1
|
Salim F, Mizutani S, Shiba S, Takamaru H, Yamada M, Nakajima T, Yachida T, Soga T, Saito Y, Fukuda S, Yachida S, Yamada T. Fusobacterium species are distinctly associated with patients with Lynch syndrome colorectal cancer. iScience 2024; 27:110181. [PMID: 38993678 PMCID: PMC11237946 DOI: 10.1016/j.isci.2024.110181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/11/2024] [Accepted: 06/01/2024] [Indexed: 07/13/2024] Open
Abstract
Accumulating evidence demonstrates clear correlation between the gut microbiota and sporadic colorectal cancer (CRC). Despite this, there is limited understanding of the association between the gut microbiota and CRC in Lynch Syndrome (LS), a hereditary type of CRC. Here, we analyzed fecal shotgun metagenomic and targeted metabolomic of 71 Japanese LS subjects. A previously published Japanese sporadic CRC cohort, which includes non-LS controls, was utilized as a non-LS cohort (n = 437). LS subjects exhibited reduced microbial diversity and low-Faecalibacterium enterotypes compared to non-LS. Patients with LS-CRC had higher levels of Fusobacterium nucleatum and fap2. Differential fecal metabolites and functional genes suggest heightened degradation of lysine and arginine in LS-CRC. A comparison between LS and non-LS subjects prior to adenoma formation revealed distinct fecal metabolites of LS subjects. These findings suggest that the gut microbiota plays a more responsive role in CRC tumorigenesis in patients with LS than those without LS.
Collapse
Affiliation(s)
- Felix Salim
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Sayaka Mizutani
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Satoshi Shiba
- Division of Cancer Genomics, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Hiroyuki Takamaru
- Endoscopy Division, National Cancer Center Hospital, Chuo-ku 104-0045, Tokyo, Japan
| | - Masayoshi Yamada
- Endoscopy Division, National Cancer Center Hospital, Chuo-ku 104-0045, Tokyo, Japan
| | - Takeshi Nakajima
- Endoscopy Division, National Cancer Center Hospital, Chuo-ku 104-0045, Tokyo, Japan
| | - Tatsuo Yachida
- Department of Gastroenterology & Neurology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa 761-0793, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Yutaka Saito
- Endoscopy Division, National Cancer Center Hospital, Chuo-ku 104-0045, Tokyo, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
- Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa 210-0821, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Laboratory for Regenerative Microbiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Metagen, Inc., Tsuruoka, Yamagata 997-0052, Japan
- Metagen Theurapeutics, Inc., Tsuruoka, Yamagata 997-0052, Japan
| | - Shinichi Yachida
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Takuji Yamada
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
- Metagen, Inc., Tsuruoka, Yamagata 997-0052, Japan
- Metagen Theurapeutics, Inc., Tsuruoka, Yamagata 997-0052, Japan
- digzyme, Inc., Minato-ku, Tokyo 105-0004, Japan
| |
Collapse
|
2
|
Yang J, Lin J, Gu T, Sun Q, Xu W, Peng Y. Chicoric Acid Effectively Mitigated Dextran Sulfate Sodium (DSS)-Induced Colitis in BALB/c Mice by Modulating the Gut Microbiota and Fecal Metabolites. Int J Mol Sci 2024; 25:841. [PMID: 38255916 PMCID: PMC10815209 DOI: 10.3390/ijms25020841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Chicoric acid (CA) has been reported to exhibit biological activities; it remains unclear, however, whether CA could regulate colitis via modulation of the gut microbiota and metabolites. This study aimed to assess CA's impact on dextran sulfate sodium (DSS)-induced colitis, the gut microbiota, and metabolites. Mice were induced with 2.5% DSS to develop colitis over a 7-day period. CA was administered intragastrically one week prior to DSS treatment and continued for 14 days. The microbial composition in the stool was determined using 16S rRNA sequencing, while non-targeted metabolomics was employed to analyze the metabolic profiles of each mouse group. The results show that CA effectively alleviated colitis, as evidenced by an increased colon length, lowered disease activity index (DAI) and histological scores, and decreased tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) expression levels. CA intervention restored the structure of gut microbiota. Specifically, it decreased the abundance of Bacteroidetes and Cyanobacteria at the phylum level and Bacteroides, Rosiarcus, and unclassified Xanthobacteraceae at the genus level, and increased the abundance of unclassified Lachnospiraceae at the genus level. Metabolomic analysis revealed that CA supplementation reversed the up-regulation of asymmetric dimethylarginine, N-glycolylneuraminic acid, and N-acetylneuraminic acid, as well as the down-regulation of phloroglucinol, thiamine, 4-methyl-5-thiazoleethanol, lithocholic acid, and oxymatrine induced by DSS. Our current research provides scientific evidence for developing CA into an anti-colitis functional food ingredient. Further clinical trials are warranted to elucidate the efficacy and mechanism of CA in treating human inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Jiani Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Y.); (T.G.)
