated biomarkers of acute myocardial infarction (AMI). However, the use of high sensitivity (hs)-immunoassay tests for cTnT and cTnI has made it possible to identify a multitude of other clinical conditions associated with increased circulating levels of cTns. cTns can be measured also in the peripheral circulation of healthy subjects or athletes, suggesting that different mechanisms are involved in the release of cTns in the blood independently of cardiac cell necrosis. In this review, the molecular/cellular mechanisms involved in cTns release in blood and the exploitation of cTnI and cTnT as biomarkers of cardiac adverse events, in addition to cardiac necrosis, are discussed.
Collapse
Affiliation(s)
| | - Silvia Masotti
- Scuola Superiore Sant'Anna, Institute of Life Sciences, Pisa, Italy
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Veronica Musetti
- Scuola Superiore Sant'Anna, Institute of Life Sciences, Pisa, Italy
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | | | | | - Marco Perrone
- Department of Cardiology, University of Rome Tor Vergata, Rome, Italy
| | - Claudio Passino
- Scuola Superiore Sant'Anna, Institute of Life Sciences, Pisa, Italy
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Aldo Clerico
- Scuola Superiore Sant'Anna, Institute of Life Sciences, Pisa, Italy
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | | |
Collapse
|
43
|
He X, Liang J, Paul C, Huang W, Dutta S, Wang Y. Advances in Cellular Reprogramming-Based Approaches for Heart Regenerative Repair. Cells 2022; 11:3914. [PMID: 36497171 PMCID: PMC9740402 DOI: 10.3390/cells11233914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Continuous loss of cardiomyocytes (CMs) is one of the fundamental characteristics of many heart diseases, which eventually can lead to heart failure. Due to the limited proliferation ability of human adult CMs, treatment efficacy has been limited in terms of fully repairing damaged hearts. It has been shown that cell lineage conversion can be achieved by using cell reprogramming approaches, including human induced pluripotent stem cells (hiPSCs), providing a promising therapeutic for regenerative heart medicine. Recent studies using advanced cellular reprogramming-based techniques have also contributed some new strategies for regenerative heart repair. In this review, hiPSC-derived cell therapeutic methods are introduced, and the clinical setting challenges (maturation, engraftment, immune response, scalability, and tumorigenicity), with potential solutions, are discussed. Inspired by the iPSC reprogramming, the approaches of direct cell lineage conversion are merging, such as induced cardiomyocyte-like cells (iCMs) and induced cardiac progenitor cells (iCPCs) derived from fibroblasts, without induction of pluripotency. The studies of cellular and molecular pathways also reveal that epigenetic resetting is the essential mechanism of reprogramming and lineage conversion. Therefore, CRISPR techniques that can be repurposed for genomic or epigenetic editing become attractive approaches for cellular reprogramming. In addition, viral and non-viral delivery strategies that are utilized to achieve CM reprogramming will be introduced, and the therapeutic effects of iCMs or iCPCs on myocardial infarction will be compared. After the improvement of reprogramming efficiency by developing new techniques, reprogrammed iCPCs or iCMs will provide an alternative to hiPSC-based approaches for regenerative heart therapies, heart disease modeling, and new drug screening.
Collapse
Affiliation(s)
- Xingyu He
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jialiang Liang
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Christian Paul
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Wei Huang
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Suchandrima Dutta
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Yigang Wang
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
44
|
Li W, Guo S, Miao N. Transcriptional responses of fluxapyroxad-induced dysfunctional heart in zebrafish (Danio rerio) embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90034-90045. [PMID: 35864390 DOI: 10.1007/s11356-022-21981-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Fluxapyroxad (FLU) is a succinate dehydrogenase inhibitor (SDHI) fungicide used in controlling crop diseases. Potential toxicity to aquatic organisms is not known. We exposed zebrafish to 1, 2, and 4 μM FLU for 3 days. The embryonic zebrafish showed developmental cardiac defects, including heart malformation, pericardial edema, and heart rate reduction. Compared with the controls, cardiac-specific transcription factors (nkx2.5, myh7, myl7, and myh6) exhibited dysregulated expression patterns after FLU treatment. We next used transcriptome and qRT-PCR analyses to explore the molecular mechanism of FLU cardiotoxicity. The transcriptome analysis and interaction network showed that the downregulated genes were enriched in calcium signaling pathways, adrenergic signaling in cardiomyocytes, and cardiac muscle contraction. FLU exposure repressed the cardio-related calcium signaling pathway, associated with apoptosis in the heart and other manifestations of cardiotoxicity. Thus, the findings provide valuable evidence that FLU exposure causes disruption of cardiac development in zebrafish embryos. Our findings will help to promote a better understanding of the toxicity mechanisms of FLU and act as a reference to explore the rational use and safety of FLU in agriculture.
