1
|
Lin Y, Liang Z, Weng Z, Liu X, Zhang F, Chong Y. CRSP8-driven fatty acid metabolism reprogramming enhances hepatocellular carcinoma progression by inhibiting RAN-mediated PPARα nucleus-cytoplasm shuttling. J Exp Clin Cancer Res 2025; 44:93. [PMID: 40069732 PMCID: PMC11895297 DOI: 10.1186/s13046-025-03329-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/14/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND In-depth exploration into the dysregulation of lipid metabolism in hepatocellular carcinoma (HCC) has contributed to the development of advanced antitumor strategies. CRSP8 is a critical component of mediator multiprotein complex involved in transcriptional recruiting. However, the regulatory mechanisms of CRSP8 on fatty acid metabolism reprogramming and HCC progression remain unclear. METHODS In-silico/house dataset analysis, lipid droplets (LDs) formation, HCC mouse models and targeted lipidomic analysis were performed to determine the function of CRSP8 on regulating lipid metabolism in HCC. The subcellular colocalization and live cell imaging of LDs, transmission electron microscopy, co-immunoprecipitation and luciferase reporter assay were employed to investigate their potential mechanism. RESULTS CRSP8 was identified as a highly expressed oncogene essential for the proliferation and aggressiveness of HCC in vitro and in vivo. The tumor promotion of CRSP8 was accompanied by LDs accumulation and increased de novo fatty acids (FAs) synthesis. Moreover, CRSP8 diminished the colocalization between LC3 and LDs to impair lipophagy in a nuclear-localized PPARα-dependent manner, which decreased the mobilization of FAs from LDs degradation and hindered mitochondrial fatty acid oxidation. Mechanistically, the small ras family GTPase RAN was transcriptionally activated by CRSP8, leading to the reinforcement of RAN/CRM1-mediated nuclear export. CRSP8-induced enhanced formation of RAN/CRM1/PPARα nucleus-cytoplasm shuttling heterotrimer orchestrated cytoplasmic translocation of PPARα, attenuated nPPARα-mediated lipophagy and fatty acid catabolism, subsequently exacerbated HCC progression. In CRSP8-enriched HCC, lipid synthesis inhibitor Orlistat effectively reshaped the immunosuppressive tumor microenvironment (TME) and improved the efficacy of anti-PD-L1 therapy in vivo. CONCLUSION Our study establishes that CRSP8-driven fatty acid metabolism reprogramming facilitates HCC progression via the RAN/CRM1/PPARα nucleus-cytoplasm shuttling heterotrimer and impaired lipophagy-derived catabolism. Targeting the energy supply sourced from lipids could represent a promising therapeutic strategy for treating CRSP8-sufficient HCC.
Collapse
Affiliation(s)
- Yuxi Lin
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Zhixing Liang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Zhiyan Weng
- Department of Endocrinology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Xiaofang Liu
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Feng Zhang
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| | - Yutian Chong
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
2
|
Lee M, Kim HG. Anti-Cancer Strategy Based on Changes in the Role of Autophagy Depending on the Survival Environment and Tumorigenesis Stages. Molecules 2024; 29:5134. [PMID: 39519774 PMCID: PMC11547988 DOI: 10.3390/molecules29215134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Autophagy is a crucial mechanism for recycling intracellular materials, and under normal metabolic conditions, it is maintained at low levels in cells. However, when nutrients are deficient or under hypoxic conditions, the level of autophagy significantly increases. Particularly in cancer cells, which grow more rapidly than normal cells and tend to grow in a three-dimensional manner, cells inside the cell mass often face limited oxygen supply, leading to inherently higher levels of autophagy. Therefore, the initial development of anticancer drugs targeting autophagy was based on a strategy to suppress these high levels of autophagy. However, anticancer drugs that inhibit autophagy have not shown promising results in clinical trials, as it has been revealed that autophagy does not always play a role that favors cancer cell survival. Hence, this review aims to suggest anticancer strategies based on the changes in the role of autophagy according to survival conditions and tumorigenesis stage.
Collapse
Affiliation(s)
- Michael Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Institute for New Drug Development, Incheon National University, Incheon 22012, Republic of Korea
| | - Hye-Gyo Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
3
|
Matboli M, Al-Amodi HS, Khaled A, Khaled R, Ali M, Kamel HFM, Hamid MSAEL, ELsawi HA, Habib EK, Youssef I. Integrating molecular, biochemical, and immunohistochemical features as predictors of hepatocellular carcinoma drug response using machine-learning algorithms. Front Mol Biosci 2024; 11:1430794. [PMID: 39479501 PMCID: PMC11521808 DOI: 10.3389/fmolb.2024.1430794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/27/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction Liver cancer, particularly Hepatocellular carcinoma (HCC), remains a significant global health concern due to its high prevalence and heterogeneous nature. Despite the existence of approved drugs for HCC treatment, the scarcity of predictive biomarkers limits their effective utilization. Integrating diverse data types to revolutionize drug response prediction, ultimately enabling personalized HCC management. Method In this study, we developed multiple supervised machine learning models to predict treatment response. These models utilized classifiers such as logistic regression (LR), k-nearest neighbors (kNN), neural networks (NN), support vector machines (SVM), and random forests (RF) using a comprehensive set of molecular, biochemical, and immunohistochemical features as targets of three drugs: Pantoprazole, Cyanidin 3-glycoside (Cyan), and Hesperidin. A set of performance metrics for the complete and reduced models were reported including accuracy, precision, recall (sensitivity), specificity, and the Matthews Correlation Coefficient (MCC). Results and Discussion Notably, (NN) achieved the best prediction accuracy where the combined model using molecular and biochemical features exhibited exceptional predictive power, achieving solid accuracy of 0.9693 ∓ 0.0105 and average area under the ROC curve (AUC) of 0.94 ∓ 0.06 coming from three cross-validation iterations. Also, found seven molecular features, seven biochemical features, and one immunohistochemistry feature as promising biomarkers of treatment response. This comprehensive method has the potential to significantly advance personalized HCC therapy by allowing for more precise drug response estimation and assisting in the identification of effective treatment strategies.
Collapse
Affiliation(s)
- Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Faculty of Oral and Dental Medicine, Misr International University (MIU), Cairo, Egypt
| | - Hiba S. Al-Amodi
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdelrahman Khaled
- Bioinformatics Group, Center of Informatics Sciences (CIS), School of Information Technology and Computer Sciences, Nile University, Giza, Egypt
| | - Radwa Khaled
- Biotechnology/Biomolecular Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Marwa Ali
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hala F. M. Kamel
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Hind A. ELsawi
- Department of Internal Medicine, Badr University in Cairo, Badr, Egypt
| | - Eman K. Habib
- Department of Anatomy and Cell Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Anatomy and Cell Biology, Faculty of Medicine, Galala University, Suez, Egypt
| | - Ibrahim Youssef
- Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Giza, Egypt
| |
Collapse
|
4
|
Mohammed WH, Sulaiman GM, Abomughaid MM, Klionsky DJ, Abu-Alghayth MH. The dual role of autophagy in suppressing and promoting hepatocellular carcinoma. Front Cell Dev Biol 2024; 12:1472574. [PMID: 39463763 PMCID: PMC11502961 DOI: 10.3389/fcell.2024.1472574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
The 5-year survival rate for hepatocellular carcinoma (HCC), a deadly form of liver cancer, is quite low. Although drug therapy is successful, patients with advanced liver cancer frequently develop resistance because of the significant phenotypic and genetic heterogeneity of these cells. The overexpression of drug efflux transporters, downstream adaptive responses, malfunctioning DNA damage repair, epigenetic modification, the tumor microenvironment, and the extracellular matrix can all be linked to drug resistance. The evolutionary process of autophagy, which is in charge of intracellular breakdown, is intimately linked to medication resistance in HCC. Autophagy is involved in both the promotion and suppression of cancer by influencing treatment resistance, metastasis, carcinogenesis, and the viability of stem cells. Certain autophagy regulators are employed in anticancer treatment; however, because of the dual functions of autophagy, their use is restricted, and therapeutic failure is increased. By focusing on autophagy, it is possible to reduce HCC expansion and metastasis, and enhance tumor cell reactivity to treatment. Macroautophagy, the best-characterized type of autophagy, involves the formation of a sequestering compartment termed a phagophore, which surrounds and encloses aberrant or superfluous components. The phagophore matures into a double-membrane autophagosome that delivers the cargo to the lysosome; lysosomes and autophagosomes fuse to degrade and recycle the cargo. Macroautophagy plays dual functions in both promoting and suppressing cancer in a variety of cancer types.
Collapse
Affiliation(s)
- Wasnaa H. Mohammed
- Department of Biotechnology, College of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Ghassan M. Sulaiman
- Department of Biotechnology, College of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Mosleh M. Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| | - Daniel J. Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
| | - Mohammed H. Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| |
Collapse
|
5
|
Shi X, Bu X, Zhou X, Shen N, Chang Y, Yu W, Wu Y. Prognostic analysis and risk assessment based on RNA editing in hepatocellular carcinoma. J Appl Genet 2024; 65:519-530. [PMID: 38217666 DOI: 10.1007/s13353-023-00819-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/15/2024]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality, and prognosis assessment is crucial for guiding treatment decisions. In this study, we aimed to develop a personalized prognostic model for HCC based on RNA editing. RNA editing is a post-transcriptional process that can affect gene expression and, in some cases, play a role in cancer development. By analyzing RNA editing sites in HCC, we sought to identify a set of sites associated with patient prognosis and use them to create a prognostic model. We gathered RNA editing data from the Synapse database, comprising 9990 RNA editing sites and 250 HCC samples. Additionally, we collected clinical data for 377 HCC patients from the Cancer Genome Atlas (TCGA) database. We employed a multi-step approach to identify prognosis-related RNA editing sites (PR-RNA-ESs). We assessed how patients in the high-risk and low-risk groups, as defined by the model, fared in terms of survival. A nomogram was developed to predict the precise survival prognosis of HCC patients and assessed the prognostic model's utility through a receiver operating characteristic (ROC) analysis and decision curve analysis (DCA). Our analysis identified 33 prognosis-related RNA editing sites (PR-RNA-ESs) associated with HCC patient prognosis. Using a combination of LASSO regression and cross-validation, we constructed a prognostic model based on 13 PR-RNA-ESs. Survival analysis demonstrated significant differences in the survival outcomes of patients in the high-risk and low-risk groups defined by this model. Additionally, the differential expression of the 13 PR-RNA-ESs played a role in shaping patient survival. Risk-prognostic investigations further distinguished patients based on their risk levels. The nomogram enabled precise survival prognosis prediction. Our study has successfully developed a highly personalized and accurate prognostic model for individuals with HCC, leveraging RNA editing data. This model has the potential to revolutionize clinical evaluation and medical management by providing individualized prognostic information. The identification of specific RNA editing sites associated with HCC prognosis and their incorporation into a predictive model holds promise for improving the precision of treatment strategies and ultimately enhancing patient outcomes in HCC.
Collapse
Affiliation(s)
- Xintong Shi
- Department of Biliary Surgery, the Third Affiliated Hospital, Naval Military Medical University, Shanghai, China
| | - Xiaoyuan Bu
- The Department of Respiratory Medicine, the Third Affiliated Hospital of the Naval Military Medical University, Shanghai, China
| | - Xinyu Zhou
- The Fifth Ward, Shanghai Mental Health Center, Shanghai, China
| | - Ningjia Shen
- Department of Biliary Surgery, the Third Affiliated Hospital, Naval Military Medical University, Shanghai, China
| | - Yanxin Chang
- Department of Biliary Surgery, the Third Affiliated Hospital, Naval Military Medical University, Shanghai, China
| | - Wenlong Yu
- Department of Biliary Surgery, the Third Affiliated Hospital, Naval Military Medical University, Shanghai, China
| | - Yingjun Wu
- Department of Biliary Surgery, the Third Affiliated Hospital, Naval Military Medical University, Shanghai, China.
| |
Collapse
|
6
|
Moghadam SG, Ebrahimpour M, Alavizadeh SH, Kesharwani P, Sahebkar A. The association between oxidized low-density lipoprotein and cancer: An emerging targeted therapeutic approach? Bioorg Med Chem Lett 2024; 106:129762. [PMID: 38649117 DOI: 10.1016/j.bmcl.2024.129762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/06/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Lipids play an important role in varying vital cellular processes including cell growth and division. Elevated levels of low-density lipoprotein (LDL) and oxidized-LDL (ox-LDL), and overexpression of the corresponding receptors including LDL receptor (LDLR), lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), and cluster of differentiation 36 (CD36), have shown strong correlations with different facets of carcinogenesis including proliferation, invasion, and angiogenesis. Furthermore, a high serum level of LOX-1 is considered as a poor prognostic factor in many types of cancer including colorectal cancer. Ox-LDL could contribute to cancer progression and metastasis through endothelial-to-mesenchymal transition (EMT) and autophagy. Thus, many studies have shed light on the significant role of ox-LDL as a potential therapeutic target for cancer therapy. In various repurposing approaches, anti-dyslipidemia agents, phytochemicals, autophagy modulators as well as recently developed ldl-like nanoparticles have been investigated as potential tumor therapeutic agents by targeting oxidized-LDL/LOX-1 pathways. Herein, we reviewed the role of oxidized-LDL and LOX-1 in cancer progression, invasion, metastasis, and also cancer-associated angiogenesis. Moreover, we addressed therapeutic utility of several compounds that proved to be capable of targeting the metabolic moieties in cancer. This review provides insights on the potential impact of targeting LDL and ox-LDL in cancer therapy and their future biomedical implementations.