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Jie Lin
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA; (J.L.); (Q.S.)
| | - Ting Gu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Y.); (T.G.)
| | - Quancai Sun
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA; (J.L.); (Q.S.)
| | - Weidong Xu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| |
Collapse
|
3
|
O’Connell F, Mylod E, Donlon NE, Heeran AB, Butler C, Bhardwaj A, Ramjit S, Durand M, Lambe G, Tansey P, Welartne I, Sheahan KP, Yin X, Donohoe CL, Ravi N, Dunne MR, Brennan L, Reynolds JV, Roche HM, O’Sullivan J. Energy Metabolism, Metabolite, and Inflammatory Profiles in Human Ex Vivo Adipose Tissue Are Influenced by Obesity Status, Metabolic Dysfunction, and Treatment Regimes in Patients with Oesophageal Adenocarcinoma. Cancers (Basel) 2023; 15:cancers15061681. [PMID: 36980567 PMCID: PMC10046380 DOI: 10.3390/cancers15061681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
Oesophageal adenocarcinoma (OAC) is a poor prognosis cancer with limited response rates to current treatment modalities and has a strong link to obesity. To better elucidate the role of visceral adiposity in this disease state, a full metabolic profile combined with analysis of secreted pro-inflammatory cytokines, metabolites, and lipid profiles were assessed in human ex vivo adipose tissue explants from obese and non-obese OAC patients. These data were then related to extensive clinical data including obesity status, metabolic dysfunction, previous treatment exposure, and tumour regression grades. Real-time energy metabolism profiles were assessed using the seahorse technology. Adipose explant conditioned media was screened using multiplex ELISA to assess secreted levels of 54 pro-inflammatory mediators. Targeted secreted metabolite and lipid profiles were analysed using Ultra-High-Performance Liquid Chromatography coupled with Mass Spectrometry. Adipose tissue explants and matched clinical data were collected from OAC patients (n = 32). Compared to visceral fat from non-obese patients (n = 16), visceral fat explants from obese OAC patients (n = 16) had significantly elevated oxidative phosphorylation metabolism profiles and an increase in Eotaxin-3, IL-17A, IL-17D, IL-3, MCP-1, and MDC and altered secretions of glutamine associated metabolites. Adipose explants from patients with metabolic dysfunction correlated with increased oxidative phosphorylation metabolism, and increases in IL-5, IL-7, SAA, VEGF-C, triacylglycerides, and metabolites compared with metabolically healthy patients. Adipose explants generated from patients who had previously received neo-adjuvant chemotherapy (n = 14) showed elevated secretions of pro-inflammatory mediators, IL-12p40, IL-1α, IL-22, and TNF-β and a decreased expression of triacylglycerides. Furthermore, decreased secreted levels of triacylglycerides were also observed in the adipose secretome of patients who received the chemotherapy-only regimen FLOT compared with patients who received no neo-adjuvant treatment or chemo-radiotherapy regimen CROSS. For those patients who showed the poorest response to currently available treatments, their adipose tissue was associated with higher glycolytic metabolism compared to patients who had good treatment responses. This study demonstrates that the adipose secretome in OAC patients is enriched with mediators that could prime the tumour microenvironment to aid tumour progression and attenuate responses to conventional cancer treatments, an effect which appears to be augmented by obesity and metabolic dysfunction and exposure to different treatment regimes.
Collapse
Affiliation(s)
- Fiona O’Connell
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Eimear Mylod
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity College Dublin, St. James’s Hospital, D08 W9RT Dublin, Ireland
| | - Noel E. Donlon
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity College Dublin, St. James’s Hospital, D08 W9RT Dublin, Ireland
| | - Aisling B. Heeran
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Christine Butler
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Anshul Bhardwaj
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Sinead Ramjit
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Michael Durand
- Department of Radiology, St. James’s Hospital, D08 NHY1 Dublin, Ireland
| | - Gerard Lambe
- Department of Radiology, St. James’s Hospital, D08 NHY1 Dublin, Ireland
| | - Paul Tansey
- Department of Radiology, St. James’s Hospital, D08 NHY1 Dublin, Ireland
| | - Ivan Welartne
- Department of Radiology, St. James’s Hospital, D08 NHY1 Dublin, Ireland
| | - Kevin P. Sheahan
- Department of Radiology, Beaumont Hospital, D02 YN77 Dublin, Ireland
| | - Xiaofei Yin
- UCD School of Agriculture and Food Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Claire L. Donohoe
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Narayanasamy Ravi
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Margaret R. Dunne
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
- School of Chemical & Biopharmaceutical Sciences, Technological University Dublin, Tallaght, D07 EWV4 Dublin, Ireland
| | - Lorraine Brennan
- UCD School of Agriculture and Food Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - John V. Reynolds
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Helen M. Roche
- Nutrigenomics Research Group, UCD Conway Institute, School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 C1P1 Dublin, Ireland
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast BT9 5DL, UK
| | - Jacintha O’Sullivan
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
- Correspondence:
| |
Collapse
|
4
|
Tevini J, Eder SK, Huber-Schönauer U, Niederseer D, Strebinger G, Gostner JM, Aigner E, Datz C, Felder TK. Changing Metabolic Patterns along the Colorectal Adenoma–Carcinoma Sequence. J Clin Med 2022; 11:jcm11030721. [PMID: 35160173 PMCID: PMC8836789 DOI: 10.3390/jcm11030721] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a major public health burden and one of the leading causes of cancer-related deaths worldwide. Screening programs facilitate early diagnosis and can help to reduce poor outcomes. Serum metabolomics can extract vital molecular information that may increase the sensitivity and specificity of colonoscopy in combination with histopathological examination. The present study identifies serum metabolite patterns of treatment-naïve patients, diagnosed with either advanced adenoma (AA) or CRC in colonoscopy screenings, in the framework of the SAKKOPI (Salzburg Colon Cancer Prevention Initiative) program. We used a targeted flow injection analysis and liquid chromatography-tandem mass spectrometry metabolomics approach (FIA- and LC-MS/MS) to characterise the serum metabolomes of an initial screening cohort and two validation cohorts (in total 66 CRC, 76 AA and 93 controls). The lipidome was significantly perturbed, with a proportion of lipid species being downregulated in CRC patients, as compared to AA and controls. The predominant alterations observed were in the levels of lyso-lipids, glycerophosphocholines and acylcarnitines, but additionally, variations in the quantity of hydroxylated sphingolipids could be detected. Changed amino acid metabolism was restricted mainly to metabolites of the arginine/dimethylarginine/NO synthase pathway. The identified metabolic divergences observed in CRC set the foundation for mechanistic studies to characterise biochemical pathways that become deregulated during progression through the adenoma to carcinoma sequence and highlight the key importance of lipid metabolites. Biomarkers related to these pathways could improve the sensitivity and specificity of diagnosis, as well as the monitoring of therapies.