Collapse
Affiliation(s)
- Wenhua Li
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, People's Republic of China
| | - Shanshan Guo
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, People's Republic of China
| | - Nan Miao
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, 668 Jimei Road, Xiamen, 361021, People's Republic of China.
| |
Collapse
|
45
|
Guan H, Liu J, Liu D, Ding C, Zhan J, Hu X, Zhang P, Wang L, Lan Q, Qiu X. Elastic and Conductive Melanin/Poly(Vinyl Alcohol) Composite Hydrogel for Enhancing Repair Effect on Myocardial Infarction. Macromol Biosci 2022; 22:e2200223. [PMID: 36116010 DOI: 10.1002/mabi.202200223] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/28/2022] [Indexed: 01/15/2023]
Abstract
Heart failure caused by acute myocardial infarction (MI) still remains the main cause of death worldwide. Development of conductive hydrogels provided a promising approach for the treatment of myocardial infarction. However, the therapeutic potential of these hydrogels is still limited by material toxicity or low conductivity. The latter directly affects the coupling and the propagation of electrical signals between cells. Here, a functional conductive hydrogel by combining hydrophilic and biocompatible poly(vinyl alcohol) (PVA) with conductive melanin nanoparticles under physical crosslinking conditions is prepared. The composite hydrogels prepared by a facile fabrication process of five freeze/thaw cycles possessed satisfying mechanical properties and conductivity close to those of the natural heart. The physical properties and biocompatibility are evaluated in vitro experiments, showing that the introduction of melanin particles successfully improved the elasticity, conductivity, and cell adhesion of PVA hydrogel. In vivo, the composite hydrogels can enhance the cardiac repair effect by reducing MI area, slowing down ventricular wall thinning, and promoting the vascularization of infarct area in MI rat model. It is believed that the melanin/PVA composite hydrogel may be a suitable candidate material for MI repair.
Collapse
Affiliation(s)
- Haien Guan
- The Fifth Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510999, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Jianing Liu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Dan Liu
- The Fifth Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510999, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Chengbin Ding
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Jiamian Zhan
- The Fifth Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510999, China
| | - Xiaofang Hu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Peng Zhang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Leyu Wang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Qiaofeng Lan
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Xiaozhong Qiu
- The Fifth Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510999, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
46
|
Signaling Pathways in Inflammation and Cardiovascular Diseases: An Update of Therapeutic Strategies. IMMUNO 2022. [DOI: 10.3390/immuno2040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Inflammatory processes represent a pivotal element in the development and complications of cardiovascular diseases (CVDs). Targeting these processes can lead to the alleviation of cardiomyocyte (CM) injury and the increase of reparative mechanisms. Loss of CMs from inflammation-associated cardiac diseases often results in heart failure (HF). Evidence of the crosstalk between nuclear factor-kappa B (NF-κB), Hippo, and mechanistic/mammalian target of rapamycin (mTOR) has been reported in manifold immune responses and cardiac pathologies. Since these signaling cascades regulate a broad array of biological tasks in diverse cell types, their misregulation is responsible for the pathogenesis of many cardiac and vascular disorders, including cardiomyopathies and atherosclerosis. In response to a myriad of proinflammatory cytokines, which induce reactive oxygen species (ROS) production, several molecular mechanisms are activated within the heart to inaugurate the structural remodeling of the organ. This review provides a global landscape of intricate protein–protein interaction (PPI) networks between key constituents of NF-κB, Hippo, and mTOR signaling pathways as quintessential targetable candidates for the therapy of cardiovascular and inflammation-related diseases.