Collapse
Affiliation(s)
- Samin Ghorbani Moghadam
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrshad Ebrahimpour
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Ayub A, Hasan MK, Mahmud Z, Hossain MS, Kabir Y. Dissecting the multifaceted roles of autophagy in cancer initiation, growth, and metastasis: from molecular mechanisms to therapeutic applications. Med Oncol 2024; 41:183. [PMID: 38902544 DOI: 10.1007/s12032-024-02417-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024]
Abstract
Autophagy is a cytoplasmic defense mechanism that cells use to break and reprocess their intracellular components. This utilization of autophagy is regarded as a savior in nutrient-deficient and other stressful conditions. Hence, autophagy keeps contact with and responds to miscellaneous cellular tensions and diverse pathways of signal transductions, such as growth signaling and cellular death. Importantly, autophagy is regarded as an effective tumor suppressor because regular autophagic breakdown is essential for cellular maintenance and minimizing cellular damage. However, paradoxically, autophagy has also been observed to promote the events of malignancies. This review discussed the dual role of autophagy in cancer, emphasizing its influence on tumor survival and progression. Possessing such a dual contribution to the malignant establishment, the prevention of autophagy can potentially advocate for the advancement of malignant transformation. In contrast, for the context of the instituted tumor, the agents of preventing autophagy potently inhibit the advancement of the tumor. Key regulators, including calpain 1, mTORC1, and AMPK, modulate autophagy in response to nutritional conditions and stress. Oncogenic mutations like RAS and B-RAF underscore autophagy's pivotal role in cancer development. The review also delves into autophagy's context-dependent roles in tumorigenesis, metastasis, and the tumor microenvironment (TME). It also discusses the therapeutic effectiveness of autophagy for several cancers. The recent implication of autophagy in the control of both innate and antibody-mediated immune systems made it a center of attention to evaluating its role concerning tumor antigens and treatments of cancer.
Collapse
Affiliation(s)
- Afia Ayub
- Department of Biochemistry and Molecular Biology, Tejgaon College, National University, Gazipur, 1704, Bangladesh
| | - Md Kamrul Hasan
- Department of Biochemistry and Molecular Biology, Tejgaon College, National University, Gazipur, 1704, Bangladesh.
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main St. W., Hamilton, L8S 4K1, Canada.
- Department of Public Health, North South University, Dhaka, Bangladesh.
| | - Zimam Mahmud
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Md Sabbir Hossain
- Department of Biochemistry and Molecular Biology, Tejgaon College, National University, Gazipur, 1704, Bangladesh
| | - Yearul Kabir
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
8
|
Shalhoub H, Gonzalez P, Dos Santos A, Guillermet-Guibert J, Moniaux N, Dupont N, Faivre J. Simultaneous activation and blockade of autophagy to fight hepatocellular carcinoma. AUTOPHAGY REPORTS 2024; 3:2326241. [PMID: 40395533 PMCID: PMC11864649 DOI: 10.1080/27694127.2024.2326241] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/02/2024] [Accepted: 02/27/2024] [Indexed: 05/22/2025]
Abstract
Autophagy is considered a target for cancer treatment, although few compounds manipulating this process have been added to the anticancer arsenal in humans. Pharmacological manipulation of autophagy has therefore been considered in the treatment and chemosensitization of hepatocellular carcinoma (HCC), a heterogeneous malignancy that remains difficult to treat (limited impact of genomic discoveries for the implementation of personalized precision medicine). We analyzed the autophagy marker proteins p62 and LC3 in paired tumor and adjacent cirrhotic non-tumor tissues of human HCC. We show strong variability in p62 and LC3-II levels between tumor parts of different HCC patients and between tumor and non-tumor HCC in the same patient, suggesting heterogeneity in autophagy flux. This diversity in flux led us to consider a non-personalized method of autophagy targeting, combining simultaneous activation and blockade of autophagy, which could, in theory, benefit a substantial number of HCC patients, irrespective of tumor autophagic flux. We show that the combination of sodium butyrate (NaB, autophagy inducer) and chloroquine (CQ, autophagy blocker) has a marked and synergistic cytotoxic effect in vitro on all human liver cancer cell lines studied, compared with the cellular effect of each product separately, and with no deleterious effect on normal hepatocytes in culture. Cancer cell death was associated with accumulation of autophagosomes, induction of lysosome membrane permeabilization and increased oxidative stress. Our results suggest that simultaneous activation and blockade of autophagy may be a valuable approach against HCC, and that microbiota-derived products improve the sensitivity of HCC cells to antitumor agents. Abbreviations AV: annexin V; CI: combination index; CTSB: Cathepsin B; CTSD: Cathepsin D; CTSF: Cathepsin F; CQ: chloroquine; DEN: N-diethylnitrosamine; DMEM: Dulbecco's modified eagle medium; FBS: fetal bovine serum; FSC: forward scatter; GNS: N-acetylglucosamine-6-sulfatase; HCC: hepatocellular carcinoma; HDACi: histone deacetylase inhibitor; HCQ: hydroxychloroquine; LMP: lysosomal membrane permeabilization; LAMP1: lysosome-associated membrane protein; LIPA: Lysosomal acid lipase; LSR: Lysosomal staining cells; MAP1LC3A: microtubule associated protein 1 light chain 3 alpha; NaB: sodium butyrate; NASH: non-alcoholic steatohepatitis; NRF2: nuclear factor erythroid 2-related factor 2; PI: propidium iodide; PMSF: phenylmethanesulfonyl fluoride; ROS: reactive oxygen species; SCARB2: Scavenger receptor class B member 2; SQSTM1/p62: sequestosome 1; SMPD1: Sphingomyelin phosphodiesterase 1; SSC: side scatter; TFEB: transcription factor EB.
Collapse
Affiliation(s)
- Hala Shalhoub
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine Le Kremlin-Bicêtre, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Patrick Gonzalez
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine Le Kremlin-Bicêtre, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Alexandre Dos Santos
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine Le Kremlin-Bicêtre, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Julie Guillermet-Guibert
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Inserm U1037, CNRS, Université Toulouse III, Toulouse, France
| | - Nicolas Moniaux
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine Le Kremlin-Bicêtre, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Nicolas Dupont
- Institut Necker Enfants-Malades (INEM), INSERM U1151/CNRS UMR 8253, Université de Paris, Paris, France
| | - Jamila Faivre
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine Le Kremlin-Bicêtre, Université Paris-Saclay, Gif-sur-Yvette, France
- Assistance Publique-Hôpitaux de Paris (AP-HP). Université Paris Saclay, Medical-University. Paul-Brousse Hospital, Villejuif, France
| |
Collapse
|
9
|
Nguyen TTP, Nguyen PL, Park SH, Jung CH, Jeon TI. Hydrogen Sulfide and Liver Health: Insights into Liver Diseases. Antioxid Redox Signal 2024; 40:122-144. [PMID: 37917113 DOI: 10.1089/ars.2023.0404] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Significance: Hydrogen sulfide (H2S) is a recently recognized gasotransmitter involved in physiological and pathological conditions in mammals. It protects organs from oxidative stress, inflammation, hypertension, and cell death. With abundant expression of H2S-production enzymes, the liver is closely linked to H2S signaling. Recent Advances: Hepatic H2S comes from various sources, including gut microbiota, exogenous sulfur salts, and endogenous production. Recent studies highlight the importance of hepatic H2S in liver diseases such as nonalcoholic fatty liver disease (NAFLD), liver injury, and cancer, particularly at advanced stages. Endogenous H2S production deficiency is associated with severe liver disease, while exogenous H2S donors protect against liver dysfunction. Critical Issues: However, the roles of H2S in NAFLD, liver injury, and liver cancer are still debated, and its effects depend on donor type, dosage, treatment duration, and cell type, suggesting a multifaceted role. This review aimed to critically evaluate H2S production, metabolism, mode of action, and roles in liver function and disease. Future Direction: Understanding H2S's precise roles and mechanisms in liver health will advance potential therapeutic applications in preclinical and clinical research. Targeting H2S-producing enzymes and exogenous H2S sources, alone or in combination with other drugs, could be explored. Quantifying endogenous H2S levels may aid in diagnosing and managing liver diseases. Antioxid. Redox Signal. 40, 122-144.
Collapse
Affiliation(s)
- Thuy T P Nguyen
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Phuc L Nguyen
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| | - So-Hyun Park
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Chang Hwa Jung
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Tae-Il Jeon
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
10
|
Wang Y, Shi C, Guo J, Zhang Y, Gong Z. Distinct Types of Cell Death and Implications in Liver Diseases: An Overview of Mechanisms and Application. J Clin Transl Hepatol 2023; 11:1413-1424. [PMID: 37719956 PMCID: PMC10500292 DOI: 10.14218/jcth.2023.00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/17/2023] [Accepted: 07/12/2023] [Indexed: 09/19/2023] Open
Abstract
Cell death is associated with a variety of liver diseases, and hepatocyte death is a core factor in the occurrence and progression of liver diseases. In recent years, new cell death modes have been identified, and certain biomarkers have been detected in the circulation during various cell death modes that mediate liver injury. In this review, cell death modes associated with liver diseases are summarized, including some cell death modes that have emerged in recent years. We described the mechanisms associated with liver diseases and summarized recent applications of targeting cell death in liver diseases. It provides new ideas for the diagnosis and treatment of liver diseases. In addition, multiple cell death modes can contribute to the same liver disease. Different cell death modes are not isolated, and they interact with each other in liver diseases. Future studies may focus on exploring the regulation between various cell death response pathways in liver diseases.
Collapse
Affiliation(s)
- Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yanqiong Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
11
|
Abstract
Studies have found that intermittent fasting (IF) can prevent diabetes, cancer, heart disease, and neuropathy, while in humans it has helped to alleviate metabolic syndrome, asthma, rheumatoid arthritis, Alzheimer's disease, and many other disorders. IF involves a series of coordinated metabolic and hormonal changes to maintain the organism's metabolic balance and cellular homeostasis. More importantly, IF can activate hepatic autophagy, which is important for maintaining cellular homeostasis and energy balance, quality control, cell and tissue remodeling, and defense against extracellular damage and pathogens. IF affects hepatic autophagy through multiple interacting pathways and molecular mechanisms, including adenosine monophosphate (AMP)-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), silent mating-type information regulatory 2 homolog-1 (SIRT1), peroxisomal proliferator-activated receptor alpha (PPARα) and farnesoid X receptor (FXR), as well as signaling pathways and molecular mechanisms such as glucagon and fibroblast growth factor 21 (FGF21). These pathways can stimulate the pro-inflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α), play a cytoprotective role, downregulate the expression of aging-related molecules, and prevent the development of steatosis-associated liver tumors. By influencing the metabolism of energy and oxygen radicals as well as cellular stress response systems, IF protects hepatocytes from genetic and environmental factors. By activating hepatic autophagy, IF has a potential role in treating a variety of liver diseases, including non-alcoholic fatty liver disease, drug-induced liver injury, viral hepatitis, hepatic fibrosis, and hepatocellular carcinoma. A better understanding of the effects of IF on liver autophagy may lead to new approaches for the prevention and treatment of liver disease.
Collapse
Affiliation(s)
- Ya-Nan Ma
- Department of Gastroenterology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Xuemei Jiang
- Department of Gastroenterology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Wei Tang
- International Health Care Center, National Center for Global Health and Medicine, Tokyo, Japan
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Peipei Song
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Liu S, Yao S, Yang H, Liu S, Wang Y. Autophagy: Regulator of cell death. Cell Death Dis 2023; 14:648. [PMID: 37794028 PMCID: PMC10551038 DOI: 10.1038/s41419-023-06154-8] [Citation(s) in RCA: 301] [Impact Index Per Article: 150.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
Autophagy is the process by which cells degrade and recycle proteins and organelles to maintain intracellular homeostasis. Generally, autophagy plays a protective role in cells, but disruption of autophagy mechanisms or excessive autophagic flux usually leads to cell death. Despite recent progress in the study of the regulation and underlying molecular mechanisms of autophagy, numerous questions remain to be answered. How does autophagy regulate cell death? What are the fine-tuned regulatory mechanisms underlying autophagy-dependent cell death (ADCD) and autophagy-mediated cell death (AMCD)? In this article, we highlight the different roles of autophagy in cell death and discuss six of the main autophagy-related cell death modalities, with a focus on the metabolic changes caused by excessive endoplasmic reticulum-phagy (ER-phagy)-induced cell death and the role of mitophagy in autophagy-mediated ferroptosis. Finally, we discuss autophagy enhancement in the treatment of diseases and offer a new perspective based on the use of autophagy for different functional conversions (including the conversion of autophagy and that of different autophagy-mediated cell death modalities) for the clinical treatment of tumors.