Collapse
Affiliation(s)
- Julia Tevini
- Department of Laboratory Medicine, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Sebastian K. Eder
- First Department of Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; (S.K.E.); (E.A.)
- Department of Pediatrics and Adolescent Medicine, St. Anna Children’s Hospital, Medical University of Vienna, 1090 Vienna, Austria
| | - Ursula Huber-Schönauer
- Department of Internal Medicine, Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University Salzburg, 5110 Oberndorf, Austria; (U.H.-S.); (G.S.)
| | - David Niederseer
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| | - Georg Strebinger
- Department of Internal Medicine, Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University Salzburg, 5110 Oberndorf, Austria; (U.H.-S.); (G.S.)
| | - Johanna M. Gostner
- Institute of Medical Biochemistry, Innsbruck Medical University, 6020 Innsbruck, Austria;
| | - Elmar Aigner
- First Department of Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; (S.K.E.); (E.A.)
| | - Christian Datz
- Department of Internal Medicine, Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University Salzburg, 5110 Oberndorf, Austria; (U.H.-S.); (G.S.)
- Correspondence: (C.D.); (T.K.F.); Tel.: +43-5-7255-58126 (T.K.F.)
| | - Thomas K. Felder
- Department of Laboratory Medicine, Paracelsus Medical University, 5020 Salzburg, Austria;
- Correspondence: (C.D.); (T.K.F.); Tel.: +43-5-7255-58126 (T.K.F.)
| |
Collapse
|
5
|
Unlu A, Eryavuz Onmaz D, Abusoglu S, Abusoglu G. HPLC and LC-MS/MS measurement methods for the quantification of asymmetric dimethylarginine (ADMA) and related metabolites. TURKISH JOURNAL OF BIOCHEMISTRY 2021; 46:327-347. [DOI: 10.1515/tjb-2020-0150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Abstract
Methyl arginine derivatives such as asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), L-N-monomethyl arginine (L-NMMA) are formed by proteolytic catalysis following methylation of arginine residues in proteins. These metabolites reduce NO production. Methylated arginines are an important biomarker for various diseases such as cardiovascular and renal diseases. Therefore, many methods have been developed to reliably and accurately measure the levels of these metabolites. This review, HPLC and LC-MS/MS methods developed for the measurement of methylarginine derivatives are discussed. In HPLC methods, solid phase extraction, derivatization and subsequent separation by reverse phase chromatography were performed. Since these metabolites are polar, they are difficult to retain in conventional reverse phase columns. In addition, as serum levels of these metabolites are low, sensitivity problems have been observed in HPLC methods. Derivatization has been applied to eliminate these problems. However, there have been problems with the stability of derivatives formed. Another important problem is that the separation of stereoisomer ADMA and SDMA can only be achieved chromatographically. Tandem mass spectrometric methods are accurate, selective, sensitive and rapid since analytes are separated depending on m/z ratios rather than chromatographic separation. Therefore, tandem mass spectrometry methods might be considered as the goal standard for these analytes.
Collapse
Affiliation(s)
- Ali Unlu
- Department of Biochemistry , Selcuk University Faculty of Medicine , Konya , Turkey
| | - Duygu Eryavuz Onmaz
- Department of Biochemistry , Selcuk University Faculty of Medicine , Konya , Turkey
| | - Sedat Abusoglu
- Department of Biochemistry , Selcuk University Faculty of Medicine , Konya , Turkey
| | - Gulsum Abusoglu
- Department of Medical Laboratory Techniques , Selcuk University Vocational School of Health , Konya , Turkey
| |
Collapse
|
6
|
Chen Q, Wang Y, Li F, Cheng X, Xiao Y, Chen S, Xiao B, Tao Z. (S,R)3-(4-Hydroxyphenyl)-4,5-Dihydro-5-Isoxazole Acetic Acid Methyl Ester Inhibits Epithelial-to-Mesenchymal Transition through TGF-β/Smad4 Axis in Nasopharyngeal Carcinoma. Anticancer Agents Med Chem 2021; 22:1080-1090. [PMID: 34229595 DOI: 10.2174/1871520621666210706101442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/22/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Macrophage migration inhibitory factor (MIF), originally reported as an inflammation regulating molecule, is elevated in various cancer cells, which may promote carcinogenesis. Meanwhile, ISO-1 is a potent small molecular inhibitor of MIF, which has not been investigated in nasopharyngeal carcinoma (NPC); hence the impact of ISO-1 on NPC cells remains to be illustrated. OBJECTIVE This study intended to explore the biological function of ISO-1 in NPC cells in vitro and prove a possibility of ISO-1 being a novel agent in NPC treatments. METHODS Gene expression of MIF in Head and Neck squamous cell carcinoma were obtained from The Cancer Genome Atlas (TCGA) database. Nasal pharyngeal tissues were collected from adult patients undergoing nasopharyngeal biopsy for MIF level detection. Proliferation of NPC cell lines 5-8B and 6-10B was studied using Cell Counting Kit-8 (CCK-8) assay and plate-colony-formation assay, apoptosis was determined by flow cytometry and TUNEL staining, migration and invasion capacities were measured by wound-healing assay and transwell assay, all to explore the function of ISO-1 in NPC cells in vitro. Epithelial-to-mesenchymal transition (EMT) level of NPC cells was determined by Western blot analysis and immunofluorescence assay. RESULTS Transcript level of MIF was significantly higher in head and neck squamous cell carcinoma. Protein MIF was overexpressed in human NPC tissues compared to non-cancerous ones, and its expression could be compromised by ISO-1 in vitro. 100μM ISO-1 significantly hindered NPC cells migration and invasion capacities in vitro but acted relatively poorly on proliferation and apoptosis. Immunofluorescence assay and Western blotting implied a down-regulated EMT level through TGF-β/Smad4 axis in ISO-1 treated NPC cells compared to the vehicle. CONCLUSION This study indicated that MIF antagonist ISO-1 holds impact on NPC progression by influencing the migration and invasion of NPC cells ISO-1 inhibits the EMT process of NPC cells through TGF-β/Smad4 axis, supporting that prudent application of ISO-1 may be a potential adjuvant treatment for NPC.