Collapse
|
47
|
Padilla-Rivas GR, Delgado-Gallegos JL, Garza-Treviño G, Galan-Huerta KA, G-Buentello Z, Roacho-Pérez JA, Santoyo-Suarez MG, Franco-Villareal H, Leyva-Lopez A, Estrada-Rodriguez AE, Moreno-Cuevas JE, Ramos-Jimenez J, Rivas-Estrilla AM, Garza-Treviño EN, Islas JF. Association between mortality and cardiovascular diseases in the vulnerable Mexican population: A cross-sectional retrospective study of the COVID-19 pandemic. Front Public Health 2022; 10:1008565. [PMID: 36438268 PMCID: PMC9686003 DOI: 10.3389/fpubh.2022.1008565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/22/2022] [Indexed: 11/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) continue to be the leading cause of death worldwide. Over the past couple of years and with the surge of the COVID-19 pandemic, mortality from CVDs has been slightly overshadowed by those due to COVID-19, although it was during the peak of the pandemic. In the present study, patients with CVDs (CVDs; n = 41,883) were analyzed to determine which comorbidities had the largest impact on overall patient mortality due to their association with both diseases (n = 3,637). Obesity, hypertension, and diabetes worsen health in patients diagnosed positive for COVID-19. Hence, they were included in the overview of all patients with CVD. Our findings showed that 1,697 deaths were attributable to diabetes (p < 0.001) and 987 deaths to obesity (p < 0.001). Lastly, 2,499 deaths were attributable to hypertension (p < 0.001). Using logistic regression modeling, we found that diabetes (OR: 1.744, p < 0.001) and hypertension (OR: 2.179, p < 0.001) significantly affected the mortality rate of patients. Hence, having a CVD diagnosis, with hypertension and/or diabetes, seems to increase the likelihood of complications, leading to death in patients diagnosed positive for COVID-19.
Collapse
Affiliation(s)
- Gerardo R. Padilla-Rivas
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Juan Luis Delgado-Gallegos
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Gerardo Garza-Treviño
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Kame A. Galan-Huerta
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Zuca G-Buentello
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Jorge A. Roacho-Pérez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Michelle Giovana Santoyo-Suarez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | | | - Ahidée Leyva-Lopez
- Centro de Investigación en Salud Poblacional Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | | | - Jorge E. Moreno-Cuevas
- Departamento de Ciencias Básicas, Universidad de Monterrey, San Pedro Garza García, México
| | - Javier Ramos-Jimenez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Ana M. Rivas-Estrilla
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Elsa N. Garza-Treviño
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Jose Francisco Islas
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| |
Collapse
|
48
|
Wu N, Zhai X, Feng M, Li J, Yu N, Zhang F, Li D, Wang J, Zhang L, Shi Y, He G, Ji G, Liu B. The gender-specific bidirectional relations between chronic diseases and total bilirubin/urea in the elderly population: A 3-year longitudinal study. Front Public Health 2022; 10:1003505. [PMID: 36438212 PMCID: PMC9682180 DOI: 10.3389/fpubh.2022.1003505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/25/2022] [Indexed: 11/10/2022] Open
Abstract
Aging is accompanied by changes in physiology over time, which remains the largest risk of chronic diseases. The aim of this study was to explore the gender-specific bidirectional relations between the risk of chronic diseases and serum traits in a 3-year longitudinal study. A hierarchical non-linear model with random effects was used to assess the temporal patterns of anthropometric and serum traits from 2017 to 2019 among 2,338 participants. To assess the directional effect between the risk of chronic diseases and serum traits, a bivariate cross-lagged panel model (CLPM) was used to estimate the structural relations of repeatedly measured variables at three different time points. Candidate SNPs were analyzed and genotyped in MassARRAY Analyzer 4 platforms. In this study, metabolic syndrome (MS) score increased with aging in females, whereas the fatty liver disease (FLD) index decreased with aging in males; the MS score was negatively correlated with TB in females, and FLD index was positively related to urea in males; CLPM showed that the MS score predicted total bilirubin (TB) in females, and urea predicted the FLD index in males. Additionally, rs2292354 in G protein-coupled receptor kinase interactor 2 (GIT2) was associated with the MS score and TB in aged females. Our study suggests the potential gender-specific causal associations between development in MS and increase in TB level in females, and rise in urea level and improved FLD index in males. The SNP rs2292354 we investigated might be a biomarker for predicting MS in the elderly Chinese Han population.