Collapse
Affiliation(s)
- ShiZuo Liu
- School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - ShuaiJie Yao
- School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Huan Yang
- The Second School of Clinical Medicine, Xinjiang Medical University, Urumqi, China
| | - ShuaiJie Liu
- School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - YanJiao Wang
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
13
|
Rajan PK, Udoh UAS, Nakafuku Y, Pierre SV, Sanabria J. Normalization of the ATP1A1 Signalosome Rescinds Epigenetic Modifications and Induces Cell Autophagy in Hepatocellular Carcinoma. Cells 2023; 12:2367. [PMID: 37830582 PMCID: PMC10572209 DOI: 10.3390/cells12192367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/14/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. In metabolic dysfunction-associated steatohepatitis (MASH)-related HCC, cellular redox imbalance from metabolic disturbances leads to dysregulation of the α1-subunit of the Na/K-ATPase (ATP1A1) signalosome. We have recently reported that the normalization of this pathway exhibited tumor suppressor activity in MASH-HCC. We hypothesized that dysregulated signaling from the ATP1A1, mediated by cellular metabolic stress, promotes aberrant epigenetic modifications including abnormal post-translational histone modifications and dysfunctional autophagic activity, leading to HCC development and progression. Increased H3K9 acetylation (H3K9ac) and H3K9 tri-methylation (H3K9me3) were observed in human HCC cell lines, HCC-xenograft and MASH-HCC mouse models, and epigenetic changes were associated with decreased cell autophagy in HCC cell lines. Inhibition of the pro-autophagic transcription factor FoxO1 was associated with elevated protein carbonylation and decreased levels of reduced glutathione (GSH). In contrast, normalization of the ATP1A1 signaling significantly decreased H3K9ac and H3K9me3, in vitro and in vivo, with concomitant nuclear localization of FoxO1, heightening cell autophagy and cancer-cell apoptotic activities in treated HCC cell lines. Our results showed the critical role of the ATP1A1 signalosome in HCC development and progression through epigenetic modifications and impaired cell autophagy activity, highlighting the importance of the ATP1A1 pathway as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Pradeep Kumar Rajan
- Department of Surgery, Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25701, USA; (P.K.R.); (U.-A.S.U.); (Y.N.); (S.V.P.)
| | - Utibe-Abasi S. Udoh
- Department of Surgery, Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25701, USA; (P.K.R.); (U.-A.S.U.); (Y.N.); (S.V.P.)
| | - Yuto Nakafuku
- Department of Surgery, Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25701, USA; (P.K.R.); (U.-A.S.U.); (Y.N.); (S.V.P.)
| | - Sandrine V. Pierre
- Department of Surgery, Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25701, USA; (P.K.R.); (U.-A.S.U.); (Y.N.); (S.V.P.)
| | - Juan Sanabria
- Department of Surgery, Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25701, USA; (P.K.R.); (U.-A.S.U.); (Y.N.); (S.V.P.)
- Department of Nutrition and Metabolomic Core Facility, Case Western Reserve University School of Medicine, Cleveland, OH 44100, USA
| |
Collapse
|
14
|
Zou Z, Zhao M, Yang Y, Xie Y, Li Z, Zhou L, Shang R, Zhou P. The role of pyroptosis in hepatocellular carcinoma. Cell Oncol (Dordr) 2023; 46:811-823. [PMID: 36864264 DOI: 10.1007/s13402-023-00787-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the main histologic type of liver cancer. It accounts for the majority of all diagnoses and deaths due to liver cancer. The induction of tumor cell death is an effective strategy to control tumor development. Pyroptosis is an inflammatory programmed cell death caused by microbial infection, accompanied by activation of inflammasomes and release of pro-inflammatory cytokines, interleukin-1β (IL-1β), and interleukin-18 (IL-18). The cleavage of gasdermins (GSDMs) promotes the occurrence of pyroptosis leading to cell swelling, lysis, and death. Accumulating evidence has indicated that pyroptosis influences the progression of HCC by regulating immune-mediated tumor cell death. Currently, some researchers hold the view that inhibition of pyroptosis-related components may prevent the incidence of HCC, but more researchers have the view that activation of pyroptosis exerts a tumor-inhibitory effect. Growing evidence indicates that pyroptosis can prevent or promote tumor development depending on the type of tumor. In this review, pyroptosis pathways and pyroptosis-related components were discussed. Next, the role of pyroptosis and its components in HCC was described. Finally, the therapeutic significance of pyroptosis in HCC was discussed.
Collapse
Affiliation(s)
- Zhimiao Zou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Minghui Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Yang Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Yalong Xie
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Zeyang Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Liang Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Runshi Shang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Ping Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
15
|
Zong C, Meng Y, Ye F, Yang X, Li R, Jiang J, Zhao Q, Gao L, Han Z, Wei L. AIF1 + CSF1R + MSCs, induced by TNF-α, act to generate an inflammatory microenvironment and promote hepatocarcinogenesis. Hepatology 2023; 78:434-451. [PMID: 35989499 PMCID: PMC10344441 DOI: 10.1002/hep.32738] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Increasing evidence suggests that mesenchymal stem cells (MSCs) home to injured local tissues and the tumor microenvironment in the liver. Chronic inflammation is regarded as the major trait of primary liver cancer. However, the characteristics of endogenous MSCs in the inflammatory environment and their role in the occurrence of liver cancer remain obscure. APPROACH AND RESULTS Using single-cell RNA sequencing, we identified a distinct inflammation-associated subset of MSCs, namely AIF1 + CSF1R + MSCs, which existed in the microenvironment before the occurrence of liver cancer. Furthermore, we found that this MSC subgroup is likely to be induced by TNF-α stimulation through the TNFR1/SIRT1 (sirtuin 1) pathway. In a rat primary liver cancer model, we showed that MSCs with high SIRT1 expression (Ad-Sirt1-MSCs) promoted macrophage recruitment and synergistically facilitated liver cancer occurrence by secreting C-C motif chemokine ligand (CCL) 5. Interestingly, depletion of macrophages or knockdown of CCL5 expression in Ad-Sirt1-MSCs attenuated the promotive effect of Ad-Sirt1-MSCs on liver inflammation and hepatocarcinogenesis (HCG). Finally, we demonstrated that SIRT1 up-regulated CCL5 expression through activation of the AKT/HIF1α signaling axis in MSCs. CONCLUSIONS Together, our results show that MSCs, which are mobilized to the injured site, can be educated by macrophages. In turn, the educated MSCs are involved in generating a chronic inflammatory microenvironment and promoting HCG.
Collapse
Affiliation(s)
- Chen Zong
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Yan Meng
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Fei Ye
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Xue Yang
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Rong Li
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Jinghua Jiang
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Qiudong Zhao
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Lu Gao
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Zhipeng Han
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Lixin Wei
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| |
Collapse
|
16
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Pathogenesis of Hepatocellular Carcinoma: The Interplay of Apoptosis and Autophagy. Biomedicines 2023; 11:1166. [PMID: 37189787 PMCID: PMC10135776 DOI: 10.3390/biomedicines11041166] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
The pathogenesis of hepatocellular carcinoma (HCC) is a multifactorial process that has not yet been fully investigated. Autophagy and apoptosis are two important cellular pathways that are critical for cell survival or death. The balance between apoptosis and autophagy regulates liver cell turnover and maintains intracellular homeostasis. However, the balance is often dysregulated in many cancers, including HCC. Autophagy and apoptosis pathways may be either independent or parallel or one may influence the other. Autophagy may either inhibit or promote apoptosis, thus regulating the fate of the liver cancer cells. In this review, a concise overview of the pathogenesis of HCC is presented, with emphasis on new developments, including the role of endoplasmic reticulum stress, the implication of microRNAs and the role of gut microbiota. The characteristics of HCC associated with a specific liver disease are also described and a brief description of autophagy and apoptosis is provided. The role of autophagy and apoptosis in the initiation, progress and metastatic potential is reviewed and the experimental evidence indicating an interplay between the two is extensively analyzed. The role of ferroptosis, a recently described specific pathway of regulated cell death, is presented. Finally, the potential therapeutic implications of autophagy and apoptosis in drug resistance are examined.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Department of Gastroenterology, PAGNI University Hospital, University of Crete School of Medicine, 71500 Heraklion, Crete, Greece
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Central Macedonia, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Central Macedonia, Greece
| |
Collapse
|
17
|
Zhou F, Yang L, Yang L, Wang X, Guo N, Sun W, Ma H. Trpc5-regulated AMPKα/mTOR autophagy pathway is associated with glucose metabolism disorders in low birth weight mice under overnutrition. Biochem Biophys Res Commun 2022; 630:1-7. [PMID: 36122525 DOI: 10.1016/j.bbrc.2022.09.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 11/19/2022]
Abstract
Previous studies have shown that low birth weight (LBW) individuals are at higher risk of glucose metabolism disorders compared with normal birth weight (NBW) individuals under overnutrition conditions, but the mechanism remains unclear. To explore the underlying mechanism of glucose metabolism disorders induced by LBW under overnutrition in adulthood, the prenatal malnutrition method was applied to ICR mice to establish the LBW mice model and high-fat diets were used to mimic overnutrition conditions. Then the mechanism was further explored on Hepg2 cells treated with nutritional deprivation plus palmitic acid. The results showed that LBW plus high-fat interventions will cause glucose metabolism disorders and inhibit autophagy flux in adulthood. Moreover, the expression of TRPC5-regulated AMPK/mTOR autophagy pathway was downregulated by LBW with high-fat interventions. Collectively, LBW plus high-fat intervention increased the risk of glucose metabolism disorders, which may be related to the alteration of TRPC5 expression level and its regulation of the AMPKα/mTOR autophagy pathway. This study may provide a fundamental basis for the molecular mechanism of glucose metabolism disorders induced by LBW with high-fat diets in adulthood and a new target for the treatment of metabolic diseases in LBW individuals.
Collapse
Affiliation(s)
- Fei Zhou
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Linlin Yang
- Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Linquan Yang
- Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Xing Wang
- Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Na Guo
- Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Wenwen Sun
- Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Huijuan Ma
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China; Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China.
| |
Collapse
|
18
|
He Q, Guo P, Bo Z, Yu H, Yang J, Wang Y, Chen G. Noncoding RNA-mediated molecular bases of chemotherapy resistance in hepatocellular carcinoma. Cancer Cell Int 2022; 22:249. [PMID: 35945536 PMCID: PMC9361533 DOI: 10.1186/s12935-022-02643-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/27/2022] [Indexed: 11/10/2022] Open
Abstract
Despite the significant progress in decreasing the occurrence and mortality of hepatocellular carcinoma (HCC), it remains a public health issue worldwide on the basis of its late presentation and tumor recurrence. To date, apart from surgical interventions, such as surgical resection, liver transplantation and locoregional ablation, current standard antitumor protocols include conventional cytotoxic chemotherapy. However, due to the high chemoresistance nature, most current therapeutic agents show dismal outcomes for this refractory malignancy, leading to disease relapse. Nevertheless, the molecular mechanisms involved in chemotherapy resistance remain systematically ambiguous. Herein, HCC is hierarchically characterized by the formation of primitive cancer stem cells (CSCs), progression of epithelial-mesenchymal transition (EMT), unbalanced autophagy, delivery of extracellular vesicles (EVs), escape of immune surveillance, disruption of ferroptosis, alteration of the tumor microenvironment and multidrug resistance-related signaling pathways that mediate the multiplicity and complexity of chemoresistance. Of note, anecdotal evidence has corroborated that noncoding RNAs (ncRNAs) extensively participate in the critical physiological processes mentioned above. Therefore, understanding the detailed regulatory bases that underlie ncRNA-mediated chemoresistance is expected to yield novel insights into HCC treatment. In the present review, a comprehensive summary of the latest progress in the investigation of chemotherapy resistance concerning ncRNAs will be elucidated to promote tailored individual treatment for HCC patients.