Collapse
Affiliation(s)
- Qibing Chen
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Wang
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fen Li
- Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiang Cheng
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Xiao
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shiming Chen
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bokui Xiao
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zezhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, China
| |
Collapse
|
7
|
Singh P, Charles S, Madhavan T, Munusamy-Ramanujam G, Saraswathi NT, Arasu MV, Al-Dhabi NA, Arshad A, Arockiaraj J, Mala K. Pharmacologic downregulation of protein arginine methyltransferase1 expression by adenosine dialdehyde increases cell senescence in breast cancer. Eur J Pharmacol 2020; 891:173697. [PMID: 33144068 DOI: 10.1016/j.ejphar.2020.173697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/19/2020] [Accepted: 10/27/2020] [Indexed: 11/30/2022]
Abstract
We investigated the role of protein arginine methylation (PAM) in estrogen receptor (ER)-positive breast cancer cells through pharmacological intervention. Tamoxifen (TAM) or adenosine dialdehyde (ADOX), independently, triggered cell cycle arrest and down-regulated PAM, as reduced protein arginine methyltransferase1 (PRMT1) mRNA and asymmetric dimethylarginine (ADMA) levels. Synergistic effect of these compounds elicited potent anti-cancer effect. However, reduction in ADMA was not proportionate with the compound-induced down-regulation of PRMT1 mRNA. We hypothesized that the disproportionate effect is due to the influence of the compounds on other methyltransferases, which catalyze the arginine dimethylation reaction and the diversity in the degree of drug-protein interaction among these methyltransferases. In silico analyses revealed that independently, ADOX or TAM, binds with phosphatidylethanolamine-methyltransferase (PEMT) or betaine homocysteine-methyl transferase (BHMT); and that the binding affinity of ADOX with PEMT or BHMT is prominent than TAM. These observations suggest that in breast cancer, synergistic effect of ADOX + TAM elicits impressive protective function by regulating PAM; and plausibly, restoration of normal enzyme activities of methyltransferases catalyzing arginine dimethylation could have clinical benefits.
Collapse
Affiliation(s)
- Priya Singh
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Soniya Charles
- Department of Medical Research, Medical College Hospital and Research Center, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India; Department of Biotechnology, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Thirumurthy Madhavan
- Computational Biology Laboratory, Department of Genetic Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Ganesh Munusamy-Ramanujam
- Interdisciplinary Institute of Indian System of Medicine, College of Engineering and Technology,SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - N T Saraswathi
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, 613 401, Tamil Nadu, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia; Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India.
| | - Kanchana Mala
- Department of Medical Research, Medical College Hospital and Research Center, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
8
|
Krzystek-Korpacka M, Szczęśniak-Sięga B, Szczuka I, Fortuna P, Zawadzki M, Kubiak A, Mierzchała-Pasierb M, Fleszar MG, Lewandowski Ł, Serek P, Jamrozik N, Neubauer K, Wiśniewski J, Kempiński R, Witkiewicz W, Bednarz-Misa I. L-Arginine/Nitric Oxide Pathway Is Altered in Colorectal Cancer and Can Be Modulated by Novel Derivatives from Oxicam Class of Non-Steroidal Anti-Inflammatory Drugs. Cancers (Basel) 2020; 12:E2594. [PMID: 32932854 PMCID: PMC7564351 DOI: 10.3390/cancers12092594] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/05/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
L-arginine/nitric oxide pathway metabolites are altered in colorectal cancer (CRC). We evaluated underlying changes in pathway enzymes in 55 paired tumor/tumor-adjacent samples and 20 normal mucosa using quantitative-PCR and assessed the impact of classic and novel oxicam analogues on enzyme expression and intracellular metabolite concentration (LC-MS/MS) in Caco-2, HCT116, and HT-29 cells. Compared to normal mucosa, ARG1, PRMT1, and PRMT5 were overexpressed in both tumor and tumor-adjacent tissue and DDAH2 solely in tumor-adjacent tissue. Tumor-adjacent tissue had higher expression of ARG1, DDAH1, and DDAH2 and lower NOS2 than patients-matched tumors. The ARG1 expression in tumors increased along with tumor grade and reflected lymph node involvement. Novel oxicam analogues with arylpiperazine moiety at the thiazine ring were more effective in downregulating DDAHs and PRMTs and upregulating ARG2 than piroxicam and meloxicam. An analogue distinguished by propylene linker between thiazine's and piperazine's nitrogen atoms and containing two fluorine substituents was the strongest inhibitor of DDAHs and PRMTs expression, while an analogue containing propylene linker but no fluorine substituents was the strongest inhibitor of ARG2 expression. Metabolic reprogramming in CRC includes overexpression of DDAHs and PRMTs in addition to ARG1 and NOS2 and is not restricted to tumor tissue but can be modulated by novel oxicam analogues.