Collapse
Affiliation(s)
- Na Wu
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangyu Zhai
- Graduate School of Sport Sciences, Waseda University, Saitama, Japan
| | - Mofan Feng
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Li
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ning Yu
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fengwei Zhang
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dong Li
- Zhangjiang Community Health Service Center of Pudong New District, Shanghai, China
| | - Jianying Wang
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Zhang
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Shi
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China,Yi Shi
| | - Guang He
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China,Guang He
| | - Guang Ji
- Longhua Hospital, Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Guang Ji
| | - Baocheng Liu
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Baocheng Liu ;
| |
Collapse
|
49
|
Boikova A, Bywater MJ, Quaife-Ryan GA, Straube J, Thompson L, Ascanelli C, Littlewood TD, Evan GI, Hudson JE, Wilson CH. HRas and Myc synergistically induce cell cycle progression and apoptosis of murine cardiomyocytes. Front Cardiovasc Med 2022; 9:948281. [PMID: 36337898 PMCID: PMC9630352 DOI: 10.3389/fcvm.2022.948281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Aim Adult mammalian cardiomyocytes are incapable of significant proliferation, limiting regeneration after myocardial injury. Overexpression of the transcription factor Myc has been shown to drive proliferation in the adult mouse heart, but only when combined with Cyclin T1. As constitutive HRas activity has been shown to stabilise Cyclin T1 in vivo, we aimed to establish whether Myc and HRas could also act cooperatively to induce proliferation in adult mammalian cardiomyocytes in vivo. Methods and results Using a genetically modified mouse model, we confirmed that constitutive HRas activity (HRas G 12 V ) increased Cyclin T1 expression. HRas G 12 V and constitutive Myc expression together co-operate to drive cell-cycle progression of adult mammalian cardiomyocytes. However, stimulation of endogenous cardiac proliferation by the ectopic expression of HRas G 12 V and Myc also induced cardiomyocyte death, while Myc and Cyclin T1 expression did not. Conclusion Co-expression of Cyclin T1 and Myc may be a therapeutically tractable approach for cardiomyocyte neo-genesis post injury, while cell death induced by HRas G 12 V and Myc expression likely limits this option as a regenerative therapeutic target.
Collapse
Affiliation(s)
- Aleksandra Boikova
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Megan J. Bywater
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | | | - Jasmin Straube
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Lucy Thompson
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Camilla Ascanelli
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | | | - Gerard I. Evan
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - James E. Hudson
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Catherine H. Wilson
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
50
|
Targeting Epigenetic Regulation of Cardiomyocytes through Development for Therapeutic Cardiac Regeneration after Heart Failure. Int J Mol Sci 2022; 23:ijms231911878. [PMID: 36233177 PMCID: PMC9569953 DOI: 10.3390/ijms231911878] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death globally, with no cure currently. Therefore, there is a dire need to further understand the mechanisms that arise during heart failure. Notoriously, the adult mammalian heart has a very limited ability to regenerate its functional cardiac cells, cardiomyocytes, after injury. However, the neonatal mammalian heart has a window of regeneration that allows for the repair and renewal of cardiomyocytes after injury. This specific timeline has been of interest in the field of cardiovascular and regenerative biology as a potential target for adult cardiomyocyte repair. Recently, many of the neonatal cardiomyocyte regeneration mechanisms have been associated with epigenetic regulation within the heart. This review summarizes the current and most promising epigenetic mechanisms in neonatal cardiomyocyte regeneration, with a specific emphasis on the potential for targeting these mechanisms in adult cardiac models for repair after injury.
Collapse
|