Collapse
Affiliation(s)
- Qikuan He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Pengyi Guo
- Department of Cardiothoracic Surgery, Ningbo Yinzhou No. 2 Hospital, Ningbo, 315199, Zhejiang, China
| | - Zhiyuan Bo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Haitao Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jinhuan Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yi Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
19
|
Lu J, Fu S, Dai J, Hu J, Li S, Ji H, Wang Z, Yu J, Bao J, Xu B, Guo J, Yang H. Integrated metabolism and epigenetic modifications in the macrophages of mice in responses to cold stress. J Zhejiang Univ Sci B 2022; 23:461-480. [PMID: 35686526 PMCID: PMC9198231 DOI: 10.1631/jzus.b2101091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The negative effects of low temperature can readily induce a variety of diseases. We sought to understand the reasons why cold stress induces disease by studying the mechanisms of fine-tuning in macrophages following cold exposure. We found that cold stress triggers increased macrophage activation accompanied by metabolic reprogramming of aerobic glycolysis. The discovery, by genome-wide RNA sequencing, of defective mitochondria in mice macrophages following cold exposure indicated that mitochondrial defects may contribute to this process. In addition, changes in metabolism drive the differentiation of macrophages by affecting histone modifications. Finally, we showed that histone acetylation and lactylation are modulators of macrophage differentiation following cold exposure. Collectively, metabolism-related epigenetic modifications are essential for the differentiation of macrophages in cold-stressed mice, and the regulation of metabolism may be crucial for alleviating the harm induced by cold stress.
Collapse
Affiliation(s)
- Jingjing Lu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Shoupeng Fu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jie Dai
- Shanghai Bioprofile Co. Ltd., Shanghai 201100, China
| | - Jianwen Hu
- Shanghai Bioprofile Co. Ltd., Shanghai 201100, China
| | - Shize Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Hong Ji
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Zhiquan Wang
- Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta T5J 4P6, Canada
| | - Jiahong Yu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jiming Bao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Bin Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jingru Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Huanmin Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| |
Collapse
|
20
|
The Role of Macroautophagy and Chaperone-Mediated Autophagy in the Pathogenesis and Management of Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14030760. [PMID: 35159028 PMCID: PMC8833636 DOI: 10.3390/cancers14030760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is a major health problem with the second highest mortality among all cancers and a continuous increase worldwide. HCC is highly resistant to available chemotherapeutic agents, leaving patients with no effective therapeutic option and a poor prognosis. Although an increasing number of studies have elucidated the potential role of autophagy underlying HCC, the complete regulation is far from understood. The different forms of autophagy constitute important cell survival mechanisms that could prevent hepatocarcinogenesis by limiting hepatocyte death and the associated hepatitis and fibrosis at early stages of chronic liver diseases. On the other hand, at late stages of hepatocarcinogenesis, they could support the malignant transformation of (pre)neoplastic cells by facilitating their survival. Abstract Hepatocarcinogenesis is a long process with a complex pathophysiology. The current therapeutic options for HCC management, during the advanced stage, provide short-term survival ranging from 10–14 months. Autophagy acts as a double-edged sword during this process. Recently, two main autophagic pathways have emerged to play critical roles during hepatic oncogenesis, macroautophagy and chaperone-mediated autophagy. Mounting evidence suggests that upregulation of macroautophagy plays a crucial role during the early stages of carcinogenesis as a tumor suppressor mechanism; however, it has been also implicated in later stages promoting survival of cancer cells. Nonetheless, chaperone-mediated autophagy has been elucidated as a tumor-promoting mechanism contributing to cancer cell survival. Moreover, the autophagy pathway seems to have a complex role during the metastatic stage, while induction of autophagy has been implicated as a potential mechanism of chemoresistance of HCC cells. The present review provides an update on the role of autophagy pathways in the development of HCC and data on how the modulation of the autophagic pathway could contribute to the most effective management of HCC.
Collapse
|
21
|
Cell Death in Hepatocellular Carcinoma: Pathogenesis and Therapeutic Opportunities. Cancers (Basel) 2021; 14:cancers14010048. [PMID: 35008212 PMCID: PMC8750350 DOI: 10.3390/cancers14010048] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/18/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The progression of liver tumors is highly influenced by the interactions between cancer cells and the surrounding environment, and, consequently, can determine whether the primary tumor regresses, metastasizes, or establishes micrometastases. In the context of liver cancer, cell death is a double-edged sword. On one hand, cell death promotes inflammation, fibrosis, and angiogenesis, which are tightly orchestrated by a variety of resident and infiltrating host cells. On the other hand, targeting cell death in advanced hepatocellular carcinoma could represent an attractive therapeutic approach for limiting tumor growth. Further studies are needed to investigate therapeutic strategies combining current chemotherapies with novel drugs targeting either cell death or the tumor microenvironment. Abstract Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer and the third leading cause of cancer death worldwide. Closely associated with liver inflammation and fibrosis, hepatocyte cell death is a common trigger for acute and chronic liver disease arising from different etiologies, including viral hepatitis, alcohol abuse, and fatty liver. In this review, we discuss the contribution of different types of cell death, including apoptosis, necroptosis, pyroptosis, or autophagy, to the progression of liver disease and the development of HCC. Interestingly, inflammasomes have recently emerged as pivotal innate sensors with a highly pathogenic role in various liver diseases. In this regard, an increased inflammatory response would act as a key element promoting a pro-oncogenic microenvironment that may result not only in tumor growth, but also in the formation of a premetastatic niche. Importantly, nonparenchymal hepatic cells, such as liver sinusoidal endothelial cells, hepatic stellate cells, and hepatic macrophages, play an important role in establishing the tumor microenvironment, stimulating tumorigenesis by paracrine communication through cytokines and/or angiocrine factors. Finally, we update the potential therapeutic options to inhibit tumorigenesis, and we propose different mechanisms to consider in the tumor microenvironment field for HCC resolution.
Collapse
|
22
|
A perspective on the role of autophagy in cancer. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166262. [PMID: 34481059 DOI: 10.1016/j.bbadis.2021.166262] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022]
Abstract
Autophagy refers to a ubiquitous set of catabolic pathways required to achieve proper cellular homeostasis. Aberrant autophagy has been implicated in a multitude of diseases including cancer. In this review, we highlight pioneering and groundbreaking research that centers on delineating the role of autophagy in cancer initiation, proliferation and metastasis. First, we discuss the autophagy-related (ATG) proteins and their respective roles in the de novo formation of autophagosomes and the subsequent delivery of cargo to the lysosome for recycling. Next, we touch upon the history of cancer research that centers upon ATG proteins and regulatory mechanisms that control an appropriate autophagic response and how these are altered in the diseased state. Then, we discuss the various discoveries that led to the idea of autophagy as a double-edged sword when it comes to cancer therapy. This review also briefly narrates how different types of autophagy-selective macroautophagy and chaperone-mediated autophagy, have been linked to different cancers. Overall, these studies build upon a steadfast trajectory that aims to solve the monumentally daunting challenge of finding a cure for many types of cancer by modulating autophagy either through inhibition or induction.
Collapse
|
23
|
Lasagna A, Cuzzocrea F, Maccario G, Mahagna A, Sacchi P, U Mondelli M. Bone metastases and hepatocellular carcinoma: some food for thought. Future Oncol 2021; 17:3777-3780. [PMID: 34313153 DOI: 10.2217/fon-2021-0689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Angioletta Lasagna
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Piazzale C. Golgi 19, Pavia 27100, Italy
| | - Fabrizio Cuzzocrea
- Orthopedics Unit, Fondazione IRCCS Policlinico San Matteo, Piazzale C. Golgi 19, Pavia 27100, Italy
| | - Gaia Maccario
- Orthopedics Unit, Fondazione IRCCS Policlinico San Matteo, Piazzale C. Golgi 19, Pavia 27100, Italy
| | - Antonio Mahagna
- Orthopedics Unit, Fondazione IRCCS Policlinico San Matteo, Piazzale C. Golgi 19, Pavia 27100, Italy
| | - Paolo Sacchi
- Division of Infectious Diseases I, Fondazione IRCCS Policlinico San Matteo, Piazzale C. Golgi 19, Pavia 27100, Italy
| | - Mario U Mondelli
- Division of Infectious Diseases & Immunology, Fondazione IRCCS Policlinico San Matteo, Piazzale C. Golgi 19, Pavia 27100, Italy
| |
Collapse
|
24
|
The Pathways Underlying the Multiple Roles of p62 in Inflammation and Cancer. Biomedicines 2021; 9:biomedicines9070707. [PMID: 34206503 PMCID: PMC8301319 DOI: 10.3390/biomedicines9070707] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/09/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
p62 is a highly conserved, multi-domain, and multi-functional adaptor protein critically involved in several important cellular processes. Via its pronounced domain architecture, p62 binds to numerous interaction partners, thereby influencing key pathways that regulate tissue homeostasis, inflammation, and several common diseases including cancer. Via binding of ubiquitin chains, p62 acts in an anti-inflammatory manner as an adaptor for the auto-, xeno-, and mitophagy-dependent degradation of proteins, pathogens, and mitochondria. Furthermore, p62 is a negative regulator of inflammasome complexes. The transcription factor Nrf2 regulates expression of a bundle of ROS detoxifying genes. p62 activates Nrf2 by interaction with and autophagosomal degradation of the Nrf2 inhibitor Keap1. Moreover, p62 activates mTOR, the central kinase of the mTORC1 sensor complex that controls cell proliferation and differentiation. Through different mechanisms, p62 acts as a positive regulator of the transcription factor NF-κB, a central player in inflammation and cancer development. Therefore, p62 represents not only a cargo receptor for autophagy, but also a central signaling hub, linking several important pro- and anti-inflammatory pathways. This review aims to summarize knowledge about the molecular mechanisms underlying the roles of p62 in health and disease. In particular, different types of tumors are characterized by deregulated levels of p62. The elucidation of how p62 contributes to inflammation and cancer progression at the molecular level might promote the development of novel therapeutic strategies.
Collapse
|
25
|
Hamura R, Shirai Y, Shimada Y, Saito N, Taniai T, Horiuchi T, Takada N, Kanegae Y, Ikegami T, Ohashi T, Yanaga K. Suppression of lysosomal acid alpha-glucosidase impacts the modulation of transcription factor EB translocation in pancreatic cancer. Cancer Sci 2021; 112:2335-2348. [PMID: 33931930 PMCID: PMC8177769 DOI: 10.1111/cas.14921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/14/2022] Open
Abstract
Lysosomal degradation plays a crucial role in the metabolism of biological macromolecules supplied by autophagy. The regulation of the autophagy‐lysosome system, which contributes to intracellular homeostasis, chemoresistance, and tumor progression, has recently been revealed as a promising therapeutic approach for pancreatic cancer (PC). However, the details of lysosomal catabolic function in PC cells have not been fully elucidated. In this study, we show evidence that suppression of acid alpha‐glucosidase (GAA), one of the lysosomal enzymes, improves chemosensitivity and exerts apoptotic effects on PC cells through the disturbance of expression of the transcription factor EB. The levels of lysosomal enzyme were elevated by gemcitabine in PC cells. In particular, the levels of GAA were responsive to gemcitabine in a dose–dependent and time–dependent manner. Small interfering RNA against the GAA gene (siGAA) suppressed cell proliferation and promoted apoptosis in gemcitabine‐treated PC cells. In untreated PC cells, we observed accumulation of depolarized mitochondria. Gene therapy using adenoviral vectors carrying shRNA against the GAA gene increased the number of apoptotic cells and decreased the tumor growth in xenograft model mice. These results indicate that GAA is one of the key targets to improve the efficacy of gemcitabine and develop novel therapies for PC.
Collapse
Affiliation(s)
- Ryoga Hamura
- Department of Surgery, Jikei University School of Medicine, Tokyo, Japan.,Division of Gene Therapy, Research Center for Medical Science, Jikei University School of Medicine, Tokyo, Japan
| | - Yoshihiro Shirai
- Department of Surgery, Jikei University School of Medicine, Tokyo, Japan.,Division of Gene Therapy, Research Center for Medical Science, Jikei University School of Medicine, Tokyo, Japan
| | - Yohta Shimada
- Division of Gene Therapy, Research Center for Medical Science, Jikei University School of Medicine, Tokyo, Japan
| | - Nobuhiro Saito
- Department of Surgery, Jikei University School of Medicine, Tokyo, Japan.,Division of Gene Therapy, Research Center for Medical Science, Jikei University School of Medicine, Tokyo, Japan
| | - Tomohiko Taniai
- Department of Surgery, Jikei University School of Medicine, Tokyo, Japan.,Division of Gene Therapy, Research Center for Medical Science, Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Horiuchi
- Department of Surgery, Jikei University School of Medicine, Tokyo, Japan.,Division of Gene Therapy, Research Center for Medical Science, Jikei University School of Medicine, Tokyo, Japan
| | - Naoki Takada
- Department of Surgery, Jikei University School of Medicine, Tokyo, Japan.,Division of Gene Therapy, Research Center for Medical Science, Jikei University School of Medicine, Tokyo, Japan
| | - Yumi Kanegae
- Core Research Facilities of Basic Science, Research Center for Medical Science, Jikei University School of Medicine, Tokyo, Japan
| | - Toru Ikegami
- Department of Surgery, Jikei University School of Medicine, Tokyo, Japan
| | - Toya Ohashi
- Division of Gene Therapy, Research Center for Medical Science, Jikei University School of Medicine, Tokyo, Japan
| | - Katsuhiko Yanaga
- Department of Surgery, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
26
|
Autophagy, an accomplice or antagonist of drug resistance in HCC? Cell Death Dis 2021; 12:266. [PMID: 33712559 PMCID: PMC7954824 DOI: 10.1038/s41419-021-03553-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 02/13/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a highly lethal malignancy characterized by poor prognosis and a low 5-year survival rate. Drug treatment is proving to be effective in anti-HCC. However, only a small number of HCC patients exhibit sensitive responses, and drug resistance occurs frequently in advanced patients. Autophagy, an evolutionary process responsible for the degradation of cellular substances, is closely associated with the acquisition and maintenance of drug resistance for HCC. This review focuses on autophagic proteins and explores the intricate relationship between autophagy and cancer stem cells, tumor-derived exosomes, and noncoding RNA. Clinical trials involved in autophagy inhibition combined with anticancer drugs are also concerned.