Collapse
Affiliation(s)
- Małgorzata Krzystek-Korpacka
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (I.S.); (P.F.); (A.K.); (M.M.-P.); (M.G.F.); (Ł.L.); (P.S.); (N.J.); (J.W.); (I.B.-M.)
| | - Berenika Szczęśniak-Sięga
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Izabela Szczuka
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (I.S.); (P.F.); (A.K.); (M.M.-P.); (M.G.F.); (Ł.L.); (P.S.); (N.J.); (J.W.); (I.B.-M.)
| | - Paulina Fortuna
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (I.S.); (P.F.); (A.K.); (M.M.-P.); (M.G.F.); (Ł.L.); (P.S.); (N.J.); (J.W.); (I.B.-M.)
| | - Marek Zawadzki
- Department of Oncological Surgery, Regional Specialist Hospital, 51-124 Wroclaw, Poland; (M.Z.); (W.W.)
- Department of Physiotherapy, Wroclaw Medical University, 51-618 Wroclaw, Poland
| | - Agnieszka Kubiak
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (I.S.); (P.F.); (A.K.); (M.M.-P.); (M.G.F.); (Ł.L.); (P.S.); (N.J.); (J.W.); (I.B.-M.)
| | - Magdalena Mierzchała-Pasierb
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (I.S.); (P.F.); (A.K.); (M.M.-P.); (M.G.F.); (Ł.L.); (P.S.); (N.J.); (J.W.); (I.B.-M.)
| | - Mariusz G. Fleszar
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (I.S.); (P.F.); (A.K.); (M.M.-P.); (M.G.F.); (Ł.L.); (P.S.); (N.J.); (J.W.); (I.B.-M.)
| | - Łukasz Lewandowski
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (I.S.); (P.F.); (A.K.); (M.M.-P.); (M.G.F.); (Ł.L.); (P.S.); (N.J.); (J.W.); (I.B.-M.)
| | - Paweł Serek
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (I.S.); (P.F.); (A.K.); (M.M.-P.); (M.G.F.); (Ł.L.); (P.S.); (N.J.); (J.W.); (I.B.-M.)
| | - Natalia Jamrozik
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (I.S.); (P.F.); (A.K.); (M.M.-P.); (M.G.F.); (Ł.L.); (P.S.); (N.J.); (J.W.); (I.B.-M.)
| | - Katarzyna Neubauer
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.N.); (R.K.)
| | - Jerzy Wiśniewski
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (I.S.); (P.F.); (A.K.); (M.M.-P.); (M.G.F.); (Ł.L.); (P.S.); (N.J.); (J.W.); (I.B.-M.)
| | - Radosław Kempiński
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.N.); (R.K.)
| | - Wojciech Witkiewicz
- Department of Oncological Surgery, Regional Specialist Hospital, 51-124 Wroclaw, Poland; (M.Z.); (W.W.)
- Research and Development Centre at Regional Specialist Hospital, 51-124 Wroclaw, Poland
| | - Iwona Bednarz-Misa
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (I.S.); (P.F.); (A.K.); (M.M.-P.); (M.G.F.); (Ł.L.); (P.S.); (N.J.); (J.W.); (I.B.-M.)
| |
Collapse
|
9
|
Bednarz-Misa I, Fortuna P, Fleszar MG, Lewandowski Ł, Diakowska D, Rosińczuk J, Krzystek-Korpacka M. Esophageal Squamous Cell Carcinoma Is Accompanied by Local and Systemic Changes in L-arginine/NO Pathway. Int J Mol Sci 2020; 21:E6282. [PMID: 32872669 PMCID: PMC7503331 DOI: 10.3390/ijms21176282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
The L-arginine/NO pathway holds promise as a source of potential therapy target and biomarker; yet, its status and utility in esophageal squamous cell carcinoma (ESCC) is unclear. We aimed at quantifying pathway metabolites in sera from patients with ESCC (n = 61) and benign conditions (n = 62) using LC-QTOF-MS and enzyme expression in esophageal tumors and matched noncancerous samples (n = 40) using real-time PCR with reference to ESCC pathology and circulating immune/inflammatory mediators, quantified using Luminex xMAP technology. ESCC was associated with elevated systemic arginine and asymmetric dimethylarginine. Citrulline decreased and arginine bioavailability increased along with increasing ESCC advancement. Compared to adjacent tissue, tumors overexpressed ODC1, NOS2, PRMT1, and PRMT5 but had downregulated ARG1, ARG2, and DDAH1. Except for markedly higher NOS2 and lower ODC1 in tumors from M1 patients, the pathology-associated changes in enzyme expression were subtle and present also in noncancerous tissue. Both the local enzyme expression level and systemic metabolite concentration were related to circulating inflammatory and immune mediators, particularly those associated with eosinophils and those promoting viability and self-renewal of cancer stem cells. Metabolic reprogramming in ESCC manifests itself by the altered L-arginine/NO pathway. Upregulation of PRMTs in addition to NOS2 and ODC1 and the pathway link with stemness-promoting cytokines warrants further investigation.