Collapse
|
27
|
Kouroumalis E, Voumvouraki A, Augoustaki A, Samonakis DN. Autophagy in liver diseases. World J Hepatol 2021; 13:6-65. [PMID: 33584986 PMCID: PMC7856864 DOI: 10.4254/wjh.v13.i1.6] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/10/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is the liver cell energy recycling system regulating a variety of homeostatic mechanisms. Damaged organelles, lipids and proteins are degraded in the lysosomes and their elements are re-used by the cell. Investigations on autophagy have led to the award of two Nobel Prizes and a health of important reports. In this review we describe the fundamental functions of autophagy in the liver including new data on the regulation of autophagy. Moreover we emphasize the fact that autophagy acts like a two edge sword in many occasions with the most prominent paradigm being its involvement in the initiation and progress of hepatocellular carcinoma. We also focused to the implication of autophagy and its specialized forms of lipophagy and mitophagy in the pathogenesis of various liver diseases. We analyzed autophagy not only in well studied diseases, like alcoholic and nonalcoholic fatty liver and liver fibrosis but also in viral hepatitis, biliary diseases, autoimmune hepatitis and rare diseases including inherited metabolic diseases and also acetaminophene hepatotoxicity. We also stressed the different consequences that activation or impairment of autophagy may have in hepatocytes as opposed to Kupffer cells, sinusoidal endothelial cells or hepatic stellate cells. Finally, we analyzed the limited clinical data compared to the extensive experimental evidence and the possible future therapeutic interventions based on autophagy manipulation.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Liver Research Laboratory, University of Crete Medical School, Heraklion 71110, Greece
| | - Argryro Voumvouraki
- 1 Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54636, Greece
| | - Aikaterini Augoustaki
- Department of Gastroenterology and Hepatology, University Hospital of Crete, Heraklion 71110, Greece
| | - Dimitrios N Samonakis
- Department of Gastroenterology and Hepatology, University Hospital of Crete, Heraklion 71110, Greece.
| |
Collapse
|
28
|
Zhou B, Yang C, Yan X, Shi Z, Xiao H, Wei X, Jiang N, Wu Z. LETM1 Knockdown Promotes Autophagy and Apoptosis Through AMP-Activated Protein Kinase Phosphorylation-Mediated Beclin-1/Bcl-2 Complex Dissociation in Hepatocellular Carcinoma. Front Oncol 2021; 10:606790. [PMID: 33552978 PMCID: PMC7859436 DOI: 10.3389/fonc.2020.606790] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/04/2020] [Indexed: 12/24/2022] Open
Abstract
Leucine zipper/EF hand-containing transmembrane-1 (LETM1) is an inner mitochondrial membrane protein that has been reported to be involved in many primary tumors and may regulate many biological processes. However, the biological role and molecular mechanism of LETM1 in the progression of hepatocellular carcinoma (HCC) remain largely unknown. In this study, we found that LETM1 was highly expressed in HCC tissues and cell lines and that higher LETM1 expression was associated with a lower overall survival rate in HCC patients. In addition, knockdown of LETM1 inhibited proliferation and enhanced apoptosis and autophagy in the Huh 7 and QGY-7701 liver cancer cell lines. Mechanistically, knockdown of LETM1 dissociated the Beclin-1/Bcl-2 complex through phosphorylation of AMPK and Bcl-2. These results demonstrated that LETM1 is involved in the development of HCC and could be a novel therapeutic target in HCC.
Collapse
Affiliation(s)
- Baoyong Zhou
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Changhong Yang
- Department of Bioinformatics, Chongqing Medical University, Chongqing, China
| | - Xiong Yan
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengrong Shi
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Heng Xiao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xufu Wei
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ning Jiang
- Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Zhongjun Wu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
29
|
Siqueira EDS, Concato VM, Tomiotto-Pellissier F, Silva TF, Bortoleti BTDS, Gonçalves MD, Costa IN, Junior WAV, Pavanelli WR, Panis C, Mantovani MS, Miranda-Sapla MM, Conchon-Costa I. Trans-chalcone induces death by autophagy mediated by p53 up-regulation and β-catenin down-regulation on human hepatocellular carcinoma HuH7.5 cell line. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 80:153373. [PMID: 33096451 DOI: 10.1016/j.phymed.2020.153373] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/20/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Hepatocellular Carcinoma (HCC) is extremely aggressive and presents low rates of response to the available chemotherapeutic agents. Many studies have focused on the search for alternative low-cost natural compounds with antiproliferative potential that selectively respond to liver cancer cells. PURPOSE This study assessed the in vitro direct action of trans-chalcone (TC) on cells of the human HCC HuH7.5 cell line. METHODS We subjected the HuH7.5 tumor cells to TC treatment at increasing concentrations (12.5-100 µM) for 24 and 48 h. Cell viability was verified through MTT and 50% inhibitory concentration of cells (IC50 23.66 µM) was determined within 48 h. We quantified trypan blue proliferation and light microscopy, ROS production, mitochondrial depolarization and autophagy, cell cycle analysis, and apoptosis using Muse® cell analyzer and immunocytochemical markings of p53 and β-catenin. RESULTS Data showed an effective dose- and time-dependent TC-cytotoxic action at low micromolar concentrations without causing toxicity to non-cancerous cells, such as erythrocytes. TC-treatment caused mitochondrial membrane damage and cell cycle G0/G1 phase arrest, increasing the presence of the p53 protein and decreasing β-catenin, in addition, to inducing cell death by autophagy. Additionally, TC decreased the metastatic capacity of HuH7.5, which affected the migration/invasion of this type of cell. CONCLUSION In vitro TC activity in the human HCC HuH7.5 tumor cell line is shown to be a potential molecule to develop new therapies to repair the p53 pathway and prevent the overexpression of Wnt/β-catenin tumor development inducing autophagy cell death and decreasing metastatic capacity of HuH7.5 cell line.
Collapse
Affiliation(s)
- Elaine da Silva Siqueira
- Laboratory of Immunopathology of Neglected Diseases and Cancer, State University of Londrina - UEL. Rodovia Celso Garcia Cid Campus Zip Code 86057-970, Post Box 10.011. Londrina, PR, Brazil.
| | - Vírgínia Márcia Concato
- Laboratory of Immunopathology of Neglected Diseases and Cancer, State University of Londrina - UEL. Rodovia Celso Garcia Cid Campus Zip Code 86057-970, Post Box 10.011. Londrina, PR, Brazil
| | - Fernanda Tomiotto-Pellissier
- Laboratory of Immunopathology of Neglected Diseases and Cancer, State University of Londrina - UEL. Rodovia Celso Garcia Cid Campus Zip Code 86057-970, Post Box 10.011. Londrina, PR, Brazil; Graduate Program in Biosciences and Biotechnology, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, Paraná, Brazil
| | - Taylon Felipe Silva
- Laboratory of Immunopathology of Neglected Diseases and Cancer, State University of Londrina - UEL. Rodovia Celso Garcia Cid Campus Zip Code 86057-970, Post Box 10.011. Londrina, PR, Brazil
| | - Bruna Taciane da Silva Bortoleti
- Laboratory of Immunopathology of Neglected Diseases and Cancer, State University of Londrina - UEL. Rodovia Celso Garcia Cid Campus Zip Code 86057-970, Post Box 10.011. Londrina, PR, Brazil; Graduate Program in Biosciences and Biotechnology, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, Paraná, Brazil
| | - Manoela Daiele Gonçalves
- Laboratory of Biotransformation and Phytochemistry, State University of Londrina, Paraná, Brazil
| | - Idessania Nazareth Costa
- Laboratory of Immunopathology of Neglected Diseases and Cancer, State University of Londrina - UEL. Rodovia Celso Garcia Cid Campus Zip Code 86057-970, Post Box 10.011. Londrina, PR, Brazil
| | | | - Wander Rogério Pavanelli
- Laboratory of Immunopathology of Neglected Diseases and Cancer, State University of Londrina - UEL. Rodovia Celso Garcia Cid Campus Zip Code 86057-970, Post Box 10.011. Londrina, PR, Brazil
| | - Carolina Panis
- Laboratory of Tumor of Biology, State University of West Paraná, Francisco Beltrão, Paraná, Brazil
| | | | - Milena Menegazzo Miranda-Sapla
- Laboratory of Immunopathology of Neglected Diseases and Cancer, State University of Londrina - UEL. Rodovia Celso Garcia Cid Campus Zip Code 86057-970, Post Box 10.011. Londrina, PR, Brazil
| | - Ivete Conchon-Costa
- Laboratory of Immunopathology of Neglected Diseases and Cancer, State University of Londrina - UEL. Rodovia Celso Garcia Cid Campus Zip Code 86057-970, Post Box 10.011. Londrina, PR, Brazil
| |
Collapse
|
30
|
Wei T, Ji X, Xue J, Gao Y, Zhu X, Xiao G. Cyanidin-3-O-glucoside represses tumor growth and invasion in vivo by suppressing autophagy via inhibition of the JNK signaling pathways. Food Funct 2020; 12:387-396. [PMID: 33326533 DOI: 10.1039/d0fo02107e] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Black bean seed coat extract (BBSCE) contains a high amount of bioactive compounds which can reduce the risk of cancers, but the underlying mechanism remains poorly understood in vivo. Here using a Drosophila model of a malignant tumor, wherein the activated oncogene Raf (RafGOF) cooperates with loss-of-function mutations in the conserved tumor suppressor scribble (scrib-/-), we investigated the antitumor mechanism of BBSCE and its main active component cyanidin-3-O-glucoside (C3G) in vivo. The results showed that supplementation of either BBSCE or C3G inhibited the tumor growth and invasion of RafGOFscrib-/- and extended their survival in a dose dependent manner. Strikingly, the activation of both autonomous and non-autonomous autophagy in tumor flies was significantly reduced by C3G treatment. A further study indicated that C3G exhibited an antitumor effect in vivo by blocking autophagy both in tumor cells and in its microenvironment by inhibiting the JNK pathway. Interestingly, the efficacy of chloroquine (CQ, an autophagy inhibitor used as an antitumor agent) combined with C3G is much better than either C3G or CQ treatment alone. C3G may be combined with CQ to treat cancers and to provide a theoretical basis for functional food or natural medicine development.
Collapse
Affiliation(s)
- Tian Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Xiaowen Ji
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Jinsong Xue
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Yan Gao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Xiaomei Zhu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Guiran Xiao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| |
Collapse
|
31
|
Feng X, Zhang Y, Zhang C, Lai X, Zhang Y, Wu J, Hu C, Shao L. Nanomaterial-mediated autophagy: coexisting hazard and health benefits in biomedicine. Part Fibre Toxicol 2020; 17:53. [PMID: 33066795 PMCID: PMC7565835 DOI: 10.1186/s12989-020-00372-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Widespread biomedical applications of nanomaterials (NMs) bring about increased human exposure risk due to their unique physicochemical properties. Autophagy, which is of great importance for regulating the physiological or pathological activities of the body, has been reported to play a key role in NM-driven biological effects both in vivo and in vitro. The coexisting hazard and health benefits of NM-mediated autophagy in biomedicine are nonnegligible and require our particular concerns. MAIN BODY We collected research on the toxic effects related to NM-mediated autophagy both in vivo and in vitro. Generally, NMs can be delivered into animal models through different administration routes, or internalized by cells through different uptake pathways, exerting varying degrees of damage in tissues, organs, cells, and organelles, eventually being deposited in or excreted from the body. In addition, other biological effects of NMs, such as oxidative stress, inflammation, necroptosis, pyroptosis, and ferroptosis, have been associated with autophagy and cooperate to regulate body activities. We therefore highlight that NM-mediated autophagy serves as a double-edged sword, which could be utilized in the treatment of certain diseases related to autophagy dysfunction, such as cancer, neurodegenerative disease, and cardiovascular disease. Challenges and suggestions for further investigations of NM-mediated autophagy are proposed with the purpose to improve their biosafety evaluation and facilitate their wide application. Databases such as PubMed and Web of Science were utilized to search for relevant literature, which included all published, Epub ahead of print, in-process, and non-indexed citations. CONCLUSION In this review, we focus on the dual effect of NM-mediated autophagy in the biomedical field. It has become a trend to use the benefits of NM-mediated autophagy to treat clinical diseases such as cancer and neurodegenerative diseases. Understanding the regulatory mechanism of NM-mediated autophagy in biomedicine is also helpful for reducing the toxic effects of NMs as much as possible.
Collapse
Affiliation(s)
- Xiaoli Feng
- Stomatological Hospital, Southern Medical University, 366 South Jiangnan Road, Guangzhou, 510280, China
| | - Yaqing Zhang
- Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Street, Guangzhou, 510515, China
| | - Chao Zhang
- Orthodontic Department, Stomatological Hospital, Southern Medical University, 366 South Jiangnan Road, Guangzhou, 510280, China
| | - Xuan Lai
- Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Street, Guangzhou, 510515, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, 366 South Jiangnan Road, Guangzhou, 510280, China
| | - Junrong Wu
- Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Street, Guangzhou, 510515, China
| | - Chen Hu
- Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Street, Guangzhou, 510515, China
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Street, Guangzhou, 510515, China.
| |
Collapse
|
32
|
Song Y, Fields E. Pharmacological Advances of Chloroquine and Hydroxychloroquine: From Antimalarials to Investigative Therapies in COVID-19. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20953648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
During the coronavirus disease 2019 (COVID-19) pandemic, numerous existing chemicals have been screened for antiviral potential against the emerging coronavirus severe acute respiratory syndrome coronavirus 2. Chloroquine and hydroxychloroquine, after exhibiting potent in vitro efficacy, have gained tremendous attention. Both therapeutics are derivatives of natural alkaloid quinine and were first synthesized to treat malaria. Thereafter, the pharmaceutical applications of the agents have expanded to many new areas. In this article, the medicinal history and pharmacological activities of chloroquine and hydroxychloroquine are summarized. Antimalarial, anti-inflammatory, antitumor, antiviral properties, and therapeutic potential in the emerging viral infection COVID-19 are discussed. Pharmacokinetics, adverse effects, and toxicities are reviewed.
Collapse
Affiliation(s)
- Yang Song
- Department of Pharmacy Services, CHI Franciscan Health, St. Joseph Medical Center, Tacoma, WA, USA
| | - Elise Fields
- Department of Pharmacy Services, CHI Franciscan Health, St. Joseph Medical Center, Tacoma, WA, USA
| |
Collapse
|
33
|
Li X, Gao L, Zheng L, Shi J, Ma J. BMP4-mediated autophagy is involved in the metastasis of hepatocellular carcinoma via JNK/Beclin1 signaling. Am J Transl Res 2020; 12:3068-3077. [PMID: 32655831 PMCID: PMC7344099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
The role of autophagy in tumor development is complicated. More signaling mechanisms of bone morphogenetic protein 4 (BMP4) involving in hepatocellular carcinoma (HCC) are needed to be clarified. The present study aimed to identify whether BMP4 contributes to the regulation of autophagy in the progression of HCC. We found that increased BMP4 expression was significantly correlated with TNM stage and metastasis. BMP4 treatment promoted HCC cells invasion and induced autophagy. Blocking autophagy by 3-MA or silenced Beclin1 attenuated BMP4-induced autophagy and cell invasion. Further study revealed that JNK/Beclin1 pathway participated in the process of autophagy and JNK inhibitor SP600125 could attenuate autophagy and reduce the invasive ability of HCC cells induced by BMP4. In a word, BMP4-induced autophagy facilitates invasion of HCC by JNK/Beclin1 signaling pathway.
Collapse
Affiliation(s)
- Xueqin Li
- Department of Oncology, Affiliated Hospital of Jining Medical UniversityJining 272029, Shandong, China
| | - Lei Gao
- Department of Emergency, Affiliated Hospital of Jining Medical UniversityJining 272029, Shandong, China
| | - Linjing Zheng
- Department of Oncology, Affiliated Hospital of Jining Medical UniversityJining 272029, Shandong, China
| | - Jing Shi
- Department of Oncology, Affiliated Hospital of Jining Medical UniversityJining 272029, Shandong, China
| | - Junli Ma
- Department of Oncology, Affiliated Hospital of Jining Medical UniversityJining 272029, Shandong, China
| |
Collapse
|
34
|
Kiruthiga C, Devi KP, Nabavi SM, Bishayee A. Autophagy: A Potential Therapeutic Target of Polyphenols in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12030562. [PMID: 32121322 PMCID: PMC7139730 DOI: 10.3390/cancers12030562] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a conserved biological phenomenon that maintains cellular homeostasis through the clearing of damaged cellular components under cellular stress and offers the cell building blocks for cellular survival. Aberrations in autophagy subsidize to various human pathologies, such as dementia, cardiovascular diseases, leishmaniosis, influenza, hepatic diseases, and cancer, including hepatocellular carcinoma (HCC). HCC is the fifth common mortal type of liver cancer globally, with an inhomogeneous topographical distribution and highest incidence tripled in men than women. Existing treatment procedures with liver cancer patients result in variable success rates and poor prognosis due to their drug resistance and toxicity. One of the pathophysiological mechanisms that are targeted during the development of anti-liver cancer drugs is autophagy. Generally, overactivated autophagy may lead to a non-apoptotic form of programmed cell death (PCD) or autophagic cell death or type II PCD. Emerging evidence suggests that manipulation of autophagy could induce type II PCD in cancer cells, acting as a potential tumor suppressor. Hence, altering autophagic signaling offers new hope for the development of novel drugs for the therapy of resistant cancer cells. Natural polyphenolic compounds, including flavonoids and non-flavonoids, execute their anticarcinogenic mechanism through upregulating tumor suppressors and autophagy by modulating canonical (Beclin-1-dependent) and non-canonical (Beclin-1-independent) signaling pathways. Additionally, there is evidence signifying that plant polyphenols target angiogenesis and metastasis in HCC via interference with multiple intracellular signals and decrease the risk against HCC. The current review offers a comprehensive understanding of how natural polyphenolic compounds exhibit their anti-HCC effects through regulation of autophagy, the non-apoptotic mode of cell death.
Collapse
Affiliation(s)
- Chandramohan Kiruthiga
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi 630 003, Tamil Nadu, India;
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi 630 003, Tamil Nadu, India;
- Correspondence: (K.P.D.); or (A.B.); Tel.: +91-4565223325 (K.P.D.); +1-941-782-5950 (A.B.)
| | - Seyed M. Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran;
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
- Correspondence: (K.P.D.); or (A.B.); Tel.: +91-4565223325 (K.P.D.); +1-941-782-5950 (A.B.)
| |
Collapse
|
35
|
Yu S, Wang X, Dou N, Zhou J, Gao Y, Li Y. B-cell lymphoma-2-associated transcription factor 1 is overexpressed and contributes to sorafenib resistance in hepatocellular carcinoma. Hepatol Res 2019; 49:1329-1340. [PMID: 31237058 DOI: 10.1111/hepr.13395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022]
Abstract
AIM B-cell lymphoma-2-associated transcription factor 1 (BCLAF1) is involved in various biological processes including tumorigenesis, but its function and expression in hepatocellular carcinoma (HCC) is little known, and its clinical value in HCC has not yet been defined. METHODS The protein level of BCLAF1 in HCC specimens and paired adjacent normal tissues was examined by immunohistochemical staining. The effects of BCLAF1 on autophagy in HCC cells were detected by confocal microscopy, transmission electron microscopy, and western blot analysis. Cell proliferation and tumorigenicity assays were carried out in vitro and in vivo. Flow cytometry assay was used to determine the apoptosis level of HCC cells. The correlation of BCLAF1 and sorafenib resistance in HCC was analyzed by the Kaplan-Meier survival method. RESULTS High expression of BCLAF1 was found in HCC tissues compared with adjacent normal tissues, and higher BCLAF1 expression was correlated with higher tumor-node-metastasis stage, worse differentiation, and worse prognosis of HCC patients. BCLAF1 could induce autophagy in HCC cells in response to starvation and BCLAF1-mediated autophagy could enhance cell proliferation and impede cell apoptosis under stress conditions. Animal experiments indicated that BCLAF1 promoted tumorigenicity of HCC cells in vivo. More importantly, high expression of BCLAF1 might contribute to sorafenib resistance in HCC patients. CONCLUSIONS BCLAF1 is a potential oncogene in HCC by inducing autophagy to maintain tumor cell growth in response to stress conditions, and it could serve as a potential biomarker for predicting the prognosis of HCC patients and screening patients who are suitable for sorafenib therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Yandong Li
- Department of Oncology.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Tian Y, Yang B, Qiu W, Hao Y, Zhang Z, Yang B, Li N, Cheng S, Lin Z, Rui YC, Cheung OKW, Yang W, Wu WKK, Cheung YS, Lai PBS, Luo J, Sung JJY, Chen R, Wang HY, Cheng ASL, Yang P. ER-residential Nogo-B accelerates NAFLD-associated HCC mediated by metabolic reprogramming of oxLDL lipophagy. Nat Commun 2019; 10:3391. [PMID: 31358770 PMCID: PMC6662851 DOI: 10.1038/s41467-019-11274-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 06/18/2019] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome that elevates the risk of hepatocellular carcinoma (HCC). Although alteration of lipid metabolism has been increasingly recognized as a hallmark of cancer cells, the deregulated metabolic modulation of HCC cells in the NAFLD progression remains obscure. Here, we discovers an endoplasmic reticulum-residential protein, Nogo-B, as a highly expressed metabolic modulator in both murine and human NAFLD-associated HCCs, which accelerates high-fat, high-carbohydrate diet-induced metabolic dysfunction and tumorigenicity. Mechanistically, CD36-mediated oxLDL uptake triggers CEBPβ expression to directly upregulate Nogo-B, which interacts with ATG5 to promote lipophagy leading to lysophosphatidic acid-enhanced YAP oncogenic activity. This CD36-Nogo-B-YAP pathway consequently reprograms oxLDL metabolism and induces carcinogenetic signaling for NAFLD-associated HCCs. Targeting the Nogo-B pathway may represent a therapeutic strategy for HCC arising from the metabolic syndrome.
Collapse
Affiliation(s)
- Yuan Tian
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Bin Yang
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Weinan Qiu
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yajing Hao
- University of Chinese Academy of Sciences, 100049, Beijing, China.,Key Laboratory of RNA Biology of CAS, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Zhenxing Zhang
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Bo Yang
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Nan Li
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 200433, Shanghai, China
| | - Shuqun Cheng
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 200433, Shanghai, China
| | - Zhangjun Lin
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yao-Cheng Rui
- Department of Pharmacology and School of Pharmacy, Second Military Medical University, 200433, Shanghai, China
| | - Otto K W Cheung
- School of Biomedical Sciences, The Chinese University of Hong Kong, 999077, Hong Kong, China
| | - Weiqin Yang
- School of Biomedical Sciences, The Chinese University of Hong Kong, 999077, Hong Kong, China
| | - William K K Wu
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, 999077, Hong Kong, China.,Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, 999077, Hong Kong, China
| | - Yue-Sun Cheung
- Department of Surgery, The Chinese University of Hong Kong, 999077, Hong Kong, China
| | - Paul B S Lai
- Department of Surgery, The Chinese University of Hong Kong, 999077, Hong Kong, China
| | - Jianjun Luo
- Key Laboratory of RNA Biology of CAS, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Joseph J Y Sung
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, 999077, Hong Kong, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, 999077, Hong Kong SAR, China
| | - Runsheng Chen
- Key Laboratory of RNA Biology of CAS, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Hong-Yang Wang
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 200433, Shanghai, China.,National Center for Liver Cancer, Second Military Medical University, 200433, Shanghai, China
| | - Alfred S L Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, 999077, Hong Kong, China. .,State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, 999077, Hong Kong, China.
| | - Pengyuan Yang
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China. .,National Center for Liver Cancer, Second Military Medical University, 200433, Shanghai, China.
| |
Collapse
|
37
|
Wang Q, Guo X, Li L, Gao Z, Ji M. Treatment with metformin and sorafenib alleviates endometrial hyperplasia in polycystic ovary syndrome by promoting apoptosis via synergically regulating autophagy. J Cell Physiol 2019; 235:1339-1348. [PMID: 31256441 DOI: 10.1002/jcp.29051] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/29/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Qian‐qing Wang
- Gynecologic Oncology Department Xinxiang City Central Hospital in Henan Province Xinxiang Henan China
| | - Xiang‐cui Guo
- Gynecologic Oncology Department Xinxiang City Central Hospital in Henan Province Xinxiang Henan China
| | - Li Li
- Gynecologic Oncology Department Xinxiang City Central Hospital in Henan Province Xinxiang Henan China
| | - Zhi‐hui Gao
- Gynecologic Oncology Department Xinxiang City Central Hospital in Henan Province Xinxiang Henan China
| | - Mei Ji
- Gynecology Department Zhengzhou University First Affiliated Hospital Zhengzhou Henan China
| |
Collapse
|
38
|
Liu F, Wang F, Dong X, Xiu P, Sun P, Li Z, Shi X, Zhong J. T7 peptide cytotoxicity in human hepatocellular carcinoma cells is mediated by suppression of autophagy. Int J Mol Med 2019; 44:523-534. [PMID: 31173192 PMCID: PMC6605710 DOI: 10.3892/ijmm.2019.4231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 06/04/2019] [Indexed: 12/16/2022] Open
Abstract
The T7 peptide, an active fragment of full-length tumstatin [the non-collagenous 1 domain of the type IV collagen α3 chain, α3 (IV) NC1], has exhibited potential antitumor effects in several types of cancer cells. However, the mechanism underlying its action against human hepatocellular carcinoma (HCC) remains unclear. The present study aimed to investigate the role of autophagy in T7 peptide-induced cytotoxicity in HCC cells in vitro and in vivo. The results revealed that the T7 peptide significantly reduced cell viability and induced cell cycle arrest in HCC cells. The T7 peptide induced apoptosis in HCC cells through upregulation of Bax, Fas, and Fas ligand, and through upregulation of the anti-apoptotic protein Bcl-2. In addition, treatment with the T7 peptide induced protective autophagy in HCC cells. Blocking autophagy by 3-methyladenineor bafilomycin A1 enhanced T7 peptide-induced apoptosis. Furthermore, co-treatment with MK-2206 (an Akt specific inhibitor) or rapamycin (an inhibitor of mTOR) enhanced T7 peptide-induced autophagy, whereas co-treatment with insulin (an activator of the Akt/mTOR signaling pathway) alleviated T7 peptide-induced autophagy, which suggested that the T7 peptide may induce autophagy activation via inhibition of the Akt/mTOR signaling pathway. Taken together, the present results demonstrated that suppression of autophagy potentiated the cytotoxic effects of the T7 peptide, and suggested that the T7 peptide may serve as a potential alternative compound for HCC therapy.