Collapse
Affiliation(s)
- Iwona Bednarz-Misa
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (I.B.-M.); (P.F.); (M.G.F.); (Ł.L.)
| | - Paulina Fortuna
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (I.B.-M.); (P.F.); (M.G.F.); (Ł.L.)
| | - Mariusz G. Fleszar
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (I.B.-M.); (P.F.); (M.G.F.); (Ł.L.)
| | - Łukasz Lewandowski
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (I.B.-M.); (P.F.); (M.G.F.); (Ł.L.)
| | - Dorota Diakowska
- Department of Gastrointestinal and General Surgery, Wroclaw Medical University, 50-368 Wroclaw, Poland;
- Department of Nervous System Diseases, Wroclaw Medical University, 51-618 Wroclaw, Poland;
| | - Joanna Rosińczuk
- Department of Nervous System Diseases, Wroclaw Medical University, 51-618 Wroclaw, Poland;
| | - Małgorzata Krzystek-Korpacka
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (I.B.-M.); (P.F.); (M.G.F.); (Ł.L.)
| |
Collapse
|
10
|
Yang Y, Zhang F, Gao S, Wang Z, Li M, Wei H, Zhong R, Chen W. Simultaneous Determination of 34 Amino Acids in Tumor Tissues from Colorectal Cancer Patients Based on the Targeted UHPLC-MS/MS Method. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2020; 2020:4641709. [PMID: 32802550 PMCID: PMC7416278 DOI: 10.1155/2020/4641709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/22/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
A targeted ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was established and validated for the simultaneous determination of 34 amino acids in tissue samples from colorectal cancer (CRC) patients. The chromatographic separation was achieved on an Agilent ZORBAX SB-C18 column (3.0 × 150 mm, 5 μm) with a binary gradient elution system (A, 0.02% heptafluorobutyric acid and 0.2% formic acid in water, v/v; B, methanol). The run time was 10 min. The multiple reaction monitoring mode was chosen with an electrospray ionization source operating in the positive ionization mode for data acquisition. The linear correlation coefficients were >0.99 for all the analytes in their corresponding calibration ranges. The sample was pretreated based on tissue homogenate and protein precipitation with a 100 mg aliquot sample. The average recovery and matrix effect for 34 amino acids and 3 internal standards were 39.00%∼146.95% and 49.45%∼173.63%, respectively. The intra- and interday accuracy for all the analytes ranged from -13.52% to 14.21% (RSD ≤8.57%) and from -14.52% to 12.59% (RSD ≤10.31%), respectively. Deviations of stability under different conditions were within ±15% for all the analytes. This method was applied to simultaneous quantification of 34 amino acids in tissue samples from 94 CRC patients.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacy, Changzheng Hospital, The Second Military Medical University of CPLA, Shanghai 200003, China
- Department of Pharmacy, The 71st Group Army Hospital of CPLA Army, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, China
- Department of Laboratory Diagnostics, Changzheng Hospital, The Second Military Medical University of CPLA, Shanghai 200003, China
| | - Feng Zhang
- Department of Pharmacy, Changzheng Hospital, The Second Military Medical University of CPLA, Shanghai 200003, China
| | - Shouhong Gao
- Department of Pharmacy, Changzheng Hospital, The Second Military Medical University of CPLA, Shanghai 200003, China
| | - Zhipeng Wang
- Department of Pharmacy, Changzheng Hospital, The Second Military Medical University of CPLA, Shanghai 200003, China
| | - Mingming Li
- Department of Pharmacy, Changzheng Hospital, The Second Military Medical University of CPLA, Shanghai 200003, China
| | - Hua Wei
- Department of Pharmacy, Changzheng Hospital, The Second Military Medical University of CPLA, Shanghai 200003, China
| | - Renqian Zhong
- Department of Laboratory Diagnostics, Changzheng Hospital, The Second Military Medical University of CPLA, Shanghai 200003, China
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, The Second Military Medical University of CPLA, Shanghai 200003, China
| |
Collapse
|
11
|
Guo Q, Xu J, Huang Z, Yao Q, Chen F, Liu H, Zhang Z, Lin J. ADMA mediates gastric cancer cell migration and invasion via Wnt/β-catenin signaling pathway. Clin Transl Oncol 2020; 23:325-334. [PMID: 32607811 PMCID: PMC7854427 DOI: 10.1007/s12094-020-02422-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/05/2020] [Indexed: 01/05/2023]
Abstract
Objective To explore the role of ADMA in gastric cancer. Methods The specimens of 115 gastric cancer patients were analyzed by ELISA and survival analysis. Functional assays were used to assess the effects of ADMA on gastric cancer cells. Experiments were conducted to detect the signaling pathway induced by ADMA in GC. Results Gastric cancer patients with high ADMA levels had poor prognosis and low survival rate. Furthermore, high level of ADMA did not affect the proliferation while promoted the migration and invasion of gastric cancer cell. Moreover, ADMA enhanced the epithelial–mesenchymal transition (EMT). Importantly, ADMA positively regulated β-catenin expression in GC and promoted GC migration and invasion via Wnt/β-catenin pathway. Conclusions ADMA regulates gastric cancer cell migration and invasion via Wnt/β-catenin signaling pathway and which may be applied to clinical practice as a diagnostic and prognostic biomarker. Electronic supplementary material The online version of this article (10.1007/s12094-020-02422-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Q Guo
- Department of Oncological Surgery, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshanbei Road, Quanzhou, 362000, Fujian, China
| | - J Xu
- Department of Oncological Surgery, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshanbei Road, Quanzhou, 362000, Fujian, China
| | - Z Huang
- Department of Oncological Surgery, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshanbei Road, Quanzhou, 362000, Fujian, China
| | - Q Yao
- Department of Oncological Surgery, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshanbei Road, Quanzhou, 362000, Fujian, China
| | - F Chen
- Department of Oncological Surgery, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshanbei Road, Quanzhou, 362000, Fujian, China