Collapse
Affiliation(s)
- Feng Liu
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Fuhai Wang
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Xiaofeng Dong
- Department of Hepatobiliary Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Peng Xiu
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Pengfei Sun
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, Shandong 250117, P.R. China
| | - Zhongchao Li
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, Shandong 250117, P.R. China
| | - Xuetao Shi
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, Shandong 250117, P.R. China
| | - Jingtao Zhong
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, Shandong 250117, P.R. China
| |
Collapse
|
39
|
Yang K, Guo W, Ren T, Huang Y, Han Y, Zhang H, Zhang J. Knockdown of HMGA2 regulates the level of autophagy via interactions between MSI2 and Beclin1 to inhibit NF1-associated malignant peripheral nerve sheath tumour growth. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:185. [PMID: 31053152 PMCID: PMC6500071 DOI: 10.1186/s13046-019-1183-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/17/2019] [Indexed: 01/01/2023]
Abstract
Background Malignant peripheral nerve sheath tumours (MPNSTs) are sarcomas of Schwann cell lineage origin that occur sporadically or in association with the inherited syndrome, neurofibromatosis type 1 (NF1). This study aimed to examine the function of High mobility group protein A2 (HMGA2) in NF1 MPNST progression and the underlying molecular mechanism. Methods Immunohistochemistry (IHC) was used to detect HMGA2 expression in MPNST and neurofibroma patient samples. Cell Cycle Kit-8 (CCK-8) and 5-ethynyl-20-deoxyuridine (EdU) assays, terminal deoxynucleotidyl transferase-mediated nick end labelling, and transmission electron microscopy were performed to reveal HMGA2 functions in NF1 MPNST cells in vitro and in vivo. Chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA sequencing (RNA-Seq) were used to detect HMGA2-modulated genes regulating autophagy and growth in NF1 MPNSTs in vitro and in vivo. Results NF1 MPNST samples exhibit higher HMGA2 positivity rates (13/16) than sporadic MPNST (16/41) and neurofibroma (0/7) patient samples. High HMGA2 expression is correlated with poor prognosis. Neurofibromin 1 (NF1)-deficient MPNST cells display elevated HMGA2 expression. Functional experiments revealed that HMGA2 knockdown inhibits NF1 MPNST cell growth in vitro and in vivo. In addition to promoting cell cycle arrest and apoptosis, HMGA2 knockdown inhibits autophagy, favouring cell death. RNA-Seq and ChIP-Seq revealed that HMGA2 directly activates the Musashi-2 (MSI2) promoter region, and MSI2 overexpression reverses autophagy and growth in shHMGA2-transfected cells. MSI2 interacts with Beclin1, and Beclin1 blockade inhibits autophagy, thereby inhibiting cell proliferation. Conclusions HMGA2 knockdown regulates autophagy via MSI2-Beclin1 interactions to inhibit NF1 MPNST growth, revealing potential therapeutic targets for these untreatable tumours. Electronic supplementary material The online version of this article (10.1186/s13046-019-1183-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kang Yang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China. .,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China.
| | - Tingting Ren
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Yi Huang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Yu Han
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Hongliang Zhang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Jie Zhang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
40
|
RNA Binding Protein HuR Promotes Autophagosome Formation by Regulating Expression of Autophagy-Related Proteins 5, 12, and 16 in Human Hepatocellular Carcinoma Cells. Mol Cell Biol 2019; 39:MCB.00508-18. [PMID: 30602494 PMCID: PMC6399664 DOI: 10.1128/mcb.00508-18] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/18/2018] [Indexed: 12/16/2022] Open
Abstract
Autophagy is a process of lysosomal self-degradation of cellular components by forming autophagosomes. Autophagosome formation is an essential process in autophagy and is fine-tuned by various autophagy-related gene (ATG) products, including ATG5, ATG12, and ATG16. Although several reports have shown that numerous factors affect multiple levels of gene regulation to orchestrate cellular autophagy, the detailed mechanism of autophagosome formation still needs further investigation. In this study, we demonstrate that the RNA binding protein HuR (human antigen R) performs an essential function in autophagosome formation. We observe that HuR silencing leads to inhibition of autophagosome formation and autophagic flux in liver cells. Ribonucleoprotein immunoprecipitation (RIP) assay allows the identification of ATG5, ATG12, and ATG16 mRNAs as the direct targets of HuR. We further show that HuR mediates the translation of ATG5, ATG12, and ATG16 mRNAs by binding to their 3' untranslated regions (UTRs). In addition, we show that HuR expression positively correlates with the levels of ATG5 and ATG12 in hepatocellular carcinoma (HCC) cells. Collectively, our results suggest that HuR functions as a pivotal regulator of autophagosome formation by enhancing the translation of ATG5, ATG12, and ATG16 mRNAs and that augmented expression of HuR and ATGs may participate in the malfunction of autophagy in HCC cells.
Collapse
|
41
|
Ke PY. Diverse Functions of Autophagy in Liver Physiology and Liver Diseases. Int J Mol Sci 2019; 20:E300. [PMID: 30642133 PMCID: PMC6358975 DOI: 10.3390/ijms20020300] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/05/2019] [Accepted: 01/08/2019] [Indexed: 01/09/2023] Open
Abstract
Autophagy is a catabolic process by which eukaryotic cells eliminate cytosolic materials through vacuole-mediated sequestration and subsequent delivery to lysosomes for degradation, thus maintaining cellular homeostasis and the integrity of organelles. Autophagy has emerged as playing a critical role in the regulation of liver physiology and the balancing of liver metabolism. Conversely, numerous recent studies have indicated that autophagy may disease-dependently participate in the pathogenesis of liver diseases, such as liver hepatitis, steatosis, fibrosis, cirrhosis, and hepatocellular carcinoma. This review summarizes the current knowledge on the functions of autophagy in hepatic metabolism and the contribution of autophagy to the pathophysiology of liver-related diseases. Moreover, the impacts of autophagy modulation on the amelioration of the development and progression of liver diseases are also discussed.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry & Molecular Biology and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
- Division of Allergy, Immunology, and Rheumatology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
| |
Collapse
|
42
|
Xie W, Zhou J. Aberrant regulation of autophagy in mammalian diseases. Biol Lett 2018; 14:rsbl.2017.0540. [PMID: 29321247 DOI: 10.1098/rsbl.2017.0540] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a major cellular metabolic pathway that facilitates degradation of a subset of long-lived proteins and cytoplasmic organelles in eukaryotic cells. This pathway plays a vital role in preserving the cellular homeostasis of the cells themselves, in addition to maintaining the normal physiological state of cell renewal. Many stressors, such as starvation, ischaemia and oxidative stress can induce autophagy. In addition to its physiological roles, autophagy also occurs in a wide variety of pathological processes, including tumour progression, metabolic disorders, and neurodegenerative and lung diseases. In recent years, a growing body of evidence has shown that autophagy also plays a key role in the development of mammalian diseases, a function that has garnered substantial attention and study. An in-depth understanding of the molecular role that autophagy plays in pathological settings is vital for both the diagnosis and treatment of mammalian diseases and will aid in the search for novel targets for therapeutic drug intervention. Here, we provide an integrated review of recent studies implicating autophagy dysfunction in the progression of mammalian disorders and summarize research suggesting that the molecular pathways involved in autophagy could serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Wei Xie
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Jun Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
43
|
Deng G, Zeng S, Qu Y, Luo Q, Guo C, Yin L, Han Y, Li Y, Cai C, Fu Y, Shen H. BMP4 promotes hepatocellular carcinoma proliferation by autophagy activation through JNK1-mediated Bcl-2 phosphorylation. J Exp Clin Cancer Res 2018; 37:156. [PMID: 30012194 PMCID: PMC6048721 DOI: 10.1186/s13046-018-0828-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/07/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Autophagy is a conserved catabolic process with complicated roles in tumor development. Bone morphogenetic protein 4 (BMP4), a member of the transforming growth factor (TGF-β) family of regulatory proteins, plays a crucial role in human malignancies. However, whether BMP4 contributes to the regulation of autophagy in hepatocellular carcinoma (HCC) progression remains elusive. METHODS Functional analysis of BMP4 on HCC proliferation and autophagy was performed both in vitro and in vivo in HepG2 and HCCLM3 cells. Autophagic activity was estimated by Western blot for autophagic marker proteins and by transmission electron microscopy (TEM). Transfection of mRFP-GFP-LC3 adenovirus was applied to observe autophagic flux and high content screening was used for quantification. The signaling pathway of BMP4-regulated HCC proliferation and autophagy was investigated by Western blot. RESULTS BMP4 treatment promoted HCC cells proliferation and induced autophagy. The in vivo xenograft model supported that BMP4 overexpression promoted the growth of HCC cells and autophagy induction while BMP4 knockdown exerted the opposite effect. 3-MA pre-treatment or knockdown of Beclin-1 (BECN1) blocked HCC autophagy by decreasing the expression of LC3-II and subsequently attenuated BMP4-induced autophagy and cells proliferation enhanced by BMP4 in vitro and in vivo. Mechanistic study revealed that the induction of autophagy by BMP4 was mediated through activating the JNK1/Bcl2 pathway. Furthermore, the JNK1 inhibitor and knockdown of JNK1 could attenuate autophagy induced by BMP4 and eliminated BMP4-promoted HCC cells growth. CONCLUSIONS BMP4 promoted HCC proliferation by autophagy activation through JNK1/Bcl-2 signaling.
Collapse
Affiliation(s)
- Ganlu Deng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Yanling Qu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Qingqing Luo
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Cao Guo
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Ling Yin
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Yiyi Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Yaojie Fu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| |
Collapse
|
44
|
Yi QY, Bai ZS, Cai B, Chen N, Chen LS, Yuan T, Mao JH. HSV‑TK/GCV can induce cytotoxicity of retinoblastoma cells through autophagy inhibition by activating MAPK/ERK. Oncol Rep 2018; 40:682-692. [PMID: 29845211 PMCID: PMC6072295 DOI: 10.3892/or.2018.6454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/09/2018] [Indexed: 12/17/2022] Open
Abstract
Retinoblastoma is an severe ophthalmic disease and the most common type intraocular malignant tumor, particularly in infants. Currently, few drugs and therapies are available. Gene therapy has been considered to be a potential treatment to cure cancer effectively and Herpes simplex virus type 1 thymidine kinase/ganciclovir (HSV-TK/GCV) is one type of suicide gene therapy that has been extensively studied. Numerous in vitro and in vivo studied have shown that this system can kill tumor cells, including liver and lung cancer cells. GCV is used as an antiviral drug, and the thymidine kinase, HSV-TK can phosphorylate GCV to GCV-TP, a competitive inhibitor of DNA synthesis, instead of guanine-5′-triphosphate in the process of DNA synthesis. This process prevents DNA chain elongation causing cell death via apoptosis. However, the toxic effects of HSV-TK/GCV on retinoblastoma cells remain unknown, and the molecular mechanisms of its therapeutic effects have not been fully elucidated. Our results suggest that HSV-TK/GCV can significantly cause the death of retinoblastoma cell lines, HXO-RB44 and Y79. Further studies have reported that this cell death is induced by the inhibition of autophagy by activating the MAPK/ERK (mitogen-activated protein kinase/ERK) signaling pathway. The mTOR inhibitor Torin1 can partially block the toxic effects of HSV-TK/GCV on HXO-RB44 cells. The above results demonstrate that the mechanism undertaken by HSV-TK/GCV to exhibit therapeutic effects mechanism may inhibit autophagy by activating MAPK/ERK. The findings of the present study may provide novel insight for the exploration of HSV-TK/GCV in the treatment of retinoblastoma.