| | - H Liu
- Department of Oncological Surgery, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshanbei Road, Quanzhou, 362000, Fujian, China
| | - Z Zhang
- Department of Oncological Surgery, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshanbei Road, Quanzhou, 362000, Fujian, China
| | - J Lin
- Department of Oncological Surgery, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshanbei Road, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
12
|
Metabolite and lipoprotein responses and prediction of weight gain during breast cancer treatment. Br J Cancer 2018; 119:1144-1154. [PMID: 30401977 PMCID: PMC6220113 DOI: 10.1038/s41416-018-0211-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 12/18/2022] Open
Abstract
Background Breast cancer treatment has metabolic side effects, potentially affecting risk of cardiovascular disease (CVD) and recurrence. We aimed to compare alterations in serum metabolites and lipoproteins during treatment between recipients and non-recipients of chemotherapy, and describe metabolite profiles associated with treatment-related weight gain. Methods This pilot study includes 60 stage I/II breast cancer patients who underwent surgery and were treated according to national guidelines. Serum sampled pre-surgery and after 6 and 12 months was analysed by MR spectroscopy and mass spectrometry. In all, 170 metabolites and 105 lipoprotein subfractions were quantified. Results The metabolite and lipoprotein profiles of chemotherapy recipients and non-recipients changed significantly 6 months after surgery (p < 0.001). Kynurenine, the lipid signal at 1.55–1.60 ppm, ADMA, 2 phosphatidylcholines (PC aa C38:3, PC ae C42:1), alpha-aminoadipic acid, hexoses and sphingolipids were increased in chemotherapy recipients after 6 months. VLDL and small dense LDL increased after 6 months, while HDL decreased, with triglyceride enrichment in HDL and LDL. At baseline, weight gainers had less acylcarnitines, phosphatidylcholines, lyso-phosphatidylcholines and sphingolipids, and showed an inflammatory lipid profile. Conclusion Chemotherapy recipients exhibit metabolic changes associated with inflammation, altered immune response and increased risk of CVD. Altered lipid metabolism may predispose for treatment-related weight gain.
Collapse
|
13
|
Xu Y, Shu B, Tian Y, Chelly M, Morandi MM, Barton S, Shang X, Dong Y. Notch activation promotes osteoblast mineralization by inhibition of apoptosis. J Cell Physiol 2018; 233:6921-6928. [PMID: 29693255 DOI: 10.1002/jcp.26592] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 03/09/2018] [Indexed: 12/18/2022]
Abstract
Notch activator Jagged1 (JAG1) plays a critical role in the regulation of osteoblast differentiation and bone metabolism. In this study, JAG1-induced osteoblast proliferation, differentiation, and mineralization has been analyzed in primary osteoblasts for up to 7 days. Alkaline phosphatase and Alizarin red staining showed an enhanced osteoblast maturation and mineralization in JAG1 treated cells, as well as higher mRNA levels of late osteoblast differentiation markers. In contrast, Notch inhibitor DAPT and deletion of Runx2 totally blocked JAG1 effects on osteoblast mineralization. Flow cytometry data further showed a significantly higher cell proliferation in early stages of culture at day 3, and lower levels of osteoblast apoptosis in late stages of culture at day 7. More importantly, activation of anti-apoptotic factor BCL-2 was enhanced, while pro-apoptotic factor Caspase3 was reduced in JAG1 treated osteoblasts. Therefore, we conclude that cell mineralization is enhanced via anti-apoptotic actions of Notch signaling within the osteoblast cells.
Collapse
Affiliation(s)
- Ying Xu
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Bing Shu
- Spine Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ye Tian
- Department of Orthopaedic Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Marjorie Chelly
- Department of Orthopaedic Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Massimo M Morandi
- Department of Orthopaedic Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Shane Barton
- Department of Orthopaedic Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Xifu Shang
- Department of Orthopaedic Surgery, Anhui Provincial Hospital, Hefei, Anhui, China
| | - Yufeng Dong
- Spine Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Orthopaedic Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| |
Collapse
|
14
|
Rodriguez D, Braden BP, Boyer SW, Taketa DA, Setar L, Calhoun C, Maio AD, Langenbacher A, Valentine MT, De Tomaso AW. In vivo manipulation of the extracellular matrix induces vascular regression in a basal chordate. Mol Biol Cell 2017; 28:1883-1893. [PMID: 28615322 PMCID: PMC5541839 DOI: 10.1091/mbc.e17-01-0009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 01/07/2023] Open
Abstract
We investigated the physical role of the extracellular matrix (ECM) in vascular homeostasis in the basal chordate Botryllus schlosseri, which has a large, transparent, extracorporeal vascular network encompassing an area >100 cm2 We found that the collagen cross-linking enzyme lysyl oxidase is expressed in all vascular cells and that in vivo inhibition using β-aminopropionitrile (BAPN) caused a rapid, global regression of the entire network, with some vessels regressing >10 mm within 16 h. BAPN treatment changed the ultrastructure of collagen fibers in the vessel basement membrane, and the kinetics of regression were dose dependent. Pharmacological inhibition of both focal adhesion kinase (FAK) and Raf also induced regression, and levels of phosphorylated FAK in vascular cells decreased during BAPN treatment and FAK inhibition but not Raf inhibition, suggesting that physical changes in the vessel ECM are detected via canonical integrin signaling pathways. Regression is driven by apoptosis and extrusion of cells through the basal lamina, which are then engulfed by blood-borne phagocytes. Extrusion and regression occurred in a coordinated manner that maintained vessel integrity, with no loss of barrier function. This suggests the presence of regulatory mechanisms linking physical changes to a homeostatic, tissue-level response.