Collapse
Affiliation(s)
- Quan-Yong Yi
- Department of Ophthalmology, Ningbo Eye Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Zhi-Sha Bai
- Department of Ophthalmology, Ningbo Eye Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Bin Cai
- Ningbo Central Blood Center, Ningbo, Zhejiang 315040, P.R. China
| | - Nan Chen
- Department of Ophthalmology, The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Li-Shuang Chen
- Department of Ophthalmology, Ningbo Eye Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Tao Yuan
- Department of Ophthalmology, Ningbo Eye Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Jing-Hai Mao
- Department of Ophthalmology, Ningbo Eye Hospital, Ningbo, Zhejiang 315040, P.R. China
| |
Collapse
|
45
|
Raju GSR, Pavitra E, Merchant N, Lee H, Prasad GLV, Nagaraju GP, Huh YS, Han YK. Targeting autophagy in gastrointestinal malignancy by using nanomaterials as drug delivery systems. Cancer Lett 2018; 419:222-232. [DOI: 10.1016/j.canlet.2018.01.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/12/2018] [Accepted: 01/12/2018] [Indexed: 02/06/2023]
|
46
|
Sheng J, Qin H, Zhang K, Li B, Zhang X. Targeting autophagy in chemotherapy-resistant of hepatocellular carcinoma. Am J Cancer Res 2018; 8:354-365. [PMID: 29636994 PMCID: PMC5883089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/04/2018] [Indexed: 06/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor with poor prognosis. Surgical resection is recommended for very early-stage and early-stage HCC, but HCC is still prone to recurrence and metastasis after surgery. Furthermore, treatment options for intermediate- and advanced-stage HCC are relatively limited. Systemic therapy is the preferred method to kill residual cancer cells after surgery and prolong survival time of inoperable patients, but most cases are insensitive to chemotherapeutic agents, restricting widespread clinical application of systemic therapy. Many studies have found that various chemotherapeutic drugs for HCC treatment can increase autophagic flux of HCC cells, and it may be related with enhancing drug resistance and promoting cell survival. However, enhancement of autophagic flux may also induce tumor cell death in some cases, leading to marked inconsistency across studies. Here we reviewed the mechanisms underlying the increase in autophagic flux in HCC cells induced by chemotherapeutic drugs and examined the contributions of autophagy and related pathways to chemotherapy drug resistance. Our aim was to identify potential autophagy-related targets for improving the sensitivity of HCC to chemotherapeutic drugs.
Collapse
Affiliation(s)
- Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| | - Hanjiao Qin
- Department of Radiotherapy, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| | - Kun Zhang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| | - Xuewen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| |
Collapse
|
47
|
Zong C, Zhang H, Yang X, Gao L, Hou J, Ye F, Jiang J, Yang Y, Li R, Han Z, Wei L. The distinct roles of mesenchymal stem cells in the initial and progressive stage of hepatocarcinoma. Cell Death Dis 2018; 9:345. [PMID: 29497038 PMCID: PMC5832809 DOI: 10.1038/s41419-018-0366-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/02/2018] [Accepted: 01/24/2018] [Indexed: 12/19/2022]
Abstract
Increasing evidences suggest that mesenchymal stem cells (MSCs) could migrate to the tumor site and play a vital role in tumorigenesis and progression. However, it is still a lively debate whether MSCs exert a pro- or anticancer action. Cancer development and progression is a multistep process. Therefore, we investigated the effect of MSCs on hepatocarcinoma and whether the role of MSCs depends on the stage of cancer development. In our study, chronically exposing rats to N-diethylnitrosamine (DEN) was employed as hepatocarcinoma model. And to evaluate the effect of MSCs on hepatocarcinoma, the animals were divided into three groups: rats were injected with MSCs in the initial (DEN + MSC (Is) group) or progressive stage (DEN + MSC (Ps) group) of hepatocarcinoma, respectively. Rats injected with PBS were used as control (DEN group). Interestingly, we found that MSCs had a tumor-suppressive effect in the Is of hepatocarcinoma, yet a tumor-promotive effect in the Ps. In the Is, MSCs showed a protective role against drug damage, possibly through reducing DNA damage and ROS accumulation. Meanwhile, MSCs in the Is also exhibited anti-inflammatory and anti-liver fibrosis effect. Further, in the Ps, MSCs facilitated tumor formation not only by enhancing cancer cell proliferation but also through promoting stem cell-like properties and epithelial–mesenchymal transition of liver cancer cells. Taken together, MSCs have a paradoxical role in the different stages of hepatocarcinogenesis, which sheds new light on the role of MSCs in hepatocarcinoma and cautions the therapeutic application of MSCs for liver cancer.
Collapse
Affiliation(s)
- Chen Zong
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 200438, Shanghai, China
| | - Hangjie Zhang
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 200438, Shanghai, China.,Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xue Yang
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 200438, Shanghai, China
| | - Lu Gao
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 200438, Shanghai, China
| | - Jing Hou
- Department of Pharmacy, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Fei Ye
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 200438, Shanghai, China
| | - Jinghua Jiang
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 200438, Shanghai, China
| | - Yang Yang
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 200438, Shanghai, China
| | - Rong Li
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 200438, Shanghai, China
| | - Zhipeng Han
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 200438, Shanghai, China.
| | - Lixin Wei
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 200438, Shanghai, China.
| |
Collapse
|
48
|
Zhang S, Li J, Zhou G, Mu D, Yan J, Xing J, Yao Z, Sheng H, Li D, Lv C, Sun B, Hong Q, Guo H. Aurora-A regulates autophagy through the Akt pathway in human prostate cancer. Cancer Biomark 2018; 19:27-34. [PMID: 28269749 DOI: 10.3233/cbm-160238] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Aurora A kinase is frequently overexpressed in a variety of tumor types, including the prostate. However, the function of Aurora A in autophagy in prostate cancer has not been investigated. Here, we aimed to study the functioning mechanism and autophagy associated signaling pathways of Aurora A in prostate cancer. METHODS To investigate the biological function of Aurora A, down-regulation of Aurora A was performed followed by functional testing assays. Immunohistochemistry was used to detect the expression of Aurora A in human prostate cancer specimens. CCK8, Transwell, flow cytometric analysis and measurement of tumor formation in nude mice were performed to test the effects of Aurora A down-regulation in vivo and in vitro. Signaling pathway analysis was performed by using Western blot. Autophagy activity was measured by monitoring the expression levels of LC3-II. RESULTS Aurora A overexpression was significantly higher in human prostate cancer specimens than in BPH. Furthermore, Aurora A knockdown inhibited the proliferation of prostate cancer cells by suppressing the Akt pathway, indicating that Akt is a novel Aurora A substrate in prostate cancer. Additionally, Aurora A down-regulation prompts autophagy in prostate cancer cells. Most importantly, Aurora A ablation almost fully abrogates tumorigenesis in nude mice, suggesting that Aurora A is a key oncogenic effector in prostate cancer. CONCLUSIONS Taken together, our data suggest that Aurora-A plays an important role in the suppression of autophagy by inhibiting the phosphorylation of Akt, which in turn prevents autophagy-induced apoptosis in prostate cancer.
Collapse
|
49
|
Tronchere H, Cinato M, Timotin A, Guitou L, Villedieu C, Thibault H, Baetz D, Payrastre B, Valet P, Parini A, Kunduzova O, Boal F. Inhibition of PIKfyve prevents myocardial apoptosis and hypertrophy through activation of SIRT3 in obese mice. EMBO Mol Med 2018; 9:770-785. [PMID: 28396567 PMCID: PMC5452048 DOI: 10.15252/emmm.201607096] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PIKfyve is an evolutionarily conserved lipid kinase that regulates pleiotropic cellular functions. Here, we identify PIKfyve as a key regulator of cardiometabolic status and mitochondrial integrity in chronic diet‐induced obesity. In vitro, we show that PIKfyve is critical for the control of mitochondrial fragmentation and hypertrophic and apoptotic responses to stress. We also provide evidence that inactivation of PIKfyve by the selective inhibitor STA suppresses excessive mitochondrial ROS production and apoptosis through a SIRT3‐dependent pathway in cardiomyoblasts. In addition, we report that chronic STA treatment improves cardiometabolic profile in a mouse model of cardiomyopathy linked to obesity. We provide evidence that PIKfyve inhibition reverses obesity‐induced cardiac mitochondrial damage and apoptosis by activating SIRT3. Furthermore, treatment of obese mice with STA improves left ventricular function and attenuates cardiac hypertrophy. In contrast, STA is not able to reduce isoproterenol‐induced cardiac hypertrophy in SIRT3.KO mice. Altogether, these results unravel a novel role for PIKfyve in obesity‐associated cardiomyopathy and provide a promising therapeutic strategy to combat cardiometabolic complications in obesity.
Collapse
Affiliation(s)
- Helene Tronchere
- INSERM U1048 I2MC, Toulouse, Cedex 4, France.,Université Paul Sabatier, Toulouse, France
| | - Mathieu Cinato
- INSERM U1048 I2MC, Toulouse, Cedex 4, France.,Université Paul Sabatier, Toulouse, France
| | - Andrei Timotin
- INSERM U1048 I2MC, Toulouse, Cedex 4, France.,Université Paul Sabatier, Toulouse, France
| | - Laurie Guitou
- INSERM U1048 I2MC, Toulouse, Cedex 4, France.,Université Paul Sabatier, Toulouse, France
| | - Camille Villedieu
- CarMeN Laboratory, Inserm U1060, Univ-Lyon, Université Claude Bernard Lyon 1, Bron, France
| | - Helene Thibault
- CarMeN Laboratory, Inserm U1060, Univ-Lyon, Université Claude Bernard Lyon 1, Bron, France
| | - Delphine Baetz
- CarMeN Laboratory, Inserm U1060, Univ-Lyon, Université Claude Bernard Lyon 1, Bron, France
| | - Bernard Payrastre
- INSERM U1048 I2MC, Toulouse, Cedex 4, France.,Université Paul Sabatier, Toulouse, France
| | - Philippe Valet
- INSERM U1048 I2MC, Toulouse, Cedex 4, France.,Université Paul Sabatier, Toulouse, France
| | - Angelo Parini
- INSERM U1048 I2MC, Toulouse, Cedex 4, France.,Université Paul Sabatier, Toulouse, France
| | - Oksana Kunduzova
- INSERM U1048 I2MC, Toulouse, Cedex 4, France.,Université Paul Sabatier, Toulouse, France
| | - Frederic Boal
- INSERM U1048 I2MC, Toulouse, Cedex 4, France .,Université Paul Sabatier, Toulouse, France
| |
Collapse
|
50
|
Fan TF, Wu TF, Bu LL, Ma SR, Li YC, Mao L, Sun ZJ, Zhang WF. Dihydromyricetin promotes autophagy and apoptosis through ROS-STAT3 signaling in head and neck squamous cell carcinoma. Oncotarget 2018; 7:59691-59703. [PMID: 27474168 PMCID: PMC5312341 DOI: 10.18632/oncotarget.10836] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/10/2016] [Indexed: 11/25/2022] Open
Abstract
Chemotherapy is an effective weapon in the battle against cancer, but numerous cancer patients are either not sensitive to chemotherapy or develop drug resistance to current chemotherapy regimens. Therefore, an effective chemotherapy mechanism that enhances tumor sensitivity to chemotherapeutics is urgently needed. The aim of the present study was to determine the antitumor activity of dihydromyricetin (DHM) on head and neck squamous cell carcinoma (HNSCC) and its underlying mechanisms. We demonstrated that DHM can markedly induce apoptotic cell death and autophagy in HNSCC cells. Meanwhile, increased autophagy inhibited apoptosis. Pharmacological or genetic inhibition of autophagy further sensitized the HNSCC cells to DHM-induced apoptosis. Mechanistic analysis showed that the antitumor of DHM may be due to the activation phosphorylation of signal transducer and activator of transcription 3 (p-STAT3), which contributed to autophagy. Importantly, DHM triggered reactive oxygen species (ROS) generation in the HNSCC cells and the levels of ROS decreased with N-acetyl-cysteine (NAC), a ROS scavenger. Moreover, NAC abrogated the effects of DHM on STAT3-dependent autophagy. Overall, the following critical issues were observed: first, DHM increased the p-STAT3-dependent autophagy by generating ROS-signaling pathways in head and neck squamous cell carcinoma. Second, inhibiting autophagy could enhance DHM-induced apoptosis in head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
- Teng-Fei Fan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, China
| | - Tian-Fu Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, China
| | - Lin-Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, China
| | - Si-Rui Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, China
| | - Yi-Cun Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, China
| | - Liang Mao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, China.,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wen-Feng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, China.,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|