Collapse
Affiliation(s)
- Delany Rodriguez
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Brian P Braden
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Scott W Boyer
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Daryl A Taketa
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Leah Setar
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Chris Calhoun
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Alessandro Di Maio
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Adam Langenbacher
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Megan T Valentine
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Anthony W De Tomaso
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| |
Collapse
|
15
|
Lee S, Jang WJ, Choi B, Joo SH, Jeong CH. Comparative metabolomic analysis of HPAC cells following the acquisition of erlotinib resistance. Oncol Lett 2017; 13:3437-3444. [PMID: 28529573 PMCID: PMC5431587 DOI: 10.3892/ol.2017.5940] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/17/2017] [Indexed: 12/30/2022] Open
Abstract
Pancreatic cancer is one of the most lethal types of cancer, due to difficulty in early detection and the limited efficacy of available treatments. Erlotinib is used to inhibit the epidermal growth factor receptor for the treatment of pancreatic cancer; however, erlotinib resistance is a major issue and the mechanisms underlying the development of erlotinib resistance remain unclear. To better understand the alterations in tumor metabolism by acquired resistance to erlotinib, an erlotinib-resistant pancreatic cancer cell line (HPAC-ER) was established, followed by a comparison of the metabolic characteristics between these cells and their erlotinib-sensitive parental cells (HPAC). This comparison was accomplished through mass spectrometry-based targeted metabolic profiling. Five metabolite groups (acylcarnitines, amino acids and biogenic amines, glycerophospholipids, sphingolipids and monosaccharides) were semi-quantified and compared statistically. These results revealed significant differences between the two groups of cells. A significant increase in the level of short-chain acylcarnitines and selected lysophosphatidylcholines, and a significant decrease in the level of acyl-alkyl-phosphatidylcholines and one sphingolipid, were observed in the HPAC-ER cells compared with the HPAC cells. The metabolic changes observed in the present study support the theory that there are increased metabolic demands in erlotinib-resistant cancer, reflecting the changes in acetyl-CoA-associated and choline phospholipid metabolism. These findings will aid in elucidating the changes that occur in pancreatic cancer metabolism through the acquired resistance to erlotinib, and in the identification of biomarkers for the early detection of pancreatic cancer.
Collapse
Affiliation(s)
- Sooyeun Lee
- College of Pharmacy, Keimyung University, Dalseo, Daegu 42601, Republic of Korea
| | - Won-Jun Jang
- College of Pharmacy, Keimyung University, Dalseo, Daegu 42601, Republic of Korea
| | - Boyeon Choi
- College of Pharmacy, Keimyung University, Dalseo, Daegu 42601, Republic of Korea
| | - Sang Hoon Joo
- Department of Pharmacy, Catholic University of Daegu, Gyeongsan-si, Gyeongbuk 38430, Republic of Korea
| | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, Dalseo, Daegu 42601, Republic of Korea
| |
Collapse
|
16
|
Zheng N, Wang K, He J, Qiu Y, Xie G, Su M, Jia W, Li H. Effects of ADMA on gene expression and metabolism in serum-starved LoVo cells. Sci Rep 2016; 6:25892. [PMID: 27180883 PMCID: PMC4867623 DOI: 10.1038/srep25892] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 04/25/2016] [Indexed: 11/29/2022] Open
Abstract
Serum starvation is a typical way for inducing tumor cell apoptosis and stress. Asymmetric dimethylarginine (ADMA) is an endogenous metabolite. Our previous study reveals the plasma ADMA level is elevated in colon cancer patients, which can attenuate serum starvation-induced apoptosis in LoVo cells. In current study, we evaluated the effects of ADMA on gene expression and metabolism in serum-starved LoVo cells with gene microarray and metabolomic approaches. Our results indicated that 96 h serum starvation induced comprehensive alterations at transcriptional level, and most of them were restored by ADMA. The main signaling pathways induced by serum starvation included cancers-related pathways, pathways in cell death, apoptosis, and cell cycle etc. Meanwhile, the metabolomic data showed serum-starved cells were clearly separated with control cells, but not with ADMA-treated cells in PCA model. The identified differential metabolites indicated serum starvation significantly suppressed TCA cycle, altered glucose and fatty acids metabolism, as well as nucleic acids metabolism. However, very few differential metabolites were identified between ADMA and serum-starved cells. In summary, our current results indicated serum starvation profoundly altered the gene expression and metabolism of LoVo cells, whereas ADMA could restore most of the changes at transcriptional level, but not at metabolic level.
Collapse
Affiliation(s)
- Ningning Zheng
- Center for Chinese Medical Therapy and Systems Biology, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Ke Wang
- Laboratory of Integrative Medicine Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiaojiao He
- Center for Chinese Medical Therapy and Systems Biology, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Yunping Qiu
- Stable Isotope and Metabolomics Core Facility, Diabetes Center Albert Einstein College of Medicine, 1300 Morris Part Ave, Bronx, New York 10461, USA
| | - Guoxiang Xie
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii 96813, USA
| | - Mingming Su
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii 96813, USA
| | - Wei Jia
- Center for Chinese Medical Therapy and Systems Biology, Shanghai University of Traditional Chinese MedicineShanghai 201203, China.,Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii 96813, USA.,Center for Translational Medicine, and Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Houkai Li
- Center for Chinese Medical Therapy and Systems Biology, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| |
Collapse
|
17
|
Basic amino acids and dimethylarginines targeted metabolomics discriminates primary hepatocarcinoma from hepatic colorectal metastases. Metabolomics 2014. [DOI: 10.1007/s11306-014-0641-